文档库 最新最全的文档下载
当前位置:文档库 › 提高铸铁车削加工效率与稳定性

提高铸铁车削加工效率与稳定性

提高铸铁车削加工效率与稳定性
提高铸铁车削加工效率与稳定性

提高铸铁车削加工效率与稳定性

铸铁一般分普通铸铁与球墨铸铁。普通铸铁亦称灰口铸铁,其组织中含片状石磨(图1a)石墨是固体润滑剂,有自润滑作用,故自身耐磨性很好,机床的床身,发动机的缸体等重要零件常用之,但片状石哪是易剥落的脆性结晶,不耐冲击,其切屑不能连续伸长,形成崩碎型切屑(图2)造成切削力不断波动,在切削过程中产生高频振动.铸件表面的粗糙与不平,切削时使刀具产生机械磨损。切屑粘接(Adhesion) ,熔接(Welding)在刀具表面.切削中也会由此造成磨损及缺损(Chipping)破损(Broken)。

球墨铸铁指组织中的石墨经特殊处理形成球墨状的铸铁(图1b)从而使性能大为增强,其抗拉伸强度甚至可达900MPa。它有一定的延伸率,故切屑可能呈连续带状(图3)。刀具前刀面磨损会增大,由于含有石墨组织,切削力乃有波动。当其基体组织为珠光体时,因硬度高刀具破损较大,当其组织为铁素体时.则切屑易粘结.熔结在刀具上。

各刀具大制造商为高效加工铸铁零件都在不断努力环发新的刀具材料、涂层与更好的几何形状结构的刀具。三菱公司新开发了针对各类铸铁零件加工的全黑,超平滑优质涂层UC5105与UC5115令人瞩目(图4)。这二类刀片在汽车制造业,压缩机制造业等许多行业中取得很大成就。

图4为UC5105与UC5115的涂层组织。这种组织特点是:

1.耐磨性高,其原因在于采用厚膜微拉Al2O3与纤维状做粒TiCN涂层,这比原有的CVD涂

层耐磨性提高很多。

2.耐缺损、耐破损性高,缺损或称缺口,微崩。破损,俗称崩刃,它是硬质合金等烧结硬脆

刀具材料的一种特有损伤形式。它是在承受力的冲击或热应力急剧变化所形成热冲击时,引起的脆性损伤,也可能是因切屑粘接熔接在刀具上而造成,一般的粘结、熔结磨损是

金属零件磨损原因之一。对于硬脆的烧结刀具材料来说,更主要的是如果在刀具表面上

有牢固粘接(Adhesion) .熔接(Wolding )的切屑或积屑瘤,它们在被后续加工冲击后,强

行使它与刀具表面分离,在分离的同时使刀具表面或刃口上部分材料也一齐带走,这称

粘接熔接缺损与破损。UC5105与UC5115除涂敷坚硬耐磨的抗粘接熔接的优质Al2O3层

外,还采取特殊的平滑涂层(Even Coating)方法使表面平滑度大幅度提高,从面使抗粘接

熔接性能进步提高,粘结与熔结物的减少,这方面造成的换伤也大大减少了。图5为超

级平淆涂层与一般涂层的表面粗糙度比较,这种涂层材料所加工零件表面质量也可改善。

3.改善硬质合基底材料性能,UC5105采用高硬度基体材料.适应高速连续切削铸铁。UC5115

采用特别强韧的基体材料适应断续切削,在不明切削条件的情况下UC5115是首选材料。

图6中,红圆代表连续切削,带四缺口红圆表断续切削、带一个缺口红圆表一般切削。图6中纵座标表示切深。S表轻切削(ap=0.5~1.5mm),M表中切削(ap=1.5~4.4mm) ,G表准重切削(ap=4~7mm),横座标表进给量。图中齐椭圆上方是推荐的断屑槽.如MA,全周,平顶(即无断屑槽)等,下方表推荐的刀具材料。UC5105、UC5115与ISO硬质合金标准对照与推荐切削条件如图7。UC5105是要求车削加工时,耐磨性高时选用的刀片材料.UC5115是车削加工时,同时要求耐磨性与韧性均好,二种性能能做到平衡时,应选用的刀片。表中可知UC5115也能切削碳钢,合金钢。图8是此二种材料,应用实例。当精加工用比轻切削更低的切削用量时.可用金属陶瓷NX2525 ,带锋利磨制出断屑槽R/L-F的刀片去加工。

20世纪50年代开始许多研究所,公司那怀着一种理想.想创制一种新型的铸铁,它的强度、硬度比普通铸铁高,它的可铸性,热传导性,可加工性比球多铸铁更一些,这类铸铁的石墨结构呈蠕虫状,称蠕墨铸铁又简称CGI。

蠕墨铸铁显微结构中的石墨形成了三维的蠕虫状粒子.这种结构在扫描电子显微镜(SEM)下看起来象珊瑚。其石墨形态再加上圆形边缘不规则表面,使石墨与基体间具有很大的结合力限止了裂纹生成与发展,故其抗拉强度可比普通铸铁高75%,硬度高45% ,在高温条件下其耐疲劳强度比铝高5倍。由于蠕墨铸铁的优异的综合性能,为需承受高机械与热负荷的复余零件提供了应用场所,目前它已在柴油发动机和气缸盖等多方面用得越来越广,因为它可以承受更高的燃烧压力。当气缸中压力增大,燃烧过程就变得更洁净,二氧化碳、微粒,氧化氮等废气、污染物质的排放就大大降低,其环保愈义很大。

图7 二种刀片材料适用范围与推荐的切削条件

蠕墨铸铁至今尚未与普通铸铁、球墨铸铁一样被标准化,因此切削加工时,由于蠕墨化状况,部分石墨球化率、珠光体量的不同,被切削性能可能差异很大,加工它时.一般最重要延选择切削速度,通常大致选普通铸铁与球墨铸铁之间而更接近于球墨铸铁适用推荐伏,大致可选比普通铸铁低10%,比球墨铸铁高5%,约20m/min较适当(原文如此。切削技术网站编辑认为是120m/min 较适当)。加工时进给量与切深(背吃力量)对刀具寿命不是那么大,但蠕墨铸铁多作薄壁零件,切削时往往仅切削铸件表层.表层多为硬的变质相,粗加工宜尽量切得探些。此时切削速度则宜适当降低。在实际加工时,尚需注意某些情况蠕墨铸铁的拉伸强度、硬度、02%屈服强度可能比球墨铸铁还高,被切削性比球墨铸铁还差的情况也有。

