文档库 最新最全的文档下载
当前位置:文档库 › 动能定理模块知识点总结

动能定理模块知识点总结

动能定理模块知识点总结
动能定理模块知识点总结

动能定理 模块知识点总结

一、动能:物体由于运动而具有的能叫动能,其表达式为:

2k mv 2

1E = 和动量一样,动能也是用以描述机械运动的状态量。只是动量是从机械运动出发量化机械运动的状态动量确定的物体决定着它克服一定的阻力还能运动多久;动能则是从机械运动与其它运动的关系出发量化机械运动的状态,动能确定的物体决定着它克服一定的阻力还能运动多远。

二、动能定理:合外力所做的总功等物体动能的变化量。

K E mv mv W ?=-=

21222121合

(1) 式中W 合是各个外力对物体做功的总和, ΔE K 是做功过程中始末两个状态动能的增量.

动能定理实际上是在牛顿第二定律的基础上对空间累积而得:

在牛顿第二定律 F = ma 两端同乘以合外力方向上的位移,即可得

21222

121mv mv mas Fs W -===合

三、对动能定理的理解:

①如果物体受到几个力的共同作用,则(1)式中的W 合表示各个力做功的代数和,即合外力所做的功.

W 合=W 1+W 2+W 3+……

②应用动能定理解题的特点:跟过程的细节无关. 即不追究全过程中的运动性质和状态变化细节.

③动能定理的研究对象是质点.

④动能定理对变力做功情况也适用.动能定理尽管是在恒力作用下利用牛顿第二定律和运动学公式推导的,但对变力做功情况亦适用. 动能定理可用于求变力的功、曲线运动中的功以及复杂过程中的功能转换问题.

⑤应用动能定理解题的注意事项:

⑴要明确物体在全过程初、末两个状态时的动能;

⑵要正确分析全过程中各段受力情况和相应位移,并正确求出各力的功;

⑶动能定理表达式是标量式,不能在某方向用速度分量来列动能定理方程式:

⑷动能定理中的位移及速度,一般都是相对地球而言的.

动量定理与动能定理的区别:

【比较】两大是描述物体在空间运动的时间过程中:

动量定理:F ·t=P ′-P .合外力对物体的冲量与物体动量变化之间的关系

动能定理:F ·s = 21

m υ22—21

m υ12,或W = ΔE k 。合外力对物体所做的总功等于物体动能的变化。

两定理都是由牛顿第二定律与运动学公式结合推导得出的。但它们是从不同角度来描述力和物体运动状态的关系。 动量定理反映了力对时间的积累效果——使物体的动量发生了多少变化;

动能定理反映了力对空间的积累效应——使物体的动能发生了多少变化。

动量定理的表达式是矢量式,一般应采用矢量运算的平行四边形法则。当用于一维运动的计算时,应首先选定正方向。

动能定理的表达式是标量式,合力的功即为各力做正功或负功的代数和,所有运算为代数运算,不必规定正方向。 动量定理的研究对象是单个物体或物体系统,式中F 是合外力,不包含系统力。因为系统力是成对出现的,作用力和反作用力在任何情况下的冲量都是等值反向,不会改变系统的总动量。

动能定理的研究对象是单个物体,合力的功即为合外力的功。若扩展到系统,则合力的功亦包括力的功。因为系统力做功也可能改变系统的总动能。

(作用力与反作用力的冲量和一定为零,而作用力与反作用力的功的和却不一定为零)

动能定理和动量定理从不同的侧面(分别是位移过程和时间过程)反映了力学规律,是解决办学问题两条重要定理,一般来说,侧重于位移过程的力学问题用动能定量处理较为方便,侧重于时间过程的力学问题用动量定理处理较为方便.

