文档库 最新最全的文档下载
当前位置:文档库 › 纳米技术

纳米技术

《纳米技术》

纳米技术(英语:nanotechnology)是一门应用科学,其目的在于研究于纳米规模时,

物质和设备的设计方法、组成、特性以及应用。纳米技术是许多如生物、物理、化学等科学领域在技术上的次级分类,是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1

至100纳米范围内材料的性质和应用。纳米的世界为原子、分子、高分子、量子点和高分

子集合,并且被表面效应所掌控,如范德瓦耳斯力、氢键、电荷、离子键、共价键、疏水性、亲水性和量子穿隧效应等,而惯性和湍流等巨观效应则小得可以被忽略掉。举个例子,当表面积对体积的比例剧烈地增大时,开起了如催化学等以表面为主的科学新的可能性。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物,纳米科学技术又将引发一系列新的科学技术,例如:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学等。纳米科技的神奇之处在于物质在纳米尺度下所拥有的量子和表面现象,因此可能可以有许多重要的应用,也可以制造许多有趣的材质。

理论含义

纳米技术(nanotechnology),也称毫微技术,是研究结构尺寸在1纳米至100纳米范

围内材料的性质和应用的一种技术。1981年扫描隧道显微镜发明后,诞生了一门以0.1到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子射程物质的技术。

概念分类

从迄今为止的研究来看,关于纳米技术分为三种概念:

第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术还未取得重大进展。

第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的"加工"来人工形成

纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即使发展下去,从理论上讲终将会达到限度,这是因为,如果把电路的线幅逐渐变小,将使构成电路的绝缘膜变得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。

第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。DNA分子计算机、细胞生物计算机的开发,成为纳米生物技术的重要内容。

主要内容

纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科学与技术主要包括:

纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等。这七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与

表征这三个研究领域。纳米材料的制备和研究是整个纳米科技的基础。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。

1993年,第一届国际纳米技术大会(INTC)在美国召开,将纳米技术划分为6大分支:

纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学,促进了纳米技术的发展。由于该技术的特殊性,神奇性和广泛性,吸引了世界各国的许多优秀科学家纷纷为之努力研究。纳米技术一般指纳米级(0.1一100nm)的材料、设计、制造,测量、控

制和产品的技术。纳米技术主要包括:纳米级测量技术:纳米级表层物理力学性能的检测技术:纳米级加工技术;纳米粒子的制备技术;纳米材料;纳米生物学技术;纳米组装技术等。纳米技术主要包含下列四个主要方面:

1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的

物质的特殊性能构成的材料,即为纳米材料。

如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。

过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通

过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性

20—30

纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。

为什么磁畴变成单磁畴,磁性要比原来提高1000倍呢?这是因为,磁畴中的单个原子

排列的并不是很规则,而单原子中间是一个原子核,外则是电子绕其旋转的电子,这是形成磁性的原因。但是,变成单磁畴后,单个原子排列的很规则,对外显示了强大磁性。

这一特性,主要用于制造微特电机。如果将技术发展到一定的时候,用于制造磁悬浮,可以制造出速度更快、更稳定、更节约能源的高速度列车。

2、纳米动力学:主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传

动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.用的是

一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。

理论上讲:可以使微电机和检测技术达到纳米数量级。

3、纳米生物学和纳米药物学:如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二

氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna

的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。

纳米生物学发展到一定技术时,可以用纳米材料制成具有识别能力的纳米生物细胞,并可以吸收癌细胞的生物医药,注入人体内,可以用于定向杀癌细胞。

4、纳米电子学:包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料

的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷,更小,是指响应速度要快。更冷是指单个器件的功耗要小。但是更小并非没有限度。

纳米技术是建设者的最后疆界,它的影响将是巨大的。

发展起源

纳米技术的灵感,来自于已故物理学家理查德·费曼1959年所作的一次题为《在底部还有很大空间》的演讲。这位当时在加州理工大学任教的教授向同事们提出了一个新的想法。从石器时代开始,人类从磨尖箭头到光刻芯片的所有技术,都与一次性地削去或者融合数以亿计的原子以便把物质做成有用的形态有关。费曼质问道,为什么我们不可以从另外一个角度出发,从单个的分子甚至原子开始进行组装,以达到我们的要求?他说:“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”

1962年,日本东京大学的久保亮五教授提出了量子限制理论,用来解释金属纳米粒子

的能阶不连续,这是很重要的里程碑,使得人们对纳米粒子的电子结构、型态和性质有了进一步的了解。

70年代,科学家开始从不同角度提出有关纳米科技的构想,1974年,科学家谷口纪男(Norio Taniguchi)最早使用纳米技术一词描述精密机械加工;

1981年,科学家发明研究纳米的重要工具——扫描隧道显微镜,为我们揭示一个可见

的原子、分子世界,对纳米科技发展产生了积极促进作用;而1981年被视为纳米技术元年。

1980年代,IBM的安贝旭等人做出多晶体的金环,金环直径小于400纳米,线宽在数

十纳米左右。当外加磁场时,金环产生震荡电阻,这种现象称作磁阻效应,而这种效应明显和环的小尺寸有关,主要是金环内的电子受到金环纳米尺寸的干扰,而在环内两侧震荡。一般块状金是电的良导体,电阻值很小,不受磁场的影响。但上述纳米金环的结果显示,当金粒子小到纳米尺度时,其物理性质与大尺寸时不同,这个现象可以用来制作新的纳米电子元件。

1982年瑞士IBM公司的科学家格尔德·宾宁(Gerd K. Binnig)及亨利希·罗勒(Heinrich Rohrer),开发出扫描隧道显微镜,它主要是利用一根非常细的钨金属探针,针尖电子会跳到待测物体表面上形成穿隧电流,同时,物体表面的高低会影响穿隧电流的大小,依此来观测物体表面的形貌。四年后,也就是1986年,这两位科学家和发明穿透式电子显

微镜的厄恩斯特·鲁什卡共享诺贝尔物理奖。

1984年德国葛莱特等人利用惰性气体蒸发凝结法,制得铁、铜、铅及二氧化钛的纳米

粒子。其中,二氧化钛的纳米颗粒具有良好的延展性,可以改善陶瓷材料的脆性。

到了1985年,史马利、柯尔和柯洛托在石墨上利用雷射激光,让它蒸发而成碳黑,纯

化后得到的碳簇置于质谱仪中分析,发现两种不明物质,质量分别是碳的60倍与70倍,

因此这两种不明物质被称作C60与C70。 C60的形状像一颗足球,有20个六边形及12个五

边形的面,共32面的封闭球体。事实上,科学家在太空收集宇宙尘埃时,早就发现C60、

C70等物质。所以上述三位科学家是最早在地球上制造C60及C70的人,他们也共同获得了1996年的诺贝尔奖。

1985年,斯坦福大学的奎特教授以及IBM的格尔德·宾宁(Gerd K. Binnig)及亨利希·罗勒(Heinrich Rohrer)共同发明了原子力显微镜。它也是利用一根探针来扫描物体的

表面,当探针靠近待测物体时,探针与物体之间产生作用力,这作用力可以是吸引力或排斥力,并可借此分析物体表面的形貌。最重要的是,这种仪器可观察的物体不仅是半导体或金属,也可以是绝缘体。现在很多生物样品的观察,已经大量使用这种设备。

1988年,拜必序的研究团队开发出铁铬(Fe/Cr)纳米多层膜,在低温下改变磁场,电阻会随着产生急遽的改变。相对来说,一般磁性金属(或合金)的电阻是不容易随磁场的改变而变化的。到目前为止,已经发现铁铜(Fe/Cu)、铁银(Fe/Ag)、铁铝(Fe/Al)、铁

金(Fe/Au)、钴铜(Co/Cu)、钴银(Co/Ag)、钴金(Co/Au)等纳米多层膜都具有这种效应。

1990年,IBM公司阿尔马登研究中心的科学家成功地对单个的原子进行了重排,纳米

技术取得一项关键突破。他们使用一种称为扫描探针的设备慢慢地把35个原子移动到各自

的位置,组成了IBM三个字母。这证明费曼是正确的,二个字母加起来还没有3个纳米长。不久,科学家不仅能够操纵单个的原子,而且还能够“喷涂原子”。使用分子束外延长生长技术,科学家们学会了制造极薄的特殊晶体薄膜的方法,每次只造出一层分子。现代制造计算机硬盘读写头使用的就是这项技术。著名物理学家、诺贝尔奖获得者理查德· 费曼预言,

人类可以用小的机器制作更小的机器,最后将变成根据人类意愿,逐个地排列原子,制造产品,这是关于纳米技术最早的梦想。

1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技

术的正式诞生;

1991年,碳纳米管被人类发现,它的质量是相同体积钢的六分之一,强度却是钢的10倍,成为纳米技术研究的热点,诺贝尔化学奖得主斯莫利教授认为,纳米碳管将是未来最佳纤维的首选材料,也将被广泛用于超微导线、超微开关以及纳米级电子线路等;

同年,克雷需莫和霍夫曼发展出一次可以做出数公克重C60的方法。现在,科学家也尝

试利用C60的性质制成各种药物。

1993年,继1989年美国斯坦福大学搬走原子团“写”下斯坦福大学英文、1990年美国

国际商用机器公司在镍表面用35个氙原子排出“IBM”之后,中国科学院北京真空物理实验室自如地操纵原子成功写出“ 中国”二字,标志着中国开始在国际纳米科技领域占有一席之地;

1996年霍伊儿也合成出二氧化钛(TiO2)纳米管。二氧化钛本身是一个极佳的光触媒

材料,广泛应用在医疗保健,例如消灭细菌或是杀死病毒。开发出纳米管状的二氧化钛,应用范围也会更多样化。目前,科学家已尝试把二氧化钛纳米粒子或纳米管应用在光敏化有机太阳电池上,做为光电转换材料,现在已经可以达到实用水平。

1997年,美国科学家首次成功地用单电子移动单电子,利用这种技术可望在2017年

后研制成功速度和存贮容量比现在提高成千上万倍的量子计算机;

1999年,巴西和美国科学家在进行纳米碳管实验时发明了世界上最小的“秤”,它能够称量十亿分之一克的物体,即相当于一个病毒的重量;此后不久,德国科学家研制出能称量单个原子重量的秤,打破了美国和巴西科学家联合创造的纪录;

到1999年,纳米技术逐步走向市场,全年基于纳米产品的营业额达到500亿美元;

2001年在日本筑波举行的“纳米碳管发现十周年”研讨会中,韩国三星公司展示用纳米碳管做成的场发射全彩色电视屏幕。这个电视的屏幕是由多层壁纳米碳管的前端,产生场发射电子做为电子源,而应用在平面显示器上。至于医疗用小型X光产生装置的电子源,也可以应用纳米碳管。

纳米科技已被视为新一波产业革命的源头技术,欧美日本等国家的政府部门,近年来均编列大幅预算,推动国家级纳米基础科学、工程技术之研发;学术界及产业界亦相继投注大量人力资金于这场纳米科技的全球竞赛中,希冀于专利与产品开发上抢得先机。

1993年美国成立第一个纳米技术研究机构,2000年七月,美国政府向国会提出国家型纳米科技推动与落实计划书(The National Nanotechnology Initiative:The Initiative and Its Implementation Plan)。

