文档库 最新最全的文档下载
当前位置:文档库 › 近代物理

近代物理

近代物理
近代物理

一选择题:

1有下列几种说法:

(1) 所有惯性系对物理基本规律都是等价的.

(2) 在真空中,光的速度与光的频率、光源的运动状态无关.

(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同.

若问其中哪些说法是正确的, 答案是

(A) 只有(1)、(2)是正确的.

(B) 只有(1)、(3)是正确的.

(C) 只有(2)、(3)是正确的.

(D) 三种说法都是正确的. [ D ]

2 K 系与K '系是坐标轴相互平行的两个惯性系,K '系相对于K 系沿Ox 轴正方向匀速运

动.一根刚性尺静止在K '系中,与O 'x '轴成 30°角.今在K 系中观测得该尺与Ox 轴成

45°角,则K '系相对于K 系的速度是:

(A) (2/3)c . (B) (1/3)c .

(C) (2/3)1/2c . (D) (1/3)1/2c . [ C ]

3 根据相对论力学,动能为0.25 MeV 的电子,其运动速度约等于

(A) 0.1c (B) 0.5 c

(C) 0.75 c (D) 0.85 c [ C ]

(c 表示真空中的光速,电子的静能m 0c 2 = 0.51 MeV)

4设用频率为ν1和ν2的两种单色光,先后照射同一种金属均能产生光电效应.已知金属的红

限频率为ν0,测得两次照射时的遏止电压|U a 2| = 2|U a 1|,则这两种单色光的频率有如下关系:

(A) ν2 = ν1 - ν0. (B) ν2 = ν1 + ν0.

(C) ν2 = 2ν1 - ν0. (D) ν2 = ν1 - 2ν0. [ C ]

5已知用光照的办法将氢原子基态的电子电离,可用的最长波长的光是 913 ?的紫外

光,那么氢原子从各受激态跃迁至基态的赖曼系光谱的波长可表示为:

(A) 11913

+-=n n λ ?. (B) 1

1913-+=n n λ ?. (C) 1191322-+=n n λ ?. (D) 191322

-=n n λ ?. [ D ] 6若用里德伯常量R 表示氢原子光谱的最短波长,则可写成

(A) λmin =1 / R . (B) λmin =2 / R .

(C) λmin =3 / R . (D) λmin =4 / R . [ A ]

7静止质量不为零的微观粒子作高速运动,这时粒子物质波的波长λ与速度v 有如下关系:

(A) v ∝λ . (B) v /1∝λ.

(C) 2211c

-∝

v λ. (D) 22v -∝c λ. [ C ] 8 关于不确定关系 ≥??x p x ()2/(π=h ,有以下几种理解: (1) 粒子的动量不可能确定.

(2) 粒子的坐标不可能确定.

(3) 粒子的动量和坐标不可能同时准确地确定.

(4) 不确定关系不仅适用于电子和光子,也适用于其它粒子.

其中正确的是:

(A) (1),(2). (B) (2),(4).

(C) (3),(4). (D) (4),(1). [ C ]

9直接证实了电子自旋存在的最早的实验之一是

(A) 康普顿实验. (B) 卢瑟福实验.

(C) 戴维孙-革末实验. (D) 斯特恩-革拉赫实验. [ D ] 一选择题:

1 如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,

而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为 (A) 4πn 2 e / λ. (B) 2πn 2 e / λ.

(C) (4πn 2 e / λ) +π. (D) (2πn 2 e / λ) -π. [ A ] 2在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏

上原来的明纹处

(A) 仍为明条纹; (B) 变为暗条纹;

(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹.

[ B ]

3在双缝干涉实验中,两条缝的宽度原来是相等的.若其中一缝的宽度略变窄(缝中心位置不变),则

(A) 干涉条纹的间距变宽.

(B) 干涉条纹的间距变窄.

(C) 干涉条纹的间距不变,但原极小处的强度不再为零.

(D) 不再发生干涉现象. [ C ]

4 在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于图中O 处.现将光源S 向下移动到示意图中的S '位置,则 (A) 中央明条纹也向下移动,且条纹间距不变.

(B) 中央明条纹向上移动,且条纹间距不变.

(C) 中央明条纹向下移动,且条纹间距增大. (D) 中央明条纹向上移动,且条纹间距增

大. [ B ]

5 在图示三种透明材料构成的牛顿环装置中,

用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为 (A) 全明.

(B) 全暗.

(C) 右半部明,左半部暗. (D) 右半部暗,左半部明. [ D ]

6 在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是

(A) λ / 2. (B) λ / (2n ).

(C) λ / n . (D) ()12-n λ

. [ D ]

7 一束波长为λ的平行单色光垂直入射到一单缝AB 上,

装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹

一侧第一个暗纹所在的位置,则BC 的长度为

(A) λ / 2. (B) λ. (C) 3λ / 2 . (D) 2λ . [ B ]

8一单色平行光束垂直照射在宽度为1.0 mm 的单缝上,在缝后放一焦距为2.0 m 的会聚透镜.已知位于透镜焦平面处的屏幕上的中央明条纹宽度为 2.0 mm ,则入射光波长约为 n 1 3λ S S ' 图中数字为各处的折射

(1nm=10?9m)

(A) 100 nm (B) 400 nm

(C) 500 nm (D) 600 nm [C]

9对某一定波长的垂直入射光,衍射光栅的屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该

(A) 换一个光栅常数较小的光栅.

(B) 换一个光栅常数较大的光栅.

(C) 将光栅向靠近屏幕的方向移动.

(D) 将光栅向远离屏幕的方向移动.[B]

一选择题:

1在双缝干涉实验中,两缝间距为d,双缝与屏幕的距离为D(D>>d),单色光波

长为,屏幕上相邻明条纹之间的距离为

(A) D/d.(B) d/D.

(C) D/(2d).(D) d/(2D).[ A ]

2用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则

(A) 干涉条纹的宽度将发生改变.

(B) 产生红光和蓝光的两套彩色干涉条纹.

(C) 干涉条纹的亮度将发生改变.

(D) 不产生干涉条纹.[ B ]

3 如图a所示,一光学平板玻璃A与待测工件B之间形成空气劈尖,用波长=500 nm (1 nm=10-9 m)的单色光垂直照射.看到的反射光的干涉条纹如图b所示.有些条纹弯曲部分的顶点恰好与其右边条纹的直线部分的连线相切.则工件的上表面缺陷是

(A) 不平处为凸起纹,最大高度为500 nm.

(B) 不平处为凸起纹,最大高度为250 nm.

(C) 不平处为凹槽,最大深度为500 nm.

(D) 不平处为凹槽,最大深度为250 nm.

[ D ]

4在玻璃(折射率n2=1.60)表面镀一层MgF2 (折射率n2=1.38)薄膜作为增透膜.为了使波长为500 nm(1nm=10?9m)的光从空气(n1=1.00)正入射时尽可能少反射,MgF2薄膜的最少厚度应是

(A) 78.1 nm (B) ) 90.6 nm (C) 125 nm (D) 181 nm (E) 250nm

[ B ]

5 在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为d的透明薄片,放入后,这条光路的光程改变了

(A) 2 ( n-1 ) d.(B) 2nd.

(C) 2 ( n-1 ) d+ / 2.(D) nd.

(E) ( n-1 ) d.[ A ]

6波长500nm(1nm=10?9m)的单色光垂直照射到宽度a 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d 12 mm,则凸透镜的焦距f为

(A) 2 m.(B) 1 m.

(C) 0.5 m.(D) 0.2 m.

(E) 0.1 m.[ B ]

7根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S,则S的前方某点P的光强度决定于波阵面S上所有面积元发出的子波各自传到P点的

(A) 振动振幅之和.(B) 光强之和.

(C) 振动振幅之和的平方.(D) 振动的相干叠加.[ D ]

8在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为

(A) a= b . (B) a=b .

