文档库 最新最全的文档下载
当前位置:文档库 › 资金的时间价值与等值计算

资金的时间价值与等值计算

资金的时间价值与等值计算
资金的时间价值与等值计算

项目二资金的时间价值与等值计算练习题

一、单项选择题

1.资金时间价值的习惯表示方式是( )。

A.利息B.利率C.利润D.终值

2.利息是表示资金时间价值的()。

A.相对尺度B.绝对尺度C.重要依据D.两者无必然联系

3.把一个时间点发生的资金额转换成另一个时间点等值的资金额,这个计算过程称为资金的( )。

A.利率折算B.价值转换

C.时间价值性D.等值计算

4.单利与复利的区别在()。

A、单利考虑计息周期,复利不考虑计息周期

B、单利只对本金计算利息,复利对本金与利息要再计息

C、两者计息周期不同

D、复利计算时名义利率等于实际利率

5、某工程向银行贷款100万元,年利率10%,借期4年,求按单利计算4年后需要向银行偿还本利()万元。

A、F=100×(4×10%+1)

B、F=100×4×(10%+1)

C、F=100×(10%+1)4

D、缺少条件不能计算

6、下列有关名义利率与实际利率正确的是()。

A、当给定利率的时间单位与计息周期不一致时,不同的计息周期所得的利息不同,就是因为存在实际利率与名义利率

B、在单利计息的情况下,名义利率等同于实际利率

C、名义利率是周期利率与名义利率包含的单位时间内计息周期数的乘积

D、名义利率与实际利率可以通过一定的公式进行转换

E、名义利率是名义的利率,实际利率是真正的利率

7、名义利率与实际利率的转换方法是()。

A、i=(1+r/m)m+1

B、i=(1+r/m)m-1

C、i=(1+m/r)m-1

D、i=(1+m/r)m+1其中:r名义利率、i实际利率、m每年计息次数

8、工程经济学中的现金流量(CF,CashFlow)是指()。

A、反映项目计算期内各年的现金流入、现金流出和净现金流量的表格

B、在项目寿命周期内流入、流出的货币

C、是指把评价方案作为一各独立的系统,在一定时间内流出、流入系统的活动

D、产品销售收入、回收固定资产残值、回收流动资金

9、净现金流量是指()。

A、现金流入与流出的差额的绝对值

B、现金流入与流出的差额

C、项目的净收益

D、项目的净现金收益

10.某人贷款1万元,贷款期限1年,年利率为12%,按月复利计息,实际利率为()。

A. 12%

B.15%

C.12.68%

D. 10%

11.某企业向银行贷款100万元,年利率为4%,按季度还款,则第3年末应偿还本利和应为()万元。

A. 112.7

B.112.5

C.112.0

D.117.2

12.某企业开发某项目需投资1000万元,假设年收回率为8%,在10年内收回本利和,则每年应收回()万元。

A. 149.03

B.150.03

C.149.0

D.150

二、多选题

1.影响资金等值的三要素是( )。

A.资金等值的计算方法B.资金发生的时间

C.金额的大小D.利率(折现率)的大小

E.借贷关系

2.资金具有时间价值,两笔等额的资金发生在不同时点,它们在价值上存在()差别。

A.发生在后的资金价值高B.发生在前的资金价值高

C.发生在后的资金价值低D.发生在前的资金价值低

E.无论何点价值相等

3.下面关于时间价值的论述,正确的有()。

A. -般而言,时间价值按复利方式计算

B.-般而言,时间价值按单利方式计算

C.同等单位的货币,其现值高于终值

D.货币没有时间价值,只有资金才有时间价值

E.资金投入生产才能增值,所以时间价值是在生产经营中产生的。

4.某企业贷款5000万元,贷款期限3年,按每年8%的单利计算和复利计算,则到期应还的本利和分别为( )万元.

A.8000 B.6200 C.6298.5

5、在工程经分析中,现金流入量主要有()。

A、产品销售收入

B、回收固定资产残值

C、回收流动资金

D、投资利息

E、借款本金偿还

6、在工程经济分析中,现金流出量主要有()。

A、固定资产投资

B、投资利息、借款本金偿还

C、流动资金

D、经营成本

E、销售税金及附加、所得税

7、有关现金流量图,说法正确的有()

A、在横轴上,只能用箭头表示净现金流量

B、垂直线的长度与现金流量的大小成正比

C、横轴表示时间,0点表示所考察的起始时刻,n表示其活动

的结束

D、箭头向上表示净现金流量为正,箭头向下表示净现金流量为

E、起点称为“现在”,除现在以外的时间称“将来”,现金流结束的

点称为“终点”

三、【综合应用案例1】背景:某承包商参与了某高层办公楼土建工程的投标(安装工程由业主另行招标)。为了既不影响中标,又能在中标后取得较好的收益,决定采用不平衡报价法,并对原估价做了适当调整,在不影响总价的前提下,对前期工程的单价报高一点、后期工程单价报低一点,具体数字如下表所示。

报价调整前后对比表单位:万元

现假设桩基维护工程、主体结构工程、装饰工程工期分别为4个月、12个月、8个月,贷款月利率为1%,并假设各分部工程每月

完成的工作量相同且能按月度及时收到工程款(不考虑工程款结算所需要的时间)。表现值系数表。

现值系数表

问题:采用不平衡报价法后,该承包商所得工程款的现值比原估价增加多少(以开工日期为折现点)?

