文档库 最新最全的文档下载
当前位置:文档库 › CSL101(102)B线路保护

CSL101(102)B线路保护

CSL101(102)B线路保护
CSL101(102)B线路保护

保护检验现场作业指导书CSL101(102)B微机线路保护

山西省电力公司

2004年12月

目录

一、适用范围---------------------------------------------------------------------------------

二、引用标准---------------------------------------------------------------------------------

三、检验人员职责---------------------------------------------------------------------------

四、检验前的准备工作

五、检验项目及作业程序---------------------------------------------------------------

A、检验周期

B、全部检验项目作业程序

C、部分检验项目作业程序

D、配合检验的其他项目及要求

六、检验记录-----------------------------------------------------------------------------

A、全部检验

B、部分检验

附件:检验流程图

1、全部检验

2、部分检验

一、适用范围

本指导书适用于CSL101(102)B微机线路保护装臵及相关回路的全部检验作业。

二、引用标准

继电保护及电网安全自动装臵检验条例

继电保护及电网安全自动装臵现场工作保安规定

电业安全工作规程

GB/T 15145 微机线路保护装臵通用技术条件

DL 478 静态继电器及安全自动装臵通用技术条件

GB 7261 继电器及继电保护装臵基本实验方法

GB4858 电气继电器的绝缘试验

GB2423 电工电子产品基本环境试验规程

CSL101(102)B微机线路保护装臵说明书

山西电网微机线路保护现场检验规程

三、检验人员职责

1.现场工作负责人职责

1.1正确安全地组织工作。

1.2结合实际进行安全思想教育。

1.3检查工作票所列安全措施是否正确完备和值班员所做的安全措施是否符合现场实际条件。

1.4开工前召开班前会,向工作班成员交待安全措施和技术措施,明确工作地点、工作内容、工作分工、技术标准及检验质量要求,交待注意事项、危险点及防范措施。

1.5作为监护人,对检验工作的全过程进行安全和技术把关。

1.6检验工作结束后,及时召开班后会,进行本次检验工作的安全和技

术总结。

2.现场安全责任人职责

2.1检查运行值班员所做的安全措施是否正确完备,是否符合现场实际。

2.2检查工作班成员着装是否符合安规要求,检验工作所需安全工器具是否正确完备。

2.3开工前督促负责人开好班前会。

2.4督促工作班成员在工作中认真执行安规和现场安全措施,及时制止违章作业及违反安规、两票的行为。

2.5督促工作班成员严格执行检验规程及检验工作有关注意事项。

2.6工作结束后协同工作负责人开好班后会,做好本次检验的安全总结。

3.现场工作人员职责

3.1服从工作负责人的工作分工安排。

3.2严格执行安规和现场安全措施,互相关心施工安全。

3.3严格执行本作业指导书,确保检验质量。

3.4及时向现场工作负责人、现场安全责任人反映检验工作中遇到技术和安全问题。

四、检验前的准备工作

1.图纸、资料的准备

准备与工作任务相关的图纸资料、最新定值通知单、上次检验报告、相关的设备说明书和检验规程等。

2.编制“三措”

检验前,应根据检验项目编制组织措施、技术措施和安全措施。

3.检验工器具的准备

3.1试验工作应注意选用合适的仪表。整定试验所用仪表的精确度应为0.5级;测量继电器内部回路所用的仪表应保证不致破坏该回路参数值,如并接于电压回路上的,应用高内阻仪表;若测量电压小于1V,应用电子毫伏表或数字型电表;串接于电流回路中的,应用低内阻仪表;绝缘电阻测定,一般情况下用1000V摇表进行。

3.2 试验电流、电压的相对相位能在0°~360°范围内变化。试验电压一般为三相四线制,试验电流一般可为单相式,但应具备通入三相的条件。

3.3试验回路的接线原则,应使加入保护装臵的电气量与实际情况相符合。模拟故障的试验回路,应具备对保护装臵进行整组试验的条件。

4.工作现场要求

4.1工作班成员要牢固树立“安全第一”的思想,严格执行“安规”、“两票”规定,确保人身和设备安全。

4.2工作负责人和运行值班员一道认真检查所做的安全措施是否符合现场实际,确认无误后双方在工作票上签名。

4.3开工前,工作负责人应明确一、二次设备的运行情况并向工作班成员进行安全和技术交底工作,明确工作内容和安全注意事项。

4.4认真填写“继电保护安全措施票”,并严格执行。

4.5现场作业人员着装必须符合有关规定,高空作业必须使用安全带,上下传递物品须用绳索传递,严禁抛掷物品。

4.6试验电源应在保护试验电源柜或者指定电源箱接取,严禁从运行设备上接取;施工用电动工具外壳应有可靠接地,防止漏电伤人。

4.7加强现场文明管理,人员应着装整齐,行为礼貌,现场标志明确,工器具摆放有序。

5.检验时的注意事项

5.1断开直流电后才允许插、拨插件,插拔交流插件时应防止交流电流回路开路。

5.2调试过程中发现有问题要先找原因,不要频繁更换芯片。必须更换芯片时,要用专用起拔器。试验人员接触、更换芯片时,应采用人体防静电接地措施,以确保不会因人体静电而损坏芯片。插入芯片应注意芯片插入的方向,需经第二人检验无误后,方可通电检验或使用。

5.3检验中尽量不使用烙铁,如元件损坏等必须进行焊接时,要用内热式带接地线烙铁或烙铁断电后再焊接,替换的元件必须经老化筛选合格。

5.4打印机在通电状态下,不能强行转动走纸旋钮,走纸可通过打印机按键操作或停电后进行。

5.5用具有交流电源的电子仪器(如示波器、频率计等)测量电路参数时,电子仪器测量端子与电源侧绝缘必须良好,仪器外壳应与保护装臵在同一点接地。规定有接地端的测试仪表,在现场进行检验时,不允许直接接到直流电源回路中,以防止发生直流接地。

5.6工作中严防运行的电流回路开路、电压回路短路。

5.7因检验需要临时短接或断开的端子、打开不经保护压板跳闸的连线,应做好安全措施并逐个记录,在试验结束后及时恢复。

5.8检验时要检查保护压板的投、退情况,注意做好安全措施,防止误起动失灵保护,防止误起、误碰运行设备,确保运行设备的安全运行。

5.9工作过程中发现疑问或异常应停止工作,待查明原因并解决后再进行下一步工作。

五、检验项目及作业程序

A.检验周期

1.1继电保护装臵新投入运行后的第一年内需进行一次全部检验。以后,每6年进行一次全部检验,每年进行一次部分检验。回路绝缘试验每年进行一次绝缘测定,每5年进行一次绝缘耐压试验。利用装臵进行断路器跳闸合闸试验,一般每年不宜少于一次。

1.2继电保护机构可以根据装臵的质量、运行环境与条件,适当缩短其检验期限,此时应有目的、有重点选择检验项目。

1.3在一般情况下,建议线路保护装臵的定期检验尽可能配合在一次设备停电期间内进行。同一元件的多套保护,如其全部检验不能安排在被保护元件停电期间进行,可安排在故障发生几率较小的季节轮流将每套装臵退出运行后进行。