2000~2001年,各国相继针对该国产业现况,纷纷提出纳米科技发展计划。日本成立“纳米材料研究所”(Tsukuba)、欧盟成立“纳米电子技术联盟”(IMEC)、德国成立六个纳米技术卓越群、中国(北京)成立纳米国家科研中心,台湾工业技术研究院亦于2002年一月,成立纳米科技研发中心。

全球有30余国规划及投入纳米领域研发,投入范围包括物理、生技及电子等前瞻领域研究,及纳米新材料的制造与特性开发。产业界也透过新建立的纳米材料特性及关键技术,开发新产品及改善产品性能,来提升竞争力。

目前为止,纳米科技尚处于一个国际间相互既交流又有点竞争的萌芽阶段。

应用领域

当前纳米技术的研究和应用主要在材料和制备、微电子和计算机技术、医学与健康、航天和航空、环境和能源、生物技术和农产品等方面。用纳米材料制作的器材重量更轻、硬度更强、寿命更长、维修费更低、设计更方便。利用纳米材料还可以制作出特定性质的材料或自然界不存在的材料,制作出生物材料和仿生材料。

1、纳米是一种几何尺寸的度量单位,1纳米=百万分之一毫米。

2、纳米技术带动了技术革命。

3、利用纳米技术制作的药物可以阻断毛细血管,“饿死”癌细胞。

4、如果在卫星上用纳米集成器件,卫星将更小,更容易发射。

5、纳米技术是多科学综合,有些目标需要长时间的努力才会实现。

6、纳米技术和信息科学技术、生命科学技术是当前的科学发展主流,它们的发展将使人类社会、生存环境和科学技术本身变得更美好。

7、纳米技术可以观察病人身体中的癌细胞病变及情况,可让医生对症下药。

测量技术

纳米级测量技术包括:纳米级精度的尺寸和位移的测量,纳米级表面形貌的测量。纳米级测量技术主要有两个发展方向。

一是光干涉测量技术,它是利用光的干涉条纹来提高测量的分辨率,其测量方法有:双频激光干涉测量法、光外差干涉测量法、X射线干涉测量法、F一P标准工具测量法等,可用于长度和位移的精确测量,也可用于表面显微形貌的测量。

二是扫描探针显微测量技术(STM),其基本原理是基于量子力学的隧道效应,它的原理是用极尖的探针(或类似的方法)对被测表面进行扫描(探针和被测表面实际并不接触),借助纳米级的三维位移定位控制系统测出该表面的三维微观立体形貌。主要用于测量表面的微观形貌和尺寸。

检测技术

各种材料的极薄表层的物理、化学、力学性能和材料内部的性能常有很大差异。而正是这极薄的表面材料在康擦磨损、物理、化学、机械行为中起着主导作用。反映在现在“信息时代”的新型“智能型”材料的出现,如计算机磁盘、光盘等,要求表层小但有优良的电、磁、光性能,而且要求有良好的润滑性、摩擦小、耐磨损、抗化学腐蚀、组织稳定和优良的力学性能。因此,世界各国都非常重视材料的纳米级表层的物理、化学、机械性能及其检测方法的研究。纳米级表层物理力学性能的检测方法主要是表层微力学探针检侧法,它是用纳米压痕的原理检测其力学性能的.其基本原理是利用金刚石针尖用极小的力在试件表面压出纳米级或微米级压痕,根据压痕的大小测出试件表层的显徽力学性能,即连续记录探针针尖加载逐步压人和卸载逐步退出试件表层的全过程的压痕深度变化。因其中包含试件表层的弹性交形,塑性变形、姗变、变形速率等多种信息,通过这些信息测出表层材料的多项力学性能。

加工技术

纳米级加工的含意是达到纳米级精度的加工技术。

由于原子间的距离为0.1一0.3nm,纳米加工的实质就是要切断原子间的结合,实现原子或分子的去除,切断原子间结合所需要的能量,必然要求超过该物质的原子间结合能,即所播的能量密度是很大的。用传统的切削、磨削加工方法进行纳米级加工就相当困难了。截

至2008年纳米加工有了很大的突破,如电子束光刻(UGA技术)加工超大规模集成电路时,

可实现0.1μm线宽的加工:离子刻蚀可实现微米级和纳米级表层材料的去除:扫描隧道显

微技术可实现单个原子的去除、扭迁、增添和原子的重组。

纳米结晶材料

当物质的微结构微小化时,表面原子与内部材料原子的个数比例显著上升,界面之原子行为对物质性质便有决定性影响。例如纳米金属结晶颗粒,展现出较佳之强度、硬度、磁特性、表面催化性等;而具纳米结晶之陶瓷材料相较于一般陶瓷材料,则具较高之延展性、较不易脆裂之特性。

纳米结晶金属由于其强度之增加,相当大之应用机会在于汽车业、航太业、建筑业等之结构材料,例如Toyota汽车已使用新型纳米结晶钢材于其汽车产品上;这方面之应用,纳米

复合材料是另一竞争者,但于某些用途上,如汽车引擎,纳米结晶金属材料仍保有其优越性。

纳米结晶材料薄膜可提高表面之硬度、降低磨擦、提高耐热性、耐化学腐蚀性等,可应用于汽车、航空业等之机械系统。在生物医学方面,纳米结晶银有抗菌作用,而纳米结晶钛则可应用于人工关节。

纳米粉体(nanoparticles):

纳米粉体是纳米材料中种类最繁多且应用最广泛之一类。最常见的陶瓷纳米粉体(ceramic nanoparticles)可再分为二类:

(一)金属氧化物如TiO2, ZnO等

(二)硅酸盐类,通常为纳米尺度之黏土薄片。

纳米粉体的制程,包括固相机械研磨法、液相沉淀法、溶胶-凝胶法、化学气相沉积法等,不同之方法各有其优缺点及适用范围。此外,美得琳纳米粉体之表面覆膜与修饰,亦常是对粉体后段应用必要的处理步骤。如高浓度CO净化触媒-Au/TiO2,即将~10nm的金均匀

分布在TiO2载体上,以发挥其净化功能,其中TiO2载体为溶胶-凝胶法制得之纳米孔隙

材料,以具备纳米尺寸空间容纳纳米颗粒。

复合材料:纳米粉体最大之应用之一,在于纳米高分子复合材料之开发。由于无机分散相表面积与高分子间之作用力,使复合材料之刚性大幅提升,透气性、热膨胀性下降,耐化学腐蚀,及保有透明性等之优点,可广泛应用于一般民生工业,如家电器材、汽车零组件、输送导管等耐磨结构材料上;在包装材料上之应用,如保鲜膜、饮料瓶,则可利用其耐热性、高阻气性及透明等优点。Caly/Nylon之复合材料,由于分散均匀,只要添加3~4%,即可

将Nylon之熔点从70℃提升至150℃,且加工性非常良好。

涂布:纳米粉体涂布具增强表面硬度、抗磨、透明等特性,已应用于建材及太阳眼镜镜片

上,Kodak正发展以纳米粉体涂布制造防刮之x-ray底片。此外,亦有利用纳米粉体涂布光学、耐腐蚀、绝热特性之应用开发。磁性纳米粉体涂布则可应用于资料储存方面。

纳米动力学

主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。

理论上讲:可以使微电机和检测技术达到纳米数量级。

纳米生物学和纳米药物学

如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。

纳米生物学发展到一定技术时,可以用纳米材料制成具有识别能力的纳米生物细胞,并可以吸收癌细胞的生物医药,注入人体内,可以用于定向杀癌细胞。

纳米电子学

包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷,更小,是指响应速度要快。更冷是指单个器件的功耗要小。但是更小并非没有限度。纳米技术是建设者的最后疆界,它的影响将是巨大的。

粒子制备

纳米粒子的制备方法很多,可分为物理方法和化学方法。

应用纳米技术制成的服装

真空冷授法:用真空蒸发、加热、高频感应等方法使原料气化或形成等粒子体,然后骤冷。其特点纯度高、结晶组织好、位度可控,但技术设备要求高。

物理粉碎法:透过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产晶纯度低,顺粒分布不均匀。

机械球磨法:采用球磨方法,控制适当的条件得到纯元素、合金或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。

气相沉积法:利用金属化合物蒸汽的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。

沉淀法:把沉淀剂加人到盐溶液中反应后,将沉淀热处理得到纳米材料.其特点简单易行,但纯度低,颗粒半径大,适合制备载化物。

水热合成法:高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、拉度易控制。

溶胶凝胶法:金属化合物经溶液、溶胶、凝胶而固化,再经低沮热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和11一VI族化合物的制备。

徽乳液法:两:互不相溶的溶剂在表面活性剂的作用下形成乳液,在徽泡中经成核,聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和接口性好,11一VI族半导体纳米

粒子多用此法制备。

材料合成

自1991年Gleiter等人率先制得纳米材料以来,经过10年的发展纳米材料有了长足的

进步。如今纳米材料种类较多,按其材质分有:金属材料、纳米陶瓷材料、纳米半导体材料、纳米复合材料、纳米聚合材料等等。纳米材料是超徽粒材料,被称为“21世纪新材料”,具有许多特异性能。

例如用纳米级金属微粉烧结成的材料,强度和硬度大大高于原来的金属,纳米金属居然

强度高并且有良好的韧性。纳米材料的熔点会随超细粉的直径的减小而降低。例如金的熔点为1064℃,但10nm的金粉熔点降低到940℃,snm的金粉熔点降低到830℃,因而烧结

温度可以大大降低。纳米陶瓷的烧结温度大大低于原来的陶瓷。纳米级的催化剂加入汽油中。可提高内燃机的效率。

加入固体燃料可使火箭的速度加快。药物制成纳米微粉。可以注射到血管内顺利进入微血管。

疾病诊断

当前常规的成像技术只能检测到癌症在组织上造成的可见的变化,而这个时候已经有数千的癌细胞生成并且可能会转移。而且,即使是已经可以看到肿瘤了,由于肿瘤本身的类别(恶性还是良性)和特征,要确定有效的治疗方法也还必须通过活组织检查。如果对癌性细胞或者癌变前细胞以某种方式进行标记,使用传统设备即可检测出来则更有利于癌症的诊断。

要实现这一目标有两个必要条件:某技术能够特定识别癌性细胞且能够让被识别的癌性细胞可见。纳米技术能够满足这两点。例如,在金属氧化物表面涂覆可特异识别癌性细胞表面超表达的受体的抗体。由于金属氧化物在核磁共振成像(MRI)或计算机断层扫描(CT)下发出高对比度信号,因此一旦进入体内后,这些金属氧化物纳米颗粒表面的抗体选择性地与癌性细胞结合,使检测仪器可以有效地识别出癌性细胞。同样地,金纳米粒也可以用于增强在内窥镜技术中的光散射。纳米技术能够将识别癌症类别及不同发展阶段的分子标记可视化,让医生能够通过传统的成像技术看到原本检测不到的细胞和分子。

在人类与癌症的斗争中,有一半的胜利是得益于早期的检测。纳米技术使得癌症的诊断更早更准确,并可用于治疗监测。纳米技术也可以增强甚至完全变革对组织和体液中生物标志物的筛查。癌症与癌症之间,以及癌细胞与正常细胞之间由于各种分子在表达和分布上的差异而各不相同。随着治疗技术的进步,对癌症的多个生物标志物进行同时检测是确定治疗方案时所必须的。纳米颗粒——例如能够根据它们本身大小发出不同颜色光的量子点——可以实现同时检测多种标记物的目的。包被有抗体的量子点发出的激发光信号可用于筛查某些类型的癌症。不同颜色的量子点可与各种癌症生物标记物抗体结合,方便肿瘤学家通过所看到的光谱区分癌细胞与健康细胞。

