文档库 最新最全的文档下载
当前位置:文档库 › 二项式定理

二项式定理

二项式定理
二项式定理

二项式定理(通项公式)

六、二项式定理 一、指数函数运算 知识点:1.整数指数幂的概念 *)(N n a a a a a a n n ∈??= 个 )0(10≠=a a ,0(1 N n a a a n n ∈≠=- 2.运算性质: ),(Z n m a a a n m n m ∈=?+ ,),()(Z n m a a mn n m ∈=,)()(Z n b a ab n n n ∈?= 3.注意 ① n m a a ÷可看作n m a a -? ∴n m a a ÷=n m a a -?=m a -② n b a )(可看作n n b a -? ∴n b a )(=n n b a -?n n b 4、n m n m a a = (a >0,m ,n ∈N *,且n >1) 例题: 例1求值:43 32 13 2)81 16(,)41(,100,8---. 例2用分数指数幂的形式表示下列各式: 1) a a a a a a ,,32 32?? (式中a >0) 2)43a a ? 3)a a a 例3计算下列各式(式中字母都是正数));3()6)(2)(1(656131212132b a b a b a -÷- .))(2(88 341n m 例4计算下列各式: );0() 1(3 2 2>a a a a 435)12525)(2(÷- 例5化简:)()(4 14 12 12 1y x y x -÷- 例6 已知x+x -1 =3,求下列各式的值:.)2(,)1(2 32 32 12 1- - ++x x x x 二、二项式知识回顾 1. 二项式定理 0111()n n n k n k k n n n n n n a b C a C a b C a b C b --+=+++++ , 以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k k k n T C a b -+=叫做二项展开式的通项. (请同学完成下列二项展开式) 0111()(1)(1)n n n k k n k k n n n n n n n a b C a C a b C a b C b ---=-++-++- ,1(1)k k n k k k n T C a b -+=- 01(1)n k k n n n n n n x C C x C x C x +=+++++ ① 0111(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=+++++ 1110n n n k n n n k a x a x a x a x a ----=+++++ ②

【X2305】二项式定理2

高二同步之每日一题【X2305】 二项式定理【2】 X2-3051.9()a b c ++的展开式有 项. 解:由于在9()a b c ++的展开式中,每一项均由x y z a b c 的形式构成,其 中,,x y z 均为自然数,且满足9x y z ++=, 因此9 ()a b c ++的展开式的项数等价于方程9x y z ++=的自然数 解的组数. 方程9x y z ++=的自然数解的组数等价于方程'''12x y z ++=的 正整数解的组数,其中'1,'1,'1x x y y z z =+=+=+. 方程'''12x y z ++=的正整数解的组数等价于将12个相同的小球 分割成3堆,即是在这些小球的11个间隙中插入2个档板即可. 总上所知,答案为21155C =. X2-3052.在9()a b c ++的展开式中,项234a b c 的系数为 . 解:由于在9()()()()a b c a b c a b c a b c ++=++?++? ?++的展开 式中,因此项234a b c 的构成是从9个()a b c ++中选取了2个a ,再从余 下的7个()a b c ++中选取了3个b ,最后从余下的4个()a b c ++中都 选取c .所以,项234a b c 的系数为2349741260C C C ??=. X2-3053.在9()a b c -+的展开式中,项333a b c 的系数为 . 解:由于在9()()()()a b c a b c a b c a b c ++=++?++? ?++的展开 式中,因此项333a b c 的构成是从9个()a b c ++中选取了3个a ,再从余 下的6个()a b c ++中选取了3个b -,最后从余下的3个()a b c ++中 都选取c .所以,项333a b c 的系数为3333963(1)1680C C C ???-=-.