【应用案例2】某项目的现金流量图如图所示,年利率为12%,计息期为季度,求1年末的等值金额。

【应用案例3]某项财务活动,其现金流量图如图所示,按季度计息,年利率为8%,求1年末的等值金额并按季度计息整理的现金流量图。

资金时间价值的计算及解题步骤

资金时间价值的计算及解题步骤 (一)利息 1.单利法 ()n i P I P F ?+=+=1 2. 复利法 ()n i P F +=1 ()[] 11-+=n i P I 3.复利率 复利率=(1+i)n -1 4.名称及符号 F =本息和或终值 P =本金或现值 I =利息 i =利率或实际利率 n =实际利率计息期数 r =名义利率 m =名义利率计息期数 (二)实际利率和名义利率 ()nm m r P F +=1 实际利率和名义利率的关系,注意适用条件。 i 计=r/m 实际利率和名义利率的关系,注意适用条件。 (三)复利法资金时间价值计算的基本公式 1.一次支付终值公式 F = P(1+i) n 2.一次支付现值公式 P=F/(1+i)n

3.等额资金终值公式 这种有关F和A的公式中的A-等额资金均表示每年存入 4.等额资金偿债基金公式 5.等额资金回收公式 这种有关P和A的公式中的A-等额资金均表示每年取出 6.等额资金现值公式 注意:若i为名义利率时,i换为r/m,n换为n×m 首先要记住公式,解题时搞清楚是单利还是复利、是实际利率还是名义利率。然后再根据现值P、终值F、等额资金A的已知条件和求知来选择公式。 (三)复利法资金时间价值计算的基本公式

六个资金时间价值的计算公式中有黄色底纹的三个是基本公式:一次支付终值、等额终值、等额现值。另三个是将F/P 、F/A 、P/A 即已知值和求值互换,系数互为倒数,记为也互为倒数。 复利法资金时间价值计算的六个基本公式 1.一次支付终值公式 F = P(1+i) n (1+i)n ——终值系数,记为(F /P ,i ,n ) 2.一次支付现值公式 P=F/(1+i)n (1+i)-n ——现值系数,记为(P /F ,i ,n) 3.等额资金终值公式 i i n 11-+——年金终值系数,记为(F /A ,i ,n) 4.等额资金偿债基金公式 ()1 1-+=n i i F A ()1 1-+n i i ——偿债资金系数,记为(A /F ,i ,n) 5.等额资金现值公式 ()() n n i i i +-+111——年金现值系数,记为(P/A ,i ,n ) 6.等额资金回收公式 ()()111-++=n n i i i P A

货币时间价值计算题及答案

货币时间价值 一、单项选择题 1.企业打算在未来三年每年年初存入2000元,年利率2%,单利计息,则在第三年年末存款的终值是()元。 A.6120.8 B.6243.2 C.6240 D.6606.6 2.某人分期购买一套住房,每年年末支付50000元,分10次付清,假设年利率为3%,则该项分期付款相当于现在一次性支付()元。(P/A,3%,10)=8.5302 A.469161 B.387736 C.426510 D.504057 3.某一项年金前4年没有流入,后5年每年年初流入4000元,则该项年金的递延期是()年。 A.4 B.3 C.2 D.5 4.关于递延年金,下列说法错误的是()。 A.递延年金是指隔若干期以后才开始发生的系列等额收付款项 B.递延年金没有终值 C.递延年金现值的大小与递延期有关,递延期越长,现值越小 D.递延年金终值与递延期无关

5.下列各项中,代表即付年金终值系数的是()。 A.[(F/A,i,n+1)+1] B.[(F/A,i,n+1)-1] C.[(F/A,i,n-1)-1] D.[(F/A,i,n-1)+1] 6.甲希望在10年后获得80000元,已知银行存款利率为2%,那么为了达到这个目标,甲从现在开始,共计存10次,每年末应该存入()元。(F/A,2%,10)=10.95 A.8706.24 B.6697.11 C.8036.53 D.7305.94 7.某人现在从银行取得借款20000元,贷款利率为3%,要想在5年内还清,每年应该等额归还()元。(P/A,3%,5)=4.5797 A.4003.17 B.4803.81 C.4367.10 D.5204.13 二、多项选择题 1.在期数和利率一定的条件下,下列等式不正确的是()。 A. 偿债基金系数=1/普通年金现值系数 B. 资本回收系数=1/普通年金终值系数 C. (1+i)n=1/(1+i)-n D. (P/F,i,n)×(F/P,i,n)=1 2.企业取得借款100万元,借款的年利率是8%,每半年复利一

资金时间价值的计算及解题步骤

资金时间价值的计算及解题步骤 (一)利息 1.单利法 ()n i P I P F ?+=+=1 2. 复利法 ()n i P F +=1 ()[] 11-+=n i P I 3.复利率 复利率=(1+i)n -1 4.名称及符号 F =本息和或终值 P =本金或现值 I =利息 i =利率或实际利率 n =实际利率计息期数 r =名义利率 m =名义利率计息期数 (二)实际利率和名义利率 ()nm m r P F +=1 实际利率和名义利率的关系,注意适用条件。 i 计=r/m 实际利率和名义利率的关系,注意适用条件。 (三)复利法资金时间价值计算的基本公式 1.一次支付终值公式 F = P(1+i) n 2.一次支付现值公式 P=F/(1+i)n

3.等额资金终值公式 这种有关F和A的公式中的A-等额资金均表示每年存入 4.等额资金偿债基金公式 5.等额资金回收公式 这种有关P和A的公式中的A-等额资金均表示每年取出 6.等额资金现值公式 注意:若i为名义利率时,i换为r/m,n换为n×m 首先要记住公式,解题时搞清楚是单利还是复利、是实际利率还是名义利率。然后再根据现值P、终值F、等额资金A的已知条件和求知来选择公式。 (三)复利法资金时间价值计算的基本公式

六个资金时间价值的计算公式中有黄色底纹的三个是基本公式:一次支付终值、等额终值、等额现值。另三个是将F/P 、F/A 、P/A 即已知值和求值互换,系数互为倒数,记为也互为倒数。 复利法资金时间价值计算的六个基本公式 1.一次支付终值公式 F = P(1+i) n (1+i)n ——终值系数,记为(F /P ,i ,n ) 2.一次支付现值公式 P=F/(1+i)n (1+i)-n ——现值系数,记为(P /F ,i ,n) 3.等额资金终值公式 i i n 11-+——年金终值系数,记为(F /A ,i ,n) 4.等额资金偿债基金公式 ()1 1-+=n i i F A ()1 1-+n i i ——偿债资金系数,记为(A /F ,i ,n) 5.等额资金现值公式 ()() n n i i i +-+111——年金现值系数,记为(P/A ,i ,n ) 6.等额资金回收公式 ()()111-++=n n i i i P A

资金时间价值的计算与解题步骤

资金时间价值的计算及解题步骤 (一)利息 1.单利法 ()n i P I P F ?+=+=1 2. 复利法 ()n i P F +=1 ()[ ]11-+=n i P I 3.复利率 复利率=(1+i)n -1 4.名称及符号 F =本息和或终值 P =本金或现值 I =利息 i =利率或实际利率 n =实际利率计息期数 r =名义利率 m =名义利率计息期数 (二)实际利率和名义利率 ()nm m r P F +=1

