文档库 最新最全的文档下载
当前位置:文档库 › 第03章 空间问题有限元法

第03章 空间问题有限元法

第03章 空间问题有限元法
第03章 空间问题有限元法

基于有限元和边界元的噪声分析

half 重登录 隐身 控制面板 搜索 状态 展区 振动博客 论坛服务 退出 振动论坛 → 专题讨论区→ 噪声分析及控制→声学基础理论→[转帖]基于有限元和边界元的噪声 分析 复制本页地址 粘贴我的收件箱 (0) 您 是本帖的第42个阅读者 标题:[转帖]基于有限元和边界元的噪声 分析树形 打印 收藏 推荐 提交网摘 等级:本科生 威望:18 现金:308 经验:1107 魅力:627 文章:109 注册: 2005-07-24 活跃度: 活跃等级:①年迈乌龟 在线等级: van321 ▼楼主 物体受到激励后,必将会产生振动,由物体的振动而引起与之相接触的流体的振动(如空气),从而在流体中产生噪声。对流体的噪声分析可以在频率域内或者时间域内进行,可以采用流体与结构耦合的形式进行分析,也可以只采用流体的形式进行计算分析,可以计算内声场也可以计算外声场,例如对于汽车而言,可以计算内声场,也可以计算外声场。在低频范围内采用边界元或者有限元的方法,在高频内采用统计能量的方法,计算结果包括声场中任意一点处的声学响应,如声压、声强、声功率,还可以是某点处的响应函数,如声压函数、模态贡献量函数,还可以进行一些特殊的分析,如声学传递矢量分析、面板贡 献量分析和灵敏*分析,以及高频域内的统计 能量分析。 如图所示是某轿车的排气系统的有限元声学模型,图所示是该排气系统中消声器的声学 模型。 [转帖]基于有限元和边界元的噪声分析

排气系统的声学模型

消声器的声学模型 ?声学模态分析 声学模态类似于结构模态,声波在流体团中传播时,会引发流体的振荡,流体的振荡也是有一定的固有频率和振动样式(振型),通过声学模态计算可以计算出流体的声学共振频率,防止流体和流体周围的结构产生共振而引发共鸣。 图所示是排气系统的声学模态云纹图。

非线性有限元分析

轨道结构的非线性有限元分析 姜建华 练松良 摘 要 实际轨道结构受载时的力学行为,属于典型的非线性力学问题。钢轨垫层刚度、钢轨抗扭刚度和扣件扣压力的大小是影响轨距扩大的主要因素。根据非线性有限元接触理论,建立了能准确反映扣件、钢轨与垫层的拧紧接触,以及受载车轮与钢轨侧向滑动接触的力学计算模型;并研究计算了不同扣件压力下,由于受载车轮与钢轨侧向滑动接触引起的轨距扩大问题。 关键词 轮轨关系,扣件压力,非线性弹性力学,有限元分析 1 引言 实际工程中常见的非线性问题一般可以归纳为三类:材料非线性、几何非线性以及边界条件非线性。材料非线性问题是由于材料的非线性本构关系所引起的,例如材料的弹塑性变形,材料的屈服和硬化等;几何非线性问题是由于结构的位移或变形相当大,以至必须按照变形后的几何位置来建立平衡方程;边界条件非线性问题是指边界条件随位移变化所引起的非线性问题。通常情况下,我们所遇到的非线性问题多数是上述三类非线性问题的组合[1,2]。 实际轨道结构受载时的力学行为,属于典型的非线性力学问题。比如基于轮轨接触的材料非线性、几何非线性及边界条件非线性问题,以及扣件、钢轨、垫层三者间相互作用时所表现的边界条件非线性行为等。所以,机车车辆在轨道结构上行驶时引起的力学现象是相当复杂的。以往在研究轨道各部分应力应变分布规律时,通常采用连续弹性基础梁理论或连续点支承,偶尔简单考虑扣件的作用和弹性垫层的使用。不管用哪一种支承方式建立模型,都由于这样那样的假设而带有一定程度的近似性。所以,如何利用现代力学理论的最新成果以及日益发展的计算机技术,根据轨道结构的具体情况,建立更为完整更为准确的轨道结构计算模型,为轨道设计部门提供更加可靠的设计依据或研究思路,已十分必要。 本文提出了用非线性有限元理论研究轮轨系统和轨道结构的思路。作为算例之一,本文将根据非线性有限元理论,建立能准确反映扣件、钢轨与垫层的拧紧接触,以及受载车轮与钢轨侧向滑动接触的力学计算模型。 2 轨道结构的有限元接触模型 对于非线性问题,不管是材料非线性、几何非线性,还是边界条件非线性,总是最终归结为求解一组非线性平衡方程及其控制方程。例如用位移作为未知数进行有限元分析时,最后可得到一组平衡方程及其控制方程为 : 图1 轮轨系统的对称性模型简图 [K(u)]{u}={R}(1) (u)= (u)(2)其中:{u}为节点位移列阵;{R}为节点载荷列阵; [K(u)]为总体刚度矩阵; (u)为边界条件。它们 36 姜建华:同济大学工程力学系,副教授、博士,上海200092