图8 应用实例

图9 蠕墨铸铁组织

铸造合金及其熔炼复习思考题

铸造合金及其熔炼复习思考题 铸铁及其熔炼 1.什么是Fe-C双重相图,那一个相图是热力学稳定的,如何用双重相图来解释 同一化学成分的铁水在不同的冷却速度下会得到灰口或白口,硅、铬对双重相图共晶临界点各有何影响? 2.什么是碳当量、共晶度,有何意义。 3.分析片状石墨、球状石墨、蠕虫状石墨与奥氏体的共晶结过程和形成条件。 4.铸铁固态相变有那些,对铸铁最终组织有何影响? 5.冷却速度、化学成分(C、Si、Mn、 Cr、Cu等)对铸铁的一次结晶和二次结 晶有何影响? 6.灰铸铁中石墨的分布形态有那几种,对铸铁的性能有何影响,从化学成分、 冷却速度及形核等方面说明其形成条件。 7.灰铸铁的基体和非金属夹杂物有那些类型,对铸铁的性能有何影响? 8.灰口铸铁的性能有何特点?与其组织有何关系?汽车上那些铸件采用灰口铁 生产? 9.影响灰铸组织、性能的因素有那些,根据组织与性能的关系分析提高灰铸铁 性能的途径和措施。 10.灰铸铁孕育处理的目的是什么,有那些作用,孕育铸铁化学成分的选择原则 是什么,提高孕育效果有那些途径和措施? 11.说明球墨铸铁生产的工艺过程,其化学成分选择的原则是什么,与灰口铸铁 有何不同? 12.球墨铸铁的球化剂和球化处理方法有那些? 13.球铁凝固组织中为何易于出现自由渗碳体,如何消除自由渗碳体? 14.根据铸铁组织形成原理分析在铸态下获得高韧性、高强度球墨铸铁的途径与 措施。 15.球墨铸铁比灰口铸铁易出现缩孔、缩松缺陷,分析其原因和防止措施。 16.铸铁的热处理有何特点,生产上球墨铸铁采用那些热处理工艺? 17.蠕墨铸铁有何性能特点? 18.蠕墨铸铁的化学成分选择与灰铁和球铁有何不同,蠕化剂和蠕化处理工艺有 那些? 19.简述可锻铸铁生产工艺过程,化学成分选择原则,为何对于薄壁小件采用可 锻铸铁生产有优越性? 20.减摩铸铁与抗磨铸铁的组织要求有何不同,常用减摩铸铁和抗磨铸铁有那 些? 21.提高铸铁的耐热性能的途径和措施有那些?常用耐热铸铁有那些? 22.提高铸铁的耐蚀性能的途径和措施有那些,硅、铭、铬三元素在耐热铸铁及 耐蚀铸铁中的作用是什么? 23.简述冲天炉的结构与熔炼的一般过程。 24.简述冲天炉内炉气和温度的分布,影响铁液温度的主要因素。 25.冲天炉内铁液成分变化的一般规律?

灰铸铁的热处理

灰铸铁的热处理 退火 1.去应力退火为了消除铸件的残余应力,稳定其几何尺寸,减少或消除切削加工后产生的畸变,需要对铸件进行去应力退火。 去应力退火温度的确定,必须考虑铸铁的化学成分。普通灰铸铁当温度起过550℃时,即可能发生部分渗碳体的石墨化和粒化,使强度和硬度降低。当含有合金元素时,渗碳体开始分解的温度可提高到650℃左右。 通常,普通灰铸铁去应力退火温度以550℃为宜,低合金灰铸铁为600℃,高合金灰铸铁是可提高到650℃,加热速度一般选用60~120℃/h.保温时间决定于加热温度、铸件的大小和结构复杂程度以及对消除应力程度的要求。铸件去应力退火的冷却速度必须缓慢,以免产生二次残余内应力,冷却速度一般控制在20~40℃/h,冷却到200~150℃以下,可出炉空冷。 一些灰铸铁件的去应力退火规范示于表1. 2.石墨化退火灰铸铁件进行石墨化退火是为了降低硬度,改善加工性能,提高铸铁的塑性和韧性。 若铸件中不存在共晶渗碳体或其数量不多时,可进行低温石墨化退火;当铸件中共晶渗碳体数量较多时,须进行高温石墨化退火。 (1)低温石墨化退火,铸铁低温退火时会出现共析渗碳体石墨化与粒化,从而使铸件硬度降低,塑性增加。 灰铸铁低温石墨化退火工艺是将铸件加热到稍低于Ac1下限温度,保温一段时间使共析渗碳体分解,然后随炉冷却。

(2)高温石墨化退火,高温石墨化退火工艺是将铸件加热至高于Ac1上限以上的温度,使铸铁中的自由渗碳体分解为奥氏体和石墨,保温一段时间后根据所要求的基体组织按不同的方式进行冷却。 正火 灰铸铁正火的目的是提高铸件的强度、硬度和耐磨性,或作为表面淬火的预备热处理,改善基体组织。一般的正火是将铸件加热到Ac上限+30~50℃,使原始组织转变为奥氏体,保温一段时间后出炉空冷。形状复杂的或较重要的铸件正火处理后需再进行消除内应力的退火。如铸铁原始组织中存在过量的自由渗碳体,则必须先加热到Ac1上限+50~100℃的温度,先进行高温石墨化以消除自由渗碳体在正火温度范围内,温度愈高,硬度也愈高。因此,要求正火后的铸铁具有较高硬度和耐磨性时,可选择加热温度的上限。 正火后冷却速度影响铁素体的析出量,从而对硬度产生影响。冷速愈大,析出的铁素体数量愈少,硬度愈高。因此可采用控制冷却速度的方法)(空冷、风冷、雾冷),达到调整铸铁硬度的目的。 淬火与回火 1.淬火铸铁淬火工艺是将铸件加热到Ac1上限+30~50℃的温度,一般取850~900℃,使组织转变成奥氏体,并在此温度下保温,以增加碳在奥氏体中的溶解度,然后进行淬火,通常采用油淬。 对于形状复杂或大型铸件应缓慢加热,必要时可在500~650℃预热,以避免不均匀加热而造成开裂。 随奥氏体化温度升高,淬火后的硬度越高,但过高的奥氏体化温度,不但增加铸铁变形和开裂的危险,并产生较多的残留奥氏体,使硬度下降。 灰铸铁的淬透性与石墨大小、形状、分布、化学成分以及奥氏体晶粒度有关。

铸铁的分类及特性

铸铁的分类及特性 从铁碳相图中知道,含碳量大于 2.06%的铁碳合金称为铸铁 尽管铸铁强度、塑性、韧性较差,不能进行锻造,但它具有优良的铸造性、减摩性、切削加工等一系列性能特点;另外其生产设备和工艺简单、价格低廉,因此得到了广泛的应用。 1.铸铁的分类 铸铁的常用分类方法有两种:一是按石墨化程度;二是按石墨结晶形态。 按石墨化程度可分为: ①灰口铸铁:即在第一和第二阶段石墨化过程中都得到了充分石墨化的铸铁,其断口呈暗灰色。 ②白口铸铁:即第一、二和三阶段的石墨化全部被抑制,完全按Fe—Fe s C相图进行结晶而得到的铸铁。 ③麻口铸铁:即在第一阶段的石墨化过程中便未得到充分石墨 化的铸 铁。 按石墨结晶形态分: ①灰口铸铁:铸铁组织中的石墨形态呈片状结晶。 ②可锻铸铁:铸铁组织中的石墨形态呈固絮状。 ③球墨铸铁:铸铁组织中的石墨形态呈球状。 2.铸铁的编号基本性能及用途