组装技术

由于在纳米尺度下刻蚀技术已达到极限,组装技术将成为纳米科技的重要手段,受到人们很大的重视。

纳米组装技术就是通过机械、物理、化学或生物的方法,把原子、分子或者分子聚集体进行组装,形成有功能的结构单元。组装技术包括分子有序组装技术,扫描探针原子、分子搬迁技术以及生物组装技术。分子有序组装是通过分子之间的物理或化学相互作用,形成有序的二维或三维分子体系。现在,分子有序组装技术及其应用研究方面取得的最新进展主要是LB膜研究及有关特性的发现。生物大分子走向识别组装。蛋白质、核酸等生物活性大分

子的组装要求商密度定取向,这对于制备高性能生物微感膜、发展生物分子器件,以及研究生物大分子之间相互作用是十分重要的。在进行lgG归生物大分子的组装过程中,首次利用抗体活性片断的识别功能进行活性生物大分子的组装。这一重要的进展使得生物分子的定向组装产生了新的突破。

除以上几种组装外,在长链聚合物分子上的有序组装、桥连自组装技术、有序分子薄膜的应用研究等技术也有进展。采用纳米加工技术还可以对材料进行原子量级加工,使加工技术进人一个更加徽细的深度。纳米结构自组装技术的发展,将会使纳米机械、纳米机电系统和纳米生物学产生突破性的飞跃。

中国在纳米领域的科学发现和产业化研究有一定的优势。现代同美、日、德等国位于国际第一梯队的前列。虽然现代中国己经建立了一定数量的纳米材料生产基地,纳米技术的开发应用也已经兴起,并初步实现了产业化。纳米要实现大规模、低成本的产业化生产,还有许多的工作要做,只有依赖大量的资金和高科技投人才能换取高额的利润回报。

生物技术

纳米生物学是以纳米尺度研究细胞内部各种细胞器的结构和功能。研究细胞内部,细胞内外之间以及整个生物体的物质、能量和信息交换。纳米生物学的研究集中在下列方面。

DNA研究在形貌观察、特性研究和基因改造三个方面有不少进展。

脑功能的研究

工作目标是弄清人类的记忆、思维,语言和学习这些高级神经功能和人脑的信息处理功能。

仿生学的研究

这是纳米生物学的热门研究内容。现在取得不少成果。是纳米技术中有希望获得突破性巨大成果的部分。

世界上最小的马达是一种生物马达—鞭毛马达。能象螺旋桨那样旋转驱动鞭毛旋转。该马达通常由种以上的蛋白质群体组成,其构造如同人工马达。由相当的定子、转子、轴承、万向接头等组成。它的直径只有3onm,转速可以高达15r/min,可在1μs内进行右转或左转的相互切换。利用外部电场可实现加速或减速。转动的动力源,是细菌内支撑马达的薄膜内外的氮氧离子浓度差。实验证明。细菌体内外的电位差也可驱动鞭毛马达。现代人们正在探索设计一种能用电位差驭动的人工鞭毛马达驱动器。

日本三菱公司已开发出一种能模拟人眼处理视觉形象功能的视网膜芯片。该芯片以砷化稼半导体作为片基。每个芯片内含4096个传感元。可望进一步用于机器人。

有人提出制作类似环和杆那样的分子机械。把它们装配起来构成计算机的线路单元,单元尺寸仅Inm,可组装成超小型计算机,仅有数微米大小,就能达到现代常用计算机的同等性能。

在纳米结构自组装复杂徽型机电系统制造中,很大的难题是系统中各部件的组装。系统愈先进、愈复杂,组装的问题也愈难解决。自然界各种生物、生物体内的蛋白质、DNA、细胞等都是极为复杂的结构。它们的生成、组装都是自动进行的。如能了解并控制生物大分子的自组装原理,人类对自然界的认识和改造必然会上升到一个全新的更高的水平。

主要特性

随着尺寸的减小,一系列的物理现象显现出来。这其中包括统计力学效应和量子力学效应。并且,同宏观系统相比,许多物理性质会改变。一个典型的例子是材料的表面体积比。纳米技术可以视作在传统学科上对这些性质详尽描述的发展。进一步讲,传统的学科可以被重新理解为纳米技术的具体应用。这种想法和概念上的互动对这个领域的发展起到了推动作用。广义上讲,纳米技术是科学和技术在理解和制造新材料新器械方向上的推演和应用。这些新材料和技术大体上就是物理性质在微尺度上的应用。

和这些系统的定性研究相关的领域是物理、化学和生物,以及机械工程和电子工程。但是,由于纳米科技的多学科和学科交叉的特性,物理化学、材料科学和生物医学工程的学科也被视作纳米技术重要和不可缺少的组成部分。纳米工程师们住眼观新材料的设计,合成,定性描述和应用。例如在分子结构上的聚合物制造,在表面科学基础上的计算机芯片分布设计,都是纳米科技在当代的应用例子。在纳米科技中,胶状悬浮也有很重要的地位。

材料在纳米尺度下会突然显现出与它们在宏观情况下很不相同的特性,这样可以使一些独特的应用成为可能。例如,不透明的物质变为透明(铜);惰性材料变成催化剂(铂);稳定的材料变得易燃(铝);在室温下的固体变成液体(金);绝缘体变成导体(硅)。物质在纳米尺度的独特量子和表面现象造就了纳米科技的许多分支。

衍生产品

机器人

纳米机器人是根据分子水平的生物学原理为设计原型,设计制造可对纳米空间进行操作

的“功能分子器件”,也称分子机器人;而纳米机器人的研发已成为当今科技的前沿热点。

2005年,不少国家纷纷制定相关战略或者计划,投入巨资抢占纳米机器人这种新科技

的战略高地。《机器人时代》月刊日前指出:纳米机器人潜在用途十分广泛,其中特别重要的就是应用于医疗和军事领域。

每一种新科技的出现,似乎都包涵着无限可能。用不了多久,个头只有分子大小的神奇纳米机器人将源源不断地进入人类的日常生活。中国著名学者周海中教授在1990年发表的《论机器人》一文中就预言:到21世纪中叶,纳米机器人将彻底改变人类的劳动和生活方式。

雨衣伞

纳米雨衣伞是雨伞与雨衣的结合体,纳米雨伞收伞有三折伞和直杆伞的收伞形态(简单说,收伞时有长短两种选择)。纳米雨衣可由纳米雨伞转变而成,纳米雨衣又不同于一般的雨衣,因为纳米雨衣可以保证从头到脚绝对不湿。因为纳米材料,所以这雨伞可以一甩即干,雨伞转变为雨衣后,这雨衣也只需穿着时轻轻一跳也即可全干。

防水材料

2014年8月4日,澳大利亚运用新发明的布料,制成一款具有开创性的T恤衫,不管

人们怎样尝试着浸湿它,此T恤都能保持良好的防水性能。

这件叫做“骑士”(The Cavalier)的白色T恤是百分之百棉质的。虽然表面看起来平淡无奇,但是其布料运用“疏水”纳米技术应用编织而成,使得这件T恤能够有效防止大部分液体和污

渍的浸入。这种T恤可以用机器清洗,其防水功能最多可承受80次清洗。它的布料有天然

自净功能,任何附着在上的污渍都能用水擦洗或冲干净。

和其他含有化学物质的防水应用不同,T恤仿照的是荷叶的自然疏水特点。此布料的发

明对于餐馆和咖啡厅来说可能具有革命性的影响。此外,这种布料还可以运用在医疗行业或医院等地。

相关争议

广义上,纳米技术包括多用来制造尺寸在100纳米以下的结构的技术。包括那些用来

制作纳米线的;包括那些用在半导体制造工业上的技术,如深紫外线光刻、电子束光刻、聚焦粒子束光刻、纳米印刷光刻、原子层沉积和化学气相法;更进一步还包括分子自组装技术。

但是这些技术早就出现在纳米时代之前,而不是专为了纳米技术而设计,也不是纳米技术研究的结果。

现在以“纳米”冠名的那些技术,对最有野心的和革命性的分子制造却毫无关系,或者说

是远远不能达到要求。这样,“纳米”可能被科学家们和企业家们滥用而形成“纳米泡沫”,而

对那些更有野心和远见的工作毫无益处。

美国国家科学基金资助了研究者David Berube对纳米领域进行整体上的研究,后者的

研究成果出版成为了专著《纳米骗局:纳米技术喧嚣背后的真相》。这个由NNI主席Mihail Roco摄写序言的著作得出的结论是:许多被当作“纳米技术”出售的产品,其实只是就材料

科学的新瓶装旧酒,直接导致一个仅仅是售卖的纳米管,纳米线或类似产品的纳米技术工业,最后的结果是少数售卖大量低端产品的供应商。

潜在危害

和生物技术一样,纳米科技也有很多环境和安全问题(比如尺寸小是否会避开生物的自然防御系统,还有是否能生物降解、毒性副作用如何等等)。

社会危害

纳米颗粒的危害

纳米材料(包含有纳米颗粒的材料)本身的存在并不是一种危害。只有它的一些方面具有危害性,特别是他们的移动性和增强的反应性。只有某些纳米粒子的某些方面对生物或环境有害,我们才面临一个真的危害。

要讨论纳米材料对健康和环境的影响,我们必须区分两类纳米结构:

纳米尺寸的粒子被组装在一个基体、材料或器件上的纳米合成物、纳米表面结构或纳米组份(电子,光学传感器等),又称为固定纳米粒子。“自由”纳米粒子,不管在生产的某些

步骤中存还是直接使用单独的纳米粒子。这些自由纳米粒子可能是纳米尺寸的单元素,化合物,或是复杂的混合物,比如在一种元素上镀上另外一张物质的“镀膜”纳米粒子或叫做“核壳”纳米粒子。

现代,公认的观点是,虽然我们需要关注有固定纳米粒子的材料,自由纳米粒子是最紧迫关心的。

因为,纳米粒子同它们日常的对应物实在是区别太大了,它们的有害效应不能从已知毒性推演而来。这样讨论自由纳米粒子的健康和环境影响具有很重要的意义。

更加复杂的是,当我们讨论纳米粒子的时候,我们必须知道含有的纳米粒子的粉末或液体几乎从来不会单分散化,而是具有一定范围内许多不同尺寸。这会使实验分析更加复杂,因为大的纳米粒子可能和小的有不同的性质。而且,纳米粒子具有聚合的趋势,而聚合的纳米粒子具有同单个纳米粒子不同的行为。

健康问题

纳米颗粒进入人体有四种途径:吸入,吞咽,从皮肤吸收或在医疗过程中被有意的注入(或由植入体释放)。一旦进入人体,它们具有高度的可移动性。在一些个例中,它们甚至能穿越血脑屏障。

纳米粒子在器官中的行为仍然是需要研究的一个大课题。基本上,纳米颗粒的行为取决于它们的大小,形状和同周围组织的相互作用活动性。它们可能引起噬菌细胞(吞咽并消灭外来物质的细胞)的“过载”,从而引发防御性的发烧和降低机体免疫力。它们可能因为无法

降解或降解缓慢,而在器官里集聚。还有一个顾虑是它们同人体中一些生物过程发生反应的潜在危险。由于极大的表面积,暴露在组织和液体中的纳米粒子会立即吸附他们遇到的大分子。这样会影响到例如酶和其他蛋白的调整机制。