动量定理和动能定理虽然是由牛顿第二定律推导出来的,但由于应用它们处理问题时无须深究过程细节,对恒力、变力、长时作用、短时作用都适用,因此,它们的应用比牛顿第二定律更广泛,对某些问题的处理比用牛顿第二定律更简捷。

1.关于动量和动能的以下说法中正确的是 ( C )

A. 系统动量守恒的过程动能必定也守恒

B. 系统动能守恒的过程动量必定也守恒

C. 如果一个物体的动量保持不变,那么它的动能必然也不变

D. 如果一个物体的动能保持不变,那么它的动量必然也不变

2. 每逢重大节日,天安门广场就会燃放起美丽的焰火.按照设计要求,装有焰火的礼花弹从专用炮筒中射出后,在4s 末到达离地面100m 的最高点,随即炸开,构成各种美丽的图案.假设礼花弹从炮筒中射出时的初速度是v 0,上升过程中所受的平均阻力大小始终是自身重力的k 倍,那么v 0和k 分别等于( A )

A .50m/s ,0.25

B .40m/s ,0.25

C .25m/s ,1.25

D .80m/s ,1.25

3. 科学家根据考察,比较一致地认为6560万年前地球上发生的那次生物大灭绝是由一颗直径大约为l0 km 、质量为l×1012 t 的小行星以20~30 km /s 的速度砸到地球上而导致的。这次释放的能量相当于6×1013 t 的TNT 炸药所放出的能量。现假设有一颗直径l km 的小行星(密度和速度都和那颗6560万年前与地球发生碰撞的小行星一样)撞上了地球,在碰撞中释放的能量大约相当于( C )

A .6×l0l2 t 的TNT 炸药所放出的能量

B .6×1011 t 的TNT 炸药所放出的能量

C .6×1010 t 的TNT 炸药所放出的能量

D .6×10 7 t 的INT 炸药所放出的能量

4. 如图所示,质量为m 的物体从斜面上的A 处由静止

滑下,在由斜面底端进入水平面时速度大小不变,

最后停在水平面上的B 处。量得A 、B 两点间的

水平距离为s ,A 高为h ,已知物体与斜面及水平 面的动摩擦因数相同,则此动摩擦因数=μ 。 10答.s

h

5. 某滑板爱好者在离地面h = 1.8m 高的平台上滑行,以某一水平初速度离开A 点后落在水平地面上的B 点,其水平位移S 1 = 3m 。着地时由于存在能量损失,着地后速度变为v = 4m/s ,并以此为初速度沿水平面滑行S 2 = 8m 后停止。已知人与滑板的总质量m = 70kg ,空气阻力忽略不计,取g = 10m/s 2。求:

(1)人与滑板在水平地面上滑行时受到的平均阻力的大小;

(2)人与滑板离开平台时的水平初速度的大小;

(3)人与滑板在与水平地面碰撞的过程中损失的机械能。

h s

A B

解:(1)据动能定理:2

02

2mv S F f -=- 2分 解得:N S mv F f 7022

2

== (2)s t gt h 6.022

==得 2分 s m t

S v /510== (3)碰撞前机械能:J mgh mv E 21352

200=+= 2分 碰撞后机械能:J mv E 5602

2

== △E = E -E 0 = 1575J 6..2005年10月12日电 神舟再度飞天,中华续写辉煌。时间10月12日9时9分52秒,我国自主研制的神舟六号载人飞船,在卫星发射中心发射升空后,准确进入预定轨道。神舟六号载人飞船的飞行,是我国第二次进行载人航天飞行,也是我国第一次将两名航天员(费俊龙、聂海胜)同时送上太空。则:

(1)当返回舱降到距地面30km 时,回收着陆系统启动工作,相继完成拉出天线、抛掉底盖等一系列动作.当返回舱距地面20 km 时,速度减为200m/s 而匀速下落,此阶段重力加速度为g ′ (且近似认为不变),所受空气的阻力为S v f 22

1ρ=,其中ρ为大气的密度.v 是返回舱的运动速度,S 为阻力作用的面积.试写出返回舱在速度为v 时的质量表达式

(2)当返回舱降到距地面10km 时,打开面积为1200m 2的降落伞,直到速度降到8.0m/s 后又匀速下降.为实现软着陆(即着陆时返回舱的速度为0),当返回舱离地面1.2m 时反冲发动机点火,返回舱此时的质量为2.7×103㎏,取g=10m/s 2(反冲发动机点火后,空气的阻力不计,可认为返回舱做匀减速直线运动)。求平均反冲推力的大小和反冲发动机对返回舱做的功.

解: (1)返回舱以200m/s 的速度匀速下降时受力平衡,即有S v g m 22

1ρ=',所以g S v m '=22ρ (2)设反冲发动机点火后返回舱所受平均推力大小为F ,则由运动学公式得ah v 22=;因不计空气的阻力,则有

ma mg F =-,所以)2(2

h

v g m F +==9.9×104N. 设反冲发动机对返回舱做的功为F W ,由动能定理得22

10mv W mgh F -

=+ 解得5102.1?-=F W J.