高中数学2二项式定理(带答案)

二项式定理 一.二项式定理 1.右边的多项式叫做()n a b +的二项展开式 2.各项的系数r n C 叫做二项式系数 3.式中的r n r r n C a b -叫做二项展开式的通项,它是二项展开式的第1r +项,即 1(0,1,2,,).r n r r r n T C a b r n -+==L 4.二项展开式特点:共1r +项;按字母a 的降幂排列,次数从n 到0递减;二项式系数r n C 中r 从0到 n 递增,与b 的次数相同;每项的次数都是.n 二.二项式系数的性质 性质1 ()n a b +的二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即m n m n n C C -= 性质2 二项式系数表中,除两端以外其余位置的数都等于它肩上两个数之和,即11m m m n n n C C C -++= 性质3 ()n a b +的二项展开式中,所有二项式系数的和等于2n ,即012.n n n n n C C C +++=L (令1a b ==即得,或用集合的子集个数的两种计算方法结果相等来解释) 性质4 ()n a b +的二项展开式中,奇数项的二项式系数的和等于偶数项 的二项式系数的和,即 02213211 2.r r n n n n n n n C C C C C C +-++++=++++=L L L L (令1,1a b ==-即得) 性质5 ()n a b +的二项展开式中,当n 为偶数时,中间一项的二项式系数2n n C 取得最大值;当n 为奇数时,中间两项的二项式系数1 2,n n C -1 2n n C +相等,且同时取得最大值.(即中间项的二项式系数最大)

二项式定理及性质

二项式定理及系数2019/3/23 一、二项式定理: 例题:1.(x +2)6的展开式中x 3的系数是 2.(2x -12x )6的展开式的常数项是 3.在(1-x )5-(1-x )6的展开式中,含x 3的项的系数是 4.??? ?x +a x 5(x ∈R )展开式中x 3的系数为10,则实数a 等于 5.533)1()21(x x -+的展开式中x 的系数是 练习: 1.若(x +a )5的展开式中的第四项是10a 2(a 为大于0的常数),则x =________. 2.(1+x +x 2)??? ?x -1x 6的展开式中的常数项为__________. 3.n x x )2 (3+展开式第9项与第10项二项式系数相等,则x 的一次项系数是 4.用二项式定理证明1110-1能被100整除. 二、二项式系数的性质: 例题:1.已知(2-x )10=a 0+a 1x +a 2x 2+…+a 10x 10,则a 8等于 2.二项展开式(2x -1)10中x 的奇次幂项的系数之和为 3.在(a -b )20的二项展开式中,二项式系数与第6项二项式系数相同的项是 4.(1+x )+(1+x )2+…+(1+x )n 的展开式中各项系数和为 5.若??? ?x +1x n 展开式的二项式系数之和为64,则展开式的常数项为 6.设(x 2+1)(2x +1)9=a 0+a 1(x +2)+a 2(x +2)2+…+a 11(x +2)11,则a 0+a 1+a 2+…+a 11 练习: 1.若? ???x 2+1x 3n 展开式的各项系数之和为32,则其展开式中的常数项是________. 2.若? ???x 3+1x 2n 的展开式中,仅第六项系数最大,则展开式中不含x 的项为________. 3.已知(1-2x )7=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a 7(x -1)7.求: (1)a 0+a 1+a 2+…+a 7; (2)a 0+a 2+a 4+a 6.

例说二项式定理的常见题型及解法

例说二项式定理的常见题型及解法 二项式定理的问题相对较独立,题型繁多,解法灵活且比较难掌握。二项式定理既是排列组合的直接应用,又与概率理论中的三大概率分布之一的二项分布有着密切联系。二项式定理在每年的高考中基本上都有考到,题型多为选择题,填空题,偶尔也会有大题出现。本文将针对高考试题中常见的二项式定理题目类型一一分析如下,希望能够起到抛砖引玉的作用。 一、求二项展开式 1.“n b a )(+”型的展开式 例1.求4)13(x x + 的展开式; 解:原式=4 )1 3( x x +=2 4)13(x x + = ])3()3()3()3([144342 243144042C C C C C x x x x x ++++ =)112548481(1 2342++++x x x x x =541 12848122++++x x x x 小结:这类题目一般为容易题目,高考一般不会考到,但是题目解决过程中的这种“先化简在展开”的思想在高考题目中会有体现的。 2. “n b a )(-”型的展开式 例2.求4)13(x x - 的展开式; 分析:解决此题,只需要把4)13(x x - 改写成4)]1(3[x x -+的形式然后按照二项展开式的格式展 开即可。本题主要考察了学生的“问题转化”能力。 3.二项式展开式的“逆用” 例3.计算c C C C n n n n n n n 3)1( (279313) 2 1 -++-+-; 解:原式=n n n n n n n n C C C C C )2()31()3(....)3()3()3(3 33 22 11 -=-=-++-+-+-+ 小结:公式的变形应用,正逆应用,有利于深刻理解数学公式,把握公式本质。

