文档库 最新最全的文档下载
当前位置:文档库 › 菱形难题组卷答案

菱形难题组卷答案

菱形难题组卷答案
菱形难题组卷答案

答案

四.填空题(共29小题)

1.(2012?沈阳)如图,菱形ABCD的边长为8cm,∠A=60°,DE⊥AB于点E,DF⊥BC于点F,则四边形BEDF的面积为16cm2.

考点:菱形的性质;等边三角形的判定与性质.

专题:压轴题.

分析:连接BD,可得△ABD是等边三角形,根据菱形的对称性与等边三角形的对称性可得四边形BEDF的面积等于△ABD的面积,然后求出DE的长度,再根据三角形的面积公式列式计算即可得解.

解答:解:如图,连接BD,∵∠A=60°,AB=AD(菱形的边长),

∴△ABD是等边三角形,

∴DE=AD=×8=4cm,

根据菱形的对称性与等边三角形的对称性可得,四边形BEDF的面积等于△ABD的面积,

×8×4=16cm2.

故答案为:16.

点评:本题考查了菱形的性质,等边三角形的判定与性质,作出辅助线构造出等边三角形是解题的关键.2.(2012?湖州)如图,将正△ABC分割成m个边长为1的小正三角形和一个黑色菱形,这个黑色菱形可分割成n个边长为1的小三角形,若=,则△ABC的边长是12 .

考点:菱形的性质;等边三角形的性质.

专题:压轴题;规律型.

分析:

设正△ABC的边长为x,根据等边三角形的高为边长的倍,求出正△ABC的面积,再根据菱形的性质结合图形表示出菱形的两对角线,然后根据菱形的面积等于两对角线乘积的一半表示出菱形的

面积,然后根据所分成的小正三角形的个数的比等于面积的比列式计算即可得解.

解答:

解:设正△ABC的边长为x,则高为x,

S△ABC=x?x=x2,

∵所分成的都是正三角形,

∴结合图形可得黑色菱形的较长的对角线为x﹣,较短的对角线为(x﹣)=x﹣1,

∴黑色菱形的面积=(x﹣)(x﹣1)=(x﹣2)2,

∴==,

整理得,11x2﹣144x+144=0,

解得x1=(不符合题意,舍去),x2=12,

所以,△ABC的边长是12.

故答案为:12.

点评:本题考查了菱形的性质,等边三角形的性质,熟练掌握有一个角等于60°的菱形的两条对角线的关系是解题的关键,本题难点在于根据三角形的面积与菱形的面积列出方程.

3.(2012?西宁)如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD中点,点P 在x轴上移动,小明同学写出了两个使△POE为等腰三角形的P点坐标(﹣5,0)和(5,0).请你写出其余所有符合这个条件的P点坐标(8,0)或(,0).

考点:菱形的性质;坐标与图形性质;等腰三角形的判定.

专题:压轴题.

分析:由在菱形ABCD中,AC=12,BD=16,E为AD中点,根据菱形的性质与直角三角形的性质,易求得OE 的长,然后分别从①当OP=OE时,②当OE=PE时,③当OP=EP时去分析求解即可求得答案.

解答:解:∵四边形ABCD是菱形,

∴AC⊥BD,OA=AC=×12=6,OD=BD=×16=8,

∴在Rt△AOD中,AD==10,

∵E为AD中点,

∴OE=AD=×10=5,

①当OP=OE时,P点坐标(﹣5,0)和(5,0);

②当OE=PE时,此时点P与D点重合,即P点坐标为(8,0);

③如图,当OP=EP时,过点E作EK⊥BD于K,作OE的垂直平分线PF,交OE于点F,交x轴于点P,

∴EK∥OA,

∴EK:OA=ED:AD=1:2,

∴EK=OA=3,

∴OK==4,

∵∠PFO=∠EKO=90°,∠POF=∠EOK,

∴△POF∽△EOK,

∴OP:OE=OF:OK,

即OP:5=:4,

解得:OP=,

∴P点坐标为(,0).

∴其余所有符合这个条件的P点坐标为:(8,0)或(,0).

故答案为:(8,0)或(,0).

点评:此题考查了菱形的性质、勾股定理、直角三角形的性质以及等腰三角形的性质.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.

4.(2012?鄂尔多斯)如图,将两张长为4,宽为1的矩形纸条交叉并旋转,使重叠部分成为一个菱形.旋转过程中,当两张纸条垂直时,菱形周长的最小值是4,那么菱形周长的最大值是.

考点:菱形的性质.

专题:压轴题.

分析:作出图形,确定当两矩形纸条有一条对角线互相重合时,菱形的周长最大,设菱形的边长为x,表示出AB,然后利用勾股定理列式进行计算求出x,再根据菱形的四条边都相等解答.

解答:解:如图,菱形的周长最大,

设菱形的边长AC=x,则AB=4﹣x,

在Rt△ABC中,AC2=AB2+BC2,

即x2=(4﹣x)2+12,

解得x=,

所以,菱形的最大周长=×4=.

故答案为:.

点评:本题考查了菱形的性质,勾股定理的应用,确定出菱形的周长最大时的位置是解题的关键,作出图形更形象直观.

5.(2012?杭州)已知一个底面为菱形的直棱柱,高为10cm,体积为150cm3,则这个棱柱的下底面积为15 cm2;若该棱柱侧面展开图的面积为200cm2,记底面菱形的顶点依次为A,B,C,D,AE是BC边上的高,则CE的长为1或9 cm.

考点:菱形的性质;认识立体图形;几何体的展开图.

专题:压轴题.

分析:由底面为菱形的直棱柱,高为10cm,体积为150cm3,由体积=底面积×高,即可求得这个棱柱的下底面积,又由该棱柱侧面展开图的面积为200cm2,即可求得底面菱形的周长与BC边上的高AE的长,由勾股定理求得BE的长,继而求得CE的长.

解答:解:∵底面为菱形的直棱柱,高为10cm,体积为150cm3,

∴这个棱柱的下底面积为:150÷10=15(cm2);

∵该棱柱侧面展开图的面积为200cm2,高为10cm,

∴底面菱形的周长为:200÷10=20(cm),

∴AB=BC=CD=AD=20÷4=5(cm),

∴AE=S菱形ABCD÷BC=15÷5=3(cm),

∴BE==4(cm),

∴如图1:EC=BC﹣BE=5﹣4=1(cm),

如图2:EC=BC+BE=5+4=9(cm),

故答案为:15;1或9.

点评:此题考查了菱形的性质、直棱柱的性质以及勾股定理.此题难度不大,注意审题,掌握直棱柱体积与侧面积的求解方法.

11.(2009?黑河)如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为()n﹣1.

考点:菱形的性质.

专题:压轴题;规律型.

分析:根据已知和菱形的性质可分别求得AC,AC

,AC2的长,从而可发现规律根据规律不难求得第n个菱

1

形的边长.

解答:解:连接DB,

∵四边形ABCD是菱形,

∴AD=AB.AC⊥DB,

∵∠DAB=60°,

∴△ADB是等边三角形,

∴DB=AD=1,

∴BM=,

∴AM==,

∴AC=,

同理可得AC1=AC=()2,AC2=AC1=3=()3,

按此规律所作的第n个菱形的边长为()n﹣1

故答案为()n﹣1.

点评:此题主要考查菱形的性质以及学生探索规律的能力.

12.(2009?安顺)如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A﹣>B﹣>C ﹣>D﹣>E﹣>F﹣>C﹣>G﹣>A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在 B 点.

考点:菱形的性质.

专题:压轴题;规律型.

分析:根据题意可求得其每走一个循环是8米,从而可求得其行走2009米走了几个循环,即可得到其停在哪点.

解答:解:根据“由A点开始按A﹣>B﹣>C﹣>D﹣>E﹣>F﹣>C﹣>G﹣>A的顺序沿菱形的边循环运动”可得出,每经过8米完成一个循环,

∵2009÷8=251余1,

∴行走2009米停下,即是在第252个循环中行走了一米,即停到了B点.

故答案为B.

点评:本题考查的是循环的规律,要注意所求的值经过了几个循环,然后便可得出结论.

16.(2008?大兴安岭)如图,菱形AB1C1D1的边长为1,∠B1=60°;作AD2⊥B1C1于点D2,以AD2为一边,做第二个菱形AB2C2D2,使∠B2=60°;作AD3⊥B2C2于点D3,以AD3为一边做第三个菱形AB3C3D3,使∠B3=60°…

依此类推,这样做的第n个菱形AB n C n D n的边AD n的长是.

考点:菱形的性质.

专题:压轴题;规律型.

分析:本题要找出规律方能解答.第一个菱形边长为1,∠B

=60°,可求出AD2,即第二个菱形的边长…

1

按照此规律解答即可.