7.. 质量相等的两木块A 、B 用一轻弹簧栓接,静置于水平地面上,如图(a )所示。现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图(b )所示。从木块A 开始做匀加速直线运动到木块B 将要离开地面时的这一过程,下列说确的是(设此过程弹簧始终处于弹性限度 )( A )

A .力F 一直增大

B .弹簧的弹性势能一直减小

C .木块A 的动能和重力势能之和先增大后减小

D .两木块A 、B 和轻弹簧组成的系统的机械能先增大后减小

8. 如图所示,质量mA 为4.0 kg 的木板A 放在水平面C 上,

木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量mB 为1.0 kg 的

小物块B (视为质点),它们均处于静止状态.木板突然受到水平向右的12 N ·s 的瞬时冲量I 作用开始运动,当小物块滑离木板时,木板的动能为8.0 J ,小物块的动能为0.50 J ,重力加速度取10 m/s2,求:

(1)瞬时冲量作用结束时木板的速度v0;

(2)木板的长度L.

答案 (1)3.0 m/s (2)0.50 m

解析(1)设水平向右为正方向,有

I=mAv0 ①

代入数据解得

v0=3.0 m/s ②

(2)设A 对B 、B 对A 、C 对A 的滑动摩擦力的大小分别为FAB 、FBA 和FCA ,B 在A 上滑行的时间为t ,B 离开A 时A 和B 的速度分别为vA 和vB ,有

-(FBA+FCA )t=mAvA-mAv0 ③

FABt=mBvB ④

其中FAB=FBA

FCA=μ(mA+mb )g ⑤

设A 、B 相对于C 的位移大小分别为SA 和SB,

有-(FBA+FCA )SA=21mAvA2-21

mAv02

⑥ FABSB=EKB

⑦ 动量与动能之间的关系为

mAvA=

A A E m K 2 ⑧ mBvB= A A E m K 2

⑨ 木板A 的长度 L=sA-sB

⑩ 代入数据解得

(b) (a) F A A B B

L=0.50 m

9.如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间将男演员沿水平方向推出,然后自己刚好能回到高处A.求男演员落地点C 与O 点的水

平距离s.已知男演员质量m1和女演员质量m2之比21

m m =2,秋千的质量不计,秋千的摆长为R,C 点比O 点低5R.

答案 8 R

解析 设分离前男女演员在秋千最低点B 的速度为v0,由机械能守恒定律得

(m1+m2)gR=21

(m1+m2)v02 ①

设刚分离时男演员速度大小为v1,方向与v0相同;女演员速度大小为v2,方向与v0相反,由动量守恒得(m1+m2)v0=m1v1-m2v2 ②

分离后,男演员做平抛运动,设男演员从被推出到落在C 点所需的时间为t,根据题给条件,由运动学规律

4R=21

gt2 ③

s=v1t

④ 分离后,女演员恰回到A 点,由机械能守恒定律

m2gR=21

m2v22 ⑤

已知m1=2m2 ⑥

由以上各式得:s=8 R ⑦

10.如图所示,在一光滑的水平面上有两块相同的木板B 和C.重物A (视为质点)位于B 的右端,A 、B 、C 的质量相等.现A 和B 以同一速度滑向静止的C,B 与C 发生正碰.碰后B 和C 粘在一起运动,A 在C 上滑行,A 与C 有摩擦力.已知A 滑到C 的右端而未掉下.试问:

B 、

C 发生正碰到A 刚移动到C 右端期间,C 所走过的距离是C 板长

度的多少倍?