非线性有限元方法及实例分析

非线性有限元方法及实例分析 梁军 河海大学水利水电工程学院,南京(210098) 摘 要:对在地下工程稳定性分析中常用的非线性方程组的求解方法进行研究,讨论了非线性计算的迭代收敛准则,并利用非线性有限元方法分析了一个钢棒单轴拉伸的实例。 关键词:非线性有限元,方程组求解,实例分析 1引 言 有限单元法已成为一种强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题。有限元的线性分析已经设计工具被广泛采用。但对于绝大多数水利工程中遇到的实际问题如地下洞室等,将其作为非线性问题加以考虑更符合实际情况。根据产生非线性的原因,非线性问题主要有3种类型[1]: 1.材料非线性问题(简称材料非线性或物理非线性) 2.几何非线性问题 3.接触非线性问题(简称接触非线性或边界非线性) 2 非线性方程组的求解 在非线性力学中,无论是哪一类非线性问题,经过有限元离散后,它们都归结为求解一个非线性代数方程组[2]: ()()()00 021212211=… …==n n n n δδδψδδδψδδδψΛΛΛ (1.1) 其中n δδδ,,,21Λ是未知量,n ψψψ,,,21Λ是n δδδ,,,21Λ的非线性函数,引用矢量记 号 []T n δδδδΛ21= (1.2) []T n ψψψψΛ21= (1.3) 上述方程组(1.1)可表示为 ()0=δψ (1.4) 可以将它改写为 ()()()0=?≡?≡R K R F δδδδψ (1.5) 其中()δK 是一个的矩阵,其元素 是矢量的函数,n n ×ij k R 为已知矢量。在位移有限 元中,δ代表未知的结点位移,()δF 是等效结点力,R 为等效结点荷载,方程()0=δψ表示结点平衡方程。 在线弹性有限元中,线性方程组

有限元边界条件和载荷

X边界条件和载荷 10.1边界条件 施加的力和/或者约束叫做边界条件。在HyperMesh中,边界条件存放在叫做load collectors的载荷集中。Load collectors可以通过在模型浏览器中点击右键来创建(Create > Load Collector)。 经常(尤其是刚开始)需要一个load collector来存放约束(也叫做spc-单点约束),另外一个用来存放力或者压力。记住,你可以把任何约束(比如节点约束自由度1和自由度123)放在一个load collector中。这个规则同样适用于力和压力,它们可以放在同一个load collector中而不管方向和大小。 下面是将力施加到结构的一些基本规则。 1.集中载荷(作用在一个点或节点上) 将力施加到单个节点上往往会出现不如人意的结果,特别是在查看此区域的应力时。通常集中载荷(比如施加到节点的点力)容易产生高的应力梯度。即使高应力是正确的(比如力施加在无限小的区域),你应该检查下这种载荷是不是合乎常理?换句话说,模型中的载荷代表了哪种真实加载的情形? 因此,力常常使用分布载荷施加,也就是说线载荷,面载荷更贴近于真实情况。 2.在线或边上的力 上图中,平板受到10N的力。力被平均分配到边的11个节点上。注意角上的力只作用在半个单元的边上。