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素

二项式定理2

1.3.1 二项式定理(第一课时) 教学设计 一、教学内容解析 “二项式定理”是人教A版《普通高中课程标准试验教科书数学(选修2-3)》第一章第三节知识内容,它是初中多项式乘法的继续和高中计数原理的应用,同时也是高中学习数学期望等内容的基础,因此二项式定理起着承上启下的作用。另外,二项式系数是一些特殊的组合数,利用二项式定理又可以进一步加深对组合数的认识。总之,二项式定理是综合性比较强的,具有联系不同知识内容的作用。 教学重点:利用计数原理分析二项展开式,归纳得到二项式定理。 本节课为概念教学课,可以使学生探究问题的过程中体验从特殊到一般、类比归纳、化归与转化等数学思想方法,也自然关注了学生数学抽象、逻辑推理等数学核心素养。 二、教学目标设置 1,学生在情境问题的解决过程中和情境问题下的一系列思考问题和追问问题的探究中体会到学习二项式定理的必要性和合理性。 2,学生经历了二项式定理的观察、分析、归纳、类比、猜想及证明的全部探究过程,提升了数学抽象、逻辑推理和数学建模等数学核心素养,并且学生在二项式定理的发现、推导过程中,掌握了二项式定理及其推导方法。 三、学情分析 学生初中学习过多项式乘法法则,并且刚刚学习了计数原理和排列组合知识,对本节课分析n ( 展开式结构以及利用计数原理分析项的系数提供了帮助,同时授课学生为高二学生,有着a) b 一定的归纳推理能力,分析转化问题的能力。 但是,本节课思维含量比较大,对思维的严谨性和逻辑推导能力以及分类讨论,归纳推理能力等有着很高的要求,需要学生利用多项式乘法法则归纳乘积项的结构,并能利用计数原理分析项的系数,学生学习起来有一定难度。而且学生在学数学过程中,往往只习惯于重视定理、公式的结论,而不重视推导过程,这都为本节课的教学带来了难度。 根据以上学情,制定如下教学难点: 教学难点:如何让学生想到利用计数原理去分析二项展开过程;如何发现二项式展开成单项式之和时各项系数的规律。 四、数学情境与学习问题的设置 根据本节课内容特征及学生特点,设计中强调创设出不仅能紧扣教学目标,又能靠近学生的最近发展区,同时又具有较丰富的数学信息的数学情境,以便于在此情境中提出数学问题和解决数学问题,使学生在获取数学知识的同时体验数学知识的形成过程。这样才能更有利于解决本节课数学

排列组合、二项式定理知识点

排列组合二项定理 考试内容: 分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质. 二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. 排列组合二项定理 知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以有..重复..元素.. 的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列. 1. ?对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ?相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ?排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的 一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ?排列数公式: ),,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--= 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 11 --=m n m n nA A 规定10 ==n n n C C 2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数

二项式定理典型例题

1. 在二项式n x x ??? ? ? +4 21的展开式中, 前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公 式解决. 解:二项式的展开式的通项公式为: 4 324 121C 21)(C r n r r n r r n r n r x x x T --+=?? ? ??= 前三项的.2,1,0=r 得系数为:)1(8 141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1 12312-+=+=n n n t t t , ∴8=n 通项公式为 14 3168 1,82,1,02 1 C +-+==r r r r r T r x T 为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为22 888944 8 541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有系数和为n 3. 2.(1)求10 3 )1()1(x x +-展开式中5x 的系数;(2)求6)21 (++ x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)103)1()1(x x +-展开式中的5 x 可以看成下列几种方式得到,然后合并同类项: 用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5 x 项,可以得到5 510C x ;用3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;

二项式定理教案(绝对经典)