环境问题

主要担心纳米颗粒可能会造成未知的危害。

社会风险

纳米技术的使用也存在社会学风险。在仪器的层面,也包括在军事领域使用纳米技术的可能性。(例如,在MIT士兵纳米技术研究所[1]研究的装备士兵的植入体或其他手段,同

时还有通过纳米探测器增强的监视手段。

在结构层面,纳米技术的批评家们指出纳米技术打开了一个由产权和公司控制的新世界。他们指出,就象生物技术的操控基因的能力伴随着生命的专利化一样,纳米技术操控分子的技术带来的是物质的专利化。过去的几年里,获得纳米尺度的专利像一股淘金热。2003年,超过800纳米相关的专利权获得批准,这个数字每年都在增长。大公司已经垄断了纳米尺

度发明与发现的广泛的专利。例如,NEC和IBM这两家大公司持有碳纳米管这一纳米科技

基石之一的基础专利。碳纳米管具有广泛的运用,并被看好对从电子和计算机、到强化材料、到药物释放和诊断的许多工业领域都有关键的作用。碳纳米管很可能成为取代传统原材料的

主要工业交易材料。但是,当它们的用途扩张时,任何想要制造或出售碳纳米管的人,不管应用是什么,都要先向NEC或者IBM购买许可证。

发展趋势

高级纳米技术,有时被称为分子制造,用于描述分子尺度上的纳米工程系统(纳米机器)。无数例子证明,亿万年的进化能够产生复杂的、随机优化的生物机器。在纳米领域中,我们希望使用仿生学的方法找到制造纳米机器的捷径。然而,K Eric Drexler和其他研究者

提出:高级纳米技术虽然最初会使用仿生学辅助手段,最终可能会建立在机械工程的原理上。美国

美国国家科学委员会(National Science Board)于西元2003年底批准“国家纳米科技

基础结构网络计划”(National Science Board Approves Award for a National Nanotechnology Infrastructure Network,简称NNIN),将由美国13所大学共同建构支持

全国纳米科技与教育的网络体系。该计划为期5年,于公元2004年一月开始执行,将提供

整体性的全国性使用技能以支持纳米尺度科学工程与技术的研究与教育工作。预估5年间至少投资700亿美元的研究经费。计划目的不仅在提供美国研究人员顶尖的实验仪器与设备,并能训练出一批专精于最先进纳米科技的研究人员。

1.美国发展最新纳米细胞制造技术

纳米技术可制造出粒子小于人类血管大小的物体,美国国家标准与科技协会(NIST)

指出已研究出一种生产一致的,且能够自行组合的纳米细胞(Nanocells)的方法,以应用

在封装压缩药物的治疗工作上。这种技术当前可被运用在药物的包装技术上,可以更精确地确保药物的用量,未来将运用在癌症化学治疗的相关技术上作更进一步的研究。

纳米计划是公元2005年联邦跨部会研发预算的主轴,达9.8亿美元。

2.DNA检测芯片的进展

公元2004年一月,美国HP正式对外发表其用来快速进行DNA检测的纳米级芯片。2004年在DNA检测上采以光学原理为基础的“基因微芯片法”(DNA microarrays)繁复的

检测步骤,HP团队改由将此繁复步骤交由电路芯片处理;制作上,DNA检测芯片的传感元件是一条利用电子束蚀刻法(electron-beam lithography)与反应性离子蚀刻法(reactive-

ion etching)所制成粗细约50纳米的纳米线。然就商业上考量,成果却过于高昂,因此研

究团队正发展利用较便宜的光学蚀刻法(optical lithography)以制成DNA检测芯片元件的

技术。

3.地下水污染改善之研究

地下水污染是现代被广泛讨论的一项重大议题,现代,美国发表了一种纳米微粒(nanoparticles)技术,在此微粒中心为铁芯(iron)而其外则由多层聚合物加以包覆,其中,内层是由防水性极佳的复合甲基丙烯酸甲脂(poly methl methacrylate;PMMA)包覆,

而外层则由亲水的sulphonated polystyrene进行包覆。由于亲水性外层使纳米微粒溶于水,内层防水层则能吸引污染源三氯乙烯(trichloroethylene)。纳米微粒中的铁芯使得三氯乙

烯产生分裂,进而使得此项污染源逐渐分裂成无毒的物质。

4.启动癌症纳米科技计划

为广泛将纳米科技、癌症研究与分子生物医学相互结合,美国国家癌症中心(NCI)提

出了癌症纳米科技计划(Cancer Nanotechnology Plan),并将透过院外计划、院内计划与纳米科技标准实验室等三方面进行跨领域工作。计划设定了六个挑战:

预防与控制癌症:发展能投递抗癌药物及多重抗癌疫苗的纳米级设备。

早期发现与蛋白质学:发展植入式早期侦测癌症生物标记的设备,并发展能收集大量生物标记进行大量分析的平台性装置。

影像诊断:发展可提高分辨率到可辨识单独癌细胞的影像装置,以及将一个肿瘤内部不同组织来源的细胞加以区分的纳米装置。

多功能治疗设备:开发兼具诊断与治疗的纳米装置。

癌症照护与生活品质提升:开发改善慢性癌症所引发的疼痛、沮丧、恶心等症状,并提供理想性投药装置。

跨领域训练:训练熟悉癌症生物学与纳米科技的新一代研究人员。

欧盟

1.欧盟的国际纳米科学研究政策

欧洲为全球最早开始进行纳米科学研究的区域,但由于当时并没有欧盟加以居中协调与规划,因此在研究初期因为缺乏资金援助、相关管理上的支援,同时因为面临专利取得的问题,导致研究人员遭遇许多阻碍,公元2004年五月,欧盟议会(European Commission;EC)对欧洲地区与国际社会发表一系列有关于纳米科技的专案计划,以宣示欧洲对于提高

纳米科技竞争力的决心。

欧盟将其计划分为五个主要区域:研究与发展(R&D)、基础建设(infrastructure)、教育与训练(education and training)、创新(innovation)以及社会层面(societal dimension)。

根据预估,如欧盟计划能顺利推展,在西元2010年前将可望为欧洲创造上百亿欧元的

经济营收。欧盟议会也强调提高社会大众对于纳米科技的认知,也同样属于整体纳米发展计划的一部分。另外,公众健康、安全、环保问题及消费者保护也同样被包含在此项议题之中。现在,纳米科学及纳米科技仍属于新兴的R&D领域,其所必须解决与进行研究的对象都存

在于原子与分子的阶层中。纳米科学在未来几年内的应用是众所瞩目,且必将对所有的科技产生重大影响。在未来,纳米科技的研发工作也将对人体保健、食物、环保研究、资讯科学、安全、新兴材料科学及能源储存等领域产生重大的改变。西元2004~2006年欧盟所进行

的第六期架构计划(FP6)中,纳米科技与新兴材料研发的经费约为欧元13亿,而欧盟议

会也有意提高经费并延长研究时程(由公元2007~2013年)。同时为凝聚与加强所有欧盟

会员国在纳米科学方面的研究,因此在规划上欧盟议会也有意召集民间与其他单位的专家凝聚共识,以强化整体欧盟在此方面研究领域的力量。

2.创新接继中心

在公元1995年由欧盟委员会成立“创新接继中心”(Innovation Relay Centers, IRCs)。这个的组织和美国国家科技移转中心具相同功能。区域性的创新接继中心总数近70个,支

援至少位于30个国家的相关科技移转中心。创新接继中心的目的,是将有问题的公司和能

提出解决方法的公司结合在一起。欧洲多数的纳米科技公司都可受到创新接济中心或区域创新和科技移转策略计划的援助。

欧洲纳米科技计划接受金援的方式和美国大致相同,有些是属于国家型计划。欧洲有多个跨国研发机构,以泛欧工业研发网络为例,其专门提供无条件研发补助,目的将研发成果发展为产品。透过泛欧工业研发网络提供的资金补助的国家包括奥地利、挪威和英国。其他在比利时、德国、斯洛伐尼亚、冰岛和以色列还包括贷款和免偿型补助。多数情况下,补助金额不超过计划完成的所需总金额的七成,剩余部分多仰赖地方政府和其他有意愿者赞助。

日本

1.日本理研的纳米科学研究现况

日本理化学研究所(RIKEN,简称理研)系一跨学门的研究组织,该所各部门分布在日本的7个区域。RIKEN的主要基地-和光园区,设置发现研究中心(DRI)、新领域研究系统(FRS)及头脑科学中心(BSI)等3研究中心。RIKEN进行的研究可区分为三类:DRI

主要进行小型但具备长程观点的培育研究计划;FRS同样执行小型计划,但以由上而下的

方式,进行较具动态的中程及中等规模的计划;至于研究中心则是进行以目标为导向的中至长程的大型计划。RIKEN在西元2003会计年度下半年(西元2003年十月至2004年三月)的研究预算共4.748亿美元,全年预算超过9亿美元。

公元1986年起RIKEN开始从事纳米科学之研究,但正式的纳米科学计划则是自西元2002年开始,初期选定有18项的纳米科学计划,并陆续分别在各研究中心进行。

2.日本提高纳米科技预算与产业合作(JAPAN BOOSTS NANOTECHNOLOGY BUDGET AND INDUSTRIAL COOPERATION)

日本科学与科技政策顾问委员会(Council for Science and Technology Policy)消息指出,日本在西元2004年会计年度(由4月1日起)中,纳米科技预算成长3.1个百分比,

达到8.8亿美元。同时,两个主要负责日本纳米科技研发计划的政府部会,其预算也都有成长。负责推销即将完成的研发工作的日本经济产业省(Ministry of Economy Trade and Industry, METI),预算由西元2003年的0.97亿美元提升到公元2004年的1.1亿美元。

纳米科技与相关原料研究被指定为四个最高优先项目之一,其他领域包括资讯与通讯、生命科学与环境研究。

日本的预算是经由日本大藏省(Finance Ministry)批准,再由日本国会(Japanese Diet)制定为法律。日本文部科学省(Ministry of Education, Culture, Sports, Science and Technology, MEXT)的纳米科技研发经费,则由2.3亿美元成长到2.4亿元,将着重在基

础原料研究与新药物研究计划上。

韩国

1.韩国的纳米科技策略

韩国政府已深切体认到纳米科技为本世纪科技发展的战略制高点,整合纳米技术与资讯、生物、材料、能源、环境、军事、航太领域之高新科技,并将创造出跨学门研究发新境界。韩国政府也理解到此新兴科技也将是创造新产业与高科技产品的驱动力,纳米科学与技术的突破性进展更将为人类能力、社会产出、国家生产力、经济成长与生命品质带来巨幅的改善。

韩国已宣示在公元2001至2010年十年间投入韩币2,391兆元(约20亿美元)于纳米科技的研发,政府投入在纳米科技的经费,公元2002年与2000年比较,成长约400%。

纳米国家计划的主要目标之一为在某些竞争性领域取得世界第一并发展产业成长的利基市场,韩国同时明确的把发展重点聚焦于诸如兆元级积体电子元件等核心关键技术。

“2002年执行纳米技术发展计划”与“纳米结构材料技术发展”、“纳米微机电与制造技术发展”等两项新领域研究计划同步开始实施,再加上纳米科技领域研究计划在未来6~9年内每