(C) a=2b . (D) a=3 b . [ B ]

9若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?

(A) 5.0310-1 mm . (B) 1.0310-1 mm .

(C) 1.0310-2 mm . (D) 1.0310-3 mm . [ D ]

10光强为I0的自然光依次通过两个偏振片P1和P2.若P1和P2的偏振化方向的夹角 =30°,则透射偏振光的强度I 是

(A) I0 / 4. (B) I0 / 4.

(C) I0 / 2. (D) I0 / 8.

(E) 3I0 / 8. [ E ]

三计算题:

1在双缝干涉实验中,波长λ=550 nm 的单色平行光垂直入射到缝间距a =2310-4 m 的双缝

上,屏到双缝的距离D =2 m .求:

(1) 中央明纹两侧的两条第10级明纹中心的间距;

(2) 用一厚度为e =6.6310-5 m 、折射率为n =1.58的玻璃片覆盖一缝后,零级明纹将移

到原来的第几级明纹处?(1 nm = 10-9 m)

解:(1) ?x =20 D λ / a 2分

=0.11 m 2分

(2) 覆盖云玻璃后,零级明纹应满足

(n -1)e +r 1=r 2 2分

设不盖玻璃片时,此点为第k 级明纹,则应有

r 2-r 1=k λ 2分

所以 (n -1)e = k λ

k =(n -1) e / λ=6.96≈7

零级明纹移到原第7级明纹处 2分

2用白光垂直照射置于空气中的厚度为0.50 μm 的玻璃片.玻璃片的折射率为1.50.在可见光范围内(400 nm ~ 760 nm)哪些波长的反射光有最大限度的增强?

(1 nm=10-9 m)

解:加强, 2ne+

2

1λ = k λ, 2分 123000124212-=-=-=k k ne k ne λ nm 2分 k = 1, λ1 = 3000 nm ,

k = 2, λ2 = 1000 nm ,

k = 3, λ3 = 600 nm ,

k = 4, λ4 = 428.6 nm ,

k = 5, λ5 = 333.3 nm .

2分

∴ 在可见光范围内,干涉加强的光的波长是

λ=600 nm 和λ=428.6 nm . 2分

3用氦氖激光器发射的单色光(波长为λ=632.8 nm)垂直照射到单缝上,所得夫琅禾费衍射图样中第一级暗条纹的衍射角为5°,求缝宽度.(1nm=10-9m)

解: a sin ? = k λ , k =1. 2分

a = λ / sin ? =7.26310-3 mm 3分

4一束平行光垂直入射到某个光栅上,该光束有两种波长的光,λ1=440 nm ,λ2=660 nm (1 nm

= 10-9 m).实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角?=60°的方向上.求此光栅的光栅常数d .

解:由光栅衍射主极大公式得

111sin λ?k d =

222sin λ?k d =

2

12122112132660440sin sin k k k k k k =??==λλ?? 4分当两谱线重合时有 ?1= ?2 1分 即

69462321===k k ....... 1分 两谱线第二次重合即是

4621=k k , k 1=6, k 2=4 2分 由光栅公式可知d sin60°=6λ1

60

sin 61λ=d =3.05310-3 mm 2分

5两个偏振片叠在一起,在它们的偏振化方向成α1=30°时,观测一束单色自然光.又在α2=45°时,观测另一束单色自然光.若两次所测得的透射光强度相等,求两次入射自然光的强度之比

解:令I 1和I 2分别为两入射光束的光强.透过起偏器后,光的强度分别为I 1 / 2

和I 2 / 2马吕斯定律,透过检偏器的光强分别为 1分

1211

cos 21αI I =', 2222cos 2

1αI I =' 2分 按题意,21I I '=',于是 222121cos 2

1cos 21ααI I = 1分 得 3/2cos /cos /221221==ααI I 1分

6 一束自然光自水中入射到空气界面上,若水的折射率为1.33,空气的折射率为1.00,求布儒斯特角.

解:光从水(折射率为n 1)入射到空气(折射率为n 2)界面时的布儒斯特定律

tg i 0=n 2 / n 1=1 / 1.33 3分

i 0=36.9°(=36°25') 2分

三计算题:

1双缝干涉实验装置如图所示,双缝与屏之间的距离D =120 cm ,两缝之间的距离d =0.50 mm ,用波长λ=500 nm (1 nm=10-9 m)的单色光垂直照射双缝. (1) 求原点O (零级明条纹所在处)上方的第五级明条纹的

坐标x . (2) 如果用厚度l =1.0310-2 mm , 折射率n =1.58的透明

S 1缝后面,求上述第五级明条纹的坐标x '.

(1) ∵ dx / D ≈ k λ

x ≈Dk λ / d = (1200353500310-

6 / 0.50)mm= 6.0 mm 4分

(2) 从几何关系,近似有

r 2-r 1≈ D x /d ' 有透明薄膜时,两相干光线的光程差 δ = r 2 – ( r 1 –l +nl ) = r 2 – r 1 –(n -1)l ()l n D x 1/d --'=

对零级明条纹上方的第k 级明纹有 λδk =

零级上方的第五级明条纹坐标()[]d k l n D x /1λ+-='

=1200[(1.58-1)30.01±535310-4] / 0.50mm

=19.9 mm

2用波长为500 nm (1 nm=10-9 m)的单色光垂直照射到由两块光学平玻璃构成的空气劈

形膜上.在观察反射光的干涉现象中,距劈形膜棱边l = 1.56 cm 的A 处是从棱边算起的第四条暗条纹中心.

(1) 求此空气劈形膜的劈尖角θ;

(2) 改用600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹?

(3) 在第(2)问的情形从棱边到A 处的范围内共有几条明纹?几条暗纹?

(1)棱边处是第一条暗纹中心,在膜厚度为e 2=2

1λ处是第二条暗纹中心,可知第四条暗纹中心处,即A 处膜厚度 e 4=λ2

3 ∴ ()l l e 2/3/4λθ===4.8310-5 rad 5分

(2) 由上问可知A 处膜厚为 e 4=33500 / 2 nm =750 nm 对于λ'=600 nm 的光,连同附加光程差,在A 处两反射光的光程差为 λ'+

2124e ,它与波长λ'之比为0.321/24=+'λe .所以A 处是明纹 3分 (3) 棱边处仍是暗纹,A 处是第三条明纹,所以共有三条明纹,三条暗

纹. 2分

3在夫琅禾费单缝衍射实验中,如果缝宽a 与入射光波长λ的比值分别为(1) 1,(2) 10,

(1) a =λ,sin ? =λ/ λ=1 , ? =90° 1分

(2) a =10λ,sin ? =λ/10 λ=0.1 ? =5?44' 2分

(3) a =100λ,sin ? =λ/100 λ=0.01 ? =34' 2分

这说明,比值λ /a 变小的时候,所求的衍射角变小,中央明纹变窄(其它明纹

也相应地变为更靠近中心点),衍射效应越来越不明显. 2分 (λ /a )→0的极限情形即几何光学的情形: 光线沿直传播,无衍射效应

4用波长为589.3 nm (1 nm = 10-9 m)的钠黄光垂直入射在每毫米有500 条缝的光栅上,

.

d =1 / 500 mm ,λ=589.3 nm ,

第一级衍射主极大: d sin θ = λ 2分

∴ sin θ =λ / d =0.295 θ =sin -10.295=17.1°

5强度为I 0的一束光,垂直入射到两个叠在一起的偏振片上,这两个偏振片的偏振化方向之间的夹角为60°.若这束入射光是强度相等的线偏振光和自然光混合而成的,且线偏振光的光矢量振动方向与此二偏振片的偏振化方向皆成30°角,求透过每个偏振片后的光束强度.

P d λ x '

2001cos 212121??