实际利率和名义利率的关系,注意适用条件。i计=r/m 实际利率和名义利率的关系,注意适用条件。 (三)复利法资金时间价值计算的基本公式1.一次支付终值公式 F = P(1+i)n 2.一次支付现值公式 P=F/(1+i)n 3.等额资金终值公式 这种有关F和A的公式中的A-等额资金均表示每年存入 4.等额资金偿债基金公式 5.等额资金回收公式 这种有关P和A的公式中的A-等额资金均表示每年取出 6.等额资金现值公式

注意:若i为名义利率时,i换为r/m,n换为n×m 首先要记住公式,解题时搞清楚是单利还是复利、是实际利率还是名义利率。然后再根据现值P、终值F、等额资金A的已知条件和求知来选择公式。 (三)复利法资金时间价值计算的基本公式

六个资金时间价值的计算公式中有黄色底纹的三个是基本公式:一次支付终值、等额终值、等额现值。另三个是将F/P、F/A、P/A即

已知值和求值互换,系数互为倒数,记为也互为倒数。 复利法资金时间价值计算的六个基本公式 1.一次支付终值公式 F = P(1+i)n (1+i)n ——终值系数,记为(F /P ,i ,n ) 2.一次支付现值公式 P=F/(1+i)n (1+i)-n ——现值系数,记为(P /F ,i ,n) 3.等额资金终值公式 i i n 11-+——年金终值系数,记为(F /A ,i ,n) 4.等额资金偿债基金公式 ()1 1-+=n i i F A ()1 1-+n i i ——偿债资金系数,记为(A /F ,i ,n) 5.等额资金现值公式 ()() n n i i i +-+111——年金现值系数,记为(P/A ,i ,n ) 6.等额资金回收公式 ()()111-++=n n i i i P A

资金的时间价值计算

二、资金时间价值的计算 (一)基本概念与代号 1.单利与复利 计算利息有两种方法:按照利息不再投资增值的假设计算称为单利;按照利息进入再投资,回流到项目中的假设计算称为复利。设本金为P年利率为i,贷款期限为t,则单利计算期末本利和为 复利计算期末本利和为 根据投资决策分析的性质,项目评估中使用复利来计算资金的时间价值 2.名义利率与实际利率 以1年为计息基础,按照每一计息周期利率乘以每年计息期数,就是名义利率,是按单利的方法计算的。 例如 存款的月利率是6.6‰,1年有12个月,名义利率为7.92%。即6.6‰×12=7.92% 实际利率是按照复利方法计算的年利率。例如存款的月利率为6.6‰,1年有12个月,则年实际利率为:(1+6.6‰)12-1=8.21% 可见实际利率比名义利率要高。在项目评估中使用实际利率 (二)资金时间价值的计算 1.复利值的计算 复利值是现在投入的一笔资金按照一定的利率计算,到计算期末的本利和 F-复利值(或终值),即在计算期末资金的本利和 P-本金(或现值),即在计算期初资金的价值 i-利率 t-计算期数 (l+i)t,也被称为终值系数,或复利系数,计作(F/P,i,t),它表示1元本金按照一定的利率计算到计算期末的本利和。在实际计算中可以直接用现值乘以终值系数来得到复利值。现在项目建设期利息都是按季收取,一般不考虑复利问题。 例1:现在将10万元投资于一个年利率为12%的基金,并且把利息与本金都留在基金中,那么10年后,账户中共有多少钱? P=10(万元);i=12%,t=10,根据复利值计算公式有 F=P(F/P,i,t)=10×3.1058=31.058(万元) 2.现值的计算 现值是未来的一笔资金按一定的利率计算,折合到现在的价值。现值的计算公式与复利终值计算公式正好相反,即 式中的为现值系数,表示为(P/F,i,t),现值系数 也可以由现值系数表直接查出,直接用于现值计算 例2:如果要在5年后使账户中积累10万元,年利率为12%,那么现在需要存入多少钱?F =10(万元),i=12%,t=5,根据现值计算公式

资金时间价值的计算及解题步骤

资金时间价值得计算及解题步骤 (一)利息 1.单利法 2、复利法 3、复利率 复利率=(1+i)n-1 4、名称及符号 F=本息与或终值 P=本金或现值 I=利息 =利率或实际利率 n=实际利率计息期数 r=名义利率 m=名义利率计息期数 (二)实际利率与名义利率 实际利率与名义利率得关系,注意适用条件。 计=r/m 实际利率与名义利率得关系,注意适用条件。 (三)复利法资金时间价值计算得基本公式 1.一次支付终值公式 F = P(1+i)n 2.一次支付现值公式 P=F/(1+i)n 3.等额资金终值公式 这种有关F与A得公式中得A-等额资金均表示每年存入 4.等额资金偿债基金公式

5.等额资金回收公式 这种有关P与A得公式中得A-等额资金均表示每年取出 6、等额资金现值公式 注意:若i为名义利率时,i换为r/m,n换为n×m 首先要记住公式,解题时搞清楚就是单利还就是复利、就是实际利率还就是名义利率。然后再根据现值P、终值F、等额资金A得已知条件与求知来选择公式。 (三)复利法资金时间价值计算得基本公式

六个资金时间价值得计算公式中有黄色底纹得三个就是基本公式:一次支付终值、等额终值、等额现值。另三个就是将F/P、F/A、P/A即已知值与求值互换,系数互为倒数,记为也互为倒数。 复利法资金时间价值计算得六个基本公式 1.一次支付终值公式 F = P(1+i)n (1+i)n——终值系数,记为(F/P,i,n) 2.一次支付现值公式 P=F/(1+i)n (1+i)-n——现值系数,记为(P/F,i,n) 3.等额资金终值公式

——年金终值系数,记为(F/A,i,n) 4.等额资金偿债基金公式 ——偿债资金系数,记为(A/F,i,n) 5、等额资金现值公式 ——年金现值系数,记为(P/A,i,n) 6.等额资金回收公式 ——资金回收系数,记为(A/P,i,n)