解答:

解:第1个菱形的边长是1,易得第2个菱形的边长是;

第3个菱形的边长是()2;…

每作一次,其边长为上一次边长的;

故第n个菱形的边长是()n﹣1.

故答案为:()n﹣1.

点评:本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.

21.(2007?德州)如图,在菱形ABCD中,∠B=60°,点E、F分别从点B、D出发以同样的速度沿边BC、DC向点C运动.给出以下四个结论:

①AE=AF;

②∠CEF=∠CFE;

③当点E,F分别为边BC,DC的中点时,△AEF是等边三角形;

④当点E,F分别为边BC,DC的中点时,△AEF的面积最大.

上述结论中正确的序号有①②③.(把你认为正确的序号都填上)

考点:菱形的性质.

专题:压轴题;动点型.

分析:根据菱形的性质对各个结论进行验证从而得到正确的序号.

解答:解:∵点E、F分别从点B、D出发以同样的速度沿边BC、DC向点C运动,

∴BE=DF,

∵AB=AD,∠B=∠D,

∴△ABE≌△ADF,

∴AE=AF,①正确;

∴CE=CF,

∴∠CEF=∠CFE,②正确;

∵在菱形ABCD中,∠B=60°,

∴AB=BC,

∴△ABC是等边三角形,

∴当点E,F分别为边BC,DC的中点时,BE=AB,DF=AD,

∴△ABE和△ADF是直角三角形,且∠BAE=∠DAF=30°,

∴∠EAF=120°﹣30°﹣30°=60°,

∴△AEF是等边三角形,③正确;

∵△AEF的面积=菱形ABCD的面积﹣△ABE的面积﹣△ADF的面积﹣△CEF的面积=AB2﹣

BE?AB××2﹣××(AB﹣BE)2=﹣BE2+AB2,

∴△AEF的面积是BE的二次函数,

∴当BE=0时,△AEF的面积最大,④错误.

故正确的序号有①②③.

点评:本题考查了菱形的性质、全等三角形的判定和等边三角形的判定.

23.(2005?黑龙江)已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP的长为或.

考点:菱形的性质.

专题:压轴题;分类讨论.

分析:根据题意得,应分P与A在BD的同侧与异侧两种情况进行讨论.

解答:解:当P与A在BD的异侧时:连接AP交BD于M,

∵AD=AB,DP=BP,

∴AP⊥BD(到线段两端距离相等的点在垂直平分线上),

在直角△ABM中,∠BAM=30°,

∴AM=AB?cos30°=3,BM=AB?sin30°=3,

∴PM==,

∴AP=AM+PM=4;

当P与A在BD的同侧时:连接AP并延长AP交BD于点M

AP=AM﹣PM=2;

当P与M重合时,PD=PB=3,与PB=PD=2矛盾,舍去.

AP的长为4或2.

故答案为4或2.

点评:本题注意到应分两种情况讨论,并且注意两种情况都存在关系AP⊥BD,这是解决本题的关键.

24.(2003?温州)如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.

考点:菱形的性质;线段垂直平分线的性质.

专题:压轴题;动点型.

分析:过点E作PE⊥AB,交AC于P,则PA=PB,根据已知得到PA=2EP,根据勾股定理可求得PE,PA的值,从而可得到PE+PB的最小值.

解答:解:当点P在AB的中垂线上时,PE+PB有最小值.

过点E作PE⊥AB,交AC于P,则PA=PB.

∵∠B=120°

∴∠CAB=30°

∴PA=2EP

∵AB=2,E是AB的中点

∴AE=1

在Rt△APE中,PA2﹣PE2=1

∴PE=,PA=

∴PE+PB=PE+PA=.

故答案为.

点评:本题考查的是中垂线,菱形的邻角互补.勾股定理和最值.本题容易出现错误的地方是对点P的运动状态不清楚,无法判断什么时候会使PE+PB成为最小值.

29.(2012?凉山州)如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA的中点,则EG2+FH2= 36 .

考点:菱形的判定与性质;勾股定理;三角形中位线定理.

专题:计算题;压轴题.

分析:连接EF,FG,GH,EH,由E、F、G、H分别是AB、BC、CD、DA的中点,得到EH,EF,FG,GH分别是△ABD,△ABC,△BCD,△ACD的中位线,根据三角形中位线定理得到EH,FG等于BD的一半,EF,GH等于AC的一半,由AC=BD=6,得到EH=EF=GH=FG=3,根据四边都相等的四边形是菱形,得到EFGH为菱形,然后根据菱形的性质得到EG⊥HF,且EG=2OE,FH=2OH,在Rt△OEH中,根据勾股定理得到OE2+OH2=EH2=9,再根据等式的性质,在等式的两边同时乘以4,根据4=22,把等式进行变形,并把EG=2OE,FH=2OH代入变形后的等式中,即可求出EG2+FH2的值

解答:解:如右图,连接EF,FG,GH,EH,

∵E、H分别是AB、DA的中点,

∴EH是△ABD的中位线,

∴EH=BD=3,

同理可得EF,FG,GH分别是△ABC,△BCD,△ACD的中位线,

∴EF=GH=AC=3,FG=BD=3,

∴EH=EF=GH=FG=3,

∴四边形EFGH为菱形,

∴EG⊥HF,且垂足为O,

∴EG=2OE,FH=2OH,

在Rt△OEH中,根据勾股定理得:OE2+OH2=EH2=9,

等式两边同时乘以4得:4OE2+4OH2=9×4=36,

∴(2OE)2+(2OH)2=36,

即EG2+FH2=36.

故答案为:36.

点评:此题考查了菱形的判定与性质,勾股定理,三角形的中位线定理以及等式的基本性质,本题的关键是连接EF,FG,GH,EH,得到四边形EFGH为菱形,根据菱形的性质得到EG⊥HF,建立直角三角形,利用勾股定理来解决问题.

一.解答题(共1小题)

考点:菱形的判定与性质;全等三角形的判定与性质;三角形中位线定理;正方形的判定.

专题:几何综合题;压轴题.

分析:(1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;

(2)成立,可以根据四边都相等的四边形是菱形判定;

(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH是菱形,则四边形EFGH是正方形.

解答:解:

(1)四边形EFGH是菱形.(2分)

(2)成立.(3分)

理由:连接AD,BC.(4分)

∵∠APC=∠BPD,

∴∠APC+∠CPD=∠BPD+∠CPD.

即∠APD=∠CPB.

又∵PA=PC,PD=PB,

∴△APD≌△CPB(SAS)

∴AD=CB.(6分)

∵E、F、G、H分别是AC、AB、BD、CD的中点,

∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.

∴EF=BC,FG=AD,GH=BC,EH=AD.

∴EF=FG=GH=EH.

∴四边形EFGH是菱形.(7分)

(3)补全图形,如答图.(8分)

判断四边形EFGH是正方形.(9分)

理由:连接AD,BC.

∵(2)中已证△APD≌△CPB.

∴∠PAD=∠PCB.

∵∠APC=90°,

∴∠PAD+∠1=90°.

又∵∠1=∠2.

∴∠PCB+∠2=90°.

∴∠3=90°.(11分)

∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,

∴GH∥BC,EH∥AD.

∴∠EHG=90°.

又∵(2)中已证四边形EFGH是菱形,

∴菱形EFGH是正方形.(12分)

点评:此题主要考查了菱形的判定,正方形的判定,全等三角形的判定等知识点的综合运用及推理论证能力.

二.解答题(共15小题)

4.(2013?昭通)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.

(1)求证:四边形AMDN是平行四边形.

(2)当AM的值为何值时,四边形AMDN是矩形?请说明理由.

考点:菱形的性质;全等三角形的判定与性质;平行四边形的判定;矩形的判定.

专题:压轴题.

分析:(1)根据菱形的性质可得ND∥AM,再根据两直线平行,内错角相等可得∠NDE=∠MAE,∠DNE=∠AME,根据中点的定义求出DE=AE,然后利用“角角边”证明△NDE和△MAE全等,根据全等三角形对应边相等得到ND=MA,然后利用一组对边平行且相等的四边形是平行四边形证明;

(2)根据矩形的性质得到DM⊥AB,再求出∠ADM=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半解答.

解答:(1)证明:∵四边形ABCD是菱形,

∴ND∥AM,

∴∠NDE=∠MAE,∠DNE=∠AME,

∵点E是AD中点,

∴DE=AE,

在△NDE和△MAE中,

∴△NDE≌△MAE(AAS),

∴ND=MA,

∴四边形AMDN是平行四边形;

(2)AM=1.

理由如下:∵四边形ABCD是菱形,

∴AD=AB=2,

∵平行四边形AMDN是矩形,

∴DM⊥AB,

即∠DMA=90°,

∵∠DAB=60°,

∴∠ADM=30°,

∴AM=AD=1.

点评:本题考查了菱形的性质,平行四边形的判定,全等三角形的判定与性质,矩形的性质,熟记各性质并求出三角形全等是解题的关键,也是本题的突破口.