第3讲二项式定理 基础梳理 1.二项式定理 (a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n(n∈N*)这个公式所表示的定理叫二项式定理,右边的多项式叫(a+b)n的二项展开式. 其中的C r n(r=0,1,…,n)叫二项式系数.数) (注意区别于该项的系 式中的C r n a n-r b r叫二项展开式的通项,用T r+1表示,即通项T r+1=C r n a n-r b r. 2.二项展开式形式上的特点 (1)项数为n+1. (2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n. (3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n. (4)二项式的系数从C0n,C1n,一直到C n-1 n ,C n n. 3.二项式系数的性质 (1)对称性:与首末两端“等距离”的两个二项式系数相等.即C r n=C n-r n . (2)增减性与最大值: 二项式系数C k n,当k<n+1 2时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的; 当n是偶数时,中间一项C n 2n取得最大值; 当n是奇数时,中间两项C n-1 2n,C n+1 2n取得最大值. (3)各二项式系数和:C0n+C1n+C2n+…+C r n+…+C n n=2n; C0n+C2n+C4n+…=C1n+C3n+C5n+…=2n-1. 双基自测 1.(1+2x)5的展开式中,x2的系数等于(). A.80 B.40 C.20 D.10 2.若(1+2)5=a+b2(a,b为有理数),则a+b=().A.45 B.55 C.70 D.80 3.若(x-1)4=a0+a1x+a2x2+a3x3+a4x4,则a0+a2+a4的值为().

二项式定理系数的性质

二项式系数的性质及应用 【学习目标】 1. 掌握二项式系数的性质 2. 培养观察发现、抽象概括及分析解决问题的能力 【课前练习】 1. 已知c bx ax x f ++=2)( (1)若2)1(=f ,则=++c b a (2)若1-=+-c b a ,则=-)1(f 2. =+n b a )( ,其中二项式系数分别是 =+n x )1( 【活动方案】 活动一:理解二项式系数的性质 1. 请同学们阅读书37页到38页的材料——杨辉三角 2. 请大家写出当n 依次取0,1,2,3,… 时,将()n a b +展开式的二项式系数填入下表.

将上表改成三角形几何排列 3. 观察二项式系数表与杨辉三角,探究这两者之间的关系,从中你能发现二项式系数有什 么特点? 4. 从函数的角度看,r n C 可看成以r 为自变量的函数)(r f ,其定义域是{} n r N r r ≤∈,, 分别画出r C r f 6 )(=)61,0( =r 以及r C r f 7)(=)71,0( =r 的图像. 5.结合课前练习思考所有二项式系数的和是多少? 总结: 1. 对称性 2. 增减性与最大值 3. 二项式系数的和

活动二:掌握二项式系数性质的应用——赋值法 例1证明:在()n a b +的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和. 小结: 例2已知7270127(12)x a a x a x a x -=++++,求: (1)0a ; (2)127a a a +++; (3)76543210a a a a a a a a -+-+-+- 变式训练:(1)求2 53126420()()a a a a a a a ---+++ (2)求72172a a a +++ (3)求7 722 1222a a a +++