资金的时间价值的计算及应用

资金的时间价值的计算及应用 利息的计算 一、资金时间价值的概念 资金是运动的价值,资金的价值是随时间的变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值。 其实质是资金作为生产要素,在扩大再生产及资金的流通中,资金随着时间的变化而产生的增值。 影响资金的时间价值的因素有: 1、资金的使用时间 2、资金的数量大小 3、资金投入和回收的特点 4、资金的周转速度 二、利息和利率的概念 利息是资金时间价值的一种重要表现形式。 利息额作为衡量资金时间价值的绝对尺度。 利息作为衡量资金时间价值的相对尺度。 决定利率的高低的因素有: 1、首先取决于社会平均利润率。在通常条件下,社会平均利润率是利率的最高限度。 2、取决于借贷资本的供求关系。

3、借出资本的风险。 4、通货膨胀。 5、借出资本的期限长短。 三、利率的计算 1、单利 所谓的单利是通常所说的“利不生利”的计息方法,其计算公式: In=P*i单*n 在以单利计息的情况下,总利息与本金、利率以及计息周期成正比关系。 2、复利 所谓复利即:“利生利”、“利滚利”的计息方式。其计算公式: I=P*[(1+i)n-1] 同一笔借款,在利率和计息周期均相同的情况下,用复利计算出的利息金额比用单利计算出的利息金额多。且本金越大、利率越高、计息周期越多时,两者的差距就越大。 资金等值计算及应用 这些不同时期、不同数额但“价值等效”的资金成为等值,又叫等效值。 一、现金流量概念 在考察对象整个期间各时点t上实际发生的资金流出或资金流入成为现金流量。 流出系统的资金称为现金流出,用符号(CO)t表示。 流入系统的资金称为现金流入,用符号(CI)t表示。

资金时间价值的计算及应用

1Z101000 工程经济 工程经济所涉及的内容是工程经济学的基本原理和方法。工程经济学是工程与经济的交叉学科,具体研究工程技术实践活动的经济效果。它在建设工程领域的研究客体是由建设工程生产过程、建设管理过程等组成的一个多维系统,通过所考察系统的预期目标和所拥有的资源条件,分析该系统的现金流量情况,选择合适的技术方案,以获得最佳的经济效果。运用工程经济学的理论和方法可以解决建设工程从决策、设计到施工及运行阶段的许多技术经济问题,比如在施工阶段,要确定施工组织方案、施工进度安排、设备和材料的选择等,如果我们忽略了对技术方案进行工程经济分析,就有可能造成重大的经济损失。通过工程经济的学习,有助于建造师增强经济观念,运用工程经济分析的基本理论和经济效果的评价方法,将建设工程管理建立在更加科学的基础之上。 1Z101010资金时间价值的计算及应用 人们无论从事何种经济活动,都必须花费一定的时间。在一定意义上讲,时间是一种最宝贵也是最有限的“资源”。有效地使用资源可以产生价值。所以,对时间因素的研究是工程经济分析的重要内容。要正确评价技术方案的经济效果,就必须研究资金的时间价值。 1Z101011 利息的计算 一、资金时间价值的概念 在工程经济计算中,技术方案的经济效益,所消耗的人力、物力和自然资源,最后都是以价值形态,即资金的形式表现出来的。资金运动反映了物化劳动和活劳动的运动过程,而这个过程也是资金随时间运动的过程。因此,在工程经济分析时,不仅要着眼于技术方案资金量的大小(资金收入和支出的多少)。而且也要考虑资金发生的时间。资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值。其实质是资金作为生产经营要素,在扩大再生产及其资金流通过程中,资金随时间周转使用的结果。 影响资金时间价值的因素很多,其中主要有以下几点: 1 ?资金的使用时间。在单位时间的资金增值率一定的条件下,资金使用时间越长,则资金的时间价值越大;使用时间越短,则资金的时间价值越小。 2 ?资金数量的多少。在其他条件不变的情况下,资金数量越多,资金的时间价值就越多;反之,资金的时间价值则越少。 3 .资金投人和回收的特点。在总资金一定的情况下,前期投入的资金越多,资金的负效益越大;反之,后期投入的资金越多,资金的负效益越小。而在资金 回收额一定的情况下,离现在越近的时间回收的资金越多,资金的时间价值就越多;反之,离现在越远的时间回收的资金越多,资金的时间价值就越少。 4 ?资金周转的速度。资金周转越快,在一定的时间内等量资金的周转次数越多,

资金的时间价值的复利法计算六个基本公式

资金的时间价值的复利法计算六个基本公式 2009年度全国注册造价工程师执业资格考试时间为:10月24、25日。环球网校辅导名师王双增教授对资金的时间价值的复利法计算六个基本公式给我们做了归纳和总结,以帮助大家更好把握该知识点! (一)复利计算 1.复利的概念 某一计息周期的利息是由本金加上先前计息周期所累积利息总额之和来计算的,该利息称为复利,即通常所说的“利生利”、 “利滚利”。 i——计息期复利率; n——计息的期数; P——现值(即现在的资金价值或本金),指资金发生在(或折算为)某一特定时间序列起点时的价值; F——终值(n期末的资金价值或本利和),指资金发生在(或折算为)某一特定时间序列终点的价值。 A——年金,发生在(或折算为)某一特定时间序列各计息期末(不包括零期)的等额资金序列的价值。 2、将六个资金等值换算公式以及对应的现金流量图归集于下表。 六个常用资金等值换算公式小结: 重点提示:这六个公式非常重要,前面说过可以简化为一个公式,另外一点更要强调的是:每个公式必须对应相应的现金流量图,不能有任何不一样的地方,如果不一样,就一定要先折算为一样的才能应用这六个基本公式。