(1)灰口铸铁:根据GB976 —67所规定的编号、牌号用“HT 表示灰口铸铁,后面两项数字分别表示其抗拉和抗弯强度的最低值。女口HT20 —40表示抗拉强度和抗弯强度最低值为200MN/m2 和 400MN/m2。 灰口铸铁具有优良的铸造性、切削加工性,优良的减摩性。 良好的消震性和缺口敏感性,故而灰口铸铁主要用于制造各种承受压力和要求消震性的床身、机架、复杂的箱体、壳体和经受磨擦的导轨、罐体等。 (2)可锻铸铁:按GB978 —67规定牌号以“ KT”和 “ KTZ ” 表示可锻铸铁,其中“ KT”表示铁素体可铸铸铁, “ KTZ ”表示珠光体可锻铸铁,牌号中的两项数字表示其最低抗拉强度和延伸率。 可锻铸铁的机械性能,特别是冲击韧性普遍较灰口铸铁高,但由于其成本高,故而应用不是很广泛,主要用于制造一些小型铸铁。 (3)球墨铸铁:按GB1348—78规定,球墨铸铁以“ QT” 表示,后面数字同可锻铸铁一样。 球墨铸铁不仅具有远远超过灰铁的机械性能,而且同样也具有灰铁的优点,如良好的减摩性、切削加工性及低的缺口敏感性,甚至可与锻钢媲美,如疲劳强度大致与中碳钢相近,耐磨性优于表面淬火钢等。此外,球墨铸铁还可适应各种热处理,使其机械性能提高到更高的水平。 球铁主要用来代替钢,如铁素体球墨铁可代替35、40#钢,珠 35CrMo、40CrMnMo 及20CrMnTi。 光体铸铁可代替

影响材料性能的因素

1.0影响材料性能的因素 2.01.1碳当量对材料性能的影响字串9 决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。当碳当量()较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,石墨形状恶化。这样的石墨使金属基体能够承受负荷的有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体的强度不能正常发挥,从而降低铸铁的强度。在材料中珠光体具有好的强度、硬度,而铁素体则质底较软而且强度较低。当随着 C、Si的量提高,会使珠光体量减少,铁素体量增加。因此,碳当量的提高将在石墨形状和基体组织两方面影响铸铁铸件的抗拉强度和铸件实体的硬度。在熔炼过程控制中,碳当量的控制是解决材料性能的一个很重要的因素。 1.2合金元素对材料性能的影响 在灰铸铁中的合金元素主要是指Mn、Cr、Cu、Sn、Mo等促进珠光体生成元素,这些元素含量会直接影响珠光体的含量,同时由于合金元素的加入,在一定程度上细化了石墨,使基体中铁素体的量减少甚至消失,珠光体则在一定的程度上得到细化,而且其中的铁素体由于有一定量的合金元素而得到固溶强化,使铸铁总有较高的强度性能。在熔炼过程控制中,对合金的控制同样是重要的手段。 1.3炉料配比对材料的影响字串4 过去我们一直坚持只要化学成分符合规范要求就应该能够获得符合标准机械性能材料的观点,而实际上这种观点所看到的只是常规化学成分,而忽略了一些合金元素和有害元素在其中所起的作用。如生铁是Ti的主要来源,因此生铁使用量的多少会直接影响材料中Ti的含量,对材料机械性能产生很大的影响。同样废钢是许多合金元素的来源,因此废钢用量对铸铁的机械性能的影响是非常直接的。在电炉投入使用的初期,我们一直沿用了冲天炉的炉料配比(生铁:25~35%,废钢:30~35%)结果材料的机械性能(抗拉强度)很低,当我们意识到废钢的使用量会对铸铁的性能有影响时及时调整了废钢的用量之后,问题很快得到了解决,因此废钢在熔化控制过程中是一项非常重要的控制

灰铸铁五大元素的作用和对机械性能的影响

灰铸铁五大元素的作用和对机械性能的影响 产品机械性能是各国检验产品质量的重要指标,同时也是产品使用性能直接相关,为提高灰铸铁的性能,常采用的措施:选择合理的化学成分,改变炉料组成,孕育处理,铁液合金化等措施或几种措施结合,但是化学成分一般作为生产行为,标准中一般不做强制要求,要想得到一定的性能有多种配料方法。 灰铸铁中主要有五大元素碳、硅、锰、硫、磷,化学成分合理的选配是上述措施最重要和最经济的方法。 碳、硅及碳当量:碳、硅是铸铁的主要组成元素,又都是强烈促进石墨化的元素,一般情况下碳和硅含量越高,越有利于石墨化。为了简化和避免使用多元合金相图,可以将碳、硅等元素,按照其对共晶点实际碳量的影响,将这些元素的量折算成对碳量的增减,谓之碳当量,以CE表示,为简化计算一般只考虑硅、磷的影响,因此简化公式:CE%=C%+1/3(Si+P)%。因此碳当量的变化对机械性能有最直接影响,碳当量提高,促使石墨片变粗,数量增多,强度和硬度下降,碳当量降低,石墨数量减少,石墨片细化,由于增加初析奥氏体枝晶量,从而是提高铸件力学性能的措施,但同时导致铸件铸造性能降低,铸件断面敏感性增大,铸件内应力增加,硬度上升增加加工困难。一般碳的质量分数大多2.6%-3.6%,硅的质量分数大多1.2%-3.0%。 锰、硫本身是稳定碳化物、阻碍石墨化的元素。但两者共同存在时,会结合成MnS 及S化合物,以颗粒状分布于基体中,这些化合物的熔点在1600°C以上,不仅无阻碍石墨化的元素,而且还可作为石墨化的非自

发性晶核。一般硫的质量分数大多0.06%-0.15%,锰的质量分数大多0.4%-1.2%。 磷使铸铁的共晶点左移,作用程度与硅相似,但磷在铸铁中形成低熔点二元、三元磷共晶,虽然提高耐磨性,但随磷量增加铸件脆性增加致密性降低,磷的质量分数大多小于0.2%。