上图是位移的云图。注意位于板的角上的红色“热点”。局部最大位移是由边界效应引起的(例如角上的力只作用在半个单元的边上),我们应该在板的边线上添加均匀载荷。 上述例子中,平板依然承受10N的力。但这次角上节点的受力减少为其他节点受力的一半大小。 上图显示了由plate_distributed.hm文件计算得到的平板位移的云图分布。位移分布更加均匀。 3.牵引力(或斜压力) 牵引力是作用在一块区域上任意方向而不仅仅是垂直于此区域的力。垂直于此区域的力称为压力。

有限元素法有限体积法有限差分法有限容积法的区别

1.1 概念 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 1.2 差分格式 (1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 (2)从差分的空间形式来考虑,可分为中心格式和逆风格式。 (3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 1.3 构造差分的方法 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2. FEM 2.1 概述 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 2.2 原理 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。 (1)从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法; (2)从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格; (3)从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。 不同的组合同样构成不同的有限元计算格式。

有限差分法、有限单元和有限体积法简介

有限差分法、有限单元法和有限体积法的简介 1.有限差分方法 有限差分方法(Finite Difference Method,FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2.有限元方法 有限元方法(Finite Element Method,FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 在数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的

边界元与有限元

边界元与有限元 边界元法boundary element method 定义:将力学中的微分方程的定解问题化为边界积分方程的定解问题,再通过边界的离散化与待定函数的分片插值求解的数值方法。 所属学科:水利科技(一级学科) ;工程力学、工程结构、建筑材料(二级学科) ;工程力学(水利)(三级学科) 边界元法(boundary element method)是一种继有限元法之后发展起来的一种新数值方法,与有限元法在连续体域内划分单元的基本思想不同,边界元法是只在定义域的边界上划分单元,用满足控制方程的函数去逼近边界条件。所以边界元法与有限元相比,具有单元个数少,数据准备简单等优点.但用边界元法解非线性问题时,遇到同非线性项相对应的区域积分,这种积分在奇异点附近有强烈的奇异性,使求解遇到困难。 简介 边界元法是在有限元法之后发展起来的一种较精确有效的工程数值分析方法。又称边界积分方程-边界元法。它以定义在边界上的边界积分方程为控制方程,通过对边界分元插值离散,化为代数方程组求解。它与基于偏微分方程的区域解法相比,由于降低了问题的维数,而显著降低了自由度数,边界的离散也比区域的离散方便得多,可用较简单的单元准确地模拟边界形状,最终得到阶数较低的线性代数方程组。又由于它利用微分算子的解析的基本解作为边界积分方程的核函数,而具有解析与数值相结合的特点,通常具有较高的精度。特别是对于边界变量变化梯度较大的问题,如应力集中问题,或边界变量出现奇异性的裂纹问题,边界元法被公认为比有限元法更加精确高效。由于边界元法所利用的微分算子基本解能自动满足无限远处的条件,因而边界元法特别便于处理无限域以及半无限域问题。边界元法的主要缺点是它的应用范围以存在相应微分算子的基本解为前提,对于非均匀介质等问题难以应用,故其适用范围远不如有限元法广泛,