1.4新安装臵的检验应按规定的全部项目进行。定期检验中,若发现继电器动作特性不符合标准而进行检验时,检验部分的检验项目与新安装检验项目相同。

1.5凡装臵拒绝动作、误动作或动作原因不明时,均应根据事故情况,有目的地拟定具体检验项目及检验顺序,尽快进行事故后检验。

B.全部检验项目作业程序

(一)、通用检查

1、外观及接线检查

1.1检查保护装臵的硬件配臵,标注及接线等应符合图纸要求。

1.2保护装臵各插件上的元器件的外观质量,焊接质量应良好,所有芯

片应插紧。

1.3检查保护装臵的背板接线是否有断线,短路,焊接不良等现象。

1.4装臵内跳线检查

1.5检查装臵外部电缆接线与设计相符,满足运行要求。

1.6二次设备及接线清扫、检查、紧螺丝。

2、绝缘电阻及耐压试验

检验条件:

将保护装臵的交流、出口及电源插件插入机箱,拔出其余插件;将打印机与微机保护装臵断开;保护屏上各连片臵“投入”位臵;在保护屏端子排内侧分别短接交流电流和交流电压回路、保护直流回路、控制直流回路、信号回路的端子。

2.1整个二次回路绝缘电阻测试

用1000V摇表分别测量各组回路之间及各回路对地的绝缘电阻,绝缘电阻要求大于1MΩ。

2.2耐压试验

拔出所有插件,对全部连接回路用工频1000V进行 1分钟耐压试验。当绝缘电阻高于1MΩ时,允许暂用2500V摇表测试绝缘电阻的方法代替。

3、逆变电源的检查

3.1 直流电源缓慢上升时的自启动性能检验

插入全部插件,合上保护装臵逆变电源插件上的电源开关,试验直流电源由零缓慢升至80%额定电压(即176V),此时逆变电源插件面板上的电源指示灯亮。

3.2 拉合直流电源时的自启动性能

直流电源调至80%、110%额定电压(即176V、242V),断开、合上逆变电源开关,逆变电源指示灯亮。

(二)、CSL101(102)B系列保护检验

1、初步通电检验

1.1 保护装臵的通电自检

保护装臵通电后,先进行全面自检。正常工作表现为:装臵运行灯亮,

屏幕正常显示。

1.2 检验键盘

在保护装臵正常运行状态下,按“SET”键,进入主菜单,而后分别操作“←”、“→”、“→”、“↑”、“SET”及“Q”键,检验功能正确。

1.3 打印机与保护装臵的联机试验

进行本项试验之前,打印机应进行通电自检,正确后将打印机与微机保护装臵的通信电缆连接好,给上打印机电源,保护装臵在运行状态下,按保护装臵上的“SET”键,进入主菜单,选择打印保护装臵的动作报告、定值报告,以检查打印机与微机保护装臵联机成功。

1.4 软件版本和程序校验码的检查

进入主菜单,移动光标至CRC码检查,按“SET”键后,从CRC项中调CPU及MMI的版本号,版本号应与装臵要求的一致。调CRC校验码,比较C0和C1应相等。

检查CPU设臵与硬件配臵相符,进入CRC后选RUN项。LCD将显示当前设臵

1 2 3 4 5 6

X X X X X X

X为0或1

此时可用左、右键移动光标,至某一CPU号相应位臵,按上、下键,臵“1”表示设臵,臵“0”则取消,最后按“SET”键确认。设臵CPU号1﹑2﹑3﹑4、6(高频保护CPU号为1,距离保护CPU号为2,零序保护CPU号为3,重合闸CPU号为4,录波插件CPU号为6)相应为1。MMI应能和CPU进行正常通信。

1.5 时钟的整定与校核

1.5.1 时钟的整定

保护装臵在“运行”状态下,按“SET”键进入主菜单后,移动光标至CLK,按“SET”键后进入时钟修改和整定状态,然后进行年、月、日、时、分、秒的时间整定。

1.5.2 时钟的失电保护功能检验

时钟整定好以后,通过断、合逆变电源开关的方法,检验在直流消失一段时间的情况下,走时仍准确,正确。

2、开关量输入回路检验

要求带全部回路及作用元件一起试验,禁止用短接某些回路或元件的方法检查开入回路。

2.1 CPU插件开关量输入回路检验

进入保护装臵主菜单后,移动光标进入“VFC”,再进入“DI”子菜单,依次进行开关量的断开和接通,同时监视液晶屏幕上显示的开关量变位情况。

2.2定值选择拨轮

定值选择1(n115),定值选择2(n116), 定值选择3(n117),以8421码构成了当前定值区。0表示开入没接+24V,1表示开入接+24V。

在0~7区内顺序切换定值区,每次切换,MMI将显示:SETCHG、P-RST,这时按复归按钮,MMI显示:SETCHG XX-YY。XX为当前定值区号,YY为切换后的定值区号。

3、模数变换系统检验

3.1检验零漂

断开所有交流输入端子,使各通道电压和电流均为零。用VFC菜单下的DC命令观察各通道零漂情况。如过大可相应调整VFC插件该通道RW2n(n=8)电位器,直到每回路零漂在±0.1(1A ±0.1;5A ±0.3)范围内。注意在刚上电时各芯片回热过程中零漂可能较大,应等稳定后再调整(上

电半小时后再调整)。

3.2 通道刻度调整及极性检查

将KG1的D15位臵“0”以免频繁告警。

用微机继电保护校验仪,对装臵加入三相对称交流电压和电流(57.7V、5A),也可将电流回路同极性串联,通入额定电流,(串入0.2级或0.5级电流表。)电压回路同极性并联,通入额定交流电压(并入0.2级或0.5级电压表)。

要求显示值与外加值幅值误差不超过5%,相位误差不超过1°。

3.2.1 各通道刻度调整

用VFC菜单下的VI命令观察各通道有效值,应与表计指示误差小于±5%,若不满足调整VFC插件上的相应电位器RW1n(n=9)。

3.2.2 极性检查

利用RS232口上的PC机或网络打印采样值,观察相位是否正确。

4、定值整定

进入主菜单下的“SET”子菜单,再进入“LST”选项,选定定值区号,按“SET”键确认,即可逐行显示和修改定值。选择定值区号时若液晶显示“…”,表示选择缺省的定值区号,它总是指向当前的定值区号。

用“PNT”选项打印定值,并与整定通知单核对。

检查掉电不丢失定值。

根据定值通知单(通知单号)进行整定。

5、整组试验

保护的整组试验要求先模拟正常运行然后再进入故障状态,以保证试验的真实性。动作时间为从故障开始到启动掉闸出口继电器的动作时间。

5.1 纵联保护试验

投入纵联保护投运压板。合上收发信机电源,收发信机自发自收(对

于光纤通道,用尾纤自环)。

5.1.1纵联距离保护(CSL 101B系列)