铸铁的分类及其性能特点

铸铁的分类及其性能特点 一、铸铁的分类 铸铁是含碳量大于2.11%的铁碳合金。工业用铸铁是以铁、碳、硅为主要组成元素并含有锰、磷、硫等杂质的多元合金。普通铸铁的成分大致为2.0~4.0%C、0.6~3.0%Si、0.2~1.2%Mn\0.1~1.2%P、0.08~0.15%S。有时为了进一步提高铸铁的性能或得到某种特殊性能,还加入Cr、Mo、V、Al等合金元素或提高Si、Mn、P等元素含量,这种铸铁称作合金铸铁。 碳在铸铁中,除少量溶于基体外,绝大部分是以石墨或碳化物的形式存在于铸铁中。根据碳的存在形式不同,可将铸铁区分为白口铸铁和灰口铸铁两大类。 1.白口铸铁碳全部以渗碳体形式存在的铸铁称白口铸铁,断口呈银白色。这种铸铁组织中含有大量渗碳体和莱氏体共晶,因而其性能既硬又脆,所以不宜用作结构材料,一般都用作炼钢原料。 2.灰口铸铁碳全部或大部分以石墨形式存在的铸铁,称作灰口铸铁,其断口呈灰暗色。生产中多用来铸造各种机械零件。 按石墨的形态不同,灰口铸铁又可分为普通灰口铸铁,可锻铸铁及球墨铸铁。 (1)普通灰口铸铁其中碳大部分或全部以片状形式的石墨存在于铸铁中它也常简称为灰铸铁。一般情况下,其石墨片都比较粗大。但若在铁水浇注前,向铁水中加入一些能起形核作用的所谓孕育剂(通常是加入硅铁),将增加并加快石墨的形核,从而使石墨细化并且分布均匀。这种处理称作孕育处理,经过这种处理的灰口铸铁即称孕育铸铁。 (2)可锻铸铁它是由一定成分的白口铸铁经石墨化退火后形成。其中的碳全部或大部以团絮状石墨形式存在于铸铁中。它又称韧性铸铁或马铁。可锻铸铁实际上并不可锻,只不过具有一定塑而已。 (3)球墨铸铁简称球铁,其中的碳全部或大部分以球状石墨形式存在于铸铁中。它是灰口铸铁中机械性能最好的一种。 二、灰口铸铁的组织及性能特点 1.铸铁的石墨化过程在铸铁的冷凝过程中,原则上碳既可以渗碳体的形式析出,形成白口铸铁;也可以石墨的形式析出,形成灰口铸铁。析出石墨碳的过程,即称为石墨化。 至于碳究竟以哪种形式析出,主要取决于铸铁的化学成分及冷却速度。铝、碳及硅是最强烈促进石墨化的元素,而铬、硫及锰等是阻碍石墨化的元素。铸铁冷凝时,冷却速度愈慢,则愈易石墨化,反之愈易形成渗碳体。 一般的铁碳合金结晶时,照例是不易析出石墨的,但当含有足量的碳及硅时,在合金结晶时,就可能从液相中直接析出石墨碳(称为初生石墨)。合金在共晶线与共析线之间冷却时,既可以从奥氏体中直接析出石墨附着在初生石墨上,使之长大;也可能先析出渗碳体,而这渗碳体在缓慢的冷却过程中或恒温保温下,分解成铁素体和石墨。在这温度范围内的石墨化,常称作第一阶段石墨化。同理,在共析线以下冷却时,既可以由奥氏体直接共析分解为石墨和铁素体,也可以先形成珠光体,然后珠光体中的渗碳体再在保温过程中分解为石墨和铁素体,这称之为第二阶段石墨化。 石墨化过程有赖于碳原子的扩散,所以第一阶段石墨化由于温度较高,扩散条件较好,容易进行得比较完全。而第二阶段石墨化则由于温度角度,扩散条件较差,往往不能充分进行。在冷速较大时,只能部分石墨化或根本不能进行。

影响材料性能的因素

1.0 影响材料性能的因素 2.01.1 碳当量对材料性能的影响字串9 决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。当碳当量()较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,石墨形状恶化。这样的石墨使金属基体能够承受负荷的有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体的强度不能正常发挥,从而降低铸铁的强度。在材料中珠光体具有好的强度、硬度,而铁素体则质底较软而且强度较低。当随着 C、Si的量提咼,会使珠光体量减少,铁素体量增加。因此,碳当量的提咼将在石墨形状和基体组织两方面影响铸铁铸件的抗拉强度和铸件实体的硬度。在熔炼过程控制中,碳当量的控制是解决材料性能的一个很重要的因素。 1.2 合金元素对材料性能的影响 在灰铸铁中的合金元素主要是指Mn、Cr、Cu、Sn、Mo 等促进珠光体生成 元素,这些元素含量会直接影响珠光体的含量,同时由于合金元素的加入,在一定程度上细化了石墨,使基体中铁素体的量减少甚至消失,珠光体则在一定的程度上得到细化,而且其中的铁素体由于有一定量的合金元素而得到固溶强化,使铸铁总有较咼的强度性能。在熔炼过程控制中,对合金的控制同样是重要的手段。 1.3 炉料配比对材料的影响字串4 过去我们一直坚持只要化学成分符合规范要求就应该能够获得符合标准机械性能材料的观点,而实际上这种观点所看到的只是常规化学成分,而忽略了一些合金元素和有害元素在其中所起的作用。如生铁是Ti的主要来源,因此生铁使用量的多少会直接影响材料中Ti的含量,对材料机械性能产生很大的影响。同样废钢是许多合金元素的来源,因此废钢用量对铸铁的机械性能的影响是非常直接的。在电炉投入使用的初期,我们一直沿用了冲天炉的炉料配比(生铁:25~35%,废钢:30~35%)结果材料的机械性能(抗拉强度)很低,当我们意识到废钢的使用量会对铸铁的性能有影响时及时调整了废钢的用量之后,问题很快得到了解决,因此废钢在熔化控制过程中是一项非常重要的控制 参数。因此炉料配比对铸铁材料的机械性能有着直接的影响,是熔炼控制的重点。

灰铸铁力学性能测试(长安大学)

综合实验:灰铸铁力学性能测试 一、实验目的: 目的是培养学生,理论联系实际的学风,独立动脑分析问题,独立动手解决问题,独立设计实验方案,独立完成实验全过程,独立总结实验过程的实际工作能力和初步的创新能力。 二、实验内容 我们小组拿到的是灰铸铁试样,由小组8人进行不同的热处理工艺,如表所示:工艺编号 1 2 3 4 5 6 7 8 正火℃无860 无无无无无无 淬火℃无无860 (水) 860 (水) 860 (油) 860 (油) 860 (油) 860 (油) 回火℃无无无560 无560 460 260 我选择的工艺是第7组. 二、实验步骤: 2.对灰铸铁进行淬火,温度860℃,保温10分钟,淬火介质为油。 3.测试淬火后试样的硬度值(洛氏硬度试验机)。 4.对试样进行回火处理,温度460℃,保温60分钟,取出后空冷。 5.测试回火后的试样硬度值(洛氏硬度试验机)。 6.通过打磨、研磨、抛光、侵蚀,在金相显微镜下观察试样经过处理后的金相组织,观察后拍照。 三、实验结果: 1.试样硬度表(HRC) 试 样编号 次数 1 2 3 4 5 6 7 8 120.9 11.6 42.7 -10.0 —-5.5 8.9 28 221.0 13.3 41.9 0.0 —-6.3 4.7 31.2 319.6 11.1 40.6 -8.5 —-4.7 8.8 26.1 422.9 10.0 35 -20.0 —-3.7 7.0 30.9 521.7 10.3 54.6 -11.3 —-6.5 8.0 31.5

平均21.22 11.26 42.96 -9.96 23.01-5.34 7.48 29.54 45#2—15.0 60.0 21.0 26.0 16.0 —— 1、此数据为我的式样测得的平均值; 2、45钢的硬度数据综合了其他组同学的数据; 3、一般资料上面对于铸铁硬度的表示采用的是布氏硬度,但由于布氏硬度测量麻烦,故我们采用洛氏硬度表示,必要时可进行硬度换算。 四、实验分析: 灰口铸铁是指含有片状石墨组织的铸铁,这种铸铁因其断面呈灰黑色而得名,其基体组织则分为三种类型:铁素体、珠光体及铁素体+珠光体,从组织可以看出灰口铸铁中的碳大部或全部以片状石墨形式存在(如图8),片状石墨单晶体是由许多薄片晶层叠集而成,薄片晶之间存在着许多亚结构,普通铸铁的石墨晶体中,总是存在许多晶体缺陷。灰口铸铁中的石墨与钢的基体相比,可以把灰铸铁的组织看做是“钢的基体”加上片状石墨的夹杂,石墨的力学性能几乎可以看做为“0” ,而片状石墨的存在相当于基体中许多小的裂纹,破坏了材料的连续性和整体性,减少了基体受力的有效面积,而且很容易在石墨片的尖端形成应力集中,是材料形成脆性断裂,所以灰铸铁的抗拉强度、塑性和韧性比钢低得多,石墨片的量愈多,尺寸愈大,其其影响也愈大。石墨虽然降低了铸铁的力学性能,但使铸铁获得了许多钢没有的优良性能。 灰铸铁的金属基体与碳钢基本相似,但由于灰铸铁内的硅、锰含量与碳钢相比较高,它们能溶解于铁素体中使铁素体得到强化。因此,铸铁中就金属基体而言,其本身的强度比碳钢要高。例如,碳钢中铁素体的硬度约为80HBS,而灰铸铁中铁素体的硬度约为100HBS,一般情况下铁素体灰口铸铁的硬度在143~229HBS(<0.9~22.5HRC)[布氏硬度值数据来自参考资料6,175页表7-1]。灰铸铁通常测定布氏硬度,因为布氏硬度试验范围适合测定铸铁,而且压痕面积大,能够覆盖较多显微组织,反映多相组织硬度综合值。但是由于实验室设备有限,以及我们操作能力不足,故而测定的是灰铸铁的洛氏硬度HRC,在必要条件下可通过查表换算出其大概的布氏硬度。有教材上说[7] ,灰口铸铁的布氏硬度值与同样基体的正火钢相近,这在上面硬度表中似乎得到说明。 基于以上原因老师指导我们按照45钢的热处理工艺处理灰铸铁,我们首先对灰铸铁试样进行了分析,在做金相分析后确定我们拿到的试样是铁素体基灰铸铁,如图1。我的试样按照预先设定的实验步骤进行处理。最后打硬度平均值为7.48,相当与布氏硬度170左右,属于143~229HBS范围之内,拍金相照片得到图6。 以下是不同工艺后拍的金相图片:

灰铸铁缺陷产生的原因分析及预防措施

一、影响灰铸铁力学性能的主要因素: 化学成分(C、Si、Mn、P、S合金元素)灰铸铁的力学性能金相组织 石墨的形状、大小、分布工艺因素和冶金因素 和数量以及基体组织 工艺、冶金因素:主要有冷却速度,铁液的过热处理、孕育处理、炉料特性等(1)关于冷却速度的影响铸铁是一种对冷却速度敏感性很大的材料,同一铸件的厚壁和薄壁部分,内部和外表都可能获得相差悬殊的组织,俗称为组织的不均匀性。因为石墨化过程在很大程度上取决于冷却速度。影响铸件冷却速度的因素较多:铸件壁厚和重量、铸型材料的种类、浇冒口和重量等等。由于铸件的壁厚、重量和结构取决于工作条件,不能随意改变,故在选择化学成分时应考虑到它们对组织的影响。 (2)关于铁液孕育处理的影响孕育处理就是在铁液进入铸件型腔前,把孕育剂附加到铁液中以改变铁液的冶金状态,从而可改善铸铁的显微组织和性能。 对灰铸铁而言,进行孕育处理是为了获得A型石墨、珠光体基体、细小共晶团的组织,以及减少铸件薄壁或边角处的白口倾向和对铸件壁厚的敏感性;对可锻铸铁而言,是为了缩短短退火周期,增大铸件的允许壁厚和改善组织的结构;对球墨铸铁而言,是为了减少铸件白口倾向,提高球化率和改善石墨的圆整性。 (3)关于铁液过热处理的影响。提高铁液过热温度可以:①增加化合碳含量和相应减少石墨碳含量,②细化石墨,并使枝晶石墨的形成,③消除铸铁的“遗传性”,④提高铸件断面上组织的均匀性,⑤有利于铸件的补缩。同样,铁液保温也有铁液过热的类似作用。 (4)关于炉料特性的影响实际生产中往往发现改变金属炉料(例如采用

不同产地的生铁或改变炉料的配比等)而化学成分似乎无变化的情况下铸铁具有不同的组织和性能,这说明原材料的性质直接影响着用它熔炼出来的铸铁的性质,称为铸铁的:“遗传性”为此,采用提高铁液温度和使用多种铁料配料可消除这种“遗传性”,并改善铸铁的组织和性能。 综上所述,铸铁的工艺因素和冶金因素对铸铁的力学性能有着很大的影响,因此,不应忽视对这些影响因素的控制。 二、灰铸铁不可用热处理的方法来达到牌号要求 一般说来,热处理能在很大程度上改善铸造合金的组织和性能,但在灰铸铁条件下,热处理所能发挥的作用相对较小。在灰铸铁中,石墨对铸铁性能的影响很大,而任何的热处理方法都不能改变石墨的形态和分布,故不可通过热处理来有效地提高灰铸铁的性能使之达到牌号要求。 但是,提高灰铸铁力学性能的方法很多,如合理选配化学成分、改变炉料组成、过热处理铁液、孕育处理、微量或低合金化等,都可取得很好效果。 三、生产高牌号灰铸铁(孕育铸铁)的注意事项 生产产高牌号灰铸铁(一般指HT200以上)时,为了获得高的力学性能,必须尽可能地减少石墨的数量、减小石墨的长度。传统的方法就是降低铁液的碳、硅含量、提高铁液的冷凝速度,但幅度稍大时就会出现D型过冷石墨及白口,反而降低灰铸铁的力学性能。 在炉前或在浇注前往铁液中添加适量的、以硅铁为主的铁合金碎粒被称作孕育处理。孕育处理在铁液中提供大量的、石墨借以生核的生核质点。有效的孕育将促进石墨的析出,从而消除白口、细化片状石墨并使过冷石墨转变为无方向性均布石墨(A型石墨),不但可大幅度地提高综合力学性能,同时还提高铸

灰铸铁缺陷产生的原因分析及预防措施

灰铸铁缺陷产生的原因分析及预防措施 一、影响灰铸铁力学性能的主要因素: 化学成分(C、Si、Mn、P、S合金元素)灰铸铁的力学性能金相组织 石墨的形状、大小、分布工艺因素和冶金因素 和数量以及基体组织 工艺、冶金因素:主要有冷却速度,铁液的过热处理、孕育处理、炉料特性等(1)关于冷却速度的影响铸铁是一种对冷却速度敏感性很大的材料,同一铸件的厚壁和薄壁部分,部和外表都可能获得相差悬殊的组织,俗称为组织的不均匀性。因为石墨化过程在很大程度上取决于冷却速度。影响铸件冷却速度的因素较多:铸件壁厚和重量、铸型材料的种类、浇冒口和重量等等。由于铸件的壁厚、重量和结构取决于工作条件,不能随意改变,故在选择化学成分时应考虑到它们对组织的影响。 (2)关于铁液孕育处理的影响孕育处理就是在铁液进入铸件型腔前,把孕育剂附加到铁液中以改变铁液的冶金状态,从而可改善铸铁的显微组织和性能。 对灰铸铁而言,进行孕育处理是为了获得A型石墨、珠光体基体、细小共晶团的组织,以及减少铸件薄壁或边角处的白口倾向和对铸件壁厚的敏感性;对可锻铸铁而言,是为了缩短短退火周期,增大铸件的允许壁厚和改善组织的结构;对球墨铸铁而言,是为了减少铸件白口倾向,提高球化率和改善石墨的圆整性。 (3)关于铁液过热处理的影响。提高铁液过热温度可以:①增加化合碳含量和相应减少石墨碳含量,②细化石墨,并使枝晶石墨的形成,③消除铸铁的“遗传性”,④提高铸件断面上组织的均匀性,⑤有利于铸件的补缩。同样,铁液保