求解温度场的非线性有限元方法

Ξ 求解温度场的非线性有限元方法 刘福来1, 杜瑞燕2 (1.东北大学信息科学与工程学院,辽宁沈阳 110004;2.河北青年干部管理学院教务处,河北石家庄 050031) 摘要:从G alerkin 有限元方法出发,对自由表面上的辐射换热的数学表达式不作线性化处理,而是把温 度场的求解问题转化为非线性代数方程组的求解问题,并且用Newton 迭代法计算了温度场. 关键词:温度场;有限元方法;Newton 迭代法 中图分类号:O 242.21 文献标识码:A 文章编号:100025854(2005)0120021204 由文献[1]知,求解二维待轧过程的温度场,就是要求下面微分方程和初值问题的解: 52T 5 x 2+52T 5y 2=1α5T 5t ;(1) -k 5T 5n =0,(x ,y )∈S 2; (2) -k 5T 5n =σεA (T 4-T 4 ∞),(x ,y )∈S 3; (3) T (x ,y ,0)=T 0(x ,y ). (4)其中:α=λ ρc 称为导温系数,λ,ρ和c 分别为热导系数、密度和比热;S 2为给出热流强度Q 的边界面; T ∞为环境温度;S 3为给出热损失的边界面.对轧制问题的温度场,常常考虑的几种边界面[1] 是:对称 面、自由表面和轧件与轧辊的接触面.在辐射面上,边界条件的数学表达式为σεA (T 4-T 4 ∞)(其中:σ为 Stefan 2Boltzmann 常数,ε为物体表面黑度,A 为辐射面积,T ∞为环境温度)是温度T 的4次幂,具有强 烈的非线性.以往在实际计算中有2种处理方法[2],一种是简化问题的物理模型,有时将表达式看成常 数,有时将边界条件转化成h r A (T -T ∞)(其中h r =σ ε(T 2+T 2∞)(T +T ∞)),在轧制问题中求解温度场时文献[1,3]都采用了这一方法;另一种是处理问题的数学方法,即用近似方法求解非线性的偏微分方程问题.例如,用数值分析的方法,文献[4]中利用了差分方法. 本文中,笔者从G alerkin 有限元法出发,对自由表面上辐射换热的数学表达式不作线性处理,而是直接对非线性代数方程组用Newton 迭代法计算温度场,以二维待轧过程温度场的有限元解析进行讨论.1 G alerkin 有限元方法简介 将待求解区域Ω剖分为E 个单元,每个单元4个节点.设N i 是形函数(i =1,2,3,4),用4节点线性等参单元,则单元内的温度为 T e =N 1T 1+N 2T 2+N 3T 3+N 4T 4={N }T {T}e , (5) 其中:{N }=(N 1,N 2,N 3,N 4)T ;{T}e =(T 1,T 2,T 3,T 4)T .设ω1,ω2,…,ωn 是一组基函数,用 G alerkin 方法求方程(1)~(4)的解,实际上是求c 1,c 2,…,c n ,使T n =c 1ω1+c 2ω2+…+c n ωn 满足 κ Ω ρc 5T n 5t -k 52T n 5x 2+ 52T n 5y 2 ωi d x d y =0,i =1,2,…,n. (6) 对式(6)应用Green 公式,有 Ξ收稿日期:2004 0105;修回日期:20040420 作者简介:刘福来(1975),男,河北省唐山市人,东北大学博士研究生. 第29卷第1期2005年 1月河北师范大学学报(自然科学版) Journal of Hebei Normal University (Natural Science Edition )Vol.29No.1Jan.2005

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式.考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等.目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成.在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等.根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0.插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La g range插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等.对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函

空间问题的有限元方法总结计划.docx

第三章 空间问题的有限元方法 引言 许多工程实际问题,属于空间问题,由于结构形状或受力的复杂性,用 经典弹性理论去求解它们的解析解是不可能的。 而有限元法处理此类问题, 原则 上不存在什么困难,本章将介绍一般空间问题的四面体单元。 一般空间问题的有限元列式 3.2.1 单元位移模式及插值函数 空间问题中,每个单元有四个结点,编码为 i,j,m,p 。每个结点有 3 个位移分量。每个结点 的位移可用位移矢量 i 表示,即 u i i v i (i , j ,m, p) w i 单元结点的位移向量可表示为 i e j u i v i w i u j v j w j u m v m w m u p v p w p T m p e 为单元结点位移列阵。 假设单元内的位移模式选取一次多项式 u 1 2 x 3 y 4 z v 5 6 x 7 y 8 z (3.2.1 ) w 9 10 x 11 y 12 z 由于四个结点也在单元内,满足位移模式,于是得 u i 12 x i 3 y i 4 z i u j 1 2 x j 3 y j 4 z j ( 3.2.2 ) u m 1 2 x m 3 y m 4 z m u p 1 2 x p 3 y p 4 z p 上式是关于 1 , 2, 3, 4 的线性方程组。 1, 2 , 3, 4 是待定常数,也称为广义坐