答案 37

解析 设A 、B 、C 的质量均为m.碰撞前,A 与B 的共同速度为v0,碰撞后B 与C 的共同速度为v1。对B 、C,由动量守恒定律得 mv0=2mv1 ①

设A 滑至C 的右端时,三者的共同速度为v2.对A 、B 、C,由动量守恒定律得

2mv0=3mv1 ②

设A 与C 的动摩擦因数为μ,从发生碰撞到A 移至C 的右端时C 所走过的距离为S.对B 、C 由功能关系

μ(2m )gs=21(2m)v22-21

(2m)v12

③ Μmg(s+l)= 21mv02-21

mv22

④ 由以上各式解得l s =37

11.质量相等的两木块A 、B 用一轻弹簧栓接,静置于水平地面上,如图(a )所示。现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图(b )所示。从木块A 开始做匀加速直线运动到木块B 将要离开地面时的这一过程,下列说确的是(设此过程弹簧始终处于弹性限度 )( A )

A .力F 一直增大

B .弹簧的弹性势能一直减小

C .木块A 的动能和重力势能之和先增大后减小

D .两木块A 、B 和轻弹簧组成的系统的机械能先增大后减小

12 如图所示,一个质量为m 的物体以某一速度从A 点冲上倾角为30°的斜面,其运动的加速度为3g/4,这物体在斜面上上升的最大高度为h ,则这过程中:( BD )

A 、重力势能增加了mgh 43;

B 、机械能损失了mgh 21;

C 、动能损失了mgh ;

D 、重力势能增加了mgh 。

13.如图,一轻弹簧左端固定在长木块M 的左端,右端与小木块m 连接,且m 、M 及M 与地面间接触光滑。开始时,m 和M 均静止,现同时对m 、M 施加等大反向的水平恒力F1和F2。从两物体开始运动以后的整个运动过程中,对m 、M 和弹簧组成的系统(整个过程中弹簧形变不超过其弹性限度)。正确的说法是(.D )

A 、由于F1、F2等大反向,故系统机械能守恒

B 、F1、F2 分别对m 、M 做正功,故系统动量不断增加

C 、F1、F2 分别对m 、M 做正功,故系统机械能不断增加

D 、当弹簧弹力大小与F1、F2大小相等时,m 、M 的动能最大

14.光滑水平面上静置一质量为M 的木块,一颗质量为m 的子弹以水平速度v1射入木块,以v2速度穿出,对这个过程,下列说确的是: ( D ) A 、子弹对木块做的功等于()

222121v v m -; B 、子弹对木块做的功等于子弹克服阻力做的功;

C 、子弹对木块做的功等于木块获得的动能与子弹跟木块摩擦生热的能之和;

D 、子弹损失的动能等于木块的动能跟子弹与木块摩擦转化的能和。

B C

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++ 等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求9 1()x x -的展开式中3 x 的系数及二项式系数

勾股定理知识点总结

第18章 勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

a b c c b a E D C B A 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5 、利用勾股定理作长为 的线段 作长为 、 、 的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为 和1的直 角三角形斜边长就是,类似地可作 。 作法:如图所示 (1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。斜边为 ; (3)顺次这样做下去,最后做到直角三角形,这样斜边 、 、 、 的长度就是 、 、 、 。 举一反三 【变式】在数轴上表示的点。 解析:可以把 看作是直角三角形的斜边, , 为了有利于画图让其他两边的长为整数, 而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

高中数学必修五 知识点总结【经典】

《必修五 知识点总结》 第一章:解三角形知识要点 一、正弦定理和余弦定理 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有 2sin sin sin a b c R C ===A B (R 为C ?AB 的外接圆的半径) 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; 3、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 4、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,推论:bc a c b A 2cos 2 22-+= B ac c a b cos 2222-+=,推论: C ab b a c cos 22 2 2 -+=,推论:ab c b a C 2cos 2 22-+= 二、解三角形 处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种情况,根据已知条件判断解的情况,并能正确求解 1、三角形中的边角关系 (1)三角形内角和等于180°; (2)三角形中任意两边之和大于第三边,任意两边之差小于第三边; ac b c a B 2cos 2 22-+=

(3)三角形中大边对大角,小边对小角; (4)正弦定理中,a =2R ·sin A , b =2R ·sin B , c =2R ·sin C ,其中R 是△ABC 外接圆半径. (5)在余弦定理中:2bc cos A =222a c b -+. (6)三角形的面积公式有:S = 21ah , S =21ab sin C=21bc sin A=2 1 ac sinB , S =))(()(c P b P a P P --?-其中,h 是BC 边上高,P 是半周长. 2、利用正、余弦定理及三角形面积公式等解任意三角形 (1)已知两角及一边,求其它边角,常选用正弦定理. (2)已知两边及其中一边的对角,求另一边的对角,常选用正弦定理. (3)已知三边,求三个角,常选用余弦定理. (4)已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理. (5)已知两边和其中一边的对角,求第三边和其他两个角,常选用正弦定理. 3、利用正、余弦定理判断三角形的形状 常用方法是:①化边为角;②化角为边. 4、三角形中的三角变换 (1)角的变换 因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。 2 sin 2cos ,2cos 2sin C B A C B A =+=+; (2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。 r 为三角形内切圆半径,p 为周长之半 (3)在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是∠B=60°;△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列.