仅投入保护投入压板及重合闸功能(综重方式)

分别模拟A相、B相和C相单相接地瞬时故障、AB相、BC相和CA相瞬时故障。模拟前电压为额定电压,故障电流为I=In,故障时间为100-150ms, 相角为900,故障电压为:

模拟单相接地故障时:U=m(1+K X)*I*X DZ

模拟两相相间故障时:U=2m*I*X DZ

式中: m——系数,其值分别为0.95、1.05

X DZ——纵联距离停信范围电抗分量定值

K X——零序补偿系数电抗分量

纵联距离保护在0.95倍定值(m=0.95)时,应可靠动作;在1.05倍定值时,应可靠不动作。

5.1.2纵联零序方向保护检验(CSL 101B系列)

仅投入纵联保护投入压板及重合闸功能(综重方式)

分别模拟A相、B相、C相单相接地瞬时故障,一般情况下模拟故障电压取U=50V,当模拟故障电流较小时可适当降低模拟故障电压数值。模拟故障时间为100~150ms,相角为灵敏角(零序方向元件的动作区为-18°~-180°,灵敏角为-99°)。模拟故障电流为: I=mI0

式中: I0——方向零序电流整定值;

m——系数,其值分别为0.95、1.05。

纵联零序方向保护在0.95倍定值(m=0.95)时,应可靠不动作;在1.05倍定值时应可靠动作。

5.1.3纵联方向保护(CSL 102B系列)

仅投入纵联保护投入压板及重合闸功能(综重方式)

模拟各种正向故障,模拟前电压为额定电压,故障时电流突变量△I>2IQD(突变量启动电流门槛),故障时间为100-150ms, 相角为900.

纵联方向保护在正向故障时,应可靠动作,反向故障时,应可靠不动作。

5.1.4纵联零序方向保护检验(CSL 102B系列)

检验方法同5.1.2。

5.2. 校验距离保护

投入距离Ⅰ、及Ⅱ、Ⅲ段压板及重合闸功能(综重方式)。

分别模拟A相、B相、C相单相接地瞬时故障,AB、BC、CA相间瞬时故障。故障电流I固定(一般I=I N),相角为900,模拟故障时间为100~150ms,故障电压为:

模拟单相接地故障时 U=mIXDn(1+KX)

模拟两相相间故障时 U=2mIXXn

式中: m——系数,其值分别为0.95、1.05及0.7;

XDn、XXn——距离保护各段电抗分量定值

KX——零序补偿系数电抗分量

距离保护各段保护在0.95倍定值(m=0.95)时,应可靠动作;在1.05倍定值时,应可靠不动作。在0.7倍定值时,测量距离Ⅱ段和Ⅲ段保护动作时间。

5.3 校验零序过流保护

投入零序保护Ⅰ段压板和零序保护其他段投入压板。

分别模拟A相、B相、C相单相接地瞬时故障,模拟故障电压U=50V,模拟故障时间应大于零序过流相应段保护的动作时间定值,相角为灵敏角,模拟故障电流为I=mI on

式中: m——系数,其值分别为 0.95、1.05;

I on——其n值分别为1、2、3和4,分别表示零序过流各段定值。

零序过流任一段保护应保证1.05倍定值时可靠动作;0.95倍定值时可靠不动作。

5.4 校验PT断线

5.4.1 电压UA=50V,UB、UC电压60V,延时1.25秒PT断线报警。

5.4.2 三相电压绝对值均小于8V,当判断开关在合位且跳闸继电器不动作时,延时1.25秒报警PT断线。

5.4.3 三相电压绝对值均小于8V,任一相有电流(>0.04In),延时1.25秒报警PT断线。

5.5 校验重合闸

5.5.1重合闸投综重方式,模拟下表所示的各种类型故障。装臵动作的结果与下表一致。

在综合重合闸方式下整组试验保护装臵动作结果

5.5.2 重合闸投三重方式,模拟下表所示的各种类型故障。装臵动作的结果与下表一致。

在三相重合闸方式下整组试验保护装臵动作结果

5.5.3 重合闸投单重方式,模拟下表所示的各种类型故障。装臵动作的结果与下表一致。

在单相重合闸方式下整组试验保护装臵动作结果

5.5.4 重合闸投停用方式

模拟单相瞬时性接地短路,应跳三相不重合

5.6 分散式录波功能

装臵的录波插件投入,并按定值清单整定录波方式为打印机以图形的方式自动输出录波波形,录波网和保护网共享一台打印机,模拟各种故障,通过打印机打印的信息,应能观察到故障时的录波信息。

6 输出接点和信号检查

利用开出传动命令CTL进行开出检查

6.1 CPU1-3开出及信号测试

在CTL菜单中选DOT项,分别选择CPU1﹑CPU2﹑CPU3测试相应的开出回路,各序号所对应的开出及开出后的装臵信号如下表:(在开出实验前,应退出三取二闭锁回路,即n114上不应有+24V)

*6.2 CPU4开出及信号测试

在CTL菜单中选DOT项,选择CPU4测试相应的开出回路,各序号所对应的开出及开出后的装臵信号如下表:(在开出实验前,应退出三取二闭锁回路,即n114上不应有+24V)

检查接点动作正确。

(三)、保护相关的二次回路检查及传动

1、相关的二次回路检查

1.1电流互感器二次回路试验

1.1.1核对电流互感器铭牌参数是否完整,是否与设备记录一致

1.1.2 电流互感器升流,极性检验

1.1.3 电流互感器伏安特性校验

1.1.4电流互感器二次负担检查并绘制10%误差曲线

1.1.5 电流互感器二次绕组组别检查

1.1.6 电流互感器二次回路的接地检查

1.2电压互感器二次回路试验

1.2.1 电压互感器二次回路的接地检查

1.2.2 保护屏电压互感器二次小开关短路试验

1.2.3同期回路的检查

1.3安装在断路器、隔离开关传动装臵内的有关装臵及回路的检查

1.3.1了解断路器跳、合闸线圈的电气回路接线方式(包括断路器防止跳跃的措施)。

1.3.2了解断路器二次操作回路中的气压、液压监视回路的工作方式。

1.3.3了解断路器跳、合闸线圈的电阻值及在额定电压下的跳、合闸电流。

1.3.4了解断路器的跳闸时间、合闸时间以及合闸时三相触头不同时闭合的最大时间差。

2、保护带开关传动试验

保护的压板均投入,重合闸臵“单重方式”,模拟下列故障。(试验前检查操作箱跳、合闸保持电流设臵与断路器跳合闸电流是否相符,若不符调整操作板相应跳线)。

KV线路光纤差动保护原理

首先,光纤差动保护的原理和一般的纵联差动保护原理基本上是一样的,都是保护装置通过计算三相电流的变化,判断三相电流的向量和是否为零来确定是否动作,当接在电流互感器的二次侧的电流继电器(包括零序电流)中有电流流过达到保护动作整定值是,保护就动作,跳开故障线路的开关。即使是微机保护装置,其原理也是这样的。 但是,光纤差动保护采用分相电流差动元件作为快速主保护,并采用PCM光纤或光缆作为通道,使其动作速度更快,因而是短线路的主保护!另外,光纤差动保护和其它差动保护的不同之处,还在于所采用的通道形式不同。纵联保护的通道一般有以下几种类型: 1.电力线载波纵联保护,也就是常说的高频保护,利用电力输电线路作为通道传输高频信号; 2.微波纵联保护,简称微波保护,利用无线通道,需要天线无线传输; 3.光纤纵联保护,简称光纤保护,利用光纤光缆作为通道; 4.导引线纵联保护,简称导引线保护,利用导引线直接比较线路两端电流的幅值和相位,以判别区内、区外故障。 差动保护 差动保护是输入CT(电流互感器)的两端电流矢量差,当达到设定的动作值时启动动作元件。保护范围在输入CT的两端之间的设备(可以是线路,发电机,电动机,变压器等电气设备)。