? ??+??? ??=I I I 30° 2分 =5I 0 / 8 1分 透过第二个偏振片后的光强I 2=( 5I 0 / 8 )cos 260° 1分

=5I 0 / 32

6在水(折射率n 1=1.33)和一种玻璃(折射率n 2=1.56的交界面上,自然光从水中射向

玻璃,求起偏角i 0.若自然光从玻璃中射向水,再求此时的起偏角0

i '.

tg i 0=1.56 / 1.33

2分

i 0=49.6°

1分

光自玻璃中入射到水表面上时,

tg 0i '=1.33 / 1.56 0

i '=40.4° (或 0i '=90°-i 0=40.4°) 四 问答题:

如图所示,A 是一块有小圆孔S 的金属挡板,B 是一块方解石,其光轴方向在纸面内,P 是一块偏振片,C 是屏幕.一束平行的自然光穿过小孔S 后,垂直入射到方解石的端面上.当C 上能看到什么现象?

90°角时,两光点的明暗交变一次,一个最亮时,另一个

最暗。

二填空题:

1已知一静止质量为m0的粒子,其固有寿命为实验室测量到的寿命的1/n,则

此粒子的动能是____________.

2在康普顿散射中,若入射光子与散射光子的波长分别为λ和λ′,则反冲电

子获得的动能E K =______________________________.

3钴(Z = 27 )有两个电子在4s态,没有其它n≥4的电子,则在3d态的电子

可有____________个.

4多电子原子中,电子的排列遵循__________________________原理和

______________________原理.

5若在四价元素半导体中掺入三价元素原子,则可构成______型半导体,参与

导电的多数载流子是______.

6产生激光的必要条件是______________________,激光的三个主要特性是

______________________________________________________________.

7激光器的基本结构包括三部分,即________________、______________和

__________________.

三计算题:

1一体积为V0,质量为m0的立方体沿其一棱的方向相对于观察者A以速度v运动.求:观察者A测得其密度是多少?

2已知μ 子的静止能量为105.7 MeV,平均寿命为2.2310-8s.试求动能为150 MeV的μ 子的速度v是多少?平均寿命τ 是多少?

3设康普顿效应中入射X射线(伦琴射线)的波长λ =0.700 ?,散射的X射线与入射的X射线垂直,求:

(1) 反冲电子的动能E K.

(2) 反冲电子运动的方向与入射的X射线之间的夹角θ.

(普朗克常量h =6.63310-34 J2s,电子静止质量m e=9.11310-31 kg)

4根据玻尔理论

(1) 计算氢原子中电子在量子数为n 的轨道上作圆周运动的频率;

(2) 计算当该电子跃迁到(n -1)的轨道上时所发出的光子的频率;

(3) 证明当n 很大时,上述(1)和(2)结果近似相等.

5假如电子运动速度与光速可以比拟,则当电子的动能等于它静止能量的2倍时,其德布罗意波长为多少?

(普朗克常量h =6.63310-34 J 2s ,电子静止质量m e =9.11310-31 kg)

6粒子在一维矩形无限深势阱中运动,其波函数为:

)/sin(/2)(a x n a x n π=

ψ (0

[提示: C x x x x +-=?2sin )4/1(21d sin 2] 7试求d 分壳层最多能容纳的电子数,并写出这些电子的m l 和m s 值.

答案:

一选择题:

1D2C3C4C5D6A7C8C9D

二填空题:

1 )1(20-n c m

2 λλλλ'

-'hc 参考解:

根据能量守恒定律有

νν'+=+h mc h c m e 22

则 νν'-=-=h h c m mc E e K 22λ

λλλλλ'-'='-=)(hc hc hc

3 7

参考解:

钴的电子组态为

1s 2,2s 2,2p 6,3s 2,3p 6,3d 7,4s 2.

4泡利不相容; 能量最小

5 p 空穴

6 粒子数反转分布;方向性好,单色性好因而相干性好,光强大

7 工作物质、激励能源、光学谐振腔

三计算题:

1解:设立方体的长、宽、高分别以x 0,y 0,z 0表示,观察者A 测得立方体的长、宽、高分别为 2201c

x x v -=,0y y =,0z z =. 相应体积为 22

01c

V xyz V v -== 3分 观察者A测得立方体的质量 2201c

m m v -=

故相应密度为 V m /=ρ22022

011/c

V c m v v --=)1(2200c V m v -= 2分 2解:据相对论动能公式 202c m mc E K -=

得 )1)/(11(220--=c c m E K v 即 419.11)/(11202

==--c m E c K

v 解得 v = 0.91c 3分

平均寿命为 820

1031.5)/(1-?=-=c v ττ s 2分

3解:令p 、ν和p ' 、ν'分别为入射与散射光子的动量和频率,v m 为反冲电子的动量(如

图).因散射线与入射线垂直,散射角φ =π / 2,因此可求得散射X 射线的波长

c m h e +='λλ= 0.724 ? 2分 (1) 根据能量守恒定律

22mc h h c m e +'=+νν

且 22c m mc E e K -= 得 )/()(λλλλνν'-'='-=hc h h E K = 9.42310-17 J 4分 (2) 根据动量守恒定律 v m p p +'=

则 2222)/()/(λλ''+='+=

h h p p m v 22)/()/(/cos λλλθ'+==h h h m p v 2)

/(11λλ'+= ='+=-21)

/(11cos λλθ44.0° 4分 4解:(1) r m r

e 2

2024v =πε ① 1分 π

=2h n r m v . ② 1分 r

n v =ω ③ 1分 ①、②、③联立解出 3

320412n h me n ?π=εω 33204142n h me n

n ?=π=εων 2分 (2) 电子从n 态跃迁到( n -1 )态所发出光子的频率为

2222)

1(12]1)1(1[--=--=='n n n cR n n cR c

λν 223204)

1(128--?=n n n h me ε 2分 p '

(3) 当n 很大时,上式变为

23204)1()/1(28--?='n n n h me ενn n

h me νε=?≈3320418 3分 5解:若电子的动能是它的静止能量的两倍,则:

2222c m c m mc e e =- 1分 故: e m m 3= 1分

由相对论公式 22/1/c m m e v -=

有 22/1/3c m m e e v -=

解得 3/8c =v 1分 德布罗意波长为:)8/()v /(c m h m h e ==λ13

1058.8-?≈ m

2分 6解: x a x

a x P d sin 2

d d 22π==ψ

3分 粒子位于0 – a /4内的概率为:

x a x a P a d sin 2

4

/02

?π=)d(sin 24

/02a x a x a a a πππ=?

4

/021

]2sin 41

[2a a x

a x πππ-=)]4

2sin(414[221

a a a a π-ππ= =0.091

2分 7解:d 分壳层就是角量子数l =2的分壳层. 2分 d 分壳层最多可容纳的电子数为

10)122(2)12(2=+?=+=l Z l 个

2分 m l =0,±1,±2

2分 21

±=s m

2分

近代物理学(近三年高考题)