免、抵、退"的计算方法最初是出于对付既有出口又有内销的生产企业而制定的一种特殊的出口退税的计算方法,后推广到所有的生产性的企业。该方法的采用一方面缓解了对国家退税的压力,又应对了企业利用虚假会计核算来骗取出口退税的问题。 下面我们通过一个例题来详细解释计算过程及其含义。 (一)资料: 假设某企业外购原材料100万(进项税额17万),其中40%部分用于生产内销产品,60%部分用于生产出口产品。产品全部销售,其中,内销销售额60万,外销销售额(出口离岸价格)120万。企业为生产出口货物还外购免税辅料40万(无进项税)。假设企业适用的退税率为15%,上期无进项税余额。 (二)解释 (1)如果政府相信企业的财会信息资料,那么,按照实际情况计算的结果是: 内销应纳增值税=60×17%-100×40%×17%=3.4万 出口应退增值税=100×60%×15%=9万 征、退差额进企业成本:100×60%×(17%-15%)=1.2万 (2)政府实际的想法及其对策 第一、由于企业财会信息虚假普遍,因而导致政府不相信企业的财会核算。 第二、为了防止多退税,政府决定将所有进项税额先用于抵顶内销的销项税额。如果抵顶完了就不再退税;如果抵顶不完,再来退税。如此可以减少政府支付的退税额。这就是所谓的“免、抵、退”。 第三、由于退税率只有15%,所以,在抵顶内销销项税额之前先要将征、退差额转出。但由于政府不相信企业的财会核算资料,政府不可能根据出口货物的实际成本来计算转出税额,因而缺少一个合理的计算转出税额的依据。对于政府来说,在上述所有的资料和信息中比较容易掌控和相信的只有出口的离岸价格。因此最后政府决定根据出口货物的离岸价格作为计算进项税额转出的依据。但是,由于出口货物的离岸价格中包含了免税辅料的成本,所以要从离岸价格中减除免税辅料的成本,这样就得出了计算进项税额转出(即教材上所称的“免抵退税不得免征和抵扣税额”)的计算公式。 应转出的进项税额=(120-40)×(17%-15%)=1.6万 (也可以写成教材上的格式: 免抵退税不得免征和抵扣税额=120×(17%-15%)-40×(17%-15%)=1.6万) 因此: 内销应纳增值税=60×17%-(17-1.6)=-5.2万 第四、如果计算内销应纳增值税时得出的结果是负数,意味着内销不需要交纳增值税并且还有进项税额未抵顶完(即教材中所称的“期末留抵税额”),因而可以进行退税。但问题是,并不是所有剩余未抵顶完的进项

资金的时间价值及其计算

第四章工程经济 第一节资金的时间价值及其计算 一、内容提要 1.现金流量 2.资金的时间价值 3.利息计算 4.等值计算 5.名义利率和有效利率 二、重点、难点分析 重点与难点主要涉及等值计算和名义利率和有效利率的计算。 三、内容讲解 一、现金流量与资金的时间价值 (一)现金流量 1.现金流量的含义 在工程经济分析中,通常将所考察的对象视为一个独立的经济系统。在某一时点t流入系统的资金称为现金流入,记为CIt;流出系统的资金称为现金流出,记为COt;同一时点上的现金流入与现金流出的代数和称为净现金流量,记为NCF或(CI-CO)t。现金流入量、现金流出量、净现金流量统称为现金流量。 2.现金流量图 现金流量图是一种反映经济系统资金运动状态的图式,运用现金流量图可以全面、形象、直观地表示现金流量的三要素:大小(资金数额)、方向(资金流入或流出)和作用点(资金的发生时间点)。如图4.1.1所示。 A A A A A A1A2 图4.1.1 现金流量图

现金流量图的绘制规则如下: (1)横轴为时间轴,零表示时间序列的起点,n表示时间序列的终点。轴上每一间隔代表一个时间单位(计息周期),可取年、半年、季或月等。整个横轴表示的是所考察的经济系统的寿命期。 (2)与横轴相连的垂直箭线代表不同时点的现金流入或现金流出。在横轴上方的箭线表示现金流入(收益);在横轴下方的箭线表示现金流出(费用)。 (3)垂直箭线的长短要能适当体现各时点现金流量的大小,并在各箭线上方(或下方)注明其现金流量的数值。 (4)垂直箭线与时间轴的交点即为现金流量发生的时点。 例题:关于现金流量图绘制规则的说法,正确的有()。 A.横轴为时间轴,整个横轴表示经济系统寿命期 B.横轴的起点表示时间序列第一期期末 C.横轴上每一间隔代表一个计息周期 D.与横轴相连的直箭线代表现金流量 E.谁直箭线的长短应体现各时点现金流量的大小 【答案】ACD 【解析】现金流量图的绘制规则:横轴为时间轴,轴上每一间隔代表一个时间单位(计息周期),整个横轴表示的是所考察的经济系统的寿命期;与横轴相连的垂直箭线代表不同时点的现金流入或现金流出;在横轴上方的剪线表示现金流入,在横轴下方表示现金流出;垂直箭线的长短要能适当体现各时点现金流量的大小;垂直箭线与时间轴的交点即为现金流量发生的时点。 (二)资金的时间价值 1.资金时间价值的概念 如果将一笔资金存入银行会获得利息,投资到工程项目中可获得利润。而如果向银行借贷,也需要支付利息。这反映出资金在运动中,会随着时间的推移而变动。变动的这部分资金就是原有资金的时间价值。 2.利息与利率 利息是资金时间价值的一种重要表现形式。通常,用利息额作为衡量资金时间价值的绝对尺度,用利率作为衡量资金时间价值的相对尺度。 (1)利息。在借贷过程中,债务人支付给债权人超过原借贷款金额(常称作本金)的部分,就是

资金时间价值与等值计算例题2

资金时间价值与等值计算例题2答案 1、某人在第一年初存入10000元,第三年初存入20000元,存款年利率为5%,复利计息, 第五年末一次性取出,问共可取出多少钱?作出现金流量图。 解:运用一次支付终值公式将这两笔存款分别折算到第年末,再相加即得。 F′=10000×(1+5%)5=12762.82 (元),F″=20000×(1+5%)3=23152.50 (元) F=F′+F″=12762.82+23152.50=35915.32(元) 2、某人从第一年末开始,每年存款5000元,共存五年,利率为6%,问第五年末共可取出 多少钱?取出的这笔钱相当于第一年初多少钱?作出现金流量图。 分析:已知A,i,n,运用等额支付终值公式求F,再对已经求得的F用一次支付现值公式求现值P;或者直接根据已知的A,i,n,运用等额支付现值公式求P。 解:F=5000×[(1+6%)5-1]/6%=28185.46(元) P=28185.46/(1+6%)5=21061.82 (元), 或者P=5000×[(1+6%)5-1]/[6%×(1+6%)5]=21061.82 (元)