标。它可由( 3.2.2 )式求出。上式的系数行列式是 1x i y i z i 1x j y j z j 2V(3.2.3 ) D x m y m z m 1 1x p y p z p 上式中当 i,j,m,p 的编号顺序满足右手法则, V值为正,其大小为四面体体积,因此为了方便单元的编号一般满足右手法则。求得1 , 2 , 3 , 4后,回代入位移模式得 u N i u i N j u j N m u m N p u p(3.2.4) 式中 N i 1 (a i b i x c i y d i z)(i , j, m, p) (3.2.5) 6V x j y j z j a i x m y m z m x p y p z p 1y j z j b i1y m z m 1y p z p 1x j z j c i 1x m z m(i , j , m, p) (3.2.6) 1x p z p 1x j y j d i1x m y m 1x p y p 上式下标 (i ,j , m, p) 轮换,可得 a j , b j ,c j , d j, a m ,b m ,c m , d m及 a p , b p , c p ,d p。同理 , 也可得到其它两式 , 于是得 u N i u i N j u j N m u m N p u p v N i v i N j v j N m v m N p v p( 3.2.7)

内燃机零部件有限元计算中边界条件处理的研究

内燃机零部件有限元计算中边界条件处理的研究 * 孙 军 汪景峰 桂长林 (合肥工业大学机械与汽车工程学院 合肥 230009) 摘 要:有限元方法已经成为内燃机零部件应力和变形计算的主要手段,但是目前在内燃机零部件有限元分析中采用的边界条件是否合理,有无必要采用更符合实际的边界条件?本文以曲轴为例,模拟实际 状况,采用不同的边界条件进行了有限元计算。计算结果表明,边界条件处理对曲轴有限元分析结果影响很大。因此,为了提高内燃机零部件有限元计算结果的精度,非常有必要根据实际情况确定边界条件。 关键词:边界条件 有限元 内燃机中图分类号:TK412.4 文献标识码:A 文章编号:1671-0630(2005)03-0006-03 Study on Boundary Condition in Finite Ele ment Calculation for Parts of Internal Co mbustion Engi ne Sun Jun ,W ang Jingfeng ,Gui Changlin H efeiUn i v ersity of Techno l o gy (H efei 230009) Abst ract :The fi n ite ele m ent m et h od has beco m e the m a i n m eans to calcu late t h e stress and de f o r m ation o f parts for inter na l co m bustion engine .Bu,t whether the boundary conditi o ns used i n FE ana l y sis on parts o f i n -ter nal co m busti o n eng ine are reasonable ?Is it necessary to use the boundary condition ,wh ich ism ore adapta -b le to the facts ?As an exa m p le ,the crankshaft is ca lculated by FE usi n g d ifferent boundary conditi o ns that si m ulate factual conditi o ns .The resu lts sho w t h at the boundary conditi o ns have i m portant effects on the results of FE analysis o f crankshaf.t Therefo re ,it is necessary to choose boundary cond itions acco r d i n g to factua l con -d iti o n i n o r der to i m prove the prec isi o n of calcu l a ti n g resu lts for parts o f i n ternal co m bustion eng i n e .K eyw ords :Boundary conditi o n ,F i n ite ele m en,t I C eng i n e 前言 随着有限元计算技术的进步,有限元方法目前已 经成为内燃机零部件应力和变形计算的主要手段。内燃机零部件的有限元分析,类似于其他问题的有限元分析,边界条件的处理是否合理直接影响计算结果的精确性。本文以曲轴为例,分析目前采用的边界条件是否合理,有无必要采用更符合实际的边界条件。 目前在曲轴有限元计算中,载荷边界条件的处理(重点是作用在轴颈表面的力处理)基本采用的是定 型模式,其假设作用在轴颈上的载荷(其与曲轴轴承油膜压力对应)为分布载荷,沿轴线方向均布或呈抛物线分布,沿圆周方向呈余弦分布 [1~4] 。这种处理方 法简单易行,但其属于较理想的状况,因为实际曲轴轴承的油膜压力分布规律复杂,且随时间变化。沿轴向抛物线型的油膜压力分布规律仅适合于无限短且轴颈轴线与轴承孔中心线平行的滑动轴承,实际的曲轴轴承为有限长轴承,且由于受到诸多因素的影响,如载荷作用下轴的变形、轴承的制造与装配误差和轴的热变形 * 基金项目:国家自然科学基金资助项目(50175023) 作者简介:孙军(1960-),男,硕士,研究方向,内燃机现代设计理论与方法。 第34卷 第3期2005年6月小型内燃机与摩托车 S MALL I N TERNAL COM B UST I O N ENG I N E AND MOTORCYCLE Vo.l 34No .3 June .2005