中文名 差动保护 外文名 Differential protection 目录 1.1概述 2.2原理 3.3技术参数 4.?环境条件 1.?工作电源 2.?控制电源 3.?交流电流回路 4.?交流电压回路 5.?开关量输入回路 1.?继电器输出回路 2.4功能 3.5主要措施 4.6缺点 概述编辑

电流差动保护是继电保护中的一种保护。正相序是A超前B,B超前C各是120度。反相序(即是逆相序)是 A 超前C,C超前B各是120度。有功方向变反只是电压和电流的之间的角加上180度,就是反相功率,而不是逆相序[1]。 差动保护是根据“电路中流入节点电流的总和等于零”原理制成的。 差动保护把被保护的电气设备看成是一个节点,那么正常时流进被保护设备的电流和流出的电流相等,差动电流等于零。当设备出现故障时,流进被保护设备的电流和流出的电流不相等,差动电流大于零。当差动电流大于差动保护装置的整定值时,上位机报警保护出口动作,将被保护设备的各侧断路器跳开,使故障设备断开电源。 原理编辑 差动保护

线路保护装置运行规程

Q/CDT-EYWPC 大唐洱源风电有限责任公司企业标准 Q/CDT-EYWPC 000 0005-2010 线路保护装置运行规程 2010—10—28发布 2010—10—28实施 大唐洱源风电有限责任公司发布

前言 为了贯彻“安全第一,预防为主”的方针,切实执行“两票三制”制度,防止误操作和其他不安全情况发生,确保线路保护装置正常运行,根据《中国大唐集团公司企业标准编制规则》(试行)和厂颁《企业标准编制规则》中的有关规定,特制定本规程。 本规程起草人:侯俊辉 本规程审核人:刘云和 本规程审定人:李达蔚 本规程批准人:周维宾 本规程由大唐洱源风电有限责任公司安全生产部负责解释。

目录 1 范围 (1) 2 装置配置特点、额定电气参数 (1) 3 设备的运行方式 (1) 4 线路保护装置运行的有关规定 (2) 5 设备定期巡回及机动巡回 (2) 6 保护装置使用说明 (3) 7保护装置有关操作 (3) 8保护装置异常运行和事故处理 (3)

1范围 本规程规定了短线保护基本技术要求、运行方式、设备运行的监视及检查与操作、设备故障及事故处理等内容。 本规程适用于大唐洱源风电有限责任公司。 2 装置配置特点、额定电气参数 2.1 配置特点 2.1.1 设有分相电流差动和零序电流差动继电器前线速跳功能。 2.1.2 高速数据通信接口,线路两侧数据同步采样,两侧电流互感器变比可以不一致。 2.1.3 通道自动监测,通信误码率在线显示,通道故障自动闭锁差动保护。 2.1.4 反应工频变化量的启动元件采用了具有自适应能力的浮动门槛,对系统部平衡和干扰具有极强的预防能力,因而启动元件有很高的灵敏度而不会频繁启动。 2.1.5 先进可靠的震荡闭锁功能,保证距离保护在系统震荡加区外故障时能可靠闭锁,而在振荡加区内故障时能可靠切触故障。 2.1.6 完善的事件报文处理,可保证最新64次动作报告,24次故障录波报告。 2.1.7 与COMTRADE兼容的故障录波。 2.1.8 友好的人机界面、汉字显示、中文报告打印。 2.1.9 灵活的后台通信方式,配有RS-485通信接口或以太网。 2.1.10 支持三种对时方式;秒脉冲对时、分脉冲对时、IRIGB码对时。 2.1.11 支持电力行业标准DL/T677-1999的通信规约。 2.1.12 采用高速数字信号处理芯片(DSP)与微机处理器并行工作保证了高精度的快速运算。高性能的硬件保证了装置在每一个采样间隔在每一个采样间隔对所有继电器进行实时计算。 2.1.13 电路板采用表面贴装技术,减少了电路体积,减少发热,提高了装置可靠性。 2.1.14 装置采用整体面板,全封闭机箱,强弱电严格分开,取消传统背板配线方式,同时在软件设计上也采取相应的抗干扰措施,装置的抗干扰能力大大提高,对外的电磁辐射也满足相关标准。 2.2 额定电气参数 交流电压:100/ √3(额定电压Un) 交流电流:5A,1A (额定电流In) 频率:50hz或60 Hz; 直流电压:220 V,110 允许偏差:+15%,-20%。 直流:正常时<35 W,跳闸时<50 W; 交流电流,<1VA/相(In=5A)<0.5VA/相(In=1A) 交流电压:<1VA/相 过载能力:电流回路:2倍额定电流,连续工作 10倍额定电流,允许10S 40倍额定电流,允许1S 3 设备的运行方式 设备的运行方式种类: 作为一种补充主保护和后备保护的不足增设的具有断路器接线的简单保护,在断路器断开时主保护或后备保护投入运行,否则退出运行。

继电保护的基本原理和继电保护装置的组成

我们把它统称为电力系统。一般将电能通过的设备成为电力系统成为电力电力系统的一次设备,如发电机、变压器、断路器、输电电路等,对一次设备的运行状态进行监视、测量、控制和保护的设备,被称为电力系统的二次设备。继电保护装置就属于电力系统的二次设备。 一、继电保护装置的基本原理 为了完成继电保护的任务,继电保护就必须能够区别是正常运行还是非正常运行或故障,要区别这些状态,关键的就是要寻找这些状态下的参量情况,找出其间的差别,从而构成各种不同原理的保护。 1.利用基本电气参数的区别 发生短路后,利用电流、电压、线路测量阻抗等的变化,可以构成如下保护: (1)过电流保护。单侧电源线路如图1-1所示,若在BC段上发生三相短路,则从电源到短路点k之间将流过很大的短路电流I k,可以使保护2反应这个电流增大而动作于跳闸。 (2)低电压保护。如图1所示,短路点k的电压U k降到零,各变电站母线上的电压都有所下降,可以使保护2反应于这个下降的电压而动作。 图1:单侧电源线路 (3)距离保护。距离保护反应于短路点到保护安装地之间的距离(或测量阻抗)的减小而动作。如图1所示,设以Z k表示短路点到保护2(即变电站B母线)之间的阻抗,则母线 上的残余电压为: U B=I k Z ko Z B 就是在线路始端的测量阻抗,它的大小正比于短路点到保护2之间的距离。 2.利用内部故障和外部故障时被保护元件两侧电流相位(或功率方向)的差 别