6.(2012?南通)菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.

(1)如图1,若E是BC的中点,∠AEF=60°,求证:BE=DF;

(2)如图2,若∠EAF=60°,求证:△AEF是等边三角形.

考点:菱形的性质;全等三角形的判定与性质;等边三角形的判定.

专题:证明题;压轴题.

分析:(1)首先连接AC,由菱形ABCD中,∠B=60°,根据菱形的性质,易得△ABC是等边三角形,又由三线合一,可证得AE⊥BC,继而求得∠FEC=∠CFE,即可得EC=CF,继而证得BE=DF;

(2)首先由△ABC是等边三角形,即可得AB=AC,以求得∠ACF=∠B=60°,然后利用平行线与三角形外角的性质,可求得∠AEB=∠AFC,证得△AEB≌△AFC,即可得AE=AF,证得:△AEF是等边三角形.

解答:证明:(1)连接AC,

∵在菱形ABCD中,∠B=60°,

∴AB=BC=CD,∠C=180°﹣∠B=120°,

∴△ABC是等边三角形,

∵E是BC的中点,

∴AE⊥BC,

∵∠AEF=60°,

∴∠FEC=90°﹣∠AEF=30°,

∴∠CFE=180°﹣∠FEC﹣∠ECF=180°﹣30°﹣120°=30°,

∴∠FEC=∠CFE,

∴EC=CF,

∴BE=DF;

(2)∵△ABC是等边三角形,

∴AB=AC,∠ACB=60°,

∴∠B=∠ACF=60°,

∵AD∥BC,

∴∠AEB=∠EAD=∠EAF+∠FAD=60°+∠FAD,

∠AFC=∠D+∠FAD=60°+∠FAD,

∴∠AEB=∠AFC,

在△ABE和△ACF中,

∴△ABE≌△ACF(AAS),

∴AE=AF,

∵∠EAF=60°,

∴△AEF是等边三角形.

点评:此题考查了菱形的性质、等边三角形的判定与性质、全等三角形的判定与性质以及等腰三角形的判定与性质.此题难度适中,注意准确作出辅助线,注意数形结合思想的应用.

10.(2009?龙岩)在边长为6的菱形ABCD中,动点M从点A出发,沿A?B?C向终点C运动,连接DM 交AC于点N.

(1)如图1,当点M在AB边上时,连接BN:

①求证:△ABN≌△ADN;

②若∠ABC=60°,AM=4,∠ABN=α,求点M到AD的距离及tanα的值.

(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形.

考点:菱形的性质;全等三角形的判定;等腰三角形的判定;解直角三角形.

专题:压轴题;动点型.

分析:(1)①三角形ABN和ADN中,不难得出AB=AD,∠DAC=∠CAB,AN是公共边,根据SAS即可判定两三角形全等.

②通过构建直角三角形来求解.作MH⊥DA交DA的延长线于点H.由(1)可得∠MDA=∠ABN,那么

M到AD的距离和∠α就转化到直角三角形MDH和MAH中,然后根据已知条件进行求解即可.

(2)本题要分三种情况即:ND=NA,DN=DA,AN=AD进行讨论.

解答:解:(1)①证明:∵四边形ABCD是菱形,

∴AB=AD,∠1=∠2.

又∵AN=AN,

∴△ABN≌△ADN(SAS).

②作MH⊥DA交DA的延长线于点H.

由AD∥BC,得∠MAH=∠ABC=60°.

在Rt△AMH中,MH=AM?s in60°=4×sin60°=2.

∴点M到AD的距离为2.

∴AH=2.

∴DH=6+2=8.

在Rt△DMH中,tan∠MDH=,

由①知,∠MDH=∠ABN=α,

∴tanα=;

(2)∵∠ABC=90°,

∴菱形ABCD是正方形.

∴∠CAD=45°.

下面分三种情形:

(Ⅰ)若ND=NA,则∠ADN=∠NAD=45°.

此时,点M恰好与点B重合,得x=6;

(Ⅱ)若DN=DA,则∠DNA=∠DAN=45°.

此时,点M恰好与点C重合,得x=12;

(Ⅲ)若AN=AD=6,则∠1=∠2.

∵AD∥BC,

∴∠1=∠4,又∠2=∠3,

∴∠3=∠4.

∴CM=CN.

∵AC=6.

∴CM=CN=AC﹣AN=6﹣6.

故x=12﹣CM=12﹣(6﹣6)=18﹣6.

综上所述:当x=6或12或18﹣6时,△ADN是等腰三角形.

点评:本题考查了等腰三角形的判定,全等三角形的判定,菱形的性质,正方形的性质等知识点,注意本题(2)中要分三种情况进行讨论,不要丢掉任何一种情况.

15.(2005?嘉兴)有一种汽车用“千斤顶”,它由4根连杆组成菱形ABCD,当螺旋装置顺时针旋转时,B、D两点的距离变小,从而顶起汽车.若AB=30,螺旋装置每顺时针旋转1圈,BD的长就减少1.设BD=a,AC=h,

(1)当a=40时,求h值;

(2)从a=40开始,设螺旋装置顺时针方向旋转x圈,求h关于x的函数解析式;

(3)从a=40开始,螺旋装置顺时针方向连续旋转2圈,设第1圈使“千斤顶”增高s1,第2圈使“千斤顶”增高s2,试判定s1与s2的大小,并说明理由;若将条件“从a=40开始”改为“从某一时刻开始”,则结果如何,为什么?

考点:菱形的性质;勾股定理.

专题:应用题;压轴题.

分析:(1)根据菱形的两条对角线垂直且平分的性质,然后根据勾股定理,即可求出h值.(2)首先知道螺旋装置顺时针方向旋转的圈数与BD之间的关系,然后用勾股定理,就可求出h与x之间的函数关系.

(3)此问首先要搞清楚增高的s是指AC增高了s,根据第2问的函数关系进行推算,就可知道s1与s2的大小关系.

解答:解:(1)连AC交BD于O,

∵ABCD为菱形,

∴∠AOB=90°,OA=,OB=20,(3分)

在Rt△AOB中,

∵AO2+BO2=AB2,

即()2+202=302,

∴h=20;(2分)

(2)从a=40开始,螺旋装置顺时针方向旋转x圈,则BD=40﹣x,(2分)

∴()2+()2=302,

∴h=;(2分)

(3)结论:s1>s2.

在中,

令x=0得,h0=≈;

令x=1得,h1=≈;

令x=2得,h2=≈;

∴s1=h1﹣h0≈,s2=h2﹣h1≈,

∴s1>s2;(3分)

也可以如下比较s1、s2的大小:

=

=

而79>77,

∴s1>s2;(3分)

若将条件“从a=40开始”改为“从任意时刻开始”,则结论s1>s2仍成立.

∵,

而2a﹣1>2a﹣3,

∴s1>s2.(2分)

点评:菱形的性质是中考常见的一个考点,将其与勾股定理综合使用,是解决相似题型的常用方法.

16.(2002?常州)已知:在菱形ABCD中,∠BAD=60°,把它放在直角坐标系中,使AD边在y轴上,点C 的坐标为()

(1)画出符合题目条件的菱形与直角坐标系.

(2)写出A,B两点的坐标.

(3)设菱形ABCD的对角线的交点为P,问:在y轴上是否存在一点F,使得点P与点F关于菱形ABCD的某条边所在的直线对称,如果存在,写出点F的坐标;如果不存在,请说明理由.

考点:菱形的性质;坐标与图形性质.

专题:压轴题;分类讨论.

分析:(1)本题可分两种情况,如图;

(2)过C作CF⊥y轴于F,∠CDF=60°,CF=2,因此DF=2,CD=4.因此OA=OF﹣AF=8﹣(4+2)=2,因此A点坐标为(0,2).由于菱形的边长为4,因此将C点坐标向下平移4个单位就是B点的坐标(2,4);

(3)在(2)中所作的F点其实就是P点关于CD的对称点,理由:根据菱形的性质可知:∠FAC=30°,因此在直角三角形FAC中,FC=AC=PC,而∠DCF=∠DCP=30°,因此△CFE≌△CPE,因此CD垂直

平分PF,即可得出P、F关于CD对称.

解答:解:本题有两种情况:

第一种情况:(1)画图,如图所示.

(2)过C作CF⊥y轴于F,∠CDF=60°,CF=2,

∵tan60°==,

=,

∴DF=2,

CD=4.因此OA=OF﹣AF=8﹣(4+2)=2,因此A点坐标为(0,2).

由于菱形的边长为4,因此将C点坐标向下平移4个单位就是B点的坐标(2,4);

则A(0,2),B(2,4).

(3)F(0,8);

第二种情况:(1)画图,如图所示.

(2)A′(0,14),B′(2,12)

(3)F′(0,8).

点评:本题主要考查了菱形的性质、坐标与图形的性质、轴对称图形等知识点.