纳米技术发展史

纳米技术发展史 【摘要】纳米技术是21世纪科技发展的制高点,是新工业革命的主导技术,它将引起一场各个领域生产方式的变革,也将改变未来人们的生活方式和工作方式,使得我们有必要认识一下纳米技术的发展史。纳米技术的发展史是一个很长的过程,同时也是一个广泛应用的过程。 【关键词】发展纳米技术纳米材料 纳米技术基本概念 纳米技术是以纳米科学为基础,研究结构尺度在0.1~100nm范围内材料的性质及其应用,制造新材料、新器件、研究新工艺的方法和手 段。纳米技术以物理、化学的微观研究理论为 基础,以当代精密仪器和先进的分析技术为手 段,是现代科学(混沌物理、量子力学、介观物 理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)相结合的产物。在纳米领域,各传统学科之间的界限变得模糊,各学科高度交叉和融合。 纳米技术包含下列四个主要方面: 1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。

过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于 自然界,只是以前没有认识到这个尺度 范围的性能。第一个真正认识到它的性 能并引用纳米概念的是日本科学家,他 们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。2、纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统,用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。3、纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,

浅谈纳米技术及其应用

浅谈纳米技术及其应用 1 概述 1.1 引言 纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物。纳米技术兴起于20世纪80年代,随着它的逐步发展和完善,人类将必然在认识和改造自然方面进入一个前所未有的新阶段。 1.2 纳米技术的发展 最早提出纳米尺度上科学和技术问题的是著名物理学家、诺贝尔奖获得者理查德·费曼教授[1]。1959年他在一次题为《在底部还有很大空间》的演讲中提出:物理学的规律不排除用单个原子制造物品的可能。也就是说,人类能够用最小的机器制造更小的机器。直至达到分子或原子状态,最后可以直接按意愿操纵原子并制造产品。这正是关于纳米技术最早的构想。 20世纪70年代,科学家开始从不同角度提出有关纳米技术的构想。美国康奈尔大学Granqvist和Buhrman[2]利用气相凝集的手段制备出纳米颗粒,提出了纳米晶体材料的概念,成为纳米材料的创始者。之后,麻省理工学院教授德雷克斯勒[3]积极提倡纳米科技的研究并成立了纳米科技研究小组。 纳米科技的迅速发展是在20世纪80年代末、90年代初。1981年发明了可以直接观察和操纵微观粒子的重要仪器——扫描隧道显微镜(STM)、原子力显微镜(AFM),为纳米科技的发展起到了积极的促进作用。1984年德国学者格莱特[4]把粒径6nm的金属粉末压成纳米块,经研究其内部结构,指出了它界面奇异结构和特异功能。1987年,美国实验室用同样的方法制备了纳米TiO 多晶体。 2

分会场十三微纳米光子学

分会场十三:微纳米光子学 主席:吴一辉(中国科学院长春光学精密机械与物理研究所) 李铁(中国科学院上海微系统与信息技术研究所) 特邀报告1:半导体太赫兹光频梳 黎华,中国科学院上海微系统与信息技术研究所,博士生导师,研究 员。2009年博士毕业于中国科学院上海微系统与信息技术研究所, 然后分别在德国慕尼黑工业大学、日本东京大学、法国巴黎七大材料 与量子现象实验室开展博士后研究工作,2015年回国工作,2016年 获得中国科学院“百人计划”A类择优支持。主要研究方向为太赫兹 量子级联激光器及其光频梳、锁模激光器、太赫兹成像及高分辨光谱 技术等。在Advanced Science、Optica、Applied Physics Letters、Optics Express等期刊上发表50余篇论文,曾获“2015中国中国电子学会优秀科技工作者”,“上海市自然科学二等奖”(排名第三)、德国“洪堡”学者奖学金、日本JSPS奖学金等。担任科技部973计划课题负责人、国家自然科学基金面上项目(2项)负责人、KJW 项目(2项)负责人等。 报告摘要: 太赫兹(THz)波(频率范围:0.1-10 THz; 1 THz=1012 Hz)位于红外光和微波之间,在国防安全、生物医疗、空间等领域具有潜在应用。由于缺乏高效THz辐射源和探测器,THz波还没有被完全认知,所以其被称为THz间隙(“terahertz gap”)。在1-5 THz 频率范围内,基于半导体电泵浦的光子学器件THz量子级联激光器(quantum cascade laser, QCL)在输出功率和效率方面比电子学和差频器件高,是关键的THz辐射源器件。本报告主要介绍我们在高性能THz核心器件以及半导体光频梳方面的研究进展。在高性能核心器件方面,我们突破分子束外延生长和半导体工艺技术,研制出高功率(1.2 W)、低发散角(2.4°)、宽频率范围THz QCL器件并实现THz高速探测和多色成像。基于高性能半导体THz QCL器件,成功实现THz QCL光频梳以及双光梳。克服传统THz光谱仪在测量时间和光谱分辨率方面的缺陷,开发出基于THz QCL双光梳的紧凑型高分辨实时光谱检测系统,为将来实现新一代THz光谱仪奠定基础。

2020年春最新部编版四年级语文下册 类文阅读-7 纳米技术就在我们身边

类文阅读-7 纳米技术就在我们身边 人丁兴旺的纳米家族 施鹤群 纳米材料虽然是材料世界的“小不点”,但它却是现代材料世界里的重要一员。 纳米材料是一个大家族,成员众多,有各种各样的类型。按照材质,可分为金属纳米材料、无机纳米材料、有机纳米材料等;按照用途,可分为功能納米材料和结构纳米材料;按照特殊性能,又可分为纳米润滑剂、纳米光电材料、纳米半透膜等;按材质形态,则可分为纳米粉末,纳米纤维,纳米膜、纳米块体等. 纳米粉末又称超微粉、超细粉,指粒度在10nm以下的粉末或颗粒,它被开发时间最长,技术最为成熟,是生产其他纳米材料的基础。另外,它被应用领域也最广,在催化,粉末冶金,燃料、磁记录,涂料、传热,雷达波隐形、光吸收,光电转换,气敏传感等方面有巨大的应用前景。 随着纳米材料研究的不断深入,纳米材料家族的成员将会更多,纳米材料家会更加人丁兴旺。 (选自《纳米生活》华东理工大学出版社) 1.写出文中词语的近义词 重要---()众多---()

研究---()领域---() 2.第一段描述了纳米材料的特点是:和 。 3.根据文章内容判断对错。对的打“√”,错的打“×”。 (1)按照用途,可分为纳米润滑剂、纳米光电材料。() (2)纳米粉末是纳米材料的种类之一。() (3)纳米粉末比纳米膜应用的领域广。() (4)第二自然段介绍了纳米材料的分类。() 4.人丁兴旺的意思是: 。用它造个句子: 5.为什么说纳米材料是人丁兴旺的大家族? 【参考答案】 1.重大繁多探究范围 2. 小重要 3.×√√√。 4.通常指某一家里成员众多。这个大家庭五世同堂,人丁兴旺。

5.纳米材料成员众多,有各种各样的类型,而且随着纳米材料研究的不断深入,纳米材料家族的成员将会更多。 天然纳米纤维的典范——蜘蛛丝 吴沅 蜘蛛丝是大自然几亿年进化创造的奇迹,是目前世界上最为坚韧且具有弹性的纤维之一,其性能可媲(bǐ pì)美防弹纤维。早在18世纪就出现了人类利用蜘蛛丝的记载(ǎi ài)。1709年,人类利用蜘蛛丝做成手套和袜子,并送往法国巴黎展览。进入20世纪80年代,蜘蛛丝更以其高强度、高弹性、低密度、良好的耐温及耐紫外线等优异特性引起各国研究人员的极大兴趣。 蜘蛛丝是标准的纳米纤(qiān iān)维,因为它的直径小于100nm的尺寸极限。即使如此细的蛛丝织成的网,也可以捕(bǔpǔ)捉住飞行速度达20千米/时的昆虫,真是十分神奇!有人估算,若蜘蛛网丝达到铅笔那样粗细,甚至可以阻止波音747这样巨型的客机飞行。 蜘蛛丝的主要成分是蛋白质,但它不溶于水,因此蛛丝在雨中也不会融化,当蛛蛋白从蜘蛛体中挤压出时,就成为

关于纳米技术的文章(6篇)(2)

纳米科技及其发展 通过利用课余时间在图书馆查阅沈海军教授编着的《纳米科技概论》和任红轩博士编着的《纳米科技发展宏观战略》这两本书,再加上一些个人的总结和思考,我对纳米科技有了更加深入的理解,对于其未来发展也有一些个人的看法和想法。 纳米科技是20世纪80年代发展起来的科学技术,它是继信息技术和生物技术之后,又一深刻影响社会发展的重大技术。它一经产生,就迅速渗入到各个学科,形成新的科技增长点。21世纪前20年,是发展纳米技术的关键时期,纳米技术将成为第5次推动社会经济各领域快速发展的主导技术之一。当前,纳米技术为全世界日益关注,这已不容置疑。只有认识它、发展它,并实现它的产业化,才有可能在未来经济竞争的格局中占据有利地位。随着纳米科技的深入发展,向其他科学和技术一样,纳米科技的发展进程也出现了许多社会问题,值得我们深入地思考和解决。 关于纳米科技的运用,其实关乎到我们生活中的方方面面。(1)??????军事国防领域:纳米卫星以及相关的纳米传感器可以灵敏地“感觉” 水流、水温、水压等极细微的环境变化,并及时反馈给中央控制系统,最低限度地降低噪声、节约能源,其高科技成分的体现还在于它能根据水波的变化提前“察觉”来袭的敌方鱼雷,使潜艇及时做规避机动。这其中有些 优势恐怕是当今世界其他的侦查设备所望尘莫及的。 (2)??????环境保护领域:在燃煤中加入纳米级助燃催化剂,可帮助煤充分燃烧,提高能源利用率,防止有害气体产生。同时,纳米的净水装置也将为我们 的生活提供非常大的便利,新型的纳米级净水剂具有很强的吸附能力,是 普通净水剂的10~20倍。 (3)??????医学生物领域:遗传学领域中,通过纳米技术先将DNA染色体全部分解为单个基因,然后根据需要进行组装,转基因整合成功率几乎可达 100%。种种事实表明,纳米技术运用于医学遗传领域将有助于化解许多目前的问题,从而为人类做出巨大的贡献。