两侧电流相位(或功率方向)的分析如下。 图2:双侧电源网络 a——正常运行情况;b——线路AB外部短路情况;c——线路AB内部短路情况 正常运行时,A、B两侧电流的大小相等,相位相差180°;当线路AB外部故障时,A、B两侧电流仍大小相等,相位相差180°;当线路AB内部短路时,A、B两侧电流一般大小不相等,在理想情况下(两侧电动势同相位且全系统的阻抗角相等),两侧电流同相位。从而可以利用电气元件在内部故障与外部故障(包括正常运行情况)时,两侧电流相位或功率方向的差别构成各种差动原理的保护(内部故障时保护动作),如纵联差动保护、相差高频保护、方向高频保护等。 3.序分量是否出现 电气元件在正常运行(或发生对称短路)时,负序分量和零序分量为零;在发生不对称短路时,一般负序和零序都较大。因此,根据这些分量的是否存在可以构成零序保护和负序保护。此种保护装置具有良好的选择性和灵敏性。 4.反应于非电气量的保护 反应于变压器油箱内部故障时所发生的气体而构成气体(瓦斯)保护;反应于电动机绕组的温度升高而构成过负荷保护等。 二、继电保护装置的组成 继电保护的种类虽然很多,但是在一般情况下,都是有三个部分组成的,即测量部分、逻辑部分和执行部分。其原理结构如图3所示。

RCS_9611C_线路保护测控装置_技术使用说明

RCS-9611C 线路保护测控装置技术使用说明书 V1.00 南瑞继保电气 2005年1月

RCS-9611C线路保护测控装置 1基本配置及规格: 1.1基本配置 RCS-9611C适用于110KV以下电压等级的非直接接地系统或小电阻接地系统中的线路保护及测控装置,可在开关柜就地安装。 保护方面的主要功能有:1)三段可经复压闭锁的方向过流保护;2)三段零序过流保护;3)三相一次重合闸;4)过负荷功能;5﹚独立过流和零序过流加速保护;6)低周减载功能;7)小电流接地选线;8)独立的操作回路。 测控方面的主要功能有:1)25路遥信开入采集;2)正常断路器遥控分合、小电流接地选线;3)IA、IC、I0、UA、UB、UC、UAB、UBC、UCA、U0、F、P、Q、COSф共14个模拟量的遥测;4)事件SOE等; 保护信息方面的主要功能:1)装置描述的远方查看;2)装置参数的远方查看;3)保护定值和区号的远方查看、修改功能;4)软压板状态的远方查看、投退;5)装置保护开入状态的远方查看;6)装置运行状态(包括保护动作元件的状态、运行告警和装置的自检信息)的远方查看;7)远方对装置实现信号复归;8)故障录波上送功能。 支持电力行业标准DL/T667-1999(IEC60870-5-103标准)的通讯规约,配有以太网,双网,100Mbps,超五类线或光纤通讯接口。 1.2技术数据 1.2.1额定数据 直流电压:220V,110V 允许偏差+15%,-20% 交流电压:100/3V(相电压),100V(线电压) 交流电流:5A,1A 频率:50Hz 1.2.2功耗 交流电压:< 0.5VA/相 交流电流:< 1.0VA/相(In =5A) < 0.5VA/相(In =1A) 直流:正常 < 15W 跳闸 < 25W 1.2.3主要技术指标 1>定时限过流: 电流定值:0.1In~20In 定值误差: < 5% 时间定值:0~100S 2>零序过流保护 电流定值:0.1A~12A 定值误差: < 5% 时间定值:0~100S 3>低周减载 频率定值:45~50Hz

微机线路保护模板

北華大學Beihua University 电力系统综合实习报告 学院:电气信息工程学院 专业:电气工程及其自动化 班级:电气11-1 姓名:于仕昊 学号:34 目录 一.实习目的--------------------------------------------------------------------------2 二.实习任务--------------------------------------------------------------------------2 三.实习内容--------------------------------------------------------------------------2

1. 微机线路保护--------------------------------------------------------------2 2. 绘制微机线路保护原理图-----------------------------------------------2 2.1 80c196kc单片机最小工作系统---------------------------------2 2.2信号采集与检测电路设计-----------------------------------------3 2.3多路转换和A/D转换-----------------------------------------------4 2.4内部存储器扩展------------------------------------------------------5 2.5光电隔离电路---------------------------------------------------------5 2.6 I/O口扩展--------------------------------------------------------------6 2.7 键盘及显示------------------------------------------------------------7 3. 输电线路微机过电流保护实验-----------------------------------------8 3.1 微机阶段式电流保护实验-----------------------------------------8

光纤损耗大的几个因素

光纤损耗大存在的因素 光纤熔接包处损耗变大,是常见的故障,原因通常有3个: 1、光纤熔接处开裂,可能的原因有:当初熔接时存在缺陷;光缆遭受外力拉伸;熔接点塑料护套、固定金属棒与光纤热膨胀系数差异,反复的温度变化引起伸缩。显然排除故障时必须重新熔接光纤。 2、熔接包内盘纤变形失园而出现角度,导致损耗变大。可能的原因有:光缆遭受外力拉伸;因温度变化热涨冷缩引起。排除故障时只需重新整理盘纤,保证圆形、消除角度。 3、熔接包内进水并侵入熔接处的裸纤,导致光信号散射损失。排除故障时要打开熔接包清除积水,并晒干熔接处,尽量散尽水分,或者重新熔接。 光纤传输损耗的产生原因是多方面的,在光纤通信网络的建设和维护中,最值得关注的是光纤使用中引起传输损耗的原因以及如何减少这些损耗 光纤使用中引起的传输损耗主要有 1接续损耗 2光纤本质造成的损耗、 3熔接不当所报造成的损耗和 4活动接头(光纤适配器及光纤跳线)造成的损耗和 5非接续损耗(弯曲损耗和其它施工因素和应用环境所造成的损耗) 接续损耗 (1)光纤固有损耗主要源于光纤模场直径不一致;光纤芯径失配;纤芯截面不圆;纤芯与包层同心度不佳等原因;其中影响最大的是模场直径不一致。 (2)熔接损耗非本征因素的熔接损耗主要由轴向错位;轴心(折角)倾斜;端面分离(间隙);光纤端面不完整;折射率差;光纤端面不清洁以及接续人员操作水平、操作步骤、熔接机电极清洁程度、熔接参数设置、工作环境清洁程度等其他因素造成。 (3)活动接头损耗非本征因素的活动接头损耗主要由活动连接器质量差、接触不良、不清洁以及与熔接损耗相同的一些因素(如轴向错位、端面间隙、折角、折射率差等)造成。 解决接续损耗的方案 (1)工程设计、施工和维护工作中应选用特性一致的优质光纤一条线路上尽量采用同一批次的优质品牌裸纤,以求光纤的特性尽量匹配,使模场直径对光纤熔接损耗的影响降到最低程度。 (2)光缆施工时应严格按规程和要求进行 挑选经验丰富的施工人员光缆配盘时尽量做到整盘配置(单盘≥500-800米),以尽量减少接头数量。敷设时严格按缆盘编号和端别顺序布放,使损耗值达到最小。 (3)挑选经验丰富训练有素的接续人员进行接续和测试 接续人员的水平直接影响接续损耗的大小,接续人员应严格按照光纤熔接工艺流