3、某人准备在三年后用100000元购买一辆轿车,若从现在起每年年末存入银行等额的钱, 存期三年,利率为4%,这笔等额的钱是多少?如果是在第一年初一次性存入一笔钱用于三年后买车,应存多少?作出现金流量图。 分析:已知F,i,n,运用等额支付偿债基金公式求A,运用一次支付现值公式求P。 解:A=100000×4% /[(1+4%)3-1]=32034.85(元) P=100000/(1+4%)3=88899.64 (元)。 4、某人投资1000000元,投资收益率为8%,每年等额收回本息,共六年全部收回,问每 年收回多少钱?作出现金流量图。 分析:已知P,i,n,运用等额支付投资回收公式求A。 解:A=1000000×8%×(1+8%)6/[(1+8%)6-1]=216315.39(元) 5、某人欲从今年起,每年末得到10000元,共二十年。若银行利率为7%,问今年初应一 次性存入多少钱?作出现金流量图。 分析:已知A,i,n,运用等额支付现值公式求P。 解:P=10000×[(1+7%)20-1]/[7%×(1+7%)20]=105940.14(元)

货币的时间价值相关公式推导

货币的时间价值相关公式推导 第一节 单利与复利 ) )(1(: )1(: : 计算贴现息是根据到期值来 单利现值 单利终值 单利利息 n i FV n i FV FV I FV PV n i PV n i PV PV I PV FV n i PV I n ?-=??-=-=?+=??+=+=??= n i n n n n i n n PVIF FV i FV PV FVIF PV i PV FV PV FV I i I ,,) 1(: )1(: : ?=+= ?=+=-=?=复利现值复利终值 上一期本利和复利利息 当期 in n in i n i m m m m m e FV PV e PV e PV FV 。 i e m I m I EAR m I m m I EAR -∞ →∞ →==-+=-=-+=-+=∞→-+=.: .)11(: ,1]1)/1[(lim ]1)/1[(lim .) ,11(1)/1(: 连续复利现值连续复利终值为连续复利 时 当为年名义利率次的利息年内复利计息元在连续复利 EAR 是EFFECTIVE ANNUAL RA TE ,有效年利率,推导如下。 下为R m : 。 ;R m R e R m m R e Ae m R A c m R m m m R n R mn m m c c C 是连续复利的利率次的利率指每年计息 时1 1) 1()1(lim -==+ ==+ ∞→

第二节 年金终值与年金现值 ... ...),...(,,,1 13 12 1113 12 111++++++-n q a q a q a q a a q q a q a q a a 等比级数 公比为等比数列 ) 1(111)1(1 11 1111 1<-= = --= --= =∑ ∞ =--n n n n n n n q q a q a S q q a a q q a S n q a a 无穷递减等比级数的和 项和前通项公式 ] 1 )1(.[ ) 1(1])1(1.[,)1.(...)1.()1.(: 1 2 1 i i A i i A FVA i A i A i A A FVA n n n n n -+=+-+-= +++++++=-根据等比数列求和公式年金终值推导 ]) 1(11.[11 1] )11(1.[1,) 1(...) 1() 1(:2 n n n i i i A i i i A PV i A i A i A PV +-=+- +-+= +++++ += 根据等比数列求和公式 年金现值公式推导

资金时间价值计算公式

P=F?(P/F,I,n) F=A?(F/A, i,n) A=F?(A/F,i,n) A=P?(A/P,i,n) P=A?(P/A,I,n) 在什么情况下使用以上公式?上述公式之间相互关系? F=P?(F/P,i,n) 复利终值的计算公式为:F=P·(1+i)n(次方) 式中(1+i)n简称“复利终值系数”,记作(F/P,i,n)。 复利现值与复利终值互为逆运算,其计算公式为:P=F·(1+i) -n(次方) 式中(1+i) -n简称“复利现值系数”,记作(P/F,i,n)。 年金终值的计算 年金终值是指在一定的时期内,每隔相同的时间收入或支出一笔相等金额,在到期时按复利计算的本利和。其计算公式为:F=A[(1+i)n-1]/i=A(F/A,i,n)式中的[(1+i)n-1]/i称为年金终值系数;一般表示为(F/A,i,n)。 年金现值的计算 年金现值是指将在一定时期内按相同时间间隔在每期期末收入或支付的相等金额折算到第一期初的现值之和。其计算公式为:P=A[(1+i)n-1]/[i(1+i)n]=A(P/A,i,n)式中的[(1+i)n-1]/[i(1+i)n]称为年金现值系数,一般表示为(P/A,i,n) 假设你现在往银行里面存入100块钱,年利率是5%,那么过5年后你能从银行里面取多少钱? 第一年末你账户的钱是(1+5%)100 第二年末你账户的钱是(1+5%)(1+5%)100 以此类推 第五年年末你账户的钱是100(1+5%)^5 因此发现终值F=P(1+i)^n

复利终值的计算公式为:F=P·(1+i)n(次方) 式中(1+i)n简称“复利终值系数”,记作(F/P,i,n)。 复利现值与复利终值互为逆运算,其计算公式为:P=F·(1+i) -n(次方) 式中(1+i) -n简称“复利现值系数”,记作(P/F,i,n)。 年金终值的计算 年金终值是指在一定的时期内,每隔相同的时间收入或支出一笔相等金额,在到期时按复利计算的本利和。其计算公式为:F=A[(1+i)n-1]/i=A(F/A,i,n)式中的[(1+i)n-1]/i称为年金终值系数;一般表示为(F/A,i,n)。 年金现值的计算 年金现值是指将在一定时期内按相同时间间隔在每期期末收入或支付的相等金额折算到第一期初的现值之和。其计算公式为:P=A[(1+i)n-1]/[i(1+i)n]=A(P/A,i,n)式中的[(1+i)n-1]/[i(1+i)n]称为年金现值系数,一般表示为(P/A,i,n) 现值系数有2种:a.年金现值系数:(P/A,i,n )=(1-(1+i)的负N次方)/ i ;b.复利现值系数:(P/F,i,n ))=(1+i)的负N次方。 终值系数也有2种:a.年金终值系数:(F/A,i,n )=((1+i)的N次方-1)/ i ;b.复利终值系数:(F/P,i,n )=(1+i)的N次方。其中i表示利率。 一般题目中现值、终值系数都会给出,但表示的方式为(P/A,i,n ),(F/A,i,n ),所以你只需记住这些公式符号代表的含义。 F=A?(F/A, i,n) 这事个有效利率的问题吧P/F,i,m 就是已知F(本利和)i (利息)m(计息周期)因为有个r(名义利率)=i*m 所以相当于P=F(P/F,r/m,mn)这个地方的利息实际为i,计息期数为mn。 扩展公式P=F(1+i)^-n 把i=r/m n=mn代进去就好了。P=F(1+r/m)^-mn 举例:r=12%是名义年利率。前提:复利计算,每月计息一次。月实际利率 =12%/12=1%,而实际年利率=(1+1%)^12=12.68% 追问 额·前面那个公式扩展开来是:Ax1-(1+i)^-n/i```你可以用我这个格式把后面那个公式扩展给我吗~ 回答 P=F(1+r/m)^-mn这个就是扩展公式了,因为你说的那个(P/A,i,n)是知道每期交款,一期期累计得出你那个Ax1-(1+i)^-n/i``` ,这个是知道期末的本息和,