非线性有限元分析

非线性有限元分析 1 概述 在科学技术领域,对于许多力学问题和物理问题,人们已经得到了它们所应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件(边界条件)。但能够用解析方法求出精确解的只是少数方程性质比较简单,并且几何形状相当规则的问题。对于大多数工程实际问题,由于方程的某些特征的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析的答案。这类问题的解决通常有两种途径。一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。但是这种方法只是在有限的情况下是可行的,因为过多的简化可能导致误差很大甚至是错误的解答。因此人们多年来一直在致力于寻找和发展另一种求解途径和方法——数值解法。特别是五十多年来,随着电子计算机的飞速发展和广泛应用,数值分析方法已成为求解科学技术问题的主要工具。 已经发展的数值分析方法可以分为两大类。一类以有限差分法为代表,主要特点是直接求解基本方程和相应定解条件的近似解。其具体解法是将求解区域划分为网格,然后在网格的结点上用差分方程来近似微分方程,当采用较多结点时,近似解的精度可以得到改善。但是当用于求解几何形状复杂的问题时,有限差分法的精度将降低,甚至发生困难。 另一类数值分析方法是首先建立和原问题基本方程及相应定解条件相等效的积分提法,然后再建立近似解法并求解。如果原问题的方程具有某些特定的性质,则它的等效积分提法可以归结为某个泛函的变分,相应的近似解法实际上就是求解泛函的驻值问题。诸如里兹法,配点法,最小二乘法,伽辽金法,力矩法等都属于这一类方法。但此类方法也只能局限于几何形状规则的问题,原因在于它们都是在整个求解区域上假设近似函数,因此,对于几何形状复杂的问题,不可能建立合乎要求的近似函数。 1960年,R.W.CLOUGH发表了有限单元法的第一篇文献“The Finite Element Method in Plane Stress Analysis”,这同时也标志着有限单元法(FEM)的问世。有限单元法的基本思想是将连续的求解区域离散为一组有限个,且按一定方式相互联接在一起的单元的组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模型化几何形状复杂的求解域。并且可以利用在每一个单元假设的近似函数来分片地表示全求解域上待求的未知场函数,从而使一个连续的无限自由度问题变成离散的有限自由度问题。 现已证明,有限单元法是基于变分原理的里兹法的另一种形式,从而使里兹法分析的所有理论基础都适用于有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法。利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,而且事先不要求满足任何边界条件,因此可以用来处理很复杂的连续介质问题。 在短短四十余年的时间里,有限单元的分析方法已经迅速地发展为适合于使用各种类型计算机解决复杂工程问题的一种相当普及的方法。如今,有限元广泛地应用于各个学科门类,已经成为工程师和科研人员用于解决实际工程问题,进行科学研究不可或缺的有力工具。有限单元法的应用围已由弹性力学平面问题扩展到空间问题,板壳问题,由静力平衡问题扩展到稳定问题,动力问题和波动问题。分析的对象从弹性材料扩展到塑性,粘弹性,粘塑性和复合材料等,从固体