二项式定理11种题型解题技巧

二项式定理知识点及11种答题技巧 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和:

勾股定理知识点总结

第十七章勾股定理知识点总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在ABC ?中,90 ∠=?,则c, C b,a=) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c; (2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形 (若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2

区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A

勾股定理全章知识点归纳总结

全国中考信息资源门户网站 https://www.wendangku.net/doc/306146545.html, 勾股定理全章知识点归纳总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=? ,则22 c a b = +, 2 2 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

全国中考信息资源门户网站 https://www.wendangku.net/doc/306146545.html, 3:勾股定理与勾股定理逆定理的区别与联系 区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ? +=正方形正方形ABCD ,22 14()2 ab b a c ? +-=,化简可证. c b a H G F E D C B A

正弦定理知识点总结与复习

在△ABC ,已知A =60°,B =45°,c =2,解三角形 [解题过程] 在△ABC 中,C =180°-(A +B ) =180°-(60°+45°)=75°. sin 75°=sin(45°+30°) =sin 45°cos 30°+cos 45°sin 30° =22×32+22×12 =2(3+1)4=6+24 根据正弦定理: a =c sin A sin C =2sin 60°sin 75°=2×3 2 2(3+1)4=6(3-1)=32- 6, b = c sin B sin C =2sin 45° sin 75°=2× 222(3+1) 4 =2(3-1). [题后感悟] 已知两角和一边(如A ,B ,c ),求其他角与边的步骤是: (1)C =180°-(A +B ); (2)用正弦定理,a =c sin A sin C ; (3)用正弦定理,b =c sin B sin C . ,

思路点拨: 已知两边及一边对角,先判断三角形解的情况, ∵a>b ,∴A>B ,B 为锐角,故有一解,先由正弦定理求角B , 然后由内角和定理求C ,然后再由正弦定理求边 c. 1.(1)已知A =45°,B =30°,c =10.求b . (2)在△ABC 中,若A =105°,B =45°,b =22,求c . 解析: (1)∵A +B +C =180,∴C =105°. 又∵sin 105°=sin(45°+60°) =sin 45°·cos 60°+cos 45°·sin 60° =2+64, ∴b =c sin B sin C =10×sin 30° sin 105°=10× 122+64 =5(6-2). (2)∵A +B +C =180°,∴C =30°. 又∵b sin B =c sin C , ∴c =b sin C sin B =22×sin 30°sin 45°= 22×12 2 2 =2. 在△ABC 中,A =60°,a =43,b =42,解三角形.

二项式定理知识点总结复习过程

二项式定理知识点总 结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110(*∈N n )等号右边的多项式 叫做()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设 x b a ==,1,则()n n n k n k n n n n n x C x C x C x C x +++++=+-ΛΛ101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式;另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++Λ等于 ( ) A .n 4 B 。n 43? C 。134-n D.314-n 例2.(1)求7(12)x +的展开式的第四项的系数;

正弦定理和余弦定理知识点总结附答案

高频考点一 利用正弦定理、余弦定理解三角形 例1、(1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个 D .无法确定 (2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2 =b 2 +2bc ,则三内角A ,B ,C 的度数依次是________. (3)(2015·广东)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =1 2 , C =π6 ,则b =________. 答案 (1)B (2)45°,30°,105° (3)1 解析 (1)∵b sin A =6× 2 2 =3,∴b sin A

【变式探究】(1)已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是( ) A .x >2 B .x <2 C .2<x <2 2 D .2<x <23 (2)在△ABC 中,A =60°,AC =2,BC =3,则AB =________. 答案 (1)C (2)1 解析 (1)若三角形有两解,则必有a >b ,∴x >2, 又由sin A =a b sin B =x 2×2 2 <1, 可得x <22, ∴x 的取值范围是2<x <2 2. (2)∵A =60°,AC =2,BC =3, 设AB =x ,由余弦定理,得 BC 2=AC 2+AB 2-2AC ·AB cos A , 化简得x 2 -2x +1=0, ∴x =1,即AB =1. 高频考点二 和三角形面积有关的问题 例2、(2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π 4 , b 2-a 2=12 c 2. (1)求tan C 的值; (2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2 =12 c 2及正弦定理得