第二章 资金时间价值计算题及答案

第二章资金时间价值计算题及答案 资金时间价值练习 1.某企业购置一台新设备,方案实施时,立即投入20 000元,第二年末又投入15 000元,第4年末又投入10 000元,年利率为5%,问第10年末此设备价值为多少? 2.某企业从银行贷款,年利率为6%,议定一次贷款分两期偿还。贷款后第2年末偿还10万元,第4年末偿还20万元。问该企业现在从银行可贷款多少钱? 3.某人出国5年,请你代付房租,每年年末付租金2 500元,若i=5%, (1)若现在付,一次给你多少钱? (2)若回来付,一次给你多少钱? 4.若年利率6%,半年复利一次,现在存入10万元,5年后一次取出多少? 5.现在存入20万元,当利率为5%,要多少年才能到达30万元? 6.已知年利率12%,每季度复利一次,本金10 000元,则第五年末为多少? 7.购5年期国库券10万元,票面利率5%,单利计算,实际收益率是多少? 8.年初存入10 000元,若i=10%,每年末取出2 000元,则最后一次能足额提款的时间为第几年? 9.假设以10%的年利率借得30 000元,投资于某个寿命为10年的项目,每年至少等额收回多少款项方案才可行? 10.公司打算连续3年每年初投资100万元,建设一项目,现改为第一年初投入全部资金,若i=10%,则现在应一次投入多少? 11.一项固定资产使用5年,更新时的价格为200 000元,若企业资金成本为12%,每年应计提多少折旧才能更新设备? 12.有甲、乙两台设备,甲的年使用费比乙低2 000元,但价格高10 000元,若资金成本为5%,甲的使用期应长于多少年,选用甲才是合理的? 13.公司年初存入一笔款项,从第四年末起,每年取出1 000元至第9年取完,年利率10%,期初应存入多少款项? 若改为从第4年初起取款,其他条件不变,期初将有多少款项? 14.拟购一房产,两种付款方法: (1)从现在起,每年初付20万,连续付10次,共200万元。 (2)从第五年起,每年初付25万,连续10次,共250万元。 若资金成本5%,应选何方案?

资金时间价值的计算公式汇总

(1)所谓复利也称利上加利,是指一笔存款或者投资获得回报之后,再连本带利进行新一轮投资的方法。 (2)复利终值是指本金在约定的期限内获得利息后,将利息加入本金再计利息,逐期滚算到约定期末的本金之和。 (3)复利现值是指在计算复利的情况下,要达到未来某一特定的资金金额,现在必须投入的本金。 例如:本金为50000元,利率或者投资回报率为3%,投资年限为30年,那么,30年后所获得的利息收入,按复利计算公式来计算就是:50000×(1+3%)30 由于,通胀率和利率密切关联,就像是一个硬币的正反两面,所以,复利终值的计算公式也可以用以计算某一特定资金在不同年份的实际价值。只需将公式中的利率换成通胀率即可。 这均是时间价值问题,简单来讲,今天的100元不等于5年后的100元,那5年后的100元相当于今天的多少呢?这就需要贴现,即用100乘以期限为5,相应利率的复利现值系数,而如果要知道今天的100元相当于5年后的多少呢?则用100乘以复利终值系数,也就是求本利和。这里的复利终值系数和复利现值系数都是在复利计算下推出的。(一次性收付款) 年金是每隔相同时间就发生相等金额的收付款,比如房租,如果发生时间在每期期末,则称为普通年金,如果以后5年中每年末可以得到100元,相当于今天能得多少(从时间价值考虑,肯定不是500元)就要用100乘以普通年金现值系数 ,反之,比如每年末存银行100元,在复利下5年能得到多少?则用100乘以年金终值系数 复利终值系数、复利现值系数是针对一次性收付款,而年金终值系数和年金现值系数是系列收付款,而且是特殊的系列收付款 不知道明白没有,最好能看看财务管理中时间价值章节 终值的计算 终值是指货币资金未来的价值,即一定量的资金在将来某一时点的价值,表现为本利和。 单利终值的计算公式:f=p(1+r×n) 复利终值的计算公式:f = p(1+r)n 式中f表示终值;p表示本金;r表示年利率;n表示计息年数 其中,(1+r)n称为复利终值系数,记为fvr,n,可通过复利终值系数表查得。 现值的计算 现值是指货币资金的现在价值,即将来某一时点的一定资金折合成现在的价值。 单利现值的计算公式: 复利现值的计算公式: 式中p表示现值;f表示未来某一时点发生金额;r表示年利率;n表示计息年数 其中称为复利现值系数,记为pvr,n,可通过复利现值系数表查得。 注意:在利率(r)和期数(n)一定时,复利现值系数和复利终值系数互为倒数。 年金 年金是在一定时期内每隔相等时间、发生相等数额的收付款项。在经济生活中,年金的现象十分普遍,如等额分期付款、直线法折旧、每月相等的薪金、等额的现金流量等。年金按发生的时间不同分为:普通年金和预付年金。普通年金又称后付年金,是每期期末发生的年金;预付年金是每期期初发生的年金。 (1)普通年金终值 将每一期发生的金额计算出终值并相加称为年金终值。 普通年金终值计算公式为: 其中,称为年金终值系数,记为fvar,n,可通过年金终值系数表查得。 (2)普通年金现值