【2018年高考考点定位】 作为选择题与填空题,本考点得涉及面广,选项可能涉及近代物理学史,波尔模型,光电效应与原子核结构,而填空题可能涉及衰变、核反应方程得书写、光电效应得极限频率与最大初动能等,既就是备考得重点也就是命题得热门选项。 【考点pk 】名师考点透析 考点一、波粒二象性 【名师点睛】 1、 量子论:①普朗克认为物质得辐射能量并不就是无限可分得,其最小得、不可分得能量单元即“能量子”或称“量子”,也就就是说组成能量得单元就是量子。每一份电磁波得能量νεh =②物质得辐射能量不就是连续得,而就是以量子得整数倍跳跃式变化得○31905年,爱因斯坦奖量子概念推广到光得传播中,提出了光量子论。。即:νεh =、 其中就是电磁波得频率,h 为普朗克恒量:h=6、63×10 -34 s J ? 2、黑体与黑体辐射:○1任何物体在任何温度下都要发射各种波长得电磁波,并且其辐射能量得大小及辐射能量按波长得分布都与温度有关。○2随着温度得升高,黑体得辐射强度都有增加; ○3随着温度得升高,辐射强度得极大值向波长较短方向移动。 3、光电效应:在光得照射下,金属中得电子从表面逸出,发射出来得电子就叫光电子,①任何一种金属都有一个极限频率,入射光得频率必须大于这个极限频率才能发生光电效应,低于极限频率得光不能发生光电效应。②光电子得最大初动能与入射光得强度无关,光随入射光频率得增大而增大。③大于极限频率得光照射金属时,光电流强度(反映单位时间发射出得光电子数得多少),与入射光强度成正比。④ 金属受到光照,光电子得发射一般不超过10-9 秒。波动说认为:光得能量即光得强度就是由光波得振幅决 定得与光得频率无关。所以波动说对解释上述实验规律中得①②④条都遇到困难 考点二、原子结构 1. 汤姆生原子结构模型:1897年英国物理学家汤姆生发现了电子,从而打破了原子不可再分得观念,揭示出原子也有复杂得结构。汤姆生得原子模型:1903年汤姆生设想原子就是一个带电小球,它得正电荷均匀分布在整个球体内,而带负电得电子镶嵌在正电荷中。 2、 原子核式结构模型:实验结构图如下,实验现象:a 、 绝大多数粒子穿过金箔后,仍沿原来方向运动,不发生偏转。b 、 有少数粒子发生较大角度得偏转c 、 有极少数粒子得偏转角超过了90°,有得几乎达到180°,即被反向弹回。结论 →否定了汤姆生原子结构模型,提出核式结构模型即在原子中心存在一个很小 得核,称为原子核,原子核集中了原子所有正电荷与几乎全部得质量,带负电荷得电子在核外空间绕核旋转。 3、 波尔得原子机构模型:○1原子核式结构模型与经典电磁理论得矛盾(两方面) a 电子绕核作圆周运动就是

大学物理近代物理学基础公式大全

一. 狭 义相对论 1. 爱因斯坦的两个基本原理 2. 时空坐标变换 3. 45(1(2)0 m m γ= v = (3)0 E E γ= v =(4) 2222 C C C C v Pv Pv Pv P E E E E ==== 二. 量子光学基础 1. 热辐射 ① 绝对黑体:在任何温度下对任何波长的辐射都能完全吸收的物体。 吸收比:(T)1B αλ、= 反射比:(T)0B γλ、= ② 基尔霍夫定律(记牢) ③ 斯特藩-玻尔兹曼定律 -vt x C v = β

B B e e :单色辐射出射度 B E :辐出度,单位时间单位面积辐射的能量 ④ 唯恩位移定律 m T b λ?= ⑤ 普朗克假设 h εν= 2. 光电效应 (1) 光电效应的实验定律: a 、n I ∝光 b 、 0 00a a a a e U ek eU e U ek eU e U ek eU e U ek eU νννν----==== (23、 4 三. 1 ② 三条基本假设 定态,,n m n m h E E h E E νν=-=- ③ 两条基本公式 2210.529o n r n r n A == 12213.6n E E eV n n -== 2. 德布罗意波 20,0.51E mc h E MeV ν=== 22 mc mc h h νν== 电子波波长:

h mv λ= 微观粒子的波长: h h mv mv λλ= === 3. 测不准关系 x x P ???≥h 为什么有?会应用解题。 4.波函数 ① 波函数的统计意义: 例1① ② 例2.① ② 例3.π 例4 例5,,设 S 系中粒子例6 例7. 例8. 例9. 例10. 从钠中移去一个电子所需的能量是2.3eV ,①用680nm λ=的橙光照射,能否产生光电效应?②用400nm λ=的紫光照射,情况如何?若能产生光电效应,光电子的动能为多大?③对于紫光遏止电压为多大?④Na 的截止波长为多大? 例11. 戴维森革末实验中,已知电子束的动能310k E MeV =,求①电子波的波长;②若电子束通过0.5a mm =的小孔,电子的束状特性是否会被衍射破坏?为什么? 例12. 试计算处于第三激发态的氢原子的电离能及运动电子的德布罗意波长。 例13. 处于基态的氢原子,吸收12.5eV 的能量后,①所能达到的最高能态;②在该能态上氢原子的电离能?电子的轨道半径?③与该能态对应的极限波长以及从该能态向低能态跃迁时,可能辐射的光波波长?

物理学发展简史

物理学发展简史 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

一、古典物理学与近代物理学: 1、古典物理学:廿世纪以前所发展的物理学称为古典物理学,以巨观的角度研究物理,可分为 力学、热学、光学、电磁学等主要分支。 2、近代物理学:廿世纪以后(1900年卜朗克提出量子论后)所发展的物理学称为近代物理学, 以微观的角度研究物理,量子力学与相对论为近代物理的两大基石。

一、古典物理学对人类生活的影响: 1、力学:简单机械(杠杆、轮轴、滑轮、斜面、螺旋、劈) …… 2、光学: (一)反射原理: (1)平面镜:镜子…… (2)凹面镜:手电筒、车灯、探照灯…… (3)凸面镜:路口、商店监视镜…… (二)折射原理: (1)凸透镜:放大镜、显微镜、相机…… (2)凹透镜:眼镜、相机…… 3、热学:蒸汽机、内燃机、引擎、冰箱、冷(暖)气机…… 4、电学: (一)利用电能运作:一般电器用品,如:电视机、冰箱、洗衣机…… (二)利用电磁感应:发电机、变压器…… (三)利用电磁波原理:无线通讯、雷达…… 二、近代物理学对人类生活的影响: 1、半导体: (一)半导体:导电性介于导体和绝缘体间之一种材料,可分为元素半导体(如:硅、锗等)和 化合物半导体(如:砷化镓等)两种。 (二)用途: (1)半导体制成晶体管,体积小、耗电量少,具有放大电流讯号功能。 (2)半导体制成二极管具整流能力。 (3)集成电路(IC): (A)1958年发展出「集成电路」技术,系利用长晶、蚀刻、蒸镀等方式于一小芯片上容 纳上百万个晶体管、二极管、电阻、电感、电容等电子组件之技术,而此电路即称为 集成电路。 (B)IC之特性:体积小、效率高、耗电低、稳定性高、可大量生产。 (C)IC之应用:计算机、手机、电视、计算器、手表等电子产品。 (4)计算机信息科技之扩展大辐改变了人类的生活习惯,故俗称第二次工业革命。 2、雷射: (一)原理:利用爱因斯坦「原子受激放射」理论,诱发大量原子由受激态同时做能态之跃迁 并放射同频率之光子,藉以将光加以增强。 (二)特性:聚旋光性好、强度高、光束集中、频率单一(单色光)。 (三)应用:

近代物理课后答案(1)

近代物理课后答案 光电11 2.5根据能量和动量守恒定律,证明:光子和自由电子相碰撞不可能产生光电效应。 证:假定自由电子可以吸收一个光子,不失一般性设电子初始静止,光子未被吸收前,能量 和动量守恒 2 / h m c E h c P ν ν ?+= ? = ? ,吸收后的能量和动量守恒 2224 224 1 / E P c m c h c P E m c c ν ?=+ ? ? ==- ? ? 。得到 22 00 E m c E m c -=+,该式成立要求2 m c=,但这是不可能的。故题设正确 2.7波长为0.1 nm的X射线光子的动量和能量各为多少? 解:动量34924 / 6.6310/0.110 6.6310/ p h kg m s λ--- ==??=?? 能量/1240/0.112.4 E hc keV λ === 2.8由50 KeV电压加速的电子,在轫致辐射中产生最短X射线波长是多少? 解:3 /1240/50100.0248 hc E nm λ==?= 2.13已知电子的动能分别为1 MeV和1 GeV,求它们的德布罗意波长是多少? 解:电子能量太大,需考虑相对论效应,波长 2 (2) k k h hc p pc E E m c λ=== + 1MeV的电子波长872 1(120.511) fm λ== +? 1GeV的电子波长 322 1.24 (10)0.511 fm λ== - 2.13微观粒子的波动性可以用波长和频率表征,试问用实验方法能够直接确定其中的哪一个?对另一个的确定能说些什么? 答:戴维斯-革末实验测量了物质波的波长,不能直接测量物质波的能量 2.14根据电子的德布罗意波长说明:在原子中电子的轨道概念已失去意义,在电视机显像管中运动的电子为什么仍旧可以用电子轨道概念?(设显像管加速电压为10 KeV,管长为0.5 m) 答:以氢原子基态为例,电子的动能为13.6eV,对应德布罗意波长约0.34nm,氢原子半径才0.053nm,轨道概念在原子中失去意义;而电视显像管中10keV电子的德布罗意波长0.0124nm,远小于显像管的长度0.5m,显像管中的电子仍旧可以使用轨道概念 2.17动能为5.0 MeV的α粒子垂直入射到厚度为0.1μm,质量密度为4 1.7510 ?3 Kg/m的金