二项式定理

二项式定理 学习目标:能利用计数原理证明二项式定理;理解并掌握二项式定理,并能简单应用. 学习重点:探究并归纳用计数原理分析3)(b a +的展开式的形成过程,并依此方法得到二项式定 理. 二项式定理研究的是n b a )(+的展开式,如何利用两个计数原理得到2)(b a +, 3)(b a +,4)(b a +的展开式?你能由此猜想一下n b a )(+的展开式是什么? 学习任务:阅读课本P 29~P 35. 问题1. 用乘法法则展开3)(b a +,合并同类项之前展开式有多少项?合并同类项后会有几项?其 中b a 2的系数是多少?用两个计数原理分析。 问题2. 回答P 30探究。 问题3. n b a )(+的展开式按照a 的降幂排列,共有多少项?其中,含有k k n b a -的项是第几项?这 一项的项数是多少?利用计数原理分析。 问题4. 通过教材例1和例2学习,熟悉二项式定理二项式系数,二项展开式的通项中a ,b ,n , k 的具体含义。 问题5. 回答P 32探究。 问题6. 如果把n b a )(+的展开式的二项式系数看成函数的话,它是一个定义域在自然数内的离散 函数),2,1,0()(n n C r f r n ???==,请通过“杨辉三角”计算n = 6时的二项式系数,并画出 )6,2,1,0()(6???==r C r f r 的图象,由图象得出函数值怎样的分布特点?试着由此总结二项式 系数的性质。 问题7. 仔细阅读例3,体会“赋值法”的应用。 必做题 A 级 P 31 1~4 P 35 1~3 B 级 习题1.3 A 组 B 组. 选做题 1. 7 3 )2(x x +的展开式的第4项是 ;第4项的二项式系数是 ;第4项的系数 是 . 2. 求10 3 )1()1(x x +-的展开式中5 x 的系数. 3. 对于二项展开式1 2) (+-n b a ,下列结论中成立的是( ) A.中间一项的二项式系数最大 B.中间两项的二项式系数相等且最大 C.中间两项的二项式系数相等且最小 D.中间两项的二项式系数互为相反数 4.(1)4)(x y y x -的展开式中33y x 的系数是 . (2)6 )212(x x - 的展开式的常数项是 . 5. 533)1()21(x x -+的展开式中x 的系数是( ) A. -4 B. -2 C. 2 D. 4 6. 在1003)52(+的展开式中,有理项的个数是多少? 7. 求10 2)11(x x + +的展开式中的常数项. 8.(1)6364364164C C C +???++ = . (2)612512C C += . 9. 求n x x x )1()1()1(43++???++++的展开式中2x 的系数. 10. 已知2010201021020102)21(x a x a x a a x +???+++=-. (1)求2010210a a a a +???+++的值. (2)求20102008420a a a a a ++???+++的值. 11.(1)n n n n n n C C C C 1321242-+???++等于( ) A. n 3 B. 13-n C. 2 1 3-n D. 12 3-n (2)已知7292222332210=+???+++n n n n n n n C C C C C ,则n n n n n C C C C +???+++321等于( ) A.63 B.64 C.31 D.32 12. 若n x x )1(23+ 的展开式中第6项系数最大,则其中的常数项为( ) A.210 B.10 C.462 D.252 13. 若443322104)32(x a x a x a x a a x ++++=+,则 (1)43210a a a a a ++++ = . (2)4321a a a a +++ = . (3)2312420)()(a a a a a +-++ = .

第十一章 第二节 二项式定理

突破点一二项式的通项公式及应用 [基本知识] 1.二项式定理 2.二项式系数与项的系数

[基本能力] 一、判断题(对的打“√”,错的打“×”) (1)C r n a n - r b r 是(a +b )n 的展开式中的第r 项.( ) (2)在(a +b )n 的展开式中,每一项的二项式系数与a ,b 无关.( ) (3)(a +b )n 展开式中某项的系数与该项的二项式系数相同.( ) 答案:(1)× (2)√ (3)√ 二、填空题 1.????1x -x 10的展开式中x 2的系数等于________. 答案:45 2.在????x 2-2 x 6的展开式中,常数项为________. 答案:240 3.? ???? x -124x 8 的展开式中的有理项共有________项. 答案:3 [全析考法]

考法一 形如(a +b )n 的展开式问题 [例1] (1)(2018·全国卷Ⅲ)????x 2+2 x 5的展开式中x 4的系数为( ) A .10 B .20 C .40 D .80 (2)(2019·陕西黄陵中学月考)????x +1 2x 6的展开式中常数项为( ) A.5 2 B .160 C .-52 D .-160 [解析] (1)????x 2+2x 5的展开式的通项公式为T r +1=C r 5·(x 2)5-r ·????2x r =C r 5·2r ·x 10-3r ,令10-3r =4,得r =2.故展开式中x 4的系数为C 25· 22=40. (2)????x +12x 6的展开式的通项T r +1=C r 6x 6-r ????12x r =????12r C r 6x 6-2r ,令6-2r =0,得r =3,所以展开式中的常数项是T 4=????123C 36=5 2,选A. [答案] (1)C (2)A [方法技巧] 二项展开式问题的常见类型及解法 (1)求展开式中的特定项或其系数.可依据条件写出第k +1项,再由特定项的特点求出k 值即可. (2)已知展开式的某项或其系数求参数.可由某项得出参数项,再由通项公式写出第k +1项,由特定项得出k 值,最后求出其参数.