资金的时间价值及计算

资金的时间价值及计算 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

资金的时间价值及计算 一、资金的时间价值 社会的生产过程也是资金运动的过程。在生产过程中投入了资金,由于人的劳动,增加了新的财富,资金实现了增殖。资金的增殖不仅与投入的资金的数量有关,而且与投入的时间,占用的时间有关。投入的时间不同,占用的时间不同,资金增殖也就不同。资金随时间而增殖的能力称为资金的时间价值,也称为货币的时间价值。 在技术经济分析中,需要把不同时间点上的现金流量折算为同一时间点上的现金流量进行比较。 二、复利公式 计算利息分为单利和复利两种。计息的时间单位称为单位计息期(如年、月、季度等)。单利法是对本金计息,而不对利息再计利息。所以用单利法计算的利息与计息的时间成正比。 设P代表本金,n代表计息期数,i代表计息期的利率,则用单利法计算n个计息期数后本利和F为: F=P(1+n i) 复利除了本金计息以外,利息还要再计利息。用复利法计算n个计息期数后本利和F为: F=P(1+i)n 根据数学分析可知,当i>0时,恒有(1+i)n>(1+ni)。就是说,对相同的本金、相同的利率和计息期数,用复利法计算的本利和总是大于用单利法计算的本利和,当本金P越大,利率i越高,计息期数n越长时,两者的差别就越大。

技术经济分析中,绝大多数情况是采用复利计息的。复利计息的系数常用的有七个。 1.复利终值系数 已知现值P ,利率为i ,计息期数为n ,则复利终值F 为: F=P(1+i)n (1+i)n 称为复利终值系数或一次偿付复利系数;用符号(F/P ,i ,n)来表示。 例 : 某人把1000元钱存入银行,每年利率为6%,5年之后全部取出,可得多少元 F=P(F /P ,i ,n) =1000(F /P ,6%,5) =1000×=(元) 现金流量图见图 2.复利现值系数 已知将来值F 由F=P(1+i)n 得: P=F n i ) 1(1+ n i )1(1+称为复利现值系数或一次偿付现值系数,用符号(P/F ,i ,n)来表示。 例: 某人拟在2020年末取得10000元存款,如果银行的年利率为9%,那么在2006年初要存入多少现款 P=F(P/F ,i ,n)

实验一资金时间价值的计算

实验一 资金时间价值的计算 实验目的:运用Excel 软件分析单利终值计算与分析模型,复利终值计算与分析模型,单利与复利现值选择计算与比较分析模型,年金的终值与现值的计算模型和复利终值系数计算模型,股票估价模型。 实验内容:掌握输入公式,显示公式与显示计算结果之间的切换,公式审核,复制公式,绝对引用与相对引用,创建图表,掌握FV 、PV 函数的功能,调用函数的方法,单变量模拟运算表,双变量模拟运算表。 一、终值的计算 (一)单利终值的计算与分析模型 终值是指现在的一笔资金在一定时期之后的本利和或未来值。一笔现金流的单值终值是指现在的一笔资金按单利的方法只对最初的本金计算利息,而不对各期产生的利息计算利息,在一定时期以后所得到的本利和。单利终值的计算公式为: 公式中:FS 为单利终值;P 为现在的一笔资金;iS 为单利年利率;n 为计息期限。 【例1-1】:某企业在银行存入30000元,存期10年,银行按6%的年利率单利计息。要求建立一个单利终值计算与分析模型,并使该模型包括以下几个功能:(1)计算这笔存款在10年末的单利终值;(2)分析本金、利息和单利终值对计息期限的敏感性;(3)绘制本金、利息和单利终值与计息期限之间的关系图。 建立单利终值计算与分析模型的具体步骤如下: 1、 计算存款在10年末的单利终值 (1)打开一个新的Excel 工作薄,在Sheet1工作表的单元格区域A1:B4输入已知条件,并在单元格区域D1:E2设计计算结果输出区域的格式。如图1-1所示。 (2)选取单元格E2,输入公式“=B2*(1+B3*B4)”。如图1-2所示。 图1-1 已知条件和计算结果区域 ) 1(n i P n i P P F S S S ?+?=??+=

资金的时间价值及计算

资金的时间价值及计算 一、资金的时间价值 社会的生产过程也是资金运动的过程。在生产过程中投入了资金,由于人的劳动,增 加了新的财富,资金实现了增殖。资金的增殖不仅与投入的资金的数量有关,而且与投入 的时间,占用的时间有关。投入的时间不同,占用的时间不同,资金增殖也就不同。资金 随时间而增殖的能力称为资金的时间价值,也称为货币的时间价值。 在技术经济分析中,需要把不同时间点上的现金流量折算为同一时间点上的现金流量 进行比较。 二、复利公式 计算利息分为单利和复利两种。计息的时间单位称为单位计息期(如年、月、季度等)。单利法是对本金计息,而不对利息再计利息。所以用单利法计算的利息与计息的时间成正 比。 设P代表本金,n代表计息期数,i代表计息期的利率,则用单利法计算n个计息期数后本利和F为: F=P(1+ni) 复利除了本金计息以外,利息还要再计利息。用复利法计算n个计息期数后本利和F 为: F=P(1+i)n 根据数学分析可知,当i>0时,恒有(1+i)n>(1+ni)。就是说,对相同的本金、相同的利率和计息期数,用复利法计算的本利和总是大于用单利法计算的本利和,当本金P越大,利率i越高,计息期数n越长时,两者的差别就越大。 技术经济分析中,绝大多数情况是采用复利计息的。复利计息的系数常用的有七个。 1.复利终值系数 已知现值P,利率为i,计息期数为n,则复利终值F为: F=P(1+i)n (1+i)n称为复利终值系数或一次偿付复利系数;用符号(F/P,i,n)来表示。 例 : 某人把1000元钱存入银行,每年利率为6%,5年之后全部取出,可得多少元? F=P(F/P,i,n) =1000(F/P,6%,5) =1000×1.3382=1338.2(元) 现金流量图见图 F=? 0 1 2 3 4 5 P=1000 2.复利现值系数 已知将来值F,利率i,计息期数n,求现值P。

相关文档
相关文档 最新文档