温也有铁液过热的类似作用。 (4)关于炉料特性的影响实际生产中往往发现改变金属炉料(例如采用不同产地的生铁或改变炉料的配比等)而化学成分似乎无变化的情况下铸铁具有不同的组织和性能,这说明原材料的性质直接影响着用它熔炼出来的铸铁的性质,称为铸铁的:“遗传性”为此,采用提高铁液温度和使用多种铁料配料可消除这种“遗传性”,并改善铸铁的组织和性能。 综上所述,铸铁的工艺因素和冶金因素对铸铁的力学性能有着很大的影响,因此,不应忽视对这些影响因素的控制。 二、灰铸铁不可用热处理的方法来达到牌号要求 一般说来,热处理能在很大程度上改善铸造合金的组织和性能,但在灰铸铁条件下,热处理所能发挥的作用相对较小。在灰铸铁中,石墨对铸铁性能的影响很大,而任何的热处理方法都不能改变石墨的形态和分布,故不可通过热处理来有效地提高灰铸铁的性能使之达到牌号要求。 但是,提高灰铸铁力学性能的方法很多,如合理选配化学成分、改变炉料组成、过热处理铁液、孕育处理、微量或低合金化等,都可取得很好效果。 三、生产高牌号灰铸铁(孕育铸铁)的注意事项 生产产高牌号灰铸铁(一般指HT200以上)时,为了获得高的力学性能,必须尽可能地减少石墨的数量、减小石墨的长度。传统的方法就是降低铁液的碳、硅含量、提高铁液的冷凝速度,但幅度稍大时就会出现D型过冷石墨及白口,反而降低灰铸铁的力学性能。 在炉前或在浇注前往铁液中添加适量的、以硅铁为主的铁合金碎粒被称作

灰铸铁中各元素作用

灰铸铁中各元素作用 1、碳、硅 碳、硅都是强烈地促进石墨化的元素,可用碳当量来说明他们对灰铸铁金相组织和力学性能的影响。提高碳当量促使石墨片变粗、数量增加,强度硬度下降。相反降低碳当量可减少石墨数量、细化石墨、增加初析奥氏体枝晶数量,从而提高灰铸铁的力学性能。 但是降低碳当量会导致铸造性能下降。 2、锰:锰本身是稳定碳化物、阻碍石墨化的元素,在灰铸铁中具有 稳定和细化珠光体作用,在 Mn=0.5%~1%范围内,增加锰量,有利于强度、硬度的提高。 3、磷:铸铁中含磷量超过0.02%,就有可能出现晶间磷共晶。磷在奥 氏体中的溶解度很小,铸铁凝固时,磷基本上都留在液体中。共晶凝固接近完成时,共晶团之间剩余的液相成分接近三元共晶成(Fe-2%、C-7%、P)。此液相约在955℃凝固。 铸铁凝固时,钼、铬、钨和钒都偏析于富磷的液相中,使磷共晶的量增多。铸铁中含磷量高时,除磷共晶本身的有害作用外,还会使金属基体中所含的合金元素减少,从而减弱合金元素的作用。 磷共晶液体在凝固长大的共晶团周围呈糊状,凝固收缩很难得到补给,铸件出现缩松的倾向较大。 4、硫:降低铁液流动性,增加铸件热裂倾向,是铸件中的有害元素。 很多人认为硫含量越低越好,实则不然,当硫含量≤0.05%时,此种铸铁对我们使用的普通孕育剂来说不起作用,原因是孕育衰

退的很快,常常在铸件中产生白口。 5、铜:铜是生产灰铸铁最常加入的合金元素,主要原因是由于铜熔 点低(1083℃),易熔解,合金化效果好,铜的石墨化能力约为硅的1/5,因此能降低铸铁的白口倾向,同时铜也能降低奥氏体转变的临界温度,因此铜能促进珠光体的形成,增加珠光体的含量,同时能细化珠光体和强化珠光体及其中的铁素体,因而增加铸铁的硬度及强度。但是并非铜量越高越好,铜的适宜加入量为0.2%~0.4%当大量地加铜时,同时又加入锡和铬的做法对切削性能是有害的,它会促使基体组织中产生大量的索氏体组织。 6、铬:铬的合金化效果是非常强烈的,主要是因为加铬使铁水白口 倾向增大,铸件易收缩,产生废品。所以,应对铬量加以控制。 一方面希望铁水中含有一定量的铬,以提高铸件的强度和硬度; 另一方面又将铬严格控制在下限,以防止铸件收缩而造成废品率增加。传统的经验认为,原铁水铬量超过0.35%时,将对铸件产生致命的影响。 7、钼:钼是典型的化合物形成元素,是很强的珠光体稳定元素,它 能细化石墨,在ωMo<0.8%时,钼能细化珠光体,同时能强化珠光体中的铁素体,从而能有效地提高铸铁的强度和硬度。

灰铸铁的热处理

灰铸铁的热处理

灰铸铁的热处理 退火 1.去应力退火为了消除铸件的残余应力,稳定其几何尺寸,减少或消除切削加工后产生的畸变,需要对铸件进行去应力退火。 去应力退火温度的确定,必须考虑铸铁的化学成分。普通灰铸铁当温度起过550℃时,即可能发生部分渗碳体的石墨化和粒化,使强度和硬度降低。当含有合金元素时,渗碳体开始分解的温度可提高到650℃左右。 通常,普通灰铸铁去应力退火温度以550℃为宜,低合金灰铸铁为600℃,高合金灰铸铁是可提高到650℃,加热速度一般选用60~120℃/h.保温时间决定于加热温度、铸件的大小和结构复杂程度以及对消除应力程度的要求。铸件去应力退火的冷却速度必须缓慢,以免产生二次残余内应力,冷却速度一般控制在20~40℃/h,冷却到200~150℃以下,可出炉空冷。 一些灰铸铁件的去应力退火规范示于表1. 2.石墨化退火灰铸铁件进行石墨化退火是为了降低硬度,改善加工性能,提高铸铁的塑性和韧性。 若铸件中不存在共晶渗碳体或其数量不多时,可进行低温石墨化退火;当铸件中共晶渗碳体数量较多时,须进行高温石墨化退火。 (1)低温石墨化退火,铸铁低温退火时会出现共析渗碳体石墨化与粒化,从而使铸件硬度降低,塑性增加。 灰铸铁低温石墨化退火工艺是将铸件加热到稍低于Ac1下限温度,保温一段时间使共析渗碳体分解,然后随炉冷却。

(2)高温石墨化退火,高温石墨化退火工艺是将铸件加热至高于Ac1上限以上的温度,使铸铁中的自由渗碳体分解为奥氏体和石墨,保温一段时间后根据所要求的基体组织按不同的方式进行冷却。 正火 灰铸铁正火的目的是提高铸件的强度、硬度和耐磨性,或作为表面淬火的预备热处理,改善基体组织。一般的正火是将铸件加热到Ac上限+30~50℃,使原始组织转变为奥氏体,保温一段时间后出炉空冷。形状复杂的或较重要的铸件正火处理后需再进行消除内应力的退火。如铸铁原始组织中存在过量的自由渗碳体,则必须先加热到Ac1上限+50~100℃的温度,先进行高温石墨化以消除自由渗碳体在正火温度范围内,温度愈高,硬度也愈高。因此,要求正火后的铸铁具有较高硬度和耐磨性时,可选择加热温度的上限。 正火后冷却速度影响铁素体的析出量,从而对硬度产生影响。冷速愈大,析出的铁素体数量愈少,硬度愈高。因此可采用控制冷却速度的方法)(空冷、风冷、雾冷),达到调整铸铁硬度的目的。 淬火与回火 1.淬火铸铁淬火工艺是将铸件加热到Ac1上限+30~50℃的温度,一般取850~900℃,使组织转变成奥氏体,并在此温度下保温,以增加碳在奥氏体中的溶解度,然后进行淬火,通常采用油淬。 对于形状复杂或大型铸件应缓慢加热,必要时可在500~650℃预热,以避免不均匀加热而造成开裂。 随奥氏体化温度升高,淬火后的硬度越高,但过高的奥氏体化温度,不但增加铸铁变形和开裂的危险,并产生较多的残留奥氏体,使硬度下降。 灰铸铁的淬透性与石墨大小、形状、分布、化学成分以及奥氏体晶粒度有关。