2 iPACS-5711线路保护测控装置技术说明书V2.01

iPACS-5711线路保护测控装置 技术说明书 版本:V2.01 江苏金智科技股份有限公司

目录 1 概述 (1) 1.1应用范围 (1) 1.2保护配置和功能 (1) 1.2.1 保护配置 (1) 1.2.2 测控功能 (1) 1.2.3 保护信息功能 (1) 2 技术参数 (2) 2.1机械及环境参数 (2) 2.1.1 工作环境 (2) 2.1.2 机械性能 (2) 2.2电气参数 (2) 2.2.1 额定数据 (2) 2.2.2 功率消耗 (2) 2.2.3 过载能力 (3) 2.3主要技术指标 (3) 2.3.1 过流保护 (3) 2.3.2 零序保护 (3) 2.3.3 低频保护 (3) 2.3.4 重合闸 (3) 2.3.5 遥信开入 (4) 2.3.6 遥测量计量等级 (4) 2.3.7 电磁兼容 (4) 2.3.8 绝缘试验 (4) 2.3.9 输出接点容量 (4) 3 软件工作原理 (5) 3.1保护程序结构 (5) 3.2装置起动元件 (5) 3.2.1 过电流起动 (5)

3.2.2零序电流起动 (6) 3.2.3低频起动 (6) 3.2.4位置不对应起动 (6) 3.3过流保护 (7) 3.4零序保护(接地保护) (8) 3.5过负荷保护 (9) 3.6加速保护 (9) 3.7低频保护 (9) 3.8重合闸 (9) 3.9装置自检 (10) 3.10装置运行告警 (10) 3.10.1 TWJ异常判别 (10) 3.10.2 交流电压断线 (11) 3.10.3 线路电压断线 (11) 3.10.4 频率异常判别 (11) 3.11遥控、遥测、遥信功能 (11) 3.12对时功能 (11) 3.13逻辑框图 (12) 4 定值内容及整定说明 (13) 4.1系统定值 (13) 4.2保护定值 (13) 4.3通讯参数 (15) 4.4辅助参数 (16) 4.5软压板 (17) 5装置接线端子与说明 (18) 5.1模拟量输入 (19) 5.2背板接线说明 (19) 5.3跳线说明 (21)

110kV线路光纤差动保护

xxxxxxxxxx公司 xxxxxxxxx工程 110kV线路光纤差动保护 专用技术规范 (编号:) 物料编码: Xxxxx设计院 年月 目录 1 标准技术参数 (1) 2 项目需求部分 (2)

2.1 货物需求及供货范围一览表 (2) 2.2 必备的备品备件、专用工具和仪器仪表供货表 (3) 2.3 图纸资料提交单位 (3) 2.4 工程概况 (3) 2.5 使用条件 (3) 2.6 项目单位技术差异表 (4) 2.7 一次、二次及土建接口要求(适用扩建工程) (5) 3 投标人响应部分 (5) 3.1 投标人技术偏差表 (5) 3.2 销售及运行业绩表 (5) 3.3 推荐的备品备件、专用工具和仪器仪表供货 (5) 3.4 最终用户的使用情况证明 (6) 3.5 投标人提供的试验检测报告表 (6) 3.6 投标人提供的鉴定证书表 (6)

1 标准技术参数 投标人应认真逐项填写标准技术参数表(见表1-4)中投标人保证值,不能空格,也不能以“响应”两字代替,不允许改动招标人要求值。如有差异,请填写表11 投标人技术偏差表。 表1 110kV线路光纤差动保护标准技术参数表 序 号 参数名称单位标准参数值投标人保证值 1 *电流精工范围测量范围下限为0.05 In,上限 为20In~40 In,在电流为0.05 In~(20 In~40In)时,测量 误差≤5%(相对误差)或0.02 In (绝对误差),但在0.05 In以 下范围用户应能整定并使用,实 际故障电流超过电流上限(20 In~40In)时,保护装置不误动 不拒动 (投标人填写) 2 *电压精工范围V 0.01Un—1.1Un(投标人填写) 3 电流差动动作时间ms 不大于30ms(1.2倍整定值,不 包括通道延时) (投标人填写) 4 *距离I段暂态超越≤5% (投标人填写) 5 *相间距离I段动作时间ms 不大于30ms(0.7倍整定值)(投标人填写) 6 *接地距离I段动作时间ms 不大于30ms(0.7倍整定值)(投标人填写) 7 *零序过流I段动作时间ms 不大于25ms(1.2倍整定值)(投标人填写) 8 *整组动作时间ms 近端故障不大于20ms; 远端故障不大于30ms (投标人填写) 9 交流电流回路过载能力2 In,连续工作;10 In,10s;40 In,1s (投标人填写) 10 交流电压回路过载能力 1.2 In,连续工作;1.4 In,10s (投标人填写) 11 交流电压回路功率损耗(每相)V A ≤1VA(投标人填写) 12 交流电流回路功率损耗(每相)V A ≤0.5VA(In=1A) ≤1VA(In=5A) (投标人填写) 13 装置直流消耗W ≤30W(工作时) ≤50W(动作时) (投标人填写) 14 跳闸触点容量长期允许通过电流不小于5A; 触点断开容量为不小于50W (投标人填写) 15 其它触点容量长期允许通过电流不小于2A; 触点断开容量为不小于30W (投标人填写)

光纤差动保护

光纤差动保护 光纤电流差动保护是在电流差动保护的基础上演化而来的,基本保护原理也是基于克希霍夫基本电流定律,它能够理想地使保护实现单元化,原理简单,不受运行方式变化的影响,而且由于两侧的保护装置没有电联系,提高了运行的可靠性。目前电流差动保护在电力系统的主变压器、线路和母线上大量使用,其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等优点是其他保护形式所无法比拟的。光纤电流差动保护在继承了电流差动保护的这些优点的同时,以其可靠稳定的光纤传输通道保证了传送电流的幅值和相位正确可靠地传送到对侧 1 原理介绍 光纤分相电流差动保护借助于线路光纤通道,实时地向对侧传递采样数据,同时接收对侧的采样数据,各侧保护利用本地和对侧电流数据按相进行差动电流计算。根据电流差动保护的制动特性方程进行判别,判为区内故障时动作跳闸,判为区外故障时保护不动作。光纤电流差动保护系统的典型构成如图1所示。 当线路在正常运行或发生区外故障时,线路两侧电流相位是反向的。如图所示,假设M侧为送电端,N侧为受电端,则,M侧电流为母线流向线路,N侧电流为线路流向母线,两侧电流大小相等方向相反,此时线路两侧的差电流为零;当线路发生区内故障时,故障电流都是由母线流向线路,方向相同,线路两侧电流的差电流不再为零,当其满足电流差动保护的动作特性方程时,保护装置发出跳闸令快速将故障相切除。 2 对通信系统的要求 光纤电流差动保护借助于通信通道双向传输电流数据,供两侧保护进行实时计算。其一般采用两种通信方式:一种是保护装置以64Kbps/2Mbps速率,按