17.(2001?河北)如图,在菱形ABCD中,AB=10,∠BAD=60度.点M从点A以每秒1个单位长的速度沿着AD边向点D移动;设点M移动的时间为t秒(0≤t≤10).

(1)点N为BC边上任意一点,在点M移动过程中,线段MN是否一定可以将菱形分割成面积相等的两部分并说明理由;

(2)点N从点B(与点M出发的时刻相同)以每秒2个单位长的速度沿着BC边向点C移动,在什么时刻,梯形ABNM的面积最大并求出面积的最大值;

(3)点N从点B(与点M出发的时刻相同)以每秒a(a≥2)个单位长的速度沿着射线BC方向(可以超越C点)移动,过点M作MP∥AB,交BC于点P.当△MPN≌△ABC时,设△MPN与菱形ABCD重叠部分的面积为S,求出用t表示S的关系式,井求当S=0时的值.

考点:菱形的性质;二次函数的最值;全等三角形的性质.

专题:压轴题.

分析:(1)菱形被分割成面积相等的两部分,那么分成的两个梯形的面积相等,而两个梯形的高相等,只需上下底的和相等即可.

(2)易得菱形的高,那么用t表示出梯形的面积,用t的最值即可求得梯形的最大面积.

(3)易得△MNP的面积为菱形面积的一半,求得不重合部分的面积,让菱形面积的一半减去即可.解答:解:(1)设:BN=a,CN=10﹣a(0≤a≤10)

因为,点M从点A以每秒1个单位长的速度沿着AD边向点D移动,点M移动的时间为t秒(0≤t≤10)所以,AM=1×t=t(0≤t≤10),MD=10﹣t(0≤t≤10).

所以,梯形AMNB的面积=(AM+BN)×菱形高÷2=(t+a)×菱形高÷2;

梯形MNCD的面积=(MD+NC)×菱形高÷2=[(10﹣t)+(10﹣a)]×菱形高÷2

当梯形AMNB的面积=梯形MNCD的面积时,

即t+a=10,(0≤t≤10),(0≤a≤10)

所以,当t+a=10,(0≤t≤10),(0≤a≤10)时,可出现线段MN一定可以将菱形分割成面积相等的两部分.

(2)点N从点B以每秒2个单位长的速度沿着BC边向点C移动,设点N移动的时间为t,可知0≤t≤5,

因为AB=10,∠BAD=60°,所以菱形高=5,

AM=1×t=t,BN=2×t=2t.

所以梯形ABNM的面积=(AM+BN)×菱形高÷2=3t×5×=t(0≤t≤5).

所以当t=5时,梯形ABNM的面积最大,其数值为.

(3)当△MPN≌△ABC时,

则△ABC的面积=△MPN的面积,则△MPN的面积为菱形面积的一半为25;

因为要全等必有MN∥AC,

∴N在C点外,所以不重合处面积为×(at﹣10)2×

∴重合处为S=25﹣,

当S=0时,即PM在CD上,

∴a=2.

点评:本题考查了菱形以及相应的三角函数的性质,注意使用两条平行线间的距离相等等条件.

三.解答题(共14小题)

10.(2010?河源)如图,△ABC中,点P是边AC上的一个动点,过P作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.

(1)求证:PE=PF;

(2)当点P在边AC上运动时,四边形AECF可能是矩形吗?说明理由;

(3)若在AC边上存在点P,使四边形AECF是正方形,且.求此时∠BAC的大小.

考点:菱形的判定;平行线的性质;正方形的判定.

专题:几何综合题;压轴题.

分析:(1)可证明PE=PC,PF=PC,从而得到PE=PF;

(2)由一对邻补角的平分线互相垂直,得出∠ECF=90°,故要使四边形AECF是矩形,只需四边形AECF是平行四边形即可.由(1)知PE=PF,则点P运动到AC边中点时,四边形AECF是矩形.(3)由正方形的对角线相等且互相垂直,可知AC⊥EF,AC=2AP.又EF∥BC,得出AC⊥BC,在直角△ABC中,根据锐角三角函数的定义及特殊角的三角函数值求出∠A的大小.

解答:(1)证明:∵CE平分∠BCA,

∴∠BCE=∠ECP,

菱形 复习中难题 含答案

菱形复习中难题含答案 1.菱形的概念:有一组邻边相等的平行四边形叫做菱形 2.菱形的性质 (1)具有平行四边形的一切性质 (2)菱形的四条边相等 (3)菱形的对角线互相垂直,并且每一条对角线平分一组对角 (4)菱形是轴对称图形 3.菱形的判定 (1)定义:有一组邻边相等的平行四边形是菱形 (2)定理1:四边都相等的四边形是菱形 (3)定理2:对角线互相垂直的平行四边形是菱形 4.菱形的面积 S菱形=底边长×高=两条对角线乘积的一半 (★★)若菱形的一条对角线与边的夹角为25°,则这个菱形各内角的度数 为. 【答案】50°、130°、50°、130°. (★★)1.菱形ABCD的周长为20,两对角线长3:4,则菱形的面积为. 【答案】24. (★★)2.如图,E、F分别为菱形ABCD中BC、CD边上的点,△AEF是等边三角形,且AE=AB,求∠B和∠C的度数.

F E D C B A 【答案】利用三角形内角和180度和同旁内角互补来解决问题,易得∠B=80°和∠C=100°. (★★)菱形的两条对角线与各边一起围成三角形中,共有全等的等腰三角形的对数是. 【答案】4. (★★)用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是().A.一组临边相等的四边形是菱形 B.四边相等的四边形是菱形 C.对角线互相垂直的平行四边形是菱形 D.每条对角线平分一组对角的平行四边形是菱形 D C B A (★★★)若菱形一边上的高的垂足是这边的中点,则这个菱形的最大内角是. 答案:120°. (★★★)1.菱形的对称轴共有条. 【答案】2.

2.已知:如图,菱形ABCD的对角线交于点O,且AO、BO的长分别是方程x2-2mx+4(m-1)=0的两根,菱形ABCD的周长为20,求m的值. 【答案】先解方程求得两根分别为2和(2m-2),再根据周长为20求得m的值为5. (★★★)3.菱形的周长为20cm,一条对角线长为8cm,则菱形的面积为. 【答案】24. (★★)下列命题错误的有(填写序号). ①菱形四个角都相等. ②对角线互相垂直且相等的四边形是矩形. ③对角线互相垂直且相等的四边形是菱形. ④对角线互相平分,且每一条对角线平分一组对角的四边形是菱形. 【答案】①②③. (★★)1.已知四边形ABCD中,过点A、C分别作BD的平行线,过点B、D分别作AC的平行线,如果所作的四条直线围成一个菱形,则四边形ABCD必须是() A.矩形B.菱形C.AC=BD的任意四边形D.平行四边形 【答案】C (★★)2.(1)用两个边长为a的等边三角形拼成的是形. (2)用两个全等的等腰三角形拼成的是形. (3)用两个全等的直角三角形拼成的是形. 【答案】(1)菱形;(2)菱形和平行四边形;(3)矩形和平行四边形. (★★)如图,在△ABC中,AB=AC,M点是BC的中点,MG⊥AB于点G,MD⊥AC于点D,GF⊥AC于点F,DE⊥AB于点E,GF与DE相交于点H,求证:四边形GMDH是菱形.

八下数学每日一练:菱形的判定与性质练习题及答案_2020年单选题版

八下数学每日一练:菱形的判定与性质练习题及答案_2020年单选题版答案答案答案2020年八下数学:图形的性质_四边形_菱形的判定与性质练习题 ~~第1题~~ (2019西湖.八下期末) 如图,分别以Rt △ABC 的斜边AB ,直角边AC 为边向外作等边△ABD 和△ACE ,F 为AB 的中点,DE ,AB 相交于点G .连接EF ,若∠BAC =30°,下列结论:①EF ⊥AC ;②四边形ADFE 为菱形;③AD =4AG ;④△ DBF ≌△EFA .则正确结论的序号是( ) A . ①③ B . ②④ C . ①③④ D . ②③④ 考点: 线段垂直平分线的判定;全等三角形的判定与性质;等边三角形的性质;直角三角形斜边上的中线;菱形的判定与性质; ~~第2题~~ (2019嘉兴.八下期末) 如图,将平行四边形纸片ABCD 折叠,使顶点D 恰好落在AB 边上的点M 处,折痕为AN ,那么对于结论 :①MN ∥BC ,②MN=AM.下列说法正确的是( ) A . ①②都错 B . ①对②错 C . ①错②对 D . ①②都对 考点: 平行四边形的性质;菱形的判定与性质;翻折变换(折叠问题);~~第3题~~ (2019淮安.八下期中) 下列命题是真命题的是( ) A . 四边都相等的四边形是矩形 B . 菱形的对角线相等 C . 对角线互相垂直的平行四边形是正方形 D . 顺次连接矩形各边中点所得的四边形是菱形 考点: 菱形的判定与性质;矩形的判定;正方形的判定;~~第4题~~ (2019淮安.八下期中) 如图,△ABC 是边长为1的等边三角形,分别取AC ,BC 边的中点D ,E ,连接DE ,作EF ∥AC 得到四边形EDAF ,它的周长记作C ;分别取EF ,BE 的中点D , E , 连接D E , 作E F ∥EF ,得到四边形E D FF ,它的周长记作C 照此规律作下去,则C 等于( ) A . B . C . D . 111111*********