二项式定理考点大全(详解)

二项式定理高考知识点总结 1.求103 )1 (x x -展开式中的常数项 2.已知9)2(x x a -的展开式中3x 的系数为4 9,求常数a 的值 3.求84)21(x x +展开式中系数最大的项; 4.若n x x )21 (-+的展开式的常数项为-20.求n .

5求当25 (32)x x ++的展开式中x 的一次项的系数? 6.已知n x x )21(4?+ 的展开式前三项中的x 的系数成等差数列. (1)求展开式中所有的x 的有理项; (2)求展开式中系数最大的项. 7. 已知二项式n x x )2(2 -,(n ∈N *)的展开式中第5项的系数与第3项的系数的比是10:1, (1)求展开式中各项的系数和 (2)求展开式中系数最大的项以及二项式系数最大的项 8.求6 998.0的近似值,使误差小于001.0;

9.求证:15151 -能被7整除。 10.求证:32n + 2-8n-9能被64整除. 11 求9192除以100的余数. 12 求证:C n 0+21C n 1+31C n 2+…+11+n C n n =1 1+n (2n+1-1). 13 计算c C C C n n n n n n n 3)1( (279313) 2 1 -++-+-; 14.求值:

15、已知数列{a n }(n 为正整数)是首项为a 1,公比为q 的等比数列。 (1)求和:;,3 342331320312231220 2 1C a C a C a C a C a C a C a -+-+- (2)由(1)的结果归纳概括出关于正整数n 的一个结论,并加以证明; (3)设q ≠1,S n 是等比数列{an }的前n项和,求: . )1(134231201n n n n n n n n C S C S C S C S C S +-++-+- 16.规定! )1()1(m m x x x C m x +--= ,其中x ∈R ,m 是正整数,且10=x C ,这是组合数m n C (n 、 m 是正整数,且m ≤n )的一种推广. (1) 求3 15-C 的值; (2) 设x >0,当x 为何值时,213)(x x C C 取得最小值? (3) 组合数的两个性质; ①m n n m n C C -=. ②m n m n m n C C C 11+-=+. ?是否都能推广到m x C (x∈R,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.

排列组合与二项式定理知识点

排列组合与二项式定理知识点

第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序...... 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: ) ,,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--=Λ 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 1 1 --=m n m n nA A 规定10 ==n n n C C

2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排 列个数等于! !...!!2 1 k n n n n n =. 例如:已知数字3、2、2,求其排列个数3 ! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列 个数1!3!3==n . 三、组合. 1. ⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. ⑵组合数公式: )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -= +--==Λ ⑶两个公式:①;m n n m n C C -= ②m n m n m n C C C 11+-=+ ①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合. (或者从n+1个编号不同的小球中,n 个白球一

人教版勾股定理知识要点--总结及练习

勾股定理知识总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2 ) 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2 +b 2 =c 2 ,那么这个三角形是直角三角形。 3:勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 二、经典例题精讲: 题型一:直接考查勾股定理: 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c += 题型二:利用勾股定理测量长度: 例题1 如梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉到岸 边,它的顶端B 恰好落到D 点,并求水池的深度AC. 题型三:勾股定理和逆定理并用— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1 = 那么△DEF 是直角三角形吗?为什么? 题型四:关于翻折问题: 例1、 如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在CD 边上