ITU-T建议G.703规定于数字通信系统复用器的64Kbps/2Mbps数据通道同向接口,即复用PCM方式;另一种是保护装置的数据通信以64Kbps/2Mbps速率采用专用光纤芯进行双向传输,即专用光纤方式。(详见图3) 光纤电流差动保护要求线路两侧的保护装置的采样同时、同步,因此时钟同步对光纤电流差动保护至关重要。当电流差动保护采用专用光纤通道时,保护装置的同步时钟一般采用"主-从"方式,即两侧保护中一侧采用内部时钟作为主时钟,另一侧保护则应设置成从时钟方式。设置为从时钟侧的保护装置,其时钟信号从对侧保护传来的信息编码中提取,从而保证与对侧的时钟同步。当采用复用PCM方式时,复用数字通信系统的数据通道作为主时钟,两侧保护装置均应设置为从时钟方式,即均从复用数字通信系统中提取同步时钟信号:否则保护装置将无法与通信系统数据通道进行复接。

光纤差动保护动作原因分析

关于线路光纤差动保护误动的原因分析 1、摘要 2014年5月30日晚22:57分,在内蒙杭锦旗源丰生物热电厂,发生两条线路光纤差动保护动作跳闸事故;后经调度同意恢复线路供电,在操作1#主变进行冲击合闸时,本条线路光纤差动保护动作跳闸,经检查1#主变没有任何故障,申请调度令再次恢复供电,调度同意并仅限最后一次恢复供电,当又一次次操作1#主变进行冲击合闸时,本条线路光纤差动保护动作跳闸。至此,不能正常运行。 2、基本概况及事故发生经过 内蒙杭锦旗源丰生物热电厂有两台发电机变压器组,主变高压侧为35KV系统,两路进线由上级220KV变电站引来,两路进线之间有母联开关,启动备用变压器由Ⅰ段母线供电。由于两路进线在上级变电站为同段母线输送,所以正常运行时母联合环,两台机组并列运行。听当值运行人员讲,5月30日晚22:08分,事故发生之前系统报出过TV断线、零序过压、主变过负荷故障,并且C相系统电压均为零的状况,即刻到35KV配电室巡视,最终发现在Ⅱ段主变出线柜跟前闻见焦糊味。当即汇报调度采取措施,申请调度断开35KV母联开关310,保证Ⅰ段发电机变压器组正常运行。然后意在使Ⅱ段发电机变压器组退出运行,以便检查Ⅱ段主变出线柜焦糊味的来源情况。结果在间隔50分钟后,当晚22:57分左右,2#主变差动保护动作,跳开高低压侧开关,发电机解列.Ⅰ段、Ⅱ段线路光纤差动保护莫名其秒的同时动作跳闸,1#主变高低压侧开关紧跟着也跳闸,造成全厂停电事故。

上述情况发生后,向调度汇报,申请恢复线路供电,以保厂用系统不失电安全运行。调度要求自行检查故障后在送电,在晚上23:50分,检查出2#主变出线柜C相CT接地烧毁,后向调度汇报并经调度同意恢复了供电。厂用电所带设备运转正常后,计划启动Ⅰ段发电机变压器组,调度同意.在3:49分,操作1#主变冲击合闸时,本条线路光纤差动保护动作跳闸,同时向调度汇报。在检查1#主变没有任何故障后,申请调度令,恢复杭源一回线供电.调度同意并仅限最后一次恢复供电, 4:52分, 操作1#主变冲击合闸时, 本条线路光纤差动保护再次动作跳闸,11:33分申请调度恢复本厂厂用电系统,经调度同意,在11:39分恢复了厂用电系统. 根据其它运行人员反映,在此次事故之前,也有光纤差动保护动作跳闸的事情发生,而且不只一次。并且奇怪的是,在两台机组并列运行时,想让两台机组分段运行。在分断联络开关时,线路光纤差动保护也会同时动作跳闸,两条线路全部失电。或是正常操作断开一条线路时,也会使另一条线路光纤差动保护动作跳闸,说明光纤差动保护动作非常不可靠,存在着巨大引患. 3、光纤差动保护误动的原因分析 经过认真检查,2#主变出线柜C相CT接地烧毁(一次对二次及地绝缘为零),B相CT也有严重拉弧现象,C相CT二次侧也有拉弧过的痕迹.A、B、C相CT一次触头螺丝没有紧死,有不同程度的虚接现象。必须重新更换CT.这也说明相关装置报出TV断线、零序过压、主变过负荷故障的原因所在, C相CT接地并存在严重拉弧现象,那么 C相系

数字式线路保护装置技术说明

PSL603G数字式线路保护装置技术说明 1.概述 1.1 应用范围 本装置为微机实现的数字式超高压成套快速保护装置,可用作220KV及以上电压等级输电线路的主保护及后备保护。 1.2 保护配置 PSL603G系列以及分相电流差动和零序电流差动为主体的全线速动保护,由波形识别原理构成的快速Ⅰ段保护;由三段式相间和接地距离保护及零序方向电流保护构成的后备保护。保护有分相出口,并配有自动重合闸功能,对单或双母线接线的断路器实现单项重合、三相重合、综合重合闸功能。 2. 保护原理说明 2.1 保护程序整体结构如下图 所有保护CPU程序主要包括主程序、采样中断程序和故障处理程序。正常运行主程序,每隔1ms采样间隔定时执行一次采样中断程序,采样中断程序中执行启动元件,如果启动元件没有动作,返回主程序;如动作则进入故障处理程序(此时定时采样中断仍然执行),完成相应保护功能。整组复归时启动元件返回,程序进入正常运行的主程序。 主程序中进行硬件自检(包括ROM、RAM、EEPROM、开出光耦等)、交流电压断线检查、定值校验、开关位置判断、人机对话模件和CPU模件运行是否正常相互检查等。 采样中断程序中进行模拟量采集和向量计算、开关量的采集、交流电流断线判别、重合闸充电、数据同步、合闸加速判断和启动元件计算等。 故障处理程序中进行各种保护的算法计算、跳合闸判断和执行、事件记录、故障录波、保护元件的动作过程记录,最后进行故障报告的整理和记录所用定值。 2.2 启动元件和整组复归 2.2.1 启动元件 保护启动元件用于启动故障处理程序及开放保护跳闸出口继电器的负电源。各个保护模块以相电流突变量为主要的启动元件,启动门坎由突变量启动定值加上浮动门坎。在系统振荡时自动抬高突变量启动元件的门坎。零序电流启动元件、