二项式定理3

课题:二项式定理性质与应用1 教学任务 教学流程说明 教学过程设计

1.已知2(1)n a +展开式中的各项系数的和等于216 5x ? ? 的展开式的常数项,而 2(1)n a + 展开式的系数的最大的项等于54,求a 的值()a R ∈。 答案:a =2.设()()()()()5 9 14 13 011314132111x x a x a x a x a -+=+++++++ 求:① 0114a a a ++ + ②1313a a a ++ +. 答案:①9 3 19683=; ② () 9 53 399632 +=。 3.求值:0123456789 999999999922222C C C C C C C C C C -+-+-+-+-. 答案:82256=。 4.设296 ()(1)(21)f x x x x =+-+,试求()f x 的展开式中: (1)所有项的系数和; (2)所有偶次项的系数和及所有奇次项的系数和。 答案:(1)6 3729=; (2)所有偶次项的系数和为6313642-=;所有奇次项的系数和为631 3652 +=。 二项式定理(课外小练习) 1. )()4 5 1 1x -展开式中4 x 的系数为 45 ,各项系数之和为 0 . 2.多项式12233 ()(1)(1)(1)(1)n n n n n n f x C x C x C x C x =-+-+-++-(6n >)的展开式 中,6 x 的系数为 0 . 提示:()()16n f x x n =->。 3.若二项式2 31(3)2n x x - (n N *∈)的展开式中含有常数项,则n 的最小值为( B ) ()A 4 ()B 5 ()C 6 ()D 8 4.某企业欲实现在今后10年内年产值翻一番的目标,那么该企业年产值的年平均增长率最低应 (C ) ()A 低于5% ()B 在5%~6%之间 ()C 在6%~8%之间 ()D 在8%以上

二项式定理

第四节二项式定理 考纲解读 1. 能用计数原理证明二项式定理? 2. 会用二项式定理解决与二项式展开式有关的简单问题 命题趋势探究 1. 高考对本节内容的考查常以选择题或填空题的形式出现,并且高于中等偏易试题 2. 主要考查内容是:①利用通项求解展开式中的某指定项;②利用二项式特别是 1 x n的 展开式求解系数或求某些类似于二项展开式的式子的值;③二项式系数的有关问题 知识点精讲 一、二项式定理 (a +b n=C0a n b°+c n a nJL b +…+c n a n_r b r+…+C n n a°b n(n乏N*). 展开式具有以下特点: (1 )项数:共n ? 1项? (2)二项式系数:依次为组合数c0,c n,c:,…,C:. (3)每一项的次数是一样的,都为n次,展开式依a的降幕、b的升幕排列展开.特别地, (1+xf =1+弘+弘2 + …+C:x n. 二、二项式展开式的通项(第r 1项) 二项式展开的通项为「1 =c n a n」b r r = 0,1,2,3,…,n..其中U的二项式系数.令变量 (常用x )取1,可得T r 1的系数. 注通项公式主要用于求二项式展开式的指数、满足条件的项数或系数、展开式的某一项或 系数.在应用通项公式时要注意以下几点: ①分清C;a n_r b r是第r 1项,而不是第r项; ②在通项公式T r = C n r a n_r b r中,含T r gC:, a, b, r, n这6个参数,只有a, b, r, n是独立的, 在未知r,n的情况下利用通项公式解题,一般都需要先将通项公式转化为方程组求n和r .三、二项式展开式中的系数 (1)二项式系数与项的系数 二项式系数仅指c0,c n,C:,…,Cn而言,不包括字母a,b所表示的式子中的系数.例如:2 x n的展开式中,含有x r的项应该是「1 =c n2n」x n,其中c n叫做该项的二项 式系数,而x r的系数应该是C;2nJ(即含x r项的系数)

二项式定理—解题技巧

二项式定理 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: 项数:共(1)r +项 通项:1r n r r r n T C a b -+=展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是0 1 2 ,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论:(令值法) 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N * +=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???=?=L ④各项的系数的和:()()n bx a x g +=.令(1) 奇数项系数和: ()()[]1121 -+g g 偶数项系数和:()()[]1g -1g 2 1 ⑤二项式系数的最大项:如果n 是偶数时,则中间项(第12 n +)的二项式系数项2n n C 取得最大值。