的点G 处,求BE 的长. 勾股定理练习(随堂练) 一.填空题: 1. 在Rt △ABC 中,∠C=90° (1)若a=5,b=12,则c=________________________; (2)b=8,c=17,则S △ ABC =________。 2.若一个三角形的三边之比为5∶12∶13,则这个三角形是________(按角分类)。 3. 直角三角形的三边长为连续自然数,则其周长为____________________。 4.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所 行的最短路线的长是_______________________。 二.选择题: 5.观察下列几组数据 :(1) 8, 15, 17; (2) 7, 12, 15; (3)12, 15, 20; (4) 7, 24, 25. 其中能作为直角三角形的三边长的有( )组 A. 1 B. 2 C. 3 D. 4 6.三个正方形的面积如图,正方形A 的面积为( ) A. 6 B.4 C. 64 D. 8 7.已知直角三角形的两条边长分别是5和12,则第三边为 ( ) A.13 B.119 C.13或119 D. 不能确定 8.下列命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是5、12,那么斜边必是13;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(a>b=c ),那么a 2 ∶b 2 ∶c 2 =2∶1∶1。其中正确的是( ) A 、①② B 、①③ C 、①④ D 、②④ 9.三角形的三边长为(a+b )2 =c 2+2ab,则这个三角形是( ) A. 等边三角形; B. 钝角三角形; C. 直角三角形; D. 锐角三角形. A B 第8题图 A 10 6

二项式定理知识点总结

二项式定理知识点总结 1.二项式定理公式: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。 各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是0 1 2 ,,,,,,. r n n n n n n C C C C C ??????项的系数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N * +=++++++∈L L

令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即 0,n n n C C =·1 k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:0242132111222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和: 00112220120120011222021210 01230123()()1, (1)1,(1)n n n n n n n n n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----L L L L n n L n n n L 024135(1)(1),() 2 (1)(1),() 2 n n n n n n a a a a a a a a a a a a ----++-++++=+---+++=n n n n L n n n n n n n n n n L n n n n n n n ⑤二项式系数的最大项: 如果二项式的幂指数n 是偶数时,则中间一项的二项式系数21 2n n n C T +=取得最大值。

八年级下册勾股定理知识点归纳

八年级下册勾股定理知识点和典型例习题 一、基础知识点: 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形通过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD , ,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形 的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为 2 22() 2S a b a a b b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠ =?,则c =,b ,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实 际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;否则,就不是直角三角形。 ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25,8,15,17等 ③用含字母的代数式表示n 组勾股数: c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

正弦定理和余弦定理知识点与题型归纳

正弦定理和余弦定理知识点与题型归纳 Pleasure Group Office【T985AB-B866SYT-

●高考明方向 掌握正弦定理、余弦定理, 并能解决一些简单的三角形度量问题. ★备考知考情 1.利用正、余弦定理求三角形中的边、角问题是高考 考查的热点. 2.常与三角恒等变换、平面向量相结合出现在解答题 中,综合考查三角形中的边角关系、三角形形状的 判断等问题. 3.三种题型都有可能出现,属中低档题. 一、知识梳理《名师一号》P62 知识点一 正弦定理 (其中R 为△ABC 外接圆的半径) 变形1:2sin ,2sin ,2sin ,===a R A b R B c R C 变形2:sin ,sin ,sin ,222= ==a b c A B C R R R 变形3:∶∶∶∶sinA sinB sinC=a b c 注意:(补充) 关于边的齐次式或关于角的正弦的齐次式 均可利用正弦定理进行边角互化。 知识点二 余弦定理

222 222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2?+-=??=+-?+-??=+-?=??=+-???+-?=?? b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab 注意:(补充) (1)关于边的二次式或关于角的余弦 均可考虑利用余弦定理进行边角互化。 (2)勾股定理是余弦定理的特例 (3)在?ABC 中,222090?? <+?<

勾股定理知识点总结、经典例题

知识点及例题 知识点一:勾股定理 如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方. 要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。 (2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。 (3)理解勾股定理的一些变式: c2=a2+b2, a2=c2-b2,b2=c2-a2,c2=(a+b)2-2ab 知识点二:用面积证明勾股定理 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。 图(1)中,所以。 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。 图(2)中,所以。 方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。 在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积), 在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积), 所以,甲的面积=乙和丙的面积和,即:. 方法四:如图(4)所示,将两个直角三角形拼成直角梯形。 ,所以。

知识点三:勾股定理的作用 1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系; 3.用于证明平方关系的问题;4.利用勾股定理,作出长为的线段。 2. 在理解的基础上熟悉下列勾股数 满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。 熟悉下列勾股数,对解题是会有帮助的: ①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41. 如果(a,b,c)是勾股数,当t>0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。 经典例题透析类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 总结升华:有一些题目的图形较复杂,但中心思想还是化为直角三角形来解决。如:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差或和。 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的 长. 解析:作于D,则因,

相关文档
相关文档 最新文档