菱形的判定(教学设计)

菱形的判定 一、教学目标:经历菱形的判定方法的探究过程,掌握菱形的三种判定方法. 二、教学重点:菱形判定方法的探究. 三、教学难点:菱形判定方法的探究及灵活运用. 四、教学过程: 活动1、引入新课,激发兴趣 1、复习 (1)菱形的定义:一组邻边相等的平行四边形是菱形。 (2)菱形的性质1 菱形的两组对边分别平行,四条边都相等; 性质2 菱形的两组对角分别相等,邻角互补; 性质3 菱形的两条对角线互相平分,菱形的两条对角线互相 垂直,且每一条对角线平分一组对角。 2、导入 (1)如果一个四边形是一个平行四边形,则只要再有什么条件就可以判定它是一个菱形?依据是什么? 根据菱形的定义可知: 一组邻边相等的平行四边形是菱形. 所以只要再有一组邻边相等的条件即可. (2)要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?活动2、探究与归纳菱形的第二个判定方法 【问题牵引】 用一长一短两根细木条,在它们的中点处固定一个小钉子,做成一个可转动的十字架,四周围上一根橡皮筋,做成一个四边形。 问: 任意转动木条,这个四边形总有什么特征?你能证明你发现的结论吗? 继续转动木条,观察什么时候橡皮筋周围的四边形变成菱形?你能证明你的猜想吗?

学生猜想:对角线互相垂直的平行四边形是菱形。 教师提问:这个命题的前提是什么?结论是什么? 学生用几何语言表示命题如下: 已知:在□ABCD 中,对角线AC ⊥BD , 求证:□ABCD 是菱形。 分析:我们可根据菱形的定义来证明这个平行四边形是菱形,由平行四边形的性质得到BO=DO ,由∠AOB=∠AOD=90o及AO=AO ,得ΔAOB ≌ΔAOD ,可得到AB=AD (或根据线段垂直平分线性质定理,得到AB=AD) ,最后证得□ABCD 是菱形。 【归纳定理】 通过探究和进一步证明可以归纳得到菱形的第二个判定方法(判定定理1): 对角线互相垂直的平行四边形是菱形。 提示:此方法包括两个条件——(1)是一个平行四边形;(2)两条对角线互相垂直。对角线互相垂直且平分的四边形是菱形。 活动3、菱形第二个判定方法的应用 例3 如图,如图,□ABCD 的对角线AC 、BD 相交 于点O ,且AB=5,AO=4,BO=3,求证:□ABCD 是菱形。 思路点拨:由于平行四边形对角线互相平分,构 成了△ABO 是一个三角形,?而AB=5,AO=4,BO=3,由勾股定理的逆定理可知∠AOB=90°,证出对角线互相垂直,这样可利用菱形第二个判定方法证得。 活动4、探究与归纳菱形的第三个判定方法 【操作探究】过程: 先画两条等长的线段AB 、AD ,然后分别以B 、D 为圆心,AB 为半径画弧,得到两弧的交点C ,连接BC 、CD ,就得到了一个四边形,提问:观察画图的过程,你能说明得到的四边形为什么是菱形吗?你能得到什么结论? 学生观察思考后,展开讨论,指出该四边形四条边相等,即有两组对边相等,它首先是一个平行四边形,又有一组邻边相等,根据菱形定义即可判定该四边形是菱形。得出从一般的四边形直接判定菱形的方法:四边相等的四边形是菱形。 O D C B A

(全国通用)中考数学专题拔高系列:菱形存在性问题解决方法汇总

01问题与方法 作为一种特殊的平行四边形,我们已经知道可以从以下几种方式得到菱形:(1)有一组邻边相等的平行四边形菱形; (2)对角线互相垂直的平行四边形是菱形; (3)四边都相等的四边形是菱形. 坐标系中的菱形存在性问题也是依据以上去得到方法.和平行四边形相比,菱形 多一个“对角线互相垂直”或“邻边相等”,但这两者其实是等价的,故若四边形ABCD是菱形,则其4个点坐标需满足: 考虑到互相垂直的两条直线斜率之积为1在初中并不适合直接用,故取两邻边相等. 即根据菱形的图形性质,我们可以列出关于点坐标的3个等式, 故菱形存在性问题点坐标最多可以有3个未知量,与矩形相同. 因此就常规题型而言,菱形存在性至少有2个动点,多则有3个动点,可细分如下两大类题型: 题型如下: (1)2 个定点+1 个半动点+1 个全动点 (2)1 个定点+3 个半动点 思路1:先平四,再菱形 设点坐标,根据平四存在性要求列出“A+C=B+D”(AC、BD 为对角线),再结合一组邻边相等,得到方程组. 思路2:先等腰,再菱形 在构成菱形的4个点中任取3个点,必构成等腰三角形,根据等腰存在性方法可先确定第3个点,再确定第4个点. 02典型例题 如图,在坐标系中,A点坐标(1,1),B点坐标为(5,4),点C 在x 轴上,点D 在平面中,求D点坐标,使得以A、B、C、D为顶点的四边形是菱形

以上只是两种简单的处理方法,对于一些较复杂的题目,还需具体问题具体分析,或许有更为简便的方法. 03中考真题 2019齐齐哈尔中考删减 【两定两动:坐标轴+平面】 如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC. (1)求抛物线的解析式; (2)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N 为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.

矩形、菱形的判定

22.3(3)矩形、菱形的判定 教学目标 1.经历从特殊的平行四边形的性质逆向探索特殊的平行四边形判定方法的过程,掌握矩形、菱形的常用判别方法,并能运用这些知识进行有关的证明和计算. 2.通过矩形、菱形判定的探索过程,积累数学活动的经验,提高合情推理能力;结合性质和判定定理以及相关问题的证明,进一步发展逻辑思维能力和提高推理论证的表达能力. 教学重点及难点 掌握矩形、菱形的判定,知道它们之间的关系以及与平行四边形的关系.进一步发展逻辑思维能力和提高推理论证的表达能力. 教学用具准备 课件 教学过程设计 一、温故知新 1.平行四边形的判定 (5个方法) 2.矩形、菱形的性质复习——有别于平行四边形的特殊性质: [及矩形、菱形作为特殊的平行四边形的特殊性质回顾;便于本节课的顺利开展. 二、矩形、菱形的判定探讨 思考: 如何从矩形、菱形特殊的性质出发,得出矩形、菱形的判定? 定义可以作为第一条判定: 即:有一个角是直角的平行四边形是矩形. 有一组邻边相等的平行四边形是菱形. [说明] 定义是作为判定的第一依据,因此,所有的定义都可以作为第一个判定 方法. 其他方法呢? “1)从边;2)从角;3)从对角线”的角度考虑. 1.矩形: ——矩形的特殊性在于直角和对角线 不妨给出关于矩形判定的命题:(讨论、交流) 比如:四个角是直角的四边形是矩形.

三个角是直角的四边形是矩形. 对角线相等的平行四边形是矩形.…… 分析上述给出的命题,证明讨论; 得出矩形的判定定理:三个角是直角的四边形是矩形. 对角线相等的平行四边形是矩形. 2.菱形: ——类似矩形进行讨论. 并得出菱形的判定定理:四条边相等的四边形是菱形. 对角线互相垂直的平行四边形是菱形. [说明]作为特殊的平行四边形,矩形、菱形在角、边、对角线方面都有特殊的性质.因此,引导学生不妨就从其特殊性开始考虑.矩形详加探究之后,对应得到菱形的判定方法. 3.总结矩形菱形的判定 形出发作一总结;上课时,借助PPT ,缓缓放出本课结论,有不错的效果. 三、定理运用, 1.例题选讲 例1:如图:矩形ABCD 的对角线AC ,BD 相交于点O ,E,F,G,H 分别 在AO,BO,CO,DO 上,且AE=BF=CG=DH. 求证:四边形EFGH 是矩形. 分析:首先,矩形的判定方法有哪些? 其次,本题可以用哪种方法? 过程说理. 例2:已知如图:EF 是□ABCD 的对角线AC 的垂直平分线,EF 与边AD,BC 分别交 于点E,F. 求证:四边形AECF 是菱形 O H G F E D C B A O E D A