现代物理基础丛书

现代物理基础丛书 1《现代声学理论基础》马大猷著 2《物理学家用微分几何》(第二版)侯伯元、侯伯宇著3《数学物理方程及其近似方法》程建春 编著 4《计算物理学》马文淦编著 5《相互作用的规范理论》(第二版)戴元本著6《理论力学》张建树、孙秀泉、张正军编著 7《微分几何入门与广义相对论》(上册)(第二版)梁灿彬、周彬著8《物理学中的群论》(第二版)马中骐著 9《辐射和光场的量子统计理论》曹昌祺著 10《实验物理中的概率和统计》(第二版)朱永生著11《声学理论与工程应用》何琳、朱海潮、邱小军、杜功焕编著 12《高等原子分子物理学》(第二版)徐克尊著 13《大气声学》(第二版)杨训仁、陈宇著 14《输运理论》(第二版)黄祖洽、丁鄂江著15《量子统计力学》(第二版)张先蔚编著16《凝聚态物理的格林函数理论》王怀玉著 17《激光光散射谱学》张明生著 18《量子非阿贝尔规范场论》曹昌祺著 19《狭义相对论》(第二版)刘辽、费保俊、张允中编著 20《经典黑洞和量子黑洞》王永久著 21《路径积分与量子物理导引—现代高等量子力学初步》侯伯元、云国宏、杨战营编著 22《量子光学导论》(第二版)谭维翰著23《全息干涉计量——原理和方法》熊秉衡、李俊昌编著 24《实验数据多元统计分析》朱永生编著 25《微分几何入门与广义相对论》(中册)(第二版)梁灿彬、周彬著26《中子引发轻核反应的统计理论》张竞上著 27《工程电磁理论》张善杰著28《微分几何入门与广义相对论》(下册)(第二版)梁灿彬、周彬著29《经典电动力学》曹昌祺著 30《经典宇宙和量子宇宙》王永久著 31《高等结构动力学》(第二版)李东旭编著32《粉末衍射法测定晶体结构(上册)X 射线衍射结构晶体学基础》(第二版)梁敬魁编著32《粉末衍射法测定晶体结构(下册)X 射线衍射在材料科学中的应用》(第二版)梁敬魁编著 33《量子计算与量子信息原理》[意] Giuliano Benenti 、Giulio Casati、Giuliano Strini 著王文 阁李保文译 34《近代晶体学》(第二版)张克从著 35《引力理论》王永久著 36《低温等离子体一一等离子体的产生、工艺、问题及前景》[俄]B. M.弗尔曼、[俄]H. M.扎什京编著邱励俭译 37《量子物理新进展》(第二版)梁九卿、韦联福著 38《电磁波理论》葛德彪、魏兵著

近代物理基础练习题

信息商务学院《近代物理基础》 期末练习题 计算用物理常数: 1eV=1.6×10-19J 1uc2=931.5Mev 电子静止质量:m0=9.11×10-31kg 普朗克常数:h=6.63×10-34J·s 一、填空题(共30分,每题3分) 1.狭义相对论的两条基本原理是; 和。 2.电介质的极化有两种,一是; 二是。 3.在硅基体中掺进了3价元素锑,则形成了型半导体,其杂质能级叫 4.频率为ν 的光子的能量ε = ,动量p = ,静质量m0= 。5.在下列给出的条件中那些是产生激光的条件,将其标号列出。 (1)自发辐射(2)受激辐射(3)粒子数反转(4)两能级系统(5)谐振腔 6.在太阳能电池中,本征半导体锗的禁带宽度是0.67eV,它能吸收的辐射的最大波长是m。 7.放射性衰变的三种形式是衰变、衰变、衰变。8.光电效应中从铝中逸出一个电子最少需要4.2eV的能量,铝的红限波长为nm。9.在布喇菲晶体点阵分类中,三维晶格的布喇菲胞共有种。 10.氢原子中的电子处于量子数为n=4,l=3的量子态,则该电子角动量L的值为 二、分析与计算题(共50分,每题10分) 1.一静止长度为l0的火箭(可看作S’系)以恒定速度u相对参考系S运动,某时刻从火箭头部A发出一光信号。 (1)对火箭上的观察者,求光信号从火箭头部A到达火箭尾部B所需的时间? (2)对S系中的观察者,求光信号从火箭头部A到达火箭尾部B所需的时间?

2、一电子与光子的波长都为0.2nm ,不考虑相对论效应,他们的动量和能量各为多少? 3、设粒子在一维无限深势阱中运动,波函数为; 求粒子在第一激发态(n=2)中,几率最大的位置。 (1)写出密度函数; (2)求几率最大的位置。 4、在氦氖激光器中,从氖的5s 到3p 能级跃迁时辐射632.8nm 的激光,已知将氖原子从基态激发到3p 能级需吸收18.8eV 的能量,求将氖原子从基态激发到5s 能级需要多大的抽运能量? 5、一维原子链,链上原子等间距分布,最近邻原子间的力常数相间地为β和10β,各原子质量相等为m 。 (1)画出一维单原子链模型图(要求表示出原子位移及力常数); (2)写出第2n 个原子的振动方程 二、应用题(10分) 1.1932年,科可洛夫赫瓦尔顿用加速后的质子轰击锂(Li 73)原子发生裂变反应,产 生了两个完全相同的粒子,并放出大量能量。 (1)写出此裂变反应式 (2)求反应放出的能量(单位取Mev )。(锂核(Li 73)质量7.016005u ,氦核(He 4 2)质量 4.002603u ,质子(H 11)质量1.007825u ) 四、综述题(10分) 按要求写出本学期学过的量子力学部分所满足的下列物理规律。