IDESA有限元分析_第6篇第26章 基于几何施加边界条件

第26章MasterFEM 教程:定义边界条件 前面的教程简单介绍了仿真分析的流程。本篇将介绍更多高级定义边界条件的内容(载荷和约束)。 用户将学会: ?创建约束和约束集。 ?创建载荷和载荷集。 ?创建边界条件集。 ?解算定义以上边界条件的模型。 ?创建均布载荷。 ?解算定义以上边界条件的模型。 ?比较不同工况下的结果。 开始前必备知识: 熟悉MasterFEM界面和创建零件。 熟悉在模型文件中管理零件。 熟悉拉伸特征和旋转特征的布尔运算。 熟悉仿真分析流程。 熟悉自由网格划分。 设置1/3 如果还没有运行一个新的模型文件,创建一个新文件并命名。 ·1·

·2· File Open 打开模型文件菜单 确信用户是在以下工作状态和任务当中 : 设置工作单位为毫米(mm) Options Units 设置2/3 工作内容:按照以下尺寸草绘封闭形状的图形。 提示 : 为什么:这个零件代表了典型机构连杆的应力集中部位。

工作内容: 命名零件 提示: 命名菜单 设置3/3 工作内容:创建一个和零件关联的有限元模型(FEM1)。 提示 保存模型文件。 File Save 警告! 如果软件提示用户保存模型文件,用户应选择:No 记住:只有教程中提示保存模型文件,而不是软件提示保存的时候,用户才可以执行保存文件操作。 为什么: 在上一次保存以后的错误操作不能撤销恢复,用户可以选择重新打开文件,恢复到上一次保存时的状态。 提示: ·3·

重新打开模型文件的快捷键:按Control-Z。 创建约束和约束集1/3 工作内容:全约束以下高亮表面。 怎样做: 表面上定义约束的菜单 OK 创建约束和约束集2/3 注意事项: 会产生约束符号。 在几何边缘、表面、顶点的约束用不同的颜色和符号表示。 ·4·

第四章:空间问题的有限元

第四章 空间问题的有限元 在工程问题中,有些结构形状非常复杂,必须按照空间问题来求解。由于4节点四面体单元可以很好的模拟几何体的边界形状而被广泛使用。因此本章将介绍此种单元及8节点六面体单元。 §4.1 空间问题的离散化 在工程实际中,有些结构由于形体复杂,并且三个方向的尺寸同量级,必须按空间问题求解。空间问题有限元法的原理、思路和解题方法完全类同于平面问题的有限元法,所不同的是它具有三维特点。它所采用的离散化模型仍然是由若干单元在节点处连接而成的,而且节点仍为铰接,但是这些单元具有块体形状。它的基本未知量是节点位移,有3个分量:,,u v w 。它的分析方法仍然是先进行单元分析,再进行整体分析,最后求解整体平衡方程。但必须指出,由平面问题转换为空间问题给有限元分析带来了两个主要困难: 1、空间结构离散不像平面问题直观,当人工离散时很容易产生错误。 2、未知量的数量剧增,对于比较复杂的空间问题,计算机存储容量和计算机费用都会产生问题。 为解决上述两个问题,前者可通过寻找规律,建立网格自动生成前处理程序来克服,而后者则可采用高阶元以提高单元精度,达到减少未知量和节省机时的目的。 §4.2常应变四面体单元 §4.2.1位移函数 图4-1所示为四面体单元,以四个角点i ,j ,m ,l 为结点,每个结点有三个自 由度,因此由广义坐标给出的线性位移函数为 000000u ??β?β??? ??==?? ???? (4.2.1) 其中[]1x y z ?= 图4-1 四面体单元 []1212T ββββ= 把四个节点坐标代入(4.2.1)式时,可得

{}000000A q A A A ββ????==?? ???? (4.2.2) 其中{}T i i i j j j m m m l l l q u v w u v w u v w u v w ??=?? 1111i i i j j j m m m l l l x y z x y z A x y z x y z ?? ????=??? ??? 由(4.2.2)式求出 {}1A q β-= (4.2.3) 将(4.2.3)式代入(4.2.1)式后,则有 {}{}1i j m l u B A q N N N N q -??=Φ=Φ=I I I I ?? (4.2.4) 其中100010001????I =?? ???? ()1 6i i i i i N a b x c y d z V = +++ ()1 6j j j j j N a b x c y d z V =- +++ ()1 6m m m m m N a b x c y d z V = +++ ()1 6l l l l l N a b x c y d z V =- +++ 称为形函数,它们的系数为 i j j i m m m l l l x y z a x y z x y z = 1 11j j i m m l l y z b y z y z = 111 j j i m m l l x z c x z x z = 111j j i m m l l x y d x y x y =