材料加工物理 第二节 灰铸铁

2 F 型石墨(星状) E 型石墨(枝晶片状) D 型石墨(枝晶点状) C 型石墨(块片状) B 型石墨(菊花状) A 型石墨(片状) 1.2.1 灰铸铁的组织与性能 (1) 石墨的形态 第二节 灰铸铁 ? 灰铸铁的组织与性能 ? 提高灰铸铁性能的途径 ? 灰铸铁研究和生产的新进展

(3) 灰铸铁的性能特点 ① 力学性能 ? 灰铸铁的机械性能首先取决于石墨的形状、数量、尺寸与分布,其次取决于基体组织。 ? 灰铸铁的机械性能利用率仅有30%(与钢比) 表 灰铸铁与铸造碳钢力学性能比较 4 性能指标 抗拉强度 σb / MPa 延伸率 / % 冲击韧性 αk / J 弹性模量 E/ MPa 铸造碳钢 400~650 10~25 20~60 20×104 灰铸铁 100~400 ~0.5 ~5.0 (7~16)×104 3 P+G 片 F+P+G 片 F+G 片 (2) 基体组织

(4) 灰铸铁的国家标准 标准号:GB/T 9439-2010 φ30mm 单铸试棒的抗拉强度和布氏硬度 6 牌号 最小抗拉强度Rm (MPa ) 布氏硬度(HBW) HT100 100 ≤170 HT150 150 125-205 HT200 200 150-230 HT225 225 170-240 HT250 250 180-250 HT275 275 190-260 HT300 300 200-275 HT350 350 220-290 ② 减震性好 用于机床、缸体、缸套 ③ 导热性好 用于缸体、缸套、排气管、铁锅 ④ 加工性能好 硬度HB170~250 ⑤ 铸造性能好。可浇注复杂和薄壁铸件 ⑥ 成本较低 成本仅为锻钢1/3 ~1/4 钢、球铁、灰铸铁振动衰减图 5

铸件硬度灰铸铁硬度简介

铸件硬度灰铸铁硬度简介 灰铸铁基本上是由铁、碳和硅组成的共晶型合金,其中,碳主要以石墨的形态存在。生产优质铸件,控制铸铁凝固时形成的石墨的形态和基体金属组织是至关重要的。孕育处理是生产工艺中最重要的环节之一。良好的孕育处理可使灰铸铁具有符合要求的显微组织,从而保证铸件的力学性能和加工性能。 在液态铸铁中加入孕育剂,可以形成大量亚显微核心,促使共晶团在液相中生成。接近共晶凝固温度时,生核处首先形成细小的石墨片,并由此成长为共晶团。每一个共晶团的形成,都会向周围的液相释放少量的热,形成的共晶团越多,铸铁的凝固速率就越低。凝固速率的降低,就有助于按铁-石墨稳定系统凝固,而且能得到A型石墨组织。 一孕育处理的作用 灰铸铁的力学性能在很大程度上取决于其显微组织。未经孕育处理的灰铸铁,显微组织不稳定、力学性能低下、铸件的薄壁处易出现白口。为保证铸件品质的一致性,孕育处理是必不可少的。 铸铁孕育处理所用的孕育剂,加入量很少,对铸铁的化学成分影响甚小,对其显微组织的影响却很大,因而能改善灰铸铁的力学性能,对其物理性能也有明显的影响。良好的孕育处理有以下作用: ◆消除或减轻白口倾向; ◆避免出现过冷组织; ◆减轻铸铁件的壁厚敏感性,使铸件薄、厚截面处显微组织的差别小,硬度差别也小; ◆有利于共晶团生核,使共晶团数增多; ◆使铸铁中石墨的形态主要是细小而且均匀分布的A型石墨,从而改善铸铁的力学性能。孕育良好的铸铁流动性较好,铸件的收缩减少、加工性能改善、残留应力减少。 二.灰铸铁的显微组织 灰铸铁的力学性能决定于其基体组织和片状石墨的分布状况。灰铸铁的力学性能主要取决于其基体组织,为了得到高强度,希望基体组织以珠光体为主、尽量减少铁素体含量。如果铁素体量过多,不仅导致铸铁的强度低,而且加工时会使刀具过热,显著降低刀具的寿命。与球墨铸铁不同,对灰铸铁不可能有延性和韧性的要求,只要求其强度,所以一般都以珠光体含量高为好。 灰铸铁中的石墨片,有切割金属基体、破坏其连续性、使其强度降低的作用。从强度考虑,应避免产生长而薄的石墨片和粗大的石墨片,具明显方向性的石墨片影响尤大。控制石墨片的分布状况,是保证灰铸铁性能的关键。 A型石墨是在铸铁的石墨生核能力较强、冷却速率较低、在过冷度很小的条件下发生共晶转