统编版语文四年级下册7.《纳米技术就在我们身边》教学设计

7.纳米技术就在我们身边 【课文简析】 《纳米技术就在我们身边》是中国科学院院士刘忠范的作品。刘忠范曾任中国微米纳米学会常务理事,第二届亚洲纳米科技大会执行主席等,他的团队主要从事纳米碳材料、纳米化学等研究,是国际上具有代表性的纳米碳材料研究团队之一。因为对纳米技术有着非常精深的研究,所以这样一篇纳米技术的文章在刘院士笔下写得深入浅出,既清楚地介绍了纳米技术以及它的应用,又极具可读性,一点儿也不枯燥。 《纳米技术就在我们身边》是一篇科普类型的说明文。这篇课文科技含量极高,学生了解甚微。作者首先从纳米说起,介绍了什么是纳米和纳米技术。紧接着,作者通过举例子、列数字、作比较等说明方法,清楚地告诉读者,纳米技术就在我们身边,纳米技术可以让人类更加健康,纳米技术将给人类生活带来深刻的变化。全文篇幅不长,却让读者一下子就对纳米技术有了比较清晰的了解。教师在教学过程中还要注意结合本单元阅读要素“阅读时能提出不懂的问题,并试着解决”,引导学生学会借助资料,同时联系上下文、结合生活经验来解决问题的方法,去解决问题。 【学情分析】 在学习四年级上册第二单元的时候,学生就已经学习了“提问”的方法。如:根据课文内容提问、根据课文写法提问、根据生活提问。因此,四年级的学生已掌握了一定的“提问方法”,并具备一定的“提出问题”的能力,在学习本课时着重培养学生运用学过的“提问方法”进行提问,并尝试解决。让学生掌握解决问题的方法。并且,学生对于不曾接触过的事物有着旺盛的好奇心,要学会利用学生的好奇心激发他们学习这篇科技含量极高的课文的学习兴趣。 【学习目标】 1.会认“乒、乓、拥”等12个生字,会写“纳、拥、箱”等15个生字,掌握多音字“率”。能够把“碳纳米管天梯”等科技术语读正确。 2.在读课文的过程中能够提住不懂的问题,并在交流中梳理问题,尝试着结合课文内容、查找资料解答问题。 3.初步学习列数字、作比较、举例子等说明方法,并尝试着运用。 4.了解纳米相关知识,以及纳米技术在生活中的应用。通过学习,激发学生热爱科学的情感和学习科学的兴趣,培养正确的科学观点。 【学习重、难点】 学习重点: 1.会认“乒、乓、拥”等12个生字,会写“纳、拥、箱”等15个生字,掌握多音字“率”。能够把“碳纳米管天梯”等科技术语读正确。 2.了解纳米相关知识,以及纳米技术在生活中的应用。通过学习,激发学生热爱科学的

纳米新技术

【纳米新技术】建材篇:形状、色彩自由操控 会场上备受关注的是利用纳米技术实现了前所未有新功能的产品试制品。例如,可卷起来的扬声器、可由镜子变为透明的玻璃、设置于太阳能电池背面的热电转换模块等。本届展会有很多不久即可面世的高完成度展示,让人感觉纳米技术引领电子产品革新的时代指日可待。 元器件方面的展示,有直接关系到功率半导体低成本化的大口径SiC基板和利用新制造技术试制的GaN基板,以及超越LSI微细化极限的自组织技术和用于三维安装的转接板技术等。 下面将分领域对最新纳米技术的开发动向逐一介绍。(《日经电子》采访组) 建材与器具:自由控制形状和颜色、可卷起来的扬声器 建材与器具:自由控制形状和颜色、可卷起来的扬声器 利用薄膜技术和激光技术等,自由控制家电等产品以及窗玻璃等建材的形状和颜色,这些展示前人头攒动。其中反响最大的是富士胶片试制的可以卷起来的扬声器。该公司将所开发的薄膜作为振动板使用,实现了能够弯折的扬声器。在会场上,除了能卷起来的扬声器外,富士胶片还展示了折扇状扬声器等此前从未见过的新式扬声器(图1)。

[table=430,#ffffff,,0][tr][td] [/td][/tr][tr][td]图1:可制成多种形状的扬声器 富士胶片开发出了可作为扬声器振动板使用的薄膜(a)。通过在粘弹性聚合物中混入压电陶瓷,兼顾了柔性和音响特性(b)。(图由《日经电子》根据富士胶片的资料制作)[/td][/tr][/table] 要实现可弯曲的振动板,柔软的材料必不可少。但柔软的材料容易吸收振动,所以很难在确保柔软性的同时产生振动。为了解决这一问题,富士胶片开发出了一种能在20Hz~20kHz人的可听频率范围下变硬、而在用手弯曲材料时的数Hz下变软的粘弹性聚合物。 在这种粘弹性聚合物中混入压电陶瓷制成压电复合材料,并用电极夹住材料用保护层密封,然后只要向电极施加电压,压电陶瓷就会振动,使粘弾性聚合物发挥振动板的作用。 利用激光使照明器具小型化

生活中的纳米技术的认识和感想

生活中的纳米技术的感想 熊靖雯 法学1402班U201416553 ·初印象 对纳米这个词的第一印象大概是初中物理课堂时老师说到质子与分子时偶然的提到,于是这个概念就随着那句“一件纳米衣服可以穿几年不洗不换”深刻的印在我的脑海里。 而现在纳米这个概念对于人们来说似乎不在那么陌生了,我们在生活的各个领域甚至有时会偶尔不经意发现它的存在。 但归根结底我对纳米的了解其实也不过是这是种很小的度量单位,可以应用于各种材料制作方面。于是本学期的公选课我选了这门生活中的纳米技术,希望可以更进一步了解这种神奇而实用的技术,了解它应用的一些基本原理,了解它具体可以影响与改变我们生活中的什么。 ·初接触 像初中物理老师提及的一样,纳米技术在纺织服装领域有着广泛的应用。通过简单的了解,我知道了除了可以利用纳米技术制作防水防灰尘的衣服,还可以利用纳米技术改变衣服材质增加衣物的舒适感,或者加入纳米物质使衣物有效的避免散发汗臭味等不良气味,还可以应用于军队士兵的服装上。使用这种纳米技术做出的衣物可以有效的吸收电磁波,增强士兵在战场上的隐蔽能力保护士兵的安全,在未来的战场上有很广的前景。 其中让我觉得最神奇的是科学家利用纳米技术发明了第一批有机发光体材料,这种材料的应用性很灵活而且很神奇,能制造的像叶子一样薄,也可以用作当背景屏幕,还可以在上面展览画作,甚至制作成衣服后可以在上面放电影。这不禁让我想起了小时候看的天线宝宝,原来觉得神奇的事情其实已经随着科学技术的发展变成现实了啊。 总的来说,纳米科技在纺织服装上的应用主要是利用其小分子的特性,通过加工处理改变原有衣物材料的质地或性能,增加一些新的功能。或改变产品的外观效果使其防缩防皱,或改变产品的质地增加着装的舒适度与人体的贴合性,或强化产品的抗污清洁能力,或增加一些护体或保健的功能,比如防紫外线等。 像上面说的一样,纳米材料的应用不仅是高科技或者军用领域,现在也正在广泛的进入民用领域,提高我们的生活水平,给生活带来极大的便利。科技与人们的生活越来越不可分离的,人们生活的需要使纳米这种物质的应用更亲民化,也是这种看起来神秘的物质变得有些可爱了。 随着生产力的发展,人们的生活水平日益提高,对生活质量的要求也越来越高。纳米技术的出现使人们在改善衣服的材质上有了新的突破方面。我们又在自然中寻找制作材料,到自己加工改造制作材料,到可以应用纳米技术自己创造出新的材料。不得不说纳米技术在生活中的应用,不仅反映着生产力发展水平的提高,人类智慧的应用,也间接反映了社会心理。我们在追求美学的同时,也更在注重对自身的保护。 但是这些新材料在衣物上的应用给人们带来前所未有的新体验或舒适感的同时。其实也存在着问题。纳米材料是否对人类健康全然没有损害还有待考证,所有的纳米材料应用的无毒性也还有待进一步研究。在纳米材料的安全性上我们还是应该予以重视,要有效的避免这种新材料的应用对人们的害处反而大于其益处。

中国十大纳米人

中国十大纳米人 中国十大纳米人 名:出生于:1938星:五星 贡献:第一个将纳米概念引入中国的人:坠落的星座:悲伤之星 单位:合肥固体物理研究所 点评:张先生是第一个将纳米概念真正引入中国的本土科学家。20世纪90年代初,他作为该分支机构的主席,应邀参与纳米材料结构和光电性能的研究。他受到了广泛的关注,并得到了水稻材料的创始人格雷特尔教授的称赞。何和穆教授合著的《纳米材料》和《纳米材料与纳米结构》是我国仅有的两部综合性纳米教材,引导许多青年学生和科技工作者走向纳米领域。近年来,他致力于水稻材料的产业化,为水稻材料和纳米技术的推广做出了巨大贡献。中国的发展非常重要。他是第一位名副其实的中国纳米专家。可悲的是,尽管他是纳米的第一个成员,但他仍然不是院士。这是对中国当前院士制度的极大讽刺。缺点是他从未能组织一个强大的团队。近年来,他的工作深度不够,也没有杰出的弟子。由于年龄的关系,会逐渐退出舞台。小名:钱一泰出生于1941年恒星:五星 贡献:溶剂热合成发展的发明者之一:夏暮星座:幸运星单位:科技大学点评:钱先生是溶剂热合成的发明者之一,是国际上溶剂热合成大米材料的专家20世纪90年代后期合成金刚石和立方氮化镓的工作受到广泛关注。借此,东风成为中国第一位纳米院士,这是一颗幸运星。把他放在第二位也是理所应当的。不足之处在于他缺乏人情味。他的

弟子们成群结队地走了出来,对他严厉的策略感到敬畏,一个接一个地离开了。近几年来,工作的深度不够,但仍能靠搬家和吃老本维持。由于他的院士身份,他将活跃大约10年。但是,很难控制中国纳米政策 第三名:1965年出生的卢柯明星:五星 贡献:方正开发非晶结晶法制备大米材料:前景星座:天王星单位:沈阳金属研究所 评语:鲁先生是非晶结晶法的创造者,非晶结晶法是国际公认的三种大米材料制备技术之一。自从他出道以来,他一直在纳米研究的国际前沿工作,他的研究方向从头到尾都非常具体,因此他有很大的深度。近年来发表在《科学与公共图书馆》上的作品引起了国际反响。它不仅在学术上是一流的,而且其组织能力也是一流的。虽然它的信徒并不出名,但他们做得非常扎实,有很强的凝聚力。他在个人交往方面也很突出,与许多学者有着密切的联系。在年轻的时候,他就已经是一名国际专家,也是中国最年轻的学者之一。也许 是他长期提拔官员的缺点。我想知道他还要在科学研究的第一线工作多久。中国未来的第一纳米! 第四名:范寿山出生:1947星:四星 贡献:碳纳米管实用化发展的本土推动者之一:平原星座:逍遥星单位:清华大学点评:范进入纳米材料领域比较晚,工作主要集中在碳纳米管相关项目上发表在《科学与自然》上的作品有一定的影响力。突出的贡献是最近做了大量的工作来促进纳米材料的应用。许多人肯定听

什么是纳米技术

什么是纳米技术? “纳米”是英文namometer的译名,是一种度量单位,1纳米为百万分之一毫米,即1毫微米,也就是十亿分之一米,约相当于45个原子串起来那么长。纳米结构通常是指尺寸在100纳米以下的微小结构。1982年扫描隧道显微镜发明后,便诞生了一门以0 1至100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子制造物质的技术。 从迄今为止的研究状况看,关于纳米技术分为三种概念。第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术未取得重大进展。 第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的“加工”来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即便发展下去,从理论上讲终将会达到限度。这是因为,如果把电路的线幅变小,将使构成电路的绝缘膜的为得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。 第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。