有限元、边界元、无网格法的比较

首先,从五个方面进行有限元和无网格方法比较,分别是网格划分、形函数的产生、边界条件、系统离散方案、系统方程的求解: 1、网格划分 有限元方法:连续体被划分成由有限个称作单元的小网格组合而成的离散结构。单元划分是前处理过程中非常重要的部分, 通常占整个分析过程中大部分时间。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同的形状,因此可以模拟几何形状复杂的求解域。 无网格方法:问题域由一系列任意分布的节点来代替, 不需要用单元或网格来进行场变量插值, 也无须描述节点之间的关系。节点的生成可完全由计算机自动完成, 这大大节省了分析人员的时间, 也相对较容易在分析过程中对节点进行重新划分。几何体边界是由节点替代(而非离散) , 如图1所示,两个节点之间的任意一点可由近似函数插值。 (a)有限元法中光滑曲线边界由三角形直线边代替(b)无网格法中光滑边界由节点替代 图1 网格-节点示意图 2、形函数的产生: 有限元法和无网格法都可从哈密尔顿原理推出, 它们之间最关键的区别是形函数的构造。有限元法:形函数是定义于单元的局部近似函数,因此函数的连续性、光滑性在网格的分界处必然受到限制,计算后还需要进一步的后处理。形函数可以直接插值得到,故相对较容易构造且相同类型的单元具有相同的形函数。 无网格方法:形函数是围绕每一个节点建立插值函数构成的,不同的点具有不同的形函数,形函数定义于全域,具有较好的连续性和光滑性,不需要后处理过程。 3、边界条件 有限元法:施加边界条件并不很困难, 通常在网格划分时使网格形式满足边界条件特点, 本质边界条件可直接加在节点上。 无网格方法:本质边界条件不仅依赖边界点,而且也与内部点有关,无网格法不能直接施加本质边界条件都是用离散的点来代替连续的边界值,这样会给本质边界条件的精确实现造成困难。,拉格朗日乘子法和罚函数法是两种基本的方法。

有限元、有限差分法

有限元法原理 将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题。 运用步骤 步骤1:剖分: 将待解区域进行分割,离散成有限个元素的集合.元素(单元)的形状原则上是任意的.二维问题一般采用三角形单元或矩形单元,三维空间可采用四面体或多面体等.每个单元的顶点称为节点(或结点). 步骤2:单元分析: 进行分片插值,即将分割单元中任意点的未知函数用该分割单元中形状函数及离散网格点上的函数值展开,即建立一个线性插值函数 步骤3:求解近似变分方程 用有限个单元将连续体离散化,通过对有限个单元作分片插值求解各种力学、物理问题的一种数值方法。有限元法把连续体离散成有限个单元:杆系结构的单元是每一个杆件;连续体的单元是各种形状(如三角形、四边形、六面体等)的单元体。每个单元的场函数是只包含有限个待定节点参量的简单场函数,这些单元场函数的集合就能近似代表整个连续体的场函数。根据能量方程或加权残量方程可建立有限个待定参量的代数方程组,求解此离散方程组就得到有限元法的数值解。有限元法已被用于求解线性和非线性问题,并建立了各种有限元模型,如协调、不协调、混合、杂交、拟协调元等。有限元法十分有效、通用性强、应用广泛,已有许多大型或专用程序系统供工程设计使用。结合计算机辅助设计技术,有限元法也被用于计算机辅助制造中。

有限差分法the Finite Difference Method 微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 在采用数值计算方法求解偏微分方程时,若将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题,即所谓的有限差分法。有限差分法求解偏微分方程的步骤如下: 1、区域离散化,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格; 2、近似替代,即采用有限差分公式替代每一个格点的导数; 3、逼近求解。换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程(Leon,Lapidus,George F.Pinder,1985)

相关文档
相关文档 最新文档