二项式定理

二项式定理: 一、框架 二项式定理是高中数学中与排列组合、多项式的概念性质联系比较紧密的内容,高考在这一部分命题主要以选择、填空题的形式考查二项展开式的项、系数及其相关问题。复习时先要正确的理解二项式定理、二项展开式的项、系数等概念和性质,牢牢掌握二项展开式的通项公式是解答有关问题的关键,同时注意把握二项式与定积分及其它知识的联系。其中非标准二项式定理求解特殊项的问题,是难点问题。 1.二项式定理: 公式(a +b )n =C 0n a n +C 1n a n - 1b +…+C k n a n - k b k +…+C n n b n (n ∈N * )叫做二项式定理. 2.通项: T k +1=C k n a n - k b k 为展开式的第k +1项. 提醒: (1)T k +1表示的是第k +1项,而非第k 项. (2)要正确区分二项展开式中的“项”、“项的系数”、“项的二项式系数”等概念的异同. 3. 求二项展开式中的项的方法: 求二项展开式的特定项问题,实质是考查通项T k +1=C k n a n - k b k 的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(k =0,1,2,…,n ). (1)第m 项:此时k +1=m ,直接代入通项; (2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程; (3)有理项:令通项中“变元”的幂指数为整数建立方程; 特定项的系数问题及相关参数值的求解等都可依据上述方法求解. 4.二项式系数与项的系数 (1)二项式系数:二项展开式中各项的系数C k n (k ∈{0,1,…,n })叫做二项式系数. (2)项的系数:项的系数是该项中非字母因数部分,包括符号等,与二项式系数是两个不同的概念. 5.二项式系数的性质 (1)对称性:在二项展开式中与首末两端“等距离”的两个二项式系数相等,即C m n =C n -m n . (2)增减性与最大值:二项式系数C k n ,当k < n +1 2 时,二项式系数逐渐增大;当k > n +1 2 时,二项式系数逐渐 减小.当n 是偶数时,中间一项的二项式系数最大;当n 是奇数时,中间两项的二项式系数最大. (3)各二项式系数的和:(a +b )n 的展开式的各个二项式系数的和等于 2n ,即C 0n +C 1n +…+C n n =2n . (4)奇数项的二项式系数之和等于偶数项的二项式系数之和,即C 0 n +C 2 n +…=C 1 n +C 3 n +…=2 n -1 . 6.在高考中,常常涉及一些多项式二项式问题,主要考查学生的化归能力.归纳起来常见的命题角度有: (1)几个多项式和的展开式中的特定项(系数)问题; (2)几个多项式积的展开式中的特定项(系数)问题; (3)三项展开式中的特定项(系数)问题. 7.赋值法研究二项式的系数和问题:“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n 、(ax 2 +bx +c )m (a ,b ∈R)的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R)的式子求其展开式各项系数之和,只需令x =y =1即可.