1980年的一天,在澳大利亚的茫茫沙漠中有一辆汽车在高速奔驰,驾车人是一位德国物理学家H 格兰特(Gleiter)教授。他正驾驶租用的汽车独自横穿澳大利亚大沙漠。空旷、寂寞、孤独,使他的思维特别活跃。他是一位长期从事晶体物理研究的科学家。此时此刻,一个长期思考的问题在他的脑海中跳动:如何研制具有异乎寻常特性的新型材料? 在长期的晶体材料研究中,人们视具有完整空间点阵结构的实体为晶体,是晶体材料的主体;而把空间点阵中的空位、替位原子、间隙原子、相界、位错和晶界看作晶体材料中的缺陷。此时,他想到,如果从逆方向思考问题,把“缺陷”作为主体,研制出一种晶界占有相当大体积比的材料,那么世界将会是怎样? 格兰特教授在沙漠中的构想很快变成了现实,经过4年的不懈努力,他领导的研究组终于在1984年研制成功了黑色金属粉末。实验表明,任何金属颗粒,当其尺寸在纳米量级时都呈黑色。纳米固体材料(nanometer sized materials)就这样诞生了。 纳米材料一诞生,即以其异乎寻常的特性引起了材料界的广泛关注。这是因为纳米材料具有与传统材料明显不同的一些特征。例如,纳米铁材料的断裂应力比一般铁材料高12倍;气体通过纳米材料的扩散速度比通过一般材料的扩散速度快几千倍等;纳

纳米粉体材料行业分析报告行业基本情况.doc

报告概要 行业评级:纳米粉体新材料行业推荐 行业内重点公司推荐:广东羚光 行业分析师:袁熠 执业证编号:S123011470019 电话:(021)64318677 Email:YuanYi@https://www.wendangku.net/doc/38339344.html, 纳米粉体材料行业分析报告 一、行业基本情况 1、行业主管部门及监管体制 公司属于金属制品制造业,行业主管部门是国家发展与改革委员会、工业和信息化部及其各地分支机构,主要负责产业政策的制定并监督、检查其执行情况;研究制定行业发展规划,指导行业结构调整、行业体制改革、技术进步和技术改造等工作。 中国微米纳米技术学会(CHINESE SOCIETY OF MICRO-NANO TECH-NOLOGY ,英文缩写为CSMNT )是全国范围纳米行业的自律性管理 组织,其主要筹办各种学术活动,包括组织各种学术会、展览会、战略研讨会、 国际交流等等,为我国微米纳米技术的计划与规划、关键技术联合攻关、技术交流、人才培养、科学普及发挥重要作用,为国内外各界微米纳米技术研究人员和 单位的交流、科研成果的转化和产业化提供交流平台。 江苏省新材料产业协会是江苏省内的新材料行业自律性组织,协会由全省新材料产业领域的企事业单位、大专院校、科研机构以及其他相关经济组织自愿组成,是实行行业服务和自律管理的全省性、行业性、非盈利性的社会组织。主要 开展新材料产业全面调查,研究发展趋势,参与制定新材料产业规划和产品技术、质量行业标准,构建综合服务平台,促进产业体制和技术创新,促进新材料企业

持续发展,为江苏省新材料产业发展提供助力。 目前,国家发展与改革委员会、工业和信息化部对行业的管理仅限于宏观管理、政策性引导,行业协会进行指导性管理,公司自主从事业务发展、内部管理 和生产经营。纳米材料行业市场化程度较高,主要表现在市场主体和交易方式上, 政策壁垒已经完全消除,企业可以自由进入,产品价格由市场供求关系决定,国家不干预企业产品定价,行业运作已经充分市场化。 2、行业主管法律法规 (1)主要法律法规 行业相关法规: 序号法律法规名称发布单位 1 《中华人民共和国产品质量法》全国人大 2 《中华人民共和国标准化法》全国人大 3 《中华人民共和国计量法》全国人大 4 《中华人民共和国计量法实施细则》国家计量局 (2)国家标准 国家质检总局与国家标准委联合发布的与纳米材料有关的国家标准,主要有:序号行业标准名称编号 1 纳米材料术语GB/T 19619-2004 2 纳米粉末粒度分布的测定X 射线小角散射法GB/T 13221-2004 3 气体吸附BET 法测定固态物质比表面积GB/T19587-2004 4 纳米镍粉GB/T 19588-2004 5 纳米氧化锌GB/T 19589-2004 6 超微细碳酸钙GB/T 19590-2004 7 纳米二氧化钛GB/T 19591-2004 3、行业主要产业政策 公司处于前沿技术细分行业,公司产品主要运用于片式元件(电容器、电感器和电阻器)、新能源等领域,公司产品的应用领域符合国家的产业政策,属于 国家鼓励发展行业,影响本行业发展的法律法规及政策主要有: 2016 年6 月江苏省政府发布的《江苏省国民经济和社会发展“十三五”规划

纳米介绍

纳米与纳米技术的内容 "纳米"是英文nano的译名,是一种长度单位,原称毫微米,就是10的-9次方米(10亿分之一米),约相当于45个原子串起来那么长。纳米结构通常是指尺寸在100纳米以下的微小结构。 从具体的物质说来,人们往往用细如发丝来形容纤细的东西,其实人的头发一般直径为20-50微米,并不细。单个细菌用肉眼看不出来,用显微镜测出直径为5微米,也不算细。极而言之,1纳米大体上相当于4个原子的直径。假设一根头发的直径为0.05毫米,把它径向平均剖成5万根,每根的厚度即约为1纳米。 纳米技术包含下列四个主要方面: 1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。 这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。 如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。 过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。 为什么磁畴变成单磁畴,磁性要比原来提高1000倍呢?这是因为,磁畴中的单个原子排列的并不是很规则,而单原子中间是一个原子核,外则是电子绕其旋转的电子,这是形成磁性的原因。但是,变成单磁畴后,单个原子排列的很规则,对外显示了强大磁性。 这一特性,主要用于制造微特电机。如果将技术发展到一定的时候,用于制造磁悬浮,可以制造出速度更快、更稳定、更节约能源的高速度列车。 ⒉纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。 理论上讲:可以使微电机和检测技术达到纳米数量级。 ⒊纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平

部编版小学四年级下册语文 新奇的纳米技术 教案

新奇的纳米技术 教材分析 这是一篇选读课文,也是一篇很好科普说明文,说明思路清晰,逻辑性强。这篇课文介绍了什么是纳米技术,以及纳米技术在现代社会各个方面的应用。课文使用了很多说明方法说明文中的事物,学习课文要在朗读的基础上学习文章的说明方法并学会使用。能激发学生热爱科学、乐于观察和探究的兴趣。 学情分析 四年级在小学教育中正好处在从低年级向高年级的过渡期,这时候的学生开始转变思考问题的方法,从过去笼统的印象转变为具体的分析,偏重对自己喜欢的事物实行分析,文章中的一些科技知识对学生来说很感兴趣。学习掌握一些说明方法,对于阅读理解说明文协助很大,借此逐步提升学生学习语文的水平。 学习目标 1.能准确、流利地朗读课文。 2.理清文章结构,学会概说课文。 3.学会几种说明方法感悟神奇。 4.使用提示的写作方法写关于纳米技术的小练笔, 5.激发学生爱科学、学科学的热情。 教学重点 掌握列数字、下定义、举事例的说明方法;学会概说课文。

教学难点 学会说明方法,并学会说明。 教学时间1课时 教学过程 课前铺垫 1.谈话引入,激发兴趣 在数学课上,我们学到的最小的长度计量单位是?(毫米)今天我们来学习一个比毫米还小的长度计量单位,下面我们一起来学习课文《新奇的纳米技术》(板书课题)。齐读课题,一起来看一看它究竟有多么新奇。 2.这是一篇科普说明文。(学生做笔记) (一)大声朗读课文,要求读准字音,读通句子。 检查课文朗读。 量单位这种大小的物质纳米自清洁技术碳纳米管纳米管储氢气纳米吸波材料探测雷达波 句子: 纳米技术就是与纳米尺度的微观对象打交道的先进技术。 纳米技术就是研究并利用这些特性造福于人类的一门新学问。 师:下定义,是一种用简洁明确的语言对事物的本质特征作概括的说明方法。上面的句子就是使用了这种方法。(学生做笔记)(二)概说课文: 根据课文篇章结构概说。

部编语文四年级下册7 《纳米技术就在我们身边》【教案】

7纳米技术就在我们身边 ?教学目标 1.认识“乒、乓”等11个生字,读准1个多音字,会写“纳、拥”等15个字,正确读写“纳米、无能为力”等16个词语。 2.正确、流利地朗读课文,读准文中的科技术语,将不懂的问题提出来。 3.能结合课文内容和查找的资料理解“纳米技术就在我们身边”等句子的含义。 ?教学重难点 1.正确、流利地朗读课文,将不懂的问题提出来。 2.理解“纳米技术就在我们身边”等句子的含义。 ?教学策略 1.字词教学 学生可以用以前学过的方法自学大部分的字。“率”字是多音字,在“死亡率”这个词中读“l ǜ”;“康”字被包部分的下半部分不要写错;“蔬”字笔画较多,要重点指导。 2.阅读理解 主要让学生分成四人小组合作探究,采取“读—画—议—悟”的方式,自读自悟,学会自己分析作者用了哪些说明方法,介绍纳米技术造福人类具体表现在哪些方面。 3.语言运用 学习课文中列数字、举例子、作比较等说明方法,并能将这些方法运用到自己的作文中。 ?教学准备 1.预习提纲:完成《状元大课堂·好学案》对应课文预习作业。 2.准备资料:多媒体课件。 ?教学课时2课时 第1课时 ?课时目标 1.认识“乒、乓”等11个生字,读准1个多音字,会写“纳、拥”等15个字,正确读写“纳米、无能为力”等16个词语。

2.能正确、流利地朗读课文,读准课文中出现的科技术语,整体感知课文。 ?教学过程 板块一视频导入,激发兴趣 1.课前谈话。 (1)师导入:这节课先请大家观看一段影片。 (2)师播放视频。(课件出示:《西游记》中孙悟空变成一只小虫,趁铁扇公主喝茶时进入了铁扇公主肚子的片段) (3)生交流观后感受。(感受影片故事的神奇) 2.导入新课。 (1)师述:在科学技术高度发达的今天,还有比这更神奇的事物。 (2)课件出示医用纳米机器人工作时的图片。 (3)简介图片,导入新课。 师:这是一张医用纳米机器人工作时的图片,它可以清理人体血管垃圾,可以将人脑与云脑连接,可以送药、手术……这样微小而具有神奇功能的机器人,就是用纳米材料和纳米技术制造的纳米机器人。今天让我们共同走进《纳米技术就在我们身边》。 (4)板书课题:纳米技术就在我们身边。 3.读题质疑。 (1)生齐读课题。 (2)师引导:读了课题后,你有什么疑问?你最想知道什么? (3)预设:什么是纳米?什么是纳米技术?纳米的新奇特性具体体现在哪些方面? 【设计意图】用视频、图片导入新课,能很快集中学生的注意力,调节课堂气氛,激发学生学习的兴趣,让学生从课题中质疑,养成边读书边思考的习惯,引起阅读期待。 板块二学习字词,整体感知 1.初读课文。 (1)师:究竟什么是纳米?它的新奇特性体现在哪些方面呢?快快走进课文去看看吧。 (2)课件出示阅读要求。 课件出示: 自由读课文,要求读准字音,读通句子。