物理学发展简史

物理学发展简史 摘要:物理学的发展大致经历了三个时期:古代物理学时期、近代物理学时期(又称经典物理学时期)和现代物理学时期。物理学实质性的大发展,绝大部分是在欧洲完成,因此物理学的发展史,也可以看作是欧洲物理学的发展史。 关键词:物理学;发展简史;经典力学;电磁学;相对论;量子力学;人类未来发展 0 引言 物理学的发展经历了漫长的历史时期,本文将其划分为三个阶段:古代、近代和现代,并逐一进行简要介绍其主要成就及特点,使物理学的发展历程显得清晰而明了。 1 古代物理学时期 古代物理学时期大约是从公元前8世纪至公元15世纪,是物理学的萌芽时期。 物理学的发展是人类发展的必然结果,也是任何文明从低级走向高级的必经之路。人类自从具有意识与思维以来,便从未停止过对于外部世界的思考,即这个世界为什么这样存在,它的本质是什么,这大概是古代物理学启蒙的根本原因。因此,最初的物理学是融合在哲学之中的,人们所思考的,更多的是关于哲学方面的问题,而并非具体物质的定量研究。这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢。在长达近八个世纪的时间里,物理学没有什么大的进展。 古代物理学发展缓慢的另一个原因,是欧洲黑暗的教皇统治,教会控制着人们的行为,禁锢人们的思想,不允许极端思想的出现,从而威胁其统治权。因此,在欧洲最黑暗的教皇统治时期,物理学几乎处于停滞不前的状态。 直到文艺复兴时期,这种状态才得以改变。文艺复兴时期人文主义思想广泛传播,与当时的科学革命一起冲破了经院哲学的束缚。使唯物主义和辩证法思想重新活跃起来。科学复兴导致科学逐渐从哲学中分裂出来,这一时期,力学、数学、天文学、化学得到了迅速发展。 2 近代物理学时期 近代物理学时期又称经典物理学时期,这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。 近代物理学是从天文学的突破开始的。早在公元前4世纪,古希腊哲学家亚里士多德就已提出了“地心说”,即认为地球位于宇宙的中心。公元140年,古希腊天文学家托勒密发表了他的13卷巨著《天文学大成》,在总结前人工作的基础上系统地确立了地心说。根据这一学说,地为球形,且居于宇宙中心,静止不动,其他天体都绕着地球转动。这一学说从表观上解释了日月星辰每天东升西落、周而复始的现象,又符合上帝创造人类、地球必然在宇宙中居有至高无上地位的宗教教义,因而流传时间长达1300余年。

近代物理考试复习

近代物理考试复习

1.什么是量子力学,简述量子力学的发展过程,举例量子力学的实际应用。 答:量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。 量子力学是在旧量子论的基础上发展起来的。旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。 十九世纪中期,物理学形成了完整的、系统的经典理论体系。由于经典物理学在发展过程中几乎没有遇到什么重大难题,因而当时有许多物理学家错误地认为经典物理学理论是物理学的“最终理沦”,往后没有什么重大的工作可做了,只是解一下微分方程和对具体问题进行解释。但是,在经典物理学晴朗的天空中,不断出现了几朵“乌云”—经典理论无法解释的实验事实。其中最著名的是开耳芬称之为“第一号乌云”的迈克尔逊—莫雷实验与“第二号乌云”的黑体辐射实验,此外还有光电效应实验和原子光谱的实验规律等。 1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出普朗克公式,正确地给出了黑体辐射能量分布。 1905年,爱因斯坦引进光量子(光子)的概念,并给出了光子的能量、动量与辐射的频率和波长的关系,成功地解释了光电效应。其后,他又提出固体的振动能量也是量子化的,从而解释了低温下固体比热问题。 1913年,玻尔在卢瑟福原有核原子模型的基础上建立起原子的量子理论。按照这个理论,原子中的电子只能在分立的轨道上运动,在轨道上运动时候电子既不吸收能量,也不放出能量。原子具有确定的能量,它所处的这种状态叫“定态”,而且原子只有从一个定态到另一个定态,才能吸收或辐射能量。这个理论虽然有许多成功之处,对于进一步解释实验现象还有许多困难。 在人们认识到光具有波动和微粒的二象性之后,为了解释一些经典理论无法解释的现象,法国物理学家德布罗意于1923年提出了物质波这一概念。认为一切微观粒子均伴随着一个波,这就是所谓的德布罗意波。 1925年,海森堡基于物理理论只处理可观察量的认识,抛弃了不可观察的轨道概念,并从可观察的辐射频率及其强度出发,和玻恩、约尔当一起建立起矩阵力学;1926年,薛定谔基于量子性是微观体系波动性的反映这一认识,找到了微观体系的运动方程,从而建立起波动力学,其后不久还证明了波动力学和矩阵力学的数学等价性;狄拉克和约尔丹各自独立地发展了一种普遍的变换理论,给出量子力学简洁、完善的数学表达形式。 激光、电子显微镜、原子钟到核磁共振的医学图像显示装置,都关键地依靠了量子力学的原理和效应。核磁共振的基本原理是原子核的不同自旋取向在强磁场下发生能级分裂,从而可以共振吸收某特定频率的电磁辐射。 2.论述量子力学中力学量与算符的关系。 答:在量子力学中,当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而是具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。例如,氢原子中的电子处于某一束缚态时,它的坐标和动量都没有确定值,而坐标具有某一确定值r或动量具有某一确定值的几率却是

高中物理-近代物理学常识

高中2017级高二物理一周一测(17) 近代物理常识 满 分:120分 考试时间:40分钟 一、光电效应 1、概念:在光(电磁波)的照射下,从物体表面逸出的 的现象称为光电效应,这种电子被称之为 。使电子脱离某种金属所做功的 ,叫做这种金属的逸出功,符号为W 0。 2、规律: 提出的“光子说”解释了光电效应的基本规律,光子的能量与频率的关系为 。 ①截止频率:当入射光子的能量 逸出功时,才能发生光电效应,即:0____W hv ,也就是入射光子的频率必须满足v ≥ ,取等号时的______0=ν即为该金属的截止频率(极限频率); ②光电子的最大初动能:_________k m =E ,由此可知,对同一重金属,光电子的最大初动能随着入射光的频率增加而 ,随着入射光的强度的增加而 ,光电子从金属表面逸出时的动能应分布在 范围内。 3、实验:装置如右图,其中 为阴极,光照条件下发出光电子; 为阳极,吸收光电子,进而在电路中形成 ,即电流表的示数。 ①当A 、K 未加电压时,电流表 示数; ②当加上如图所示 向电压时,随着电压的增大,光电流趋于一个饱和值,即 ;当电压进一步增大时,光电流 。 ③当加上相反方向的电压( 向电压)时,光电流 ;当反向电压达到某一个值时,光电流减小为0,这个反向电压U c 叫做 ,即使最有可能到达阳极的光电子刚好不能到达阳极的反向电压,则关于U c 的动能定理方程为 。 【练习1】某同学用同一装置在甲、乙、丙光三种光的照射下得到了三条光电流与电压之间的关系曲线,如右图所示。则可判断出( ) A .甲光的频率大于乙光的频率 B .乙光的波长大于丙光的波长 C .乙光对应的截止频率大于丙光的截止频率 D .甲光对应的光电子最大初动能大于丙光的光电子最大初动能 二、原子结构 1、物理学史: 通过对 的研究,发现了电子,从而认识到原子是有内部结构的; 基于 实验中出现的少数α粒子发生 散射,提出了原子的核式结构模型; 在1913年把物理量取值分立(即量子化)的观念应用到原子系统,提出了自己的原子模型,很好的解释了氢原子的 。 2、波尔理论: ①原子的能量是量子化的,这些量子化的能量值叫做 ;原子能量最低的状态叫做 ,其他较高的能量状态叫做 ; ②原子在不同能量状态之间可以发生 ,当原子从高能级E m 向低能级E n 跃迁时 光子,原子从低能级E n 向高能级E m 跃迁时 光子,辐射或吸收的光子频率必须满足 。 ③原子对电子能量的吸收:动能 两个能级之差的电子能量能被吸收,吸收的数值是 ,剩余的能量电子带走。 ④原子电离:电离态——电子脱离原子时速度也为零的状态,此时“原子—电子”系统能量值为E ∞= ;要使处于量子数为n 的原子电离,需要的能量至少是_____=-=?∞n E E E 。 【练习2】如图所示为氢原子的能级示意图。现用能量介于10eV —12.9eV 范围内的光子去照射一群处于基态的氢原子,则下列说法正确的是( ) A .照射光中只有一种频率的光子被吸收 B .照射光中有三种频率的光子被吸收 C .氢原子发射出三种不同频率的光 D .氢原子发射出六种不同频率的光 【练习3】用大量具有一定能量的电子轰击大量处于基态的氢原子,观测到了一定数目的光谱线。调高电子的能量再次进行观测,发现光谱线的数目比原来增加了5条。用△n 表示两次观测中最高激发态的量子数n 之差,E 表示调高后电子的能量。根据氢原子的能级图可以判断,△n 和E 的可能值为( ) A .△n =1,13.22 eV