菱形的判定专项练习30题(有答案)ok

菱形的判定专项练习30题(有答案) 1.如图,梯形ABCD中,AD∥BC,BA=AD=DC=BC,点E为BC的中点. (1)求证:四边形ABED是菱形; (2)过A点作AF⊥BC于点F,若BD=4cm,求AF的长. 2.如图,四边形ABCD中,对角线AC、BD相交于点O,且AC⊥BD.点M,N分别在BD、AC上,且AO=ON=NC,BM=MO=OD. 求证:BC=2DN. 3.如图,在△ABC中,AB=AC,D,E,F分别是BC,AB,AC的中点. (1)求证:四边形AEDF是菱形; (2)若AB=12cm,求菱形AEDF的周长. 4.如图,在?ABCD中,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于点E,F.已知BE=BP.求证:(1)∠E=∠F; (2)?ABCD是菱形. 菱形的判定--- 1

5.如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC,AF与CE的延长线相交于点F,连接BF. (1)求证:AF=DC; (2)若∠BAC=90°,求证:四边形AFBD是菱形. 6.已知平行四边形ABCD中,对角线BD平分∠ABC,求证:四边形ABCD是菱形. 7.如图,在一个含30°的三角板ABC中,将三角板沿着AB所在直线翻转180°得到△ABF,再将三角板绕点C顺时针方向旋转60°得到△DEC,点F在AC上,连接AE. (1)求证:四边形ADCE是菱形. (2)连接BF并延长交AE于G,连接CG.请问:四边形ABCG是什么特殊平行四边形?为什么? 8.如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是为E F,并且DE=DF.求证:四边形ABCD是菱形. 9.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E,以AD,AE为边作?ADFE交BC于点G,H,且EH=EC. 求证:(1)∠B=∠C; (2)?ADFE是菱形. 菱形的判定--- 2

菱形的判定方法的应用

菱形的判定方法的应用(1) 菱形是特殊的平行四边形,它的常用判定方法有: (1)四条边都相等的四边形是菱形; (2)有一组临边相等的平行四边形是菱形; (3)对角线互相垂直的平行四边形是菱形; 下面,就给同学们说说如何应用这些方法进行判定一个四边形是菱形。 一、四条边都相等的四边形是菱形 例1(08年,郴州)如图1,ΔABC 为等腰三角形,把它沿底边BC 翻折后,得到ΔDBC .请你判断四边形ABDC 的形状,并说出你的理由. 分析:翻折就是对称,也就是全等。 解:四边形ABCD 为菱形。 理由是: 由翻折,得:△ABC ≌△DBC . 所以,,AC CD AB BD == 因为,△ABC 为等腰三角形, 所以,AB AC = 所以,AC =CD =AB =BD , 故,四边形ABCD 为菱形 点评:本题主要是应用对称的知识得出一组临边相等,在运用等腰三角形的两腰相等得到四条边都相等来解答。 二、有一组临边相等的平行四边形是菱形 例2(08年,永州)如图△ABC 与△CDE 都是等边三角形,点E 、F 分别在AC 、BC 上,且EF∥AB (1)求证:四边形EFCD 是菱形; (2)设CD =4,求D 、F 两点间的距离. 分析:在四边形EFCD 中,由题意我们知道有一组临边ED 和CD 相等是很容易得到的,只要在说明这个四边形是平行四边形即可以。 (1)证明: ABC Q △与CDE △都是等边三角形 ED CD ∴= 60A DCE BCA DCE ∴∠=∠=∠=∠=o AB CD DE CF ∴∥,∥ 又Q EF AB ∥ ∴EF ∥CD , 四边形EFCD 是平行四边形, ∴平行四边形EFCD 是菱形。 (2)解:连结DF ,与CE 相交于点G 由4CD =,可知2CG = ∴224223DG =-= 43DF ∴= 点评:观察是解答问题的途径和窗口。 三、对角线互相垂直的平行四边形是菱形 例3(08年,上海)如图11,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线 C A B D 图1

特殊平行四边形难题综合训练(含答案)

第五章 特殊平行四边形难题综合训练 1、正方形ABCD ,正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,且G 为BC 的三等分点,R 为EF 中点,正方形BEFG 的边长为4,则△DEK 的面积为( ) A .10 B .12 C .14 D .16 2、如图,在正方形ABCD 内有一折线段,其中AE ⊥EF ,EF ⊥FC ,并且AE =6,EF =8,FC =10,则正方形的边长为 . 第1题 第2题 第3题 第4题 3、如图,平面内4条直线l 1、l 2、l 3、l 4是一组平行线,相邻2条平行线的距离都是1个单位长度,正方形ABCD 的4个顶点A 、B 、C 、D 都在这些平行线上,其中点A 、C 分别在直线l 1、l 4上,该正方形的面积是 平方单位. 4、如图,在菱形ABCD 中,边长为10,∠A =60°.顺次连结菱形 ABCD 各边中点,可得四边形A 1B 1C 1D 1;顺次连结四边形 A 1B 1C 1D 1各边中点,可得四边形A 2B 2C 2D 2;顺次连结四边形A 2B 2C 2D 2各边中点,可得四边形A 3B 3C 3D 3;按此规律继续下去…….则四边形A 2B 2C 2D 2的周长是 ;四边形A 2013B 2013C 2013D 2013的周长是 . 5、如图,四边形ABCD 是矩形,点E 在线段CB 的延长线上,连接DE 交AB 于点F ,∠AED =2∠CED ,点G 是DF 的中点,若BE =1,AG =4,则AB 的长为 . 6、如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE =( ) A .2 B .3 C .22 D .32 第5题 第6题 第7题 第8题 7、如图,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴上,∠B =120°,OA =2,将菱形OABC 绕原点顺时针旋转105°至OA ′B ′C ′的位置,则点B ′的坐标为( ) A 、(2,2-) B 、(2,2-) C 、(3,3-) D 、(2,2--) 8、如图,正方形ABCD 中,AB =3,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于

二次函数专题训练(菱形的存在性)含解答

1.如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,点C的坐标为(﹣18,0). (1)求点B的坐标; (2)若直线DE交梯形对角线BO于点D,交y正半轴于点E,且OE=4,OD=2BD,求直线DE的解析式; (3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由. 2.如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐

标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E. (1)求抛物线解析式; (2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积; (3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由. 【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】 3.如图,抛物线y=ax2﹣2x+c(a≠0)与x轴、y轴分别交于点A,B,C三点,已知点A(﹣2,0),点C

(0,﹣8),点D是抛物线的顶点. (1)求抛物线的解析式及顶点D的坐标; (2)如图1,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点P,将△EBP沿直线EP折叠,使点B的对应点B'落在抛物线的对称轴上,求点P的坐标; (3)如图2,设BC交抛物线的对称轴于点F,作直线CD,点M是直线CD上的动点,点N是平面内一点,当以点B,F,M,N为顶点的四边形是菱形时,请直接写出点M的坐标. 4.如图1,抛物线y=ax2+bx+4的图象过A(﹣1,0),B(4,0)两点,与y轴交于点C,作直线BC,动

矩形、正方形和菱形的判定方法

,、考点分析: 矩形、正方形和菱形是特殊的平行四边形,是考试中重 要的考 点。 二、教学目标: 1.掌握矩形、正方形和菱形的判定方法 三、教学内容 正方形巩固练习 例题1如图,正方形ABCD 勺边长为12,点E 是BC 上的一点,BE=5,点F 是BD 上 一动点?( 1) AF 与FC 相等吗?试说明理由.(2)设折线EFC 的长为y ,试求 y 的最小值,并说明点F 此时的位置. 【解】(1) AF 与FC 相等,其理由如下: 可证:△ ABF ^△ CBF 二 AF=CF (2)连接AE,则AE 与BD 的交点就是此时F 点的位置 此时y 有最小值,最小值为.122 52 =13. 例题2 如图,正方形ABCD 中, P 是对角线AC 上一动点,PEIAB PF ⊥ BC 垂 足分别为 E 、F 小红同学发现:PD ⊥ EF ,且PD=EF 且矩形 PEBF 的周长不 变?不知小红的发现是否正确,请说说你的看法. 【解】小红的发现是正确,其理由如下: D 第28题图

连接BP,延长DP交EF于Q. (1):四边形ABCD是正方形 ??? CB=CD∠ BCP∠ DCP=45 ???△ BCP^△DCP ??? PD=PB 又???PEIAB PF⊥ BC, ???∠ BEP=/ BFP=Z EBF=90 ,二四边形BEPF是矩形