我谈纳米科技

我谈纳米科技(金融一班,林紫馨,1021034) 经过一个学期纳米科学的学习,我对纳米产生了浓厚的兴趣,也对纳米科学有了一定的了解,提起纳米技术,人们可能以为遥不可及,其实不然。纳米技术正在悄悄渗透到老百姓衣、食、住、行各个领域。首先我们要知道什么是纳米科学。纳米(nm),又称毫微米,如同厘米、分米和米一样,是度量长度的单位,具体地说,一纳米等于十亿分之一米的长度,形象地比喻,一纳米的物体放到乒乓球上,就像一个乒乓球放在地球上一般。这就是纳米长度的概念。自从扫描隧道显微镜发明后,世界上便诞生了一门以0.1至100纳米这样的尺度为研究对象的前沿学科,这就是“纳米科技”。 在王老师的课上,他向我们娓娓道来纳米的来源以及给我们带来的影响。课后我也查阅了一些资料。国家纳米材料科学首席专家张立指出,纳米科技将对人类产生深远的影响,甚至改变人们的思维方式和生活方式。纳米技术将在21世纪对我们的社会、经济以及国家安全产生重大影响。“纳米技术计划”是继人类基因组计划之后,美国提出的又一项重大科研计划。 作为经济学院的学生,我了解到,据统计,全球纳米技术的年产值已经达到500亿美元,我国7条纳米材料的生产线已投入生产或正在开发之中。这意味着纳米有着巨大的潜在商机。并且全球以美国为首,紧接着日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)紧随其后为世界5大纳米大国。 既然它如此的受人瞩目,那么我们就来看看纳米这个神奇的世界是如何改变世界的。 化纤布料制成的衣服虽然艳丽但因摩擦容易产生静电,而在生产时加入少量的金属纳米微粒,就可以摆脱烦人的静电现象。冰箱、洗衣机等一些电器时间长了容易产生细菌,而采用了纳米材料,新设计的冰箱、洗衣机既可以抗菌,又可以除味杀菌。紫外线对人体的害处极大,有的纳米微粒却可以吸收紫外线对人体有害的部分,市场上的许多化妆品正是因为加入了纳米微粒而具备了防紫外线的功能。传统的涂料耐洗刷性差,时间不长,墙壁就会变得斑驳陆离,纳米技术运用之后,涂料的技术指标大大提高,外墙涂料的耐洗刷性将提高十多倍。是什么魔法让纳米技术这样神通广大呢?魔法自然是没有的,其原因在于,当物质被“粉碎”到纳米级细小,制成的“纳米材料”不仅光、电、热、磁特性发生变化,而且具有辐射、吸收、催化、杀菌、吸附等许多新特性,从而给人们生活带来突破性变化。 以前的电视、音响等家电外表一般都是黑色的,被称为黑色家电,这是因为家电外壳材料中必须加入碳黑进行静电屏蔽。而利用纳米技术,人们已研制出可屏蔽静电的纳米涂料,通过控制纳米微粒的种类,进而可控制涂料颜色,使黑色家电变成彩色家电。 纳米技术将给医学带来变革。纳米级粒子会使药物在人体内的传输更为方便 在电子信息领域,纳米技术应用广泛。可从硬盘上读取信息的纳米级磁读卡机以及存储容量为目前芯片上千倍的纳米级存储器芯片都已投入生产。纳米电子学使量子元件代替微电子器件,“深蓝”、“银河”等巨型计算机就能装入口袋,“亚洲一号”通信卫星可只有鸽子大小。可以预见,未来以纳米技术为核心的计算机处理信息的速度将更快,效率将更高。 纳米科技运用于国防建设,同样可以大显神通。把纳米微粒加入到陶瓷中,可以使脆硬的陶瓷韧性增强,新一代坦克的装甲材料便是这种陶瓷与钢材的混合体。 如此种种都是神奇的纳米给人类带来的变化,我们也可以听到一些反对的声音说纳米技术也有其一些潜在危险性,大致可以分为三个方面:人类健康和环境的潜在危害,对社会安全的威胁,对伦理道德的挑战。 对于这些我想说纳米技术在刚开始的阶段一定会有其本身的不利因素,我们应该具有前瞻性,在医学,电子技术,国防技术快达到瓶颈的阶段,希望纳米技术可以注入一股新的活力,给人类社会带来新的气息。同时我也可喜的看到国家正在加大这方面的投入。

纳米制造技术的详细介绍和应用的详细资料概述

纳米制造技术的详细介绍和应用的详细资料概述 史铁林,教育部“微纳制造与纳米测量技术”创新团队负责人、中国振动工程学会常务理事、中国振动工程学会动态信号分析专业委员会主任委员、中国振动工程学会故障诊断专业委员会副主任委员、中国微米纳米技术学会理事。他先后获多项中国青年科技奖、全国优秀博士后、湖北省五四青年奖章、中国机械工程学会杰出青年科技奖和首批“新世纪百千万人才工程”国家级人选等荣誉称号。他发表学术论文250余篇,其中SCI收录150多篇,申请国家发明专利80多项,授权50多项。 问:纳米技术、信息技术和生物技术并列为21世纪的三大科技,而纳米制造则是支撑它们走向应用的基础。那么,纳米制造是如何定义的?其主要特征是什么? 史铁林:美国科学基金会将纳米制造定义为构建适用于跨尺度集成的、可提供具有特定功能的产品和服务的纳米尺度的结构、特征、器件和系统的制造过程。纳米制造已远远超出常规制造的理论和技术范畴,相关技术的发展将依赖于新的科学原理和理论基础,依赖于多学科交叉融合。纳米制造从牛顿力学、宏观统计分析和工程经验为主要特征的传统制造技术走向基于现代多学科综合交叉集成的先进制造科学与技术。其主要特征在于:(1)制造对象与过程涉及跨尺度;(2)制造过程中界面/表面效益占主导作用;(3)制造过程中原子/分子行为及量子效应影响显著;(4)制造装备中微扰动影响显著。 问:纳米制造的关键结构从尺度上主要体现为结合微米与纳米的跨尺度制造和纳米范畴的纳尺度制造,请介绍一下这两种关键结构的特点,以及您的团队在该领域取得的成果。史铁林:跨尺度集成制造是将不同尺度的结构组合、加工形成多尺度整体的过程。微纳集成结构可以根据它们的结构特性分为无序分级结构、一维纳米分支结构、层叠分级结构、几何形状可控分级结构和纳米悬浮分级结构等。微纳集成结构可以有不同的形状、尺寸、层数等几何特征,其关键的一点是要实现纳结构在微结构上的定点、可控集成。稳定的微纳集成结构不仅能为研究纳米材料的光、电等方面的性能提供方便,还可能为功能微/纳米电子器件的研制打下基础。在微纳结构的集成过程中,微结构界面的各种因素都会对纳米结构集成效果带来较大影响,因此研究微环境对纳结构形成的影响机理,实现微环境的

最新人教版四年级语文下册《纳米技术就在我们身边》知识点

统编版四年级语文下册第7课 《纳米技术就在我们身边》知识点 知识点 课文主题归纳: 这是一篇介绍纳米、纳米技术的文章。作者以通俗易懂的语言向我们介绍了纳米技术的神奇,以及纳米技术在我们生活中的应用,告诉我们在不远的将来纳米技术将改变我们的生活。 全文共分三部分: 第一部分(1):写21世纪是纳米的世纪。 第二部分(2~4):具体介绍什么是纳米技术,以及纳米技术的应用。第三部分(5):写在不远的将来,纳米技术将改变我们的生活。 课内重点词语: 纳米拥有冰箱除臭蔬菜钢铁 隐形健康细胞疾病预防病灶 需要功能材料深刻 多音字: 臭:chòu臭味xiù 乳臭未干 率:lǜ 概率shuài 率领

形近字: 蔬(蔬菜)疏(亲疏)钢(钢铁)刚(刚才)健(健康)建(建筑) 生字组词: 纳:纳米接纳容纳吐故纳新 拥:拥有拥抱拥挤蜂拥而至 箱:冰箱信箱邮箱箱子 臭:除臭臭气臭味遗臭万年 蔬:蔬菜果蔬时蔬瓜果菜蔬 碳:低碳碳酸二氧化碳 钢:钢铁钢笔钢琴百炼成钢 隐:隐蔽隐藏隐患若隐若现 健:健康强健健身健忘 康:健康康乐小康康庄大道 胞:细胞胞衣胞兄侨胞同胞 疾:疾病顽疾疾驰疾恶如仇 防:预防防御国防防微杜渐 灶:灶台灶王病灶另起炉灶 需:需要必需军需各取所需

词语解释: 【无能为力】用不上力量;没有能力或能力达不到。 【特性】某人或某事物所特有的性质。 【造福】给人带来幸福。 【杀菌】用日光、高温、过氧乙酸、酒精抗生素等杀死病菌。【癌症】生有恶性肿瘤的病。 【预防】事先防备。 【病灶】机体上发生病变的部分。 近义词: 特性——特征神奇——奇妙 结实——牢固灵敏——灵活 反义词: 普通——特别先进——落后 吸收——释放降低——增加

四年级新奇的纳米技术

四年级新奇的纳米技术 教学目标: 一、知识与能力目标 1、掌握新字、词; 2、了解科学小品文的文体知识; 3、抓住关键语句,有目的地筛选信息,了解纳米有关知识; 4、培养学生通过各种渠道收集信息的能力。 二、过程与方法目标 1、通过查字、词典等工具书扫清阅读障碍; 2、自主、合作探究“神奇”的具体体现; 3、体会深入浅出地介绍科学知识的方法。 三、情感态度与价值观目标 1、领会纳米的神奇所在,培养爱科学、学科学的精神; 2、培养正确的科学观念; 3、有科学依据的大胆想象,培养创造能力。 教学重点: 1、抓住关键语句,有目的地筛选信息,了解纳米有关知识; 2、自主、合作探究“神奇”的具体体现;

教学难点: 1、培养学生通过各种渠道收集信息的能力。 2、有科学依据的大胆想象,培养学生的科学精神和创造能力。 教学准备:自制课件 教学过程:21教育网 一、激趣导入 (把学生由神奇的神话世界领进神奇的科学世界) 1、多媒体播放《西游记》影片中孙悟空变化成一只小虫随铁扇公主喝茶时,进入了铁扇公主的肚子片段。 让学生观看《西游记》片段,然后请学生把看到的内容讲给大家听,并谈谈感受。 归纳、总结:这是神奇的神话,科学技术高度发达的今天,还有比这神话更神奇的多媒体展示图片(1)[中国科学家研制的纳米机器人在人体血管中巡游,这机器人长约3毫米],这种机器人能自我复制,能杀灭人体内的有害病……]这样微小的而具有神奇功能的机器人,它就是应用纳米材料并运用纳米技术制造的纳米机器人,今天我就与大家共同走进《神奇的纳米》,多媒体出示标题,神奇的纳米。

提问:(多媒体展示)同学们,当你看到这个标题,你有什么疑问,你最想知道些什么? (学生可能会说:什么是纳米,纳米的神奇具体体现在哪些地方等)二、(一)阅读探究(1) 快速浏览课文,筛选出下列信息: 什么叫纳米 什么叫纳米技术 什么叫纳米机器人 阅读汇报(1)学生自由回答 归纳小结: 纳米:又称毫微米,是一种长度计量单位,1纳米等于十亿分之一米。 纳米技术:指的是0.1纳米到几百纳米的尺度范围内对原子、分子进行观察和加工的技术。 纳米机器人:是在纳米尺寸上制造的微型机器人。 (二)理解概念,感受“神奇”(多媒体出示标题) 以上三个概念,它的内涵我们是不是都掌握了呢?分别谈谈你对这三个概念的理解。

相关文档
相关文档 最新文档