近代物理学发展论文

近代物理进展作业 物理学发展永无止境 物理学发展永无止境 摘要: 经典力学,经典电动力学,经典热力学形成物理世界三大支柱。它们紧紧结合在一块,构建起一座华丽而雄伟的殿堂。物理学家甚至相信:这个世界的基本原理都已被发现,物理学已尽善尽美,已经走到了尽头,再也不可能有任何突破性的进展,如果说还有什么要做的事,那就是在一些细节上进行补充与修正。新的物理结论代替旧的物理结论也是必然,没有一种理论可以说绝对完美,即使我们提出的理论在完美,也终会有受局限的一天,所以我们没有必要一定要提出十分完美,别人永远攻不破的理论,我们要做的只是使物理大厦更加完善,所以我们要做只是努力向前看! 物理学的开端源溯深远,但若说物理学真正意义上的征服世界还是在19世纪末,他的力量控制着一切人们所未知的现象。古老的牛顿力学城堡历经岁月磨砺风雨吹打依旧屹立不倒,反而更凸显他的伟大与坚固。从天上的行星到地上的石头,万物皆毕恭毕敬的遵循它的规律。1846年海王星的发现更是它取得的伟大胜利之一。光学方面,波动论统一天下,神奇的麦式方程完美的诠释了这个理论并将其扩大到整个电磁领域。热学方面,热力学三大定律已基本建立,而在克劳修斯,范德瓦尔斯的努力下,分子动理论和统计热力学成功建立。当然,更令人惊奇的是这一切似乎都彼此包含,形成了以经典物理联盟。经典力学,经典电动力学,经典热力学形成物理世界三大支柱。它们紧紧结合在一块,构建起一座华丽而雄伟的殿堂。 那当然是一段伟大而光荣的日子,是经典物理的黄金时代。科学的力量从这一时期开始才真正变得如此强大,如此令人神往。我们认为自己已掌握了上帝造物的

奥秘,在没有遗漏,我们所熟知的一切物理现象几乎都可以从现成的物理理论里得到解释。力,热,声,光,电等等一切的一切,似乎都被同一种手法控制。物理学家甚至相信:这个世界的基本原理都已被发现,物理学已尽善尽美,已经走到了尽头,再也不可能有任何突破性的进展,如果说还有什么要做的事,那就是在一些细节上进行补充与修正。一位著名的科学家说:“物理学的未来,将在小数点第六位后面去寻找.。”而普朗克的导师甚至劝他不要浪费时间去研究这个已经高度成熟的体系。 但历史再次体现了他惊人的不确定性,致使19世纪物理世界所闪烁的金色光芒注定只是昙花一现,而那喧嚣一时的空前繁盛的经典物理终究要像泡沫那样破败凋零! 其实,今天回头来看,赫兹1887年的电磁波实验的意义远比实际得出的结论复杂而深远。它一方面彻底的建立了电磁理论,为经典物理的繁荣添加了浓重的一笔;另一方面,它又埋下了促使经典自身毁灭的武器,孕育了革命的种子。当赫兹在卡尔斯鲁厄大学的那件实验室里通过铜环接收器的缺口爆发的电火花证明电磁波存在时,还发现了一个奇怪的现象:当有光照射到这个缺口上时,似乎火花出现的更容易一些。 显然赫兹是伟大的,他甚至为这个现象写了专门的论文,但不幸的是这并没有一起太多人的注意,更没有人会想到这样一篇论文的真正意义。或许甚至连赫兹自己都不知道,量子存在的证据就在他眼前,几乎触手可得!不过,或许是量子的概念太过爆炸性,太过革命性,命运冥冥之中将它安排在新世纪出现。只可惜赫兹走得太早,没能亲眼看到它的诞生,也没能目睹它究竟给这个世界带来怎样的变化! 但该来的终究会来,在经典物理还没来得及多多体味一下自己的盛世前,一连串意想不到的事情在19世纪的最后几年连续发生,仿佛是一个不祥的预兆: 1895年,伦琴发现了X射线。

近代物理基础考试知识点

“近代物理基础”课程考试知识点 第五部分相对论基础(总分数分布11.1%) 第十八章狭义相对论 1爱因斯坦狭义相对论的基本原理;1-1-1 (1)光速不变原理内容;8-1-1 (2)相对性原理内容;3-1-3 2洛伦兹变换 (1)时空坐标公式;7-2-2 (2)速度变换公式与应用;1-2-3; 3时间延缓效应2-2-2;5-2-5 4长度的相对性3-1-8;8-1-5 5相对论质速公式与应用;6-2-4;9-2-3 6相对论动能3-1-5;6-2-4;10-2-4 7相对论质-能关系6-2-1;6-2-4;10-2-4 8光子的质量、能量与动量2-2-3;8-1-9 第六部分量子物理(总分数分布33.3%) 第十八章光的波粒二象性(第六部分分数分布33.2%)1热辐射 (1)物理本质;9-1-1;平衡辐射的物理意义;6-1-2 (2)斯特藩-玻尔兹曼定律内容与应用;1-2-2;10-2-2 (3)维恩位移定律内容与应用;3-2-4 2普朗克假设内容及物理意义;5-1-9;7-1-9;10-4 3光电效应 (1)4条实验规律;3-4;4-1-2 (2)光电子最大初动能-遏止电压关系;6-2-2,8-2-5 (3)红限的物理意义;1-1-3 (4)逸出功的意义;5-2-2 (5)爱因斯坦光量子假设内容;3-4;6-2-2 (6)爱因斯坦光电效应方程及对光电效应的解释;3-4;5-2-2;8-2-5 4康普顿散射光波的计算;4-2-2;5-2-4;9-2-1 第二十一章电子的波粒二象性(第六部分分数分布22.2%)1德布罗意假设 (1)内容及物理意义;9-1-3 (2)非相对论性德布罗意波波长的计算;6-2-5;9-2-5 2不确定性关系的数学表示式;3-1-7;7-2-1;10-2-5 3德布罗意波波函数 (1)数学表达式;4-1-4 (2)归一化条件的数学表达式;6-1-4;10-1-1 (3)归一化条件的物理意义;8-1-8 (4)波函数满足的标准条件;1-1-5 4概率密度的计算;1-2-5;2-2-1;4-2-4; 第二十二章薛定谔方程(第六部分分数分布分数分布22.2%)1定态的物理意义;4-1-9 2自由粒子一维含时薛定谔方程形式;1-1-7 3一维无限深势阱2-3;5-3;6-1-8;8-3;9-1-5