???PB=EF,??? PD=EF (2):PEIAB PF⊥ BC ???△ AEP^n△ CFP^均为等腰直角三角形 ??? AE=PE,CF=PF ???矩形PEBF的周长=AB+BC=2AB为定值) (3):PF// CD ???∠ FPQ∠ PDC ???△ BCP^△ DCP ?∠PDC∠ PBF ???四边形PEBF是矩形,?∠PBF=/ PEF ?∠PEF=Z FPQ 又τ∠ PEF+∠ PFE=90 , ?∠ FPQ∠ PFE=90 ?∠PQF=90 ,??? PDL EF. 【另证】延长EP交CD于点R,则CFPF为正方形 ?可证△ PEF^△ RDF ?∠PEF=Z PDR 又τ∠ DPR∠ EPQ 而∠ PDR∠ DPR=90 ,?∠ PEF+∠ EPQ=90 ?∠EQP=90°,??? PD L EF. 课堂练习1如图1,在边长为5的正方形 ABCD 中,点E、F分别是 BC 、 DC 边上的点,且AE — EF, BE =2 (1)如图2 ,延长EF交正方形外角平分线CP于点P ,试判断AE与EP的大小关系,并说明理由; (2)在图2的AB边上是否存在一点M ,使得四边形DMEP是平行四边形? 若存在,请给予证明;若不存在,请说明理由? 梯形 图1 图2

数学平行四边形的专项培优 易错 难题练习题(含答案)及详细答案

一、平行四边形真题与模拟题分类汇编(难题易错题) 1.(1)、动手操作: 如图①:将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为 . (2)、观察发现: 小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由. (3)、实践与运用: 将矩形纸片ABCD按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC 边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F 重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大 小. 【答案】(1)125°;(2)同意;(3)60° 【解析】 试题分析:(1)根据直角三角形的两个锐角互余求得∠AEB=70°,根据折叠重合的角相等,得∠BEF=∠DEF=55°,根据平行线的性质得到∠EFC=125°,再根据折叠的性质得到 ∠EFC′=∠EFC=125°; (2)根据第一次折叠,得∠BAD=∠CAD;根据第二次折叠,得EF垂直平分AD,根据等角的余角相等,得∠AEG=∠AFG,则△AEF是等腰三角形; (3)由题意得出:∠NMF=∠AMN=∠MNF,MF=NF,由对称性可知,MF=PF,进而得出△MNF≌△MPF,得出3∠MNF=180°求出即可. 试题解析:(1)、∵在直角三角形ABE中,∠ABE=20°, ∴∠AEB=70°, ∴∠BED=110°, 根据折叠重合的角相等,得∠BEF=∠DEF=55°. ∵AD∥BC,

《菱形的判定》教案

19.2. 2 菱形的判定 备课人:王芳备课时间:2013/05/16 一、教学内容分析: 菱形是一种特殊的平行四边形,比平行四边行多了“一组邻边相等”,因此判定可以在四边形或平行四边形的基础上再补充条件。教学时要注意几种图形的区别。 二、教学目标: (一)知识与技能:理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算。 (二)过程与方法:经历探究菱形判定条件的过程,探索掌握菱形的判定方法。 (三)情感态度与价值观:在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力。 三、重点、难点: 1.教学重点:菱形的两个判定方法。 2.教学难点:判定方法的证明方法及运用。 四、教具准备:多媒体课件;圆规;三角板。 五、教学过程: (一)温故知新: 想一想:菱形的定义及其性质? (让学生回忆并说出菱形的定义及其性质,教师同时播放课件) 菱形的定义:有一组邻边相等的平行四边形叫做菱形。 菱形的性质:1.菱形的两组对边分别平行;菱形的四条边都相等。 2.菱形的两组对角分别相等;菱形的邻角互补。 3.菱形的两条对角线互相垂直且平分,并且每一条对角线平分一组对 角。 思考:如果一个四边形是平行四边形,那么只要再添加一个什么条件,就可以判定它就是一个菱形?根据什么? 师板书:有一组邻边相等的平行四边形是菱形。 (教师明确指出:菱形的定义具有两重性,既是菱形的性质,又可以作为菱形的一种判定方法) 教师强调菱形定义中的两个条件,并让学生明白自己已学过菱形的一种判定方法,为学习另外两种判定方法做准备。

(二)操作探究,发现新知: 1.从“对角线”的角度探究:对角线互相垂直的平行四边形是菱形或对角线互相垂直且平分的四边形是菱形。 (教师再利用多媒体进行演示对角线互相垂直的平行四边形是菱形这一结论) 教师利用多媒体出示探究一: 一个可转动的十字,四周围上一根橡皮筋,做成一个四边形。 然后教师提问:“这个四边形是什么四边形?转动木条,你有 什么发现?”引导学生观察,得出结论。 教师出示命题1:对角线互相垂直的平行四边形是菱形。 师:你会证明吗?如何证明一个文字命题呢? 教师叙述一般过程: 第一:根据题意,画出图形。 第二:分清命题的题设和结论,结合图形,写出已知和求证。 第三:写出证明过程(有时需要写依据)。 第四:归纳结论。 师生活动:鼓励学生独立思考、小组交流、全班展示的方式展开探究,以合作者、参与者的身份指导学生用各种方法证明猜想。 得出结论: 菱形的判定方法1:对角线互相垂直的平行四边形是菱形。 或对角线互相垂直且平分的四边形是菱形。 2.从“边”的角度探究:四边相等的四边形是菱形。 教师利用多媒体出示探究二: 先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB 交点C,连接BC、CD,就得到了一个四边形。 (1)猜一猜,这是什么四边形? C (2 教师出示命题2:四边相等的四边形是菱形。 师:这个命题又该怎样证明呢?(教师引导学生完成证明) 然后教师再利用多媒体进行演示。 师生活动:鼓励学生独立思考、小组交流、全班展示的方式展开探究,以合作者、参 与者的身份指导学生用各种方法证明猜想。 得出结论: 菱形的判定方法2:四边相等的四边形是菱形。 (三)归纳新知:

22.3菱形的判定常考题(含有详细的答案解析)

菱形的判定2 一、选择题 1、在平面直角坐标系中,已知点A(0,2),B(﹣2,0),C(0,﹣2),D(2,0),则以这四个点为顶点的四边形ABCD是() A、矩形 B、菱形 C、正方形 D、梯形 2如图,下列条件之一能使平行四边形ABCD是菱形的为() ①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD. A、①③ B、②③ C、③④ D、①②③ 3、能判定一个四边形是菱形的条件是() A、对角线相等且互相垂直 B、对角线相等且互相平分 C、对角线互相垂直 D、对角线互相垂直平分 4、四边形的四边长顺次为a、b、c、d,且a2+b2+c2+d2=ab+bc+cd+ad,则此四边形一定是() A、平行四边形 B、矩形 C、菱形 D、正方形 填空 1、如图,如果要使平行四边形ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是_________. 2、如图,平行四边形ABCD中,AF、CE分别是∠BAD和∠BCD的角平分线,根据现有的图形,请添加一个条件,使 四边形AECF为菱形,则添加的一个条件可以是_________.(只需写出一个即可,图中不能再添加别的“点”和“线”) 3、在四边形ABCD中,对角线AC、BD交于点O,从(1)AB=CD;(2)AB∥CD;(3)OA=OC;(4)OB=OD;(5)AC⊥BD;(6)AC平分∠BAD这六个条件中,选取三个推出四边形ABCD是菱形.如(1)(2)(5)=>ABCD是菱形,再写出符合要求的两个:_________=>ABCD是菱形;_________=>ABCD是菱形

三、解答题(共11小题) 1、如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE, CE. (1)求证:△ABE≌△ACE; (2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由. 2、如图,在?ABCD中,E,F分别为边AB,CD的中点,连接DE、BF、BD. (1)求证:△ADE≌△CBF. (2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论. 3、(2007?娄底)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F. (1)求证:AE=DF; (2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由. 4、(2011?常州)已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形. 5、如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M. (1)求证:△ABC≌△DCB; (2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.