熔炼的问题答案

第一章 1、为什么有双重相图的存在?双重相图的存在对铸铁件生产有何实际意义?硅对双重相图的影响又有何实际意义?答:1>从热力学观点看,在一定条件下,按Fe-Fe3C相图转变亦是有可能的,因此就出现了二重性2>通过双重相同,可以明显的看出稳定平衡在发生共晶转变及共析转变时,其温度要比介稳定平衡发生时的温度高,而发生共晶、共析转变时所需含C量,以及转变后的r 中的含碳量,稳定平衡要比介稳定平衡低。依此规律,就可以通过控制温度成分来控制凝固后的铸铁组织。3>硅元素的作用:a:共晶点和共析点含碳量随硅量的增加而减少b:硅的加入使相图上出现了共晶和共析转变的三重共存区c:共晶和共析温度范围改变了,含硅量越高,稳定系的共晶温度高出介稳定系的共晶温度越多d:硅量的增加,缩小了相图上的奥氏体区 2、分析讨论片状石墨、球状石墨、蠕虫状石墨的长大的过程及形成条件。答:片状石墨:按晶体生长理论,石墨的正常生长方式沿基面择优生长,形成片状组织。实际石墨晶体中存在多种缺陷,螺旋位错缺陷能促进片状石墨的形成。螺旋位错为石墨的生长提供a、c两个互相垂直的两种生长方向,当a方向的生长速度大于c方向的生长速度时,便行程片状石墨。球状石墨:石墨晶体中的旋转晶界缺陷可促进球状石墨的形成,此外,在螺旋位错中,当c向的生长速度大于a向的生长速度时就会形成球状石墨。球状石墨的形成一般先有钙、镁的硫化物及氧化物组成的晶核开始,经球化处理后,还有利于向球状石墨生长。球状石墨的生长有两个必要条件:较大的过冷度和较大的铁液与石墨间的界面张力。蠕虫状石墨:有两种形成过程:1>小球墨→畸变球墨→蠕虫状石墨2>小片状石墨→蠕化元素局部富集→蠕虫状石墨 3、试讨论磷共晶的分类、析出过程以及如何控制磷共晶体的形态(粗细)及数量。答:按照组成不同可将磷共晶分为二元磷共晶及三元磷共晶。磷共晶的形成,是由于磷的偏析造成的,磷属于正偏析元素先析出的部分含P量较少,P不断富集,含量高到一定程度时便形成磷共晶。实践证明:若铸铁的石墨化能力较强或冷却速度较低,就形成稳定系三元磷共晶,形式与二元磷共晶相似,反之则形成亚稳定系三元磷共晶,在灰铸铁中,主要是稳定系元磷共晶。 碳当量:根据各元素对共晶点实际碳量的影响,将这些元素的量折算成碳量的增减。(CE=C+1/3(Si+P))共晶度:用铸铁的实际含碳量和共晶点的实际含碳量的比值 4、偏析:合金中各组成元素在结晶时分布不均匀的现象称为偏析。奥氏体直径偏析特点:在初析奥氏体中有硅的富集,锰则较低,而在枝晶间的残存液体中则是碳高、锰高、硅低 分配系数:Kp=元素在奥氏体中的浓度xA/元素在铁液中的平均浓度xI(相间不均)偏析系数:Kl=元素在奥氏体枝晶心部的浓度/元素在奥氏体边缘的浓度(相内不均) 5、共晶团:以每个石墨核心为中心所形成的这样一个石墨-奥氏体两相共生生长的共晶晶粒 6、球状石墨的结构特征及形成条件:球状石墨具有多晶体结构,从核心向外辐射状生长,每个放射角皆由垂直于球的径向而呈相互平行的石墨面堆积而成,石墨球就是由大约20~30个这样的锥体状的石墨单晶体组成。条件:铁液凝固时必须有较大的过冷度和较大的铁液与石墨间的界面张力。 第二章 1、灰铸铁的金相组织及性能的特点是什么?答:灰铸铁的金相组织由金属基体和片状石墨组成。金属基体形成有珠光体、铁素体及珠光体加铁素体三种。石墨的形状、大小数量及分布是决定灰铸铁性能的主要因素:1>强度性能较差,因为石墨的缩减作用及缺口作用2>硬度特点,灰铸铁的硬度主要由基体决定,铁素体较软,强度低,珠光体强度硬度高,但韧性则低于铁素体,由于强度主要受石墨影响,硬度主要受基体影响,所以,同一强度,硬度有一范围,同一硬度3>较低的缺口敏感性4>良好的减震性5>良好的减摩性。原因:良好的铸造性7>良好的切削加工型 2、冷却速度是如何对铸铁组织发生影响的?答:冷却速度增加,铁液过冷度增大,共晶反应平台离莱氏体共晶线的距离越来越近,易生成白口,在实际生产中,冷却速度的影响一般通过铸件壁厚,铸型条件以及浇注温度等因素体现出来。 3、品质系数:品质系数Qi是成熟度RG与硬化度HG之比。成熟度RG是直径为30mm的试棒测得的抗拉强度与由共晶度算出的抗拉强度之比。在1.15~130为佳,适当过热与孕育处理能提高RG值。若RG<1表明孕育不良,生产水平低,未能发挥材质的潜力。硬化度是测得的硬度与由共晶度算出的硬度之比。HG越低表明灰铁强度高,硬度低,有良好切削性。它为何能衡量铸铁的冶金质量?答:Qi值越高,说明冶金效果越好,在0.7~1.5之间波动,>1为佳。 4、提高灰铸铁性能的主要途径是什么?答:1>合理选定化学成分。在保持碳当量不变的情况下,适当提高Si/C比,如有0.5升至0.75,会产生一下影响:<1>初析奥氏体增加,有加固基体作用<2>G减少,缩减作用,切割作用减小<3>固溶于铁中硅量增高,强化铁素体<4>共晶转变温度提高,珠光体稍有粗化,对强度性能不利<5>硅增高,促进石墨化,降低白口倾向2>进行孕育处理。目的在于,促进石墨化,降低白口倾向,降低断面敏感性,细化晶粒,适当增高共晶团数和促进细片状珠光体的形成3>低合金化,加入少量的合金元素,常有以下作用:细化石墨,铁素体减少甚至消失,珠光体细化,铁素体固溶强化,因而有较高的强度性能。在设法提高铸铁强度性能的同时,必须注意:要维持较高的碳当量,以维持铸铁的铸造性能,从而充分发挥灰铸铁的特长,措施是:一定程度的过热,强化孕育处理,低合金化。 5、常见气体对铸铁石墨化的影响答:氢:能使石墨形状变得较粗,同时都有强烈稳定渗碳体和阻碍石墨析出的能力。此外,还有形成反白口的倾向。氢量增加时,铸铁的力学性能和铸造性能皆会恶化。氮:阻碍石墨化,稳定渗碳体,促进D型石墨的形成,还能促进形成蠕虫状石墨。氮有稳定珠光体的作用,因而可以提高铸铁的强度。氧:阻碍石墨化,增高白口倾向,含氧增加,铸铁的断面敏感性增大,氧增高时,容易在铸件中产生气孔,增加孕育剂及变质剂的消耗量。 7.孕育处理的目的、孕育效果如何评价答:目的在于,促进石墨化,降低白口倾向,降低断面敏感性,控制石墨形态,消除过冷石墨,适当增高共晶团数和促进细片状珠光体的形成。效果如何评价:(1)白口数减少(2)共晶团数增多(3)降低过冷度孕育处理:铁液浇注以前,在一定的条件下,向铁液中加入一定量的物质以改变铁液的凝固过程,改善铸态组织,从而达到提高性能为目的处理方法。第三章强韧铸铁 1、分析球墨铸铁比灰铸铁对切口的敏感性较强,而减震性和导热性较差的原因?铸铁的敏感性、减震性、导热性取决于金属基体和石墨的组织形态。灰铸铁内有大量片状石墨,等于在内部存在大量的缺口,因而减少了对外缺口对力学性能敏感性,同样的大量片状石墨割裂了基体,组织了震动的传播,并能转化成热能而发散,因而具有良好的减震性。而球墨铸铁的组织是金属基体和细小圆整的石墨,石墨均与对金属基体没有破坏作用因而比灰铸铁缺口敏感性强减震性差。同理由于石墨的导热性好,灰铸铁大量石墨片状,有利于热的传递,而球墨铸铁圆整球状,没有片状传递好,所以球墨比灰铸铁导热性差。 2、球墨铸铁生产时化学成分的选择原则是?他和灰铸铁有何不同?选择既要有利于石墨的球化获得满意的基体,又要使铸铁具有较好的铸造性能,对于灰铸铁在碳当量保持不变的条件下适当提高Si/C比(如由0.5-0.75) 3、球化处理过程中球化元素镁的主要去向哪几个方面?如何提高镁的吸收率?镁的去向-脱硫、去氧——对铁液的球化作用——烧损上浮气化。方法自建压力加镁法、转动包法、镁合金法。 4、试分析奥氏体——贝氏体球墨铸铁的热处理中,变更加热温

相关文档
相关文档 最新文档