2.现代物理学的辉煌成就解析

2、现代物理学的辉煌成就 二十世纪物理学对人类的思维方式和社会发展做出了三方面的重要贡献:第一,相对论、量子力学和它们相结合产生的量子场论从根本上改变了人类对时空和宇宙万物的看法,使人们从绝对的决定论的宇宙观变为辩证的唯实的宇宙观。第二,二十世纪物理学是带头的学科,它带动了化学、天文、材料、能源、信息等学科的发展,它为生物、医疗、地学、农业提供了强大的探测手段和研究方法。物理学在半导体、集成电路、激光、磁性、超导等方面的发现奠定了信息革命的科学基础。它推动了高技术产业的发展,引发了以微电子、光电子和微光机电技术为核心的工业革命,由物理学研究衍生的新技术和新产品层出不穷,从根本上改变了人们的生产方式和生活方式。第三,通过计算机的帮助,应用古典物理理论讨论流体运动和气象预报时,发现了自组织、混沌和分形等现象。随后发现,这是普遍存在于非线性相互作用的开放系统中的现象,生命系统和社会系统也不例外。物理学是人们对无生命自然界中物质的转变的知识做出规律性的总结。这种运动和转变应有两种。一是早期人们通过感官视觉的延伸,二是近代人们通过发明创造供观察测量用的科学仪器,实验得出的结果。物理学从研究角度及观点不同,可分为微观与宏观两部分,宏观是不分析微粒群中的单个作用效果而直接考虑整体效果,是最早期就已经出现的,微观物理学随着科技的发展理论逐渐完善。现今物理学(狭义与广义相对论、量子力学和量子场论及其发展如标准模型(包含弱电统一理论和量子色动力学))已经把目前实验能触及到的领域都涵盖进去了。从尺度讲,包含从10-17米的极微观到1026米的宇观范围;从能量角度讲,已经到达现在LHC的TeV能标。所以现在的新物理,都只能出现在:(1)10-17米以下尺度(检验超对称、超弦是否存在,检验超引力及量子引力);(2)从星系尺度到1026米的宇观尺度(检验所谓的暗物质、暗能量是否存在及其本质);(3)在LHC的TeV 能标之上,解决标准模型(弱电统一理论和量子色动力学)中出现的一些疑难。虽然标准模型整个框架已经确定,应该也不存在什么问题,但模型本身提出了不少更为本质的疑问,暗示着新的发展路线。标准模型现在的情况就好比1900-1926年的旧量子论,未来还将存在TeV能标以上的新物理,包括弱、电、强力三者的统一(大统一理论)。(4)超低能低温下的丰富的对称破缺。这是凝聚态物理的事情。能量标度上升,对称性增高及得以恢复,各种力都走向同一,物理学趋向统一,所以大统一理论(弱、电、强力三者的统一)以及四种力(弱、电、强、引力)的统一,都必然是在极高能标下完成的;能量标度下降,对称破缺产生,四种力(弱、电、强、引力)都逐渐分离,表现不同行为。总之,高能量标度使得对称性恢复,物理世界变得简单及统一;能量标度下降,世界变得复杂,丰富多彩。超低能低

五年高考真题高考物理专题近代物理

五年高考真题高考物理专题近代物理 考点一光电效应波粒二象性 1.[2015·新课标全国Ⅱ,35〔1〕,5分]〔难度★★〕〔多选〕实物粒子和光都具有波粒二象性.下列事实中突出体现波动性的是〔〕 A.电子束通过双缝实验装置后可以形成干涉图样 B.β射线在云室中穿过会留下清晰的径迹 C.人们利用慢中子衍射来研究晶体的结构 D.人们利用电子显微镜观测物质的微观结构 E.光电效应实验中,光电子的最大初动能与入射光的频率有关,与入射光的强度无关解析电子束通过双缝实验装置后可以形成干涉图样,可以说明电子是一种波,故A正确;β射线在云室中穿过会留下清晰的径迹,可以说明β射线是一种粒子,故B错误;人们利用慢中子衍射来研究晶体的结构,中子衍射说明中子是一种波,故C正确;人们利用电子显微镜观测物质的微观结构,利用了电子束的衍涉现象,说明电子束是一种波,故D正确;光电效应实验中,光电子的最大初动能与入射光的频率有关,与入射光的强度无关,说明光是一种粒子,故E错误.答案ACD 2.[2015·江苏单科,12C〔1〕,5分]〔难度★★★〕〔多选〕波粒二象性是微观世界的基本特征,以下说法正确的有〔〕 A.光电效应现象揭示了光的粒子性 B.热中子束射到晶体上产生衍射图样说明中子具有波动性 C.黑体辐射的实验规律可用光的波动性解释 D.动能相等的质子和电子,它们的德布罗意波长也相等 解析光电效应说明光的粒子性,所以A正确;热中子束在晶体上产生衍射图样,即运动的实物粒子具有波的特性,即说明中子具有波动性,所以B正确;黑体辐射的实验规律说明电磁辐射具有量子化,即黑体辐射是不连续的、一份一份的,所以黑体辐射用光的粒子性解释,即C错误;根据德布罗意波长公式λ=,p2=2mEk,又质子的质量大于电子的质量,所以动能相等的质子和电子,质子的德布罗意波较短,所以D错误. 答案AB 3.[2014·江苏单科,12C〔1〕]〔难度★★〕已知钙和钾的截止频率分别为7.73×1014Hz和 5.44×1014Hz,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的〔〕

高中近代物理及发展史总结

高中近代物理总结 一、原子结构: 1、电子的发现和汤姆生的原子模型: (1)电子的发现: 1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。 电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。 (2)汤姆生的原子模型: 1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。 2、α粒子散射实验和原子核结构模型 (1)α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成 ①装置: ②现象: a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动,不发生 偏转。 b. 有少数α粒子发生较大角度的偏转 c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。 (2)原子的核式结构模型: 由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。 1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。 原子核半径小于10-14m,原子轨道半径约10-10m。 3、玻尔的原子模型 (1)原子核式结构模型与经典电磁理论的矛盾(两方面) a. 电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。 b. 电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相矛盾。 (2)玻尔理论 上述两个矛盾说明,经典电磁理论已不适用原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量了化的概念,提了三个假设: ①定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外在辐射能量,这些状态叫定态。 ②跃迁假设:原子从一个定态(设能量为E2)跃迁到另一定态(设能量为E1)时,它辐射成吸收一定频率的光子,光子的能量由这两个定态的能量差决定,

近代物理学模拟试卷1附答案

近代物理期末考试模拟试卷1 (共100分) 姓名:_________ 学号:_________ 成绩:_________ 一.选择题(共10题, 共有28分 ) 1.碱金属原子能级的双重结构是由于下面的原因产生: A. 相对论效应; B. 原子实极化; C. 价电子的轨道贯穿; D. 价电子自旋与轨道角动量相互作用。 2.当氦离子至少处于如下温度时,其巴耳末系才会在吸收谱中有相当的份量(当T =300K 时,k B T ≈1/40eV ) A. 103K ; B. 105K ; C. 107K ; D. 109K 。 3.对Cu (Z=29)原子,失去一个K 壳层电子的原子能量比失去一个价电子的原子能量差不多大多少倍? A. 100,000; B. 100; C. 1000; D. 10,000。 4.某原子的两个等效d 电子组成原子态1G 4、1D 2、1S 0、3F 4, 3, 2和3P 2, 1, 0,则该原子基态为: A. 1S 0; B. 1G 4; C. 3F 2; D. 3F 4 。 5.由状态2p3p 3P 到2s2p 3P 的辐射跃迁: A. 可产生9条谱线; B. 可产生7条谱线; C. 可产生6条谱线; D. 不能发生。 6.某原子中三个未满支壳层的电子分别处于s 、p 、d 态,则该原子可能有的原子态数应是: A. 7; B. 8; C. 17; D. 18。 7.对氢原子,考虑精细结构之后,其赖曼系一般结构的每一条谱线应分裂为: A. 2条; B. 3条; C. 5条; D. 不分裂。 8.卢瑟福由α粒子散射实验得出原子核式结构模型时,所依据的理论基础是: A. 普朗克能量子假设; B. 爱因斯坦的光量子假设; C. 狭义相对论; D. 经典理论。 9.原子中轨道磁矩μL 和轨道角动量L 的关系应为 : A .;μL e e m =L B .;μL e e m =2L C .;μL e e m =-2L D ..μL e e m =-L 。 10.盖革和马斯登使能量为5MeV 的α粒子束垂直射至厚度为1μm 的金箔(Z =79), 已知金箔的数密度为5.9?1022cm -3,他们测得散射角大于90°的概率为: A. 10-2; B. 10-4; C. 10-6; D. 10-10。 二.填空题(共8题, 共有30分 ) 1.提出电子自旋概念的主要实验事实是-----------------------------------------------------------------------------和_________________________________-。 2.已知He 原子1P 1→1S 0跃迁的光谱线在磁场中分裂为三条光谱线。若其波数间距为 ?~v ,则此磁场的磁感应强度B = 。今测得?~.v =-04671cm ,则B = 特斯拉。

相关文档