菱形的判定(含答案)

菱形的判定 一、选择题 1.下列四边形中不一定为菱形的是() A.对角线相等的平行四边形 B.每条对角线平分一组对角的四边形 C.对角线互相垂直的平行四边形 D.用两个全等的等边三角形拼成的四边形 2.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD= BC; ⑤AD∥BC.这5个条件中任选三个,能使四边形ABCD是菱形的选法有(). A.1种 B.2种 C.3种 D.4种 3.菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是()A.8cm和43cm B.4cm和83cm C.8cm和83cm D.4cm和43cm 二、填空题 4.如图1所示,已知□ABCD,AC,BD相交于点O,?添加一个条件使平行四边形为菱形,添加的条件为________.(只写出符合要求的一个即可) 图1 图2 5.如图2所示,D,E,F分别是△ABC的边BC,CA,AB上的点,且DE∥AB,DF∥CA,要使四边形AFDE 是菱形,则要增加的条件是________.(只写出符合要求的一个即可) 6.菱形ABCD的周长为48cm,∠BAD: ∠ABC= 1:?2,?则BD=?_____,?菱形的面积是______.7.在菱形ABCD中,AB=4,AB边上的高DE垂直平分边AB,则BD=_____,AC=_____. 四、思考题 9.如图,矩形ABCD的对角线相交于点O,PD∥AC,PC∥BD,PD,PC相交于点P,四边形PCOD是菱形吗?试说明理由. ]

2、如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形. 3如图所示,四边形ABCD、DEBF都是矩形,AB=BF,AD、 BE相交于M,BC、DF交于N,求证:四边形BMDN是菱 形. 1、用两个边长为a的等边三角形纸片拼成的四边形是 ___________ 2、有一组邻边相等的四边形是菱形() 3、对角线互相垂直的四边形是菱形() 4、对角线互相平分垂直的四边形是菱形() 5、如图,△ABC中,AD平分∠BAC,DE∥AC,与AB相交于点E,DF∥AB,与AC相交于点F,试说明四边形AEDF是菱形。 反思:

2013年及以前 探究菱形的存在性问题汇编

35、(2013?咸宁压轴题)如图,已知直线y=x+1与x 轴交于点A ,与y 轴交于点B ,将△AOB 绕点O 顺时针旋转90°后得到△COD . (1)点C 的坐标是 (0,3) 线段AD 的长等于 4 ; (2)点M 在CD 上,且CM=OM ,抛物线y=x 2 +bx+c 经过点G ,M ,求抛物线的解析式; (3)如果点E 在y 轴上,且位于点C 的下方,点F 在直线AC 上,那么在(2)中的抛物线上是否存在点P ,使得以C ,E ,F ,P 为顶点的四边形是菱形?若存在,请求出该菱形的周长l ;若不存在,请说明理由. 考点: 二次函数综合题. 分析: (1)首先求出图象与x 轴交于点A ,与y 轴交于点B 的坐标,进而得出C 点坐标以 及线段AD 的长; (2)首先得出点M 是CD 的中点,即可得出M 点坐标,进而利用待定系数法求二次函数解析式; (3)分别根据当点F 在点C 的左边时以及当点F 在点C 的右边时,分析四边形CFPE 为菱形得出即可. 解答: (1)点C 的坐标是(0,3),线段AD 的长等于4; ······················································ 3分 (说明:前一个空为1分,后一个空为2分) (2)∵OM CM =, ∴COM OCM ∠=∠. ∵?=∠+∠=∠+∠90MOD COM ODM OCM , ∴MOD ODM ∠=∠, ∴CM MD OM ==, ∴点M 是CD 的中点, ·············································································· 4分∴点M 的坐标为)2 3 ,21(. ············································································ 5分 (说明:由CM =OM 得到点M 在OC 在垂直平分线上,所以点M 的纵坐标为 2 3 ,再求出直线CD 的解析式,进而求出点M 的坐标也可.) ∵抛物线c bx x y ++=2经过点C ,M ,

初三数学-菱形的判定

初三数学 菱形的判定 、教学目标: 1、掌握菱形的判定方法。 2、能运用菱形的判定方法解决有关冋题。 二、教学重点:熟练掌握菱形的判定方法 教学难点:能运用菱形的判定方法解决有关问题。 三、教学过程 (一)复习回顾:菱形的特征 (1)_____________________ 对边_____________________,四条边都 (2)_______________ 对角。 (3)____________________ 对角线___________________________ ,对角线分别这节课我们来探索从平行四边形出发,加上什么条件可以得到菱形: (二)讲授新课 1、菱形的识别: 方法一:有一组邻边______________ 的平行四边形是菱形。(定义) 几何语言::乎BCD中,A吐 _________ 严BCD是。 下面请用菱形的定义来证明“对角线互相垂直的平行四边形是菱形” 已知:如图,________________________________________ 求证:______________________________________________ 证明: 方法二:对角线互相垂直的平行四边形是菱形 (即:平行四边形+对角线菱形 几何语言:如图??? MBCD中,丄 二.ABCD 是。 方法三:四条边都的四边形是菱形。 几何语言:???四边形ABCD中, AB BC CD DA ???四边形ABCD是菱形。 小结:判定一个图形是菱形的方法: (1) __________________________________ 平行四边形+ 菱形 (2) __________________________________ 平行四边形+ 菱形 (3) _______________________ 的四边形—菱形

菱形练习题(含答案)

特殊的平行四边形——菱形 一.菱形的定义:有一组邻边相等的平行四边形叫做菱形. 二.菱形的性质:菱形具有平行四边形一切性质,此外,它还具有如下特殊性质: 1.菱形的四条边相等。 2.菱形的两条对角线互相垂直,且每一条对角线平分一组对角。 3.菱形是轴对称图形也是中心对称图形,两条对角线所在的直线是它的两条对称轴。 三.菱形的判定办法:1.用菱形的定义:有一组邻边相等的平行四边形是菱形; 2.四条边都相等的四边形是菱形; 3.对角线垂直的平行四边形是菱形; 4.对角线互相垂直平分的四边形是菱形。 四.菱形的面积:等于两条对角线乘积的一半.(有关菱形问题可转化为直角三角形或 等腰三角形的问题来解决.),周长=边长的4倍 复习: 1.如图,在ABC △中,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF DC =,连接CF . (1)求证:D 是BC 的中点;(2)若AB AC =,试猜测四边形ADCF 的形状,并证明. 解答:(1)证明:AF BC ∥,AFE DBE ∴∠=∠.∵E 是AD 的中点,AE DE ∴=. 又AEF DEB ∠=∠,AEF DEB ∴△≌△.AF DB ∴=.∵AF DC =,DB DC ∴=. (2)解:四边形ADCF 是矩形,证明:∵AF DC ∥,AF DC =,∴四边形ADCF 是平 行四边形.∵AB AC =,D 是BC 的中点,AD BC ∴⊥.即90ADC ∠=.∴四边形ADCF 是矩形. 菱形例题讲解: 1.已知点D 在△ABC 的BC 边上,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .若AD 平分∠BAC , 试判断四边形AEDF 的形状,并说明理由. 解答:四边形AEDF 是菱形,∵DE ∥AC ,∠ADE=∠DAF ,同理∠DAE=∠FDA ,∵AD=DA , ∴△ADE ≌△DAF ,∴AE=DF ; ∵DE ∥AC ,DF ∥AB ,∴四边形AEDF 是平行四边形,∴∠DAF=∠FDA .∴AF=DF .∴平行四边形AEDF 为菱形. 2.已知:如图,在梯形ABCD 中,AB ∥CD ,BC=CD ,AD ⊥BD ,E 为AB 中点,求证:四边形BCDE 是菱形. 证明:∵AD ⊥BD ,∴△ABD 是Rt △∵E 是AB 的中点,∴BE=DE ,∴∠EDB=∠EBD , ∵CB=CD ,∴∠CDB=∠CBD ,∵AB ∥CD ,∴∠EBD=∠CDB , ∴∠EDB=∠EBD=∠CDB=∠CBD ,∵BD=BD ,∴△EBD ≌△CBD (ASA ),∴BE=BC , ∴CB=CD=BE=DE ,∴菱形BCDE .(四边相等的四边形是菱形) 3.如图,△ABC 与△CDE 都是等边三角形,点E 、F 分别在AC 、BC 上,且EF ∥AB , (1)求证:四边形EFCD 是菱形;(2)设CD=4,求D 、F 两点间的距离. 解答:(1)证明:∵△ABC 与△CDE 都是等边三角形,∴ED=CD=CE .∵EF ∥AB ∴∠EFC=∠ACB=∠FEC=60°, ∴EF=FC=EC ∴四边形EFCD 是菱形. (2)解:连接DF ,与CE 相交于点G ,由CD=4,可知CG=2, ∴ ∴. 4.如图,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于点E 、F .求证:四边形AFCE 是菱形. 证明:∵AE ∥FC .∴∠EAC=∠FCA .又∵∠AOE=∠COF ,AO=CO ,∴△AOE ≌△COF . ∴EO=FO .又EF ⊥AC ,∴AC 是EF 的垂直平分线. ∵EF 是AC 的垂直平分线.∴四边形AFCE 为菱形 5.在 ABCD 中,E F ,分别为边AB CD ,的中点,连接DE BF BD ,,. (1)求证:ADE CBF △≌△. (2)若AD BD ⊥,则四边形BFDE 是什么特殊四边形?请证明你的结论. 解:(1)在平行四边形ABCD 中,∠A =∠C ,AD =CB ,AB =CD .∵E ,F 分别为AB ,CD 的中点∴AE =CF , (S A S )A E D C F B ∴△≌△. (2)若AD ⊥BD ,则四边形BFDE 是菱形. 证明:AD BD ⊥,ABD ∴△是Rt △, 且AB 是斜边(或90ADB ∠=),E 是AB 的中点,12 DE AB BE ∴==.由题意可EB DF ∥且EB DF =, ∴四边形BFDE 是平行四边形,∴四边形BFDE 是菱形. O D C B A

相关文档
相关文档 最新文档