[高中]二项式定理

【高考导航】 二项式定理在高考中每年一道题,题型为以下几种:求展开式某一项或某一项的系数;求所有项系数的和或者奇数项、偶数项系数和;二项式某一项为字母,求这个字母的值;求近似值的问题.试题难度不大,与教材习题相当.因此,二项式定理一节内容的学习或复习要重视基础,对二项式定理的展开式、通项公式、二项式系数的性质等弄清原理,熟练掌握,不必追求难解题. 【学法点拨】 本节内容是初中所学多项式乘法的继续,它所研究的是一种特殊的多项式——二项式乘方的展开式,是培养观察,归纳能力的好题材,二项式定理是以公式形式表现二项式的正整数幂的展开式在指数、项数、系 数等方面内在联系的重要定理,应在(a +b)2、(a +b)2、(a +b )2 的展开式的了解基础上,归纳掌握好二项式定理.通项公式T =C (r =0,1,2,…,n)集中体现了二项式展开式中的指数、项数、系数的变化,是二项式定理的核心它是求展开式的某些项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)以及系数的重要公式. 二项式系数C (r =0,1,2,…,n)是一组仅与二项式的次数n 有关的n +1个组合数,而与a 、b 无关, 它不包括a 、b 本身(或a 、b 的某次幂)的系数.只有当求某指定项的系数时,才包括a 、b 的系数,称展开式中的某一项的系数,当二项式两项本身的系数都是1时,展开式的二项式系数就是展开式各项的系数,但当二项式的两项本身的系数不为1时,这两者就不同了,要在把握概念的基础上掌握好二项式系数的性质及应用. 【基础知识必备】 一、必记知识精选 1.二项式定理:(a +b)n =C a n +C a n -1 b +…+C a n -r b r +…+C b n (n ∈N *) 2.通项公式:T r +1=C a n -r b r 3.二项式系数性质: (1)距两端等距离的二项式系数相等,即C =C . (2)二项式系数的中间项或中间两项的二项式系数最大. 当n 为偶数时,中间一项(即第+1项)的二项式系数最大; 当n 为奇数时,中间两项(即第和第+1项)的二项式系数最大. (3)在二项展开式中各项的二项式系数和为2n ,即: C +C +C +…+C =2n . (4)在二项展开式中,奇数项二项式系数的和等于偶数项二项式系数的和,都等于2n -1,即 C +C +C +…=C +C +C +…=2n -1. 二、重点难点突破 掌握二项式定理及其通项公式是本节的重点,会求二项展开式、展开式的中间项等指定项,会求二项式系数,指定项系数等.这些都是二项式定理的灵活运用,是本节的难点.突破难点的关键是准确熟练地写出二项展开式及通项公式. (a +b)n 的展开式具有如下性质: 1.展开式的项数:共n +1项. 2.展开式的每一项的指数:a 与b 的指数之和为n ,即二项展开式各项的次数等于二项式的次数n ,字母a 的指数依次降幂排列,指数由n 逐次减1直到0,字母b 按升幂排列,指数从0起逐项加1到n. 3.二项式系数的特征:每一项的系数为一组合数,第r +1项的系数为C . 学习二项式定理时,还应注意: 1.二项式定理从左到右的使用为展开,从右到左的使用可以化简、求和和证明.这个公式的逆用功能不可忽视. 2.对于通项公式是相对于(a +b)n 标准形式而言的,对于(a -b)n 的展开式的通项T r +1=(-1)r C a n -r b r ,它是第r +1项而不是第r 项,公式中的a ,b 位置不能颠倒.利用通项公式可求展开式的特定项. 3.应用二项式定理时,要有目标意识,同时要处理好“一般”与“特殊”的关系,注意变形的技巧以及等价转化的数学思想方法. 三、易错点和易忽略点导析 1 +r r r n r n b a -r n 0n 1n r n n n r n k n k n n -2n 21+n 21 +n 0 n 1 n 2 n n n 0 n 2 n 4 n 1 n 3 n 5 n r n r n

二项式定理通项公式-二项定理通项公式

二项式定理 二项式知识回顾 1. 二项式定理 0111 ()n n n k n k k n n n n n n a b C a C a b C a b C b --+=++ ++ +, 以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k k k n T C a b -+=叫做二项展开式的通项. (请同学完成下列二项展开式) 0111 ()(1)(1)n n n k k n k k n n n n n n n a b C a C a b C a b C b ---=-++-+ +-,1(1)k k n k k k n T C a b -+=- 01(1)n k k n n n n n n x C C x C x C x +=++ +++ ① 01 11 (21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=++ ++ + 1110n n n k n n n k a x a x a x a x a ----=++++ + ② ① 式中分别令x=1和x=-1,则可以得到 01 2n n n n n C C C ++ +=,即二项式系数和等于2n ; 偶数项二项式系数和等于奇数项二项式系数和,即0213 12n n n n n C C C C -++ =++ = ② 式中令x=1则可以得到二项展开式的各项系数和. 2. 二项式系数的性质 (1)对称性:与首末两端等距离的两个二项式系数相等,即m n m n n C C -=. (2)二项式系数k n C 增减性与最大值: 当12n k +< 时,二项式系数是递增的;当1 2 n k +≥时,二项式系数是递减的. 当n 是偶数时,中间一项2n n C 取得最大值.当n 是奇数时,中间两项12n n C -和12n n C +相等,且同 时取得最大值. 3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n x n ⑴ a 0+a 1+a 2+a 3……+a n =f(1) ⑵ a 0-a 1+a 2-a 3……+(-1)n a n =f(-1) ⑶ a 0+a 2+a 4+a 6 (2) 1()1(-+f f ⑷ a 1+a 3+a 5+a 7……= 2 ) 1()1(--f f

相关文档