光纤传输损耗测试实验报告报告

华侨大学工学院 实验报告 课程名称:光通信技术实验 实验项目名称:实验1 光纤传输损耗测试 学院:工学院 专业班级:13光电 姓名:林洋 学号:1395121026 指导教师:王达成 2016 年05 月日

预 习 报 告 一、 实验目的 1)了解光纤损耗的定义 2)了解截断法、插入法测量光纤的传输损耗 二、 实验仪器 20MHz 双踪示波器 万用表 光功率计 电话机 光纤跳线一组 光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器) 三、 实验原理 光纤在波长λ处的衰减系数为()αλ,其含义为单位长度光纤引起的光功率衰减,单位是dB/km 。当长度为L 时, 10()()l g (/)(0) P L dB km L P αλ=- (公式1.1) ITU-T G .650、G .651规定截断法为基准测量方法,背向散射法(OTDR 法)和插入法为替代测量方法。本实验采用插入法测量光纤的损耗。 (1)截断法:(破坏性测量方法) 截断法是一个直接利用衰减系数定义的测量方法。在不改变注入条件下,分别测出长光纤的输出功率2()P λ和剪断后约2m 长度短光纤的输出功率1()P λ,按定义计算出()αλ。该方法测试精度最高。

图1.1 截断法定波长衰减测试系统装置 (2)插入法 插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条 件)由于插入被测光纤引起的功率损耗。显然,功率1P、2P的测量没有 截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。所以该方法不适用于光纤光缆制造长度衰减的测量。但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。图1.2示出了两种参考条件下的测试原理框图。 (a) (b) 图1.2 典型的插入损耗法测试装置

光纤差动保护原理分析

光纤差动保护原理分析 光纤电流差动保护是在电流差动保护的基础上演化而来的,基本保护原理也是基于克希霍夫基本电流定律,它能够理想地使保护实现单元化,原理简单,不受运行方式变化的影响,而且由于两侧的保护装置没有电联系,提高了运行的可靠性。目前电流差动保护在电力系统的主变压器、线路和母线上大量使用,其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等优点是其他保护形式所无法比拟的。光纤电流差动保护在继承了电流差动保护的这些优点的同时,以其可靠稳定的光纤传输通道保证了传送电流的幅值和相位正确可靠地传送到对侧 1 原理介绍 光纤分相电流差动保护借助于线路光纤通道,实时地向对侧传递采样数据,同时接收对侧的采样数据,各侧保护利用本地和对侧电流数据按相进行差动电流计算。根据电流差动保护的制动特性方程进行判别,判为区内故障时动作跳闸,判为区外故障时保护不动作。光纤电流差动保护系统的典型构成如图1所示。

当线路在正常运行或发生区外故障时,线路两侧电流相位是反向的。如图所示,假设M侧为送电端,N侧为受电端,则,M侧电流为母线流向线路,N侧电流为线路流向母线,两侧电流大小相等方向相反,此时线路两侧的差电流为零;当线路发生区内故障时,故障电流都是由母线流向线路,方向相同,线路两侧电流的差电流不再为零,当其满足电流差动保护的动作特性方程时,保护装置发出跳闸令快速将故障相切除。

对于光纤分相电流差动保护而言,其差动保护一般采用如图2所示的双斜率制动特性,以保证发生穿越故障时的稳定性。图中,Id 表示差动电流,Ir表示制动电流,K1、K2分别表示不同的制动斜率。 采用这样的制动特性曲线,可以保证在小电流时有较高的灵敏度,而在电流大时具有较高的可靠性,即当线路末端发生区外故障时,因电流互感器发生饱和产生传变误差,此时采用较高斜率的制动特性更为可靠。 由于线路两侧电流互感器的测量误差和超高压线路运行时产生 的充电电容电流等因素,差动保护在利用本地和对侧电流数据按相进行实时差电流计算时,其值并不为零,也即存在一定的不平衡电流。光差动保护必须按躲过此电流值进行整定,这也是在上面所示的图2中最小差电流整定值Isl不为零的原因所在。如何躲过该不平衡电流对差动保护的影响,不同类型的保护装置其采用的整定方法也不尽相同,一般采用固定门坎法进行整定,即将在正常运行中保护装置测量到的差电流作为被保护线路的纯电容电流,并将该电流值乘以一系数(一般为2-3)作为差动电流的动作门坎。 当差动元件判为区内故障发出跳闸命令时,除跳开线路本侧断路器外,还借助于光纤通道向线路对侧发出联跳信号,使得对侧断路器快速跳闸。 2 对通信系统的要求

光纤损耗有哪些

光纤损耗有哪些 光纤传输相比电缆传输和无线传输而言有众多优势。光纤比电缆更轻、更小、更灵活,而且在长距离传输中,光纤比电缆的传播速度更快。然而,影响光纤传输性能的因素很多,为了确保光纤的性能更好更稳定,这些因素不容忽视。光纤的损耗就是其中之一,它已成为许多工程师在选择和使用光纤时最优先考虑的一个因素。这篇教程将为您详细介绍光纤传输中的光损耗。 光信号经光纤传输后,光的强度会逐渐减弱,与此同时,光信号也会逐渐减弱。光纤传输过程中,光信号的损失就叫做光纤损耗或者光的衰减。所谓损耗是指光纤每单位长度上的衰减,单位为dB/km。为了确保光信号安全有效的传输,就要尽可能地降低光纤的损耗。引起光纤损耗的因素主要有两个:内部因素和外部因素,亦即本征光纤损耗和非本征光纤损耗。 本征光纤损耗 本征光纤损耗是指光纤材料固有的一种损耗,引起本征光纤损耗的因素主要有两个:光的吸收和光的散射。 光的吸收是光纤传输中引起光损耗的主要原因,这是由于光纤材料和杂质对光能的吸收而引起的,因此,光的吸收损耗也被称为光纤材料吸收损耗。实际上,光的吸收是光在传播过程中以热能的形式消耗于光纤中,这是由于分子的共振和波长的掺杂不均匀引起的。完全纯净的的原子只吸收特定波长的光,但是绝对纯净的光纤材料几乎不可能生产出来,所以,光纤制造厂商选择掺杂锗这类含有纯硅的材料来优化光纤的性能。 光的散射是光纤损耗的另一个重要原因。光纤的散射损耗是指在玻璃结构中分子水平上的不规则所造成的光的散射。在光纤线路中,当发生散射时,光能量会向各个方向分散,其中一部分能量沿着线路方向继续前行,而其它方向分散的光能量则会丢失,如下图所示。因此,为了减少散射而引起的光纤损耗,必须消除光纤芯的不完善,并对光纤涂层和挤压进行严格控制。 非本征光纤损耗

光纤差动线路保护讲义

天王沟电站线路保护讲课讲义 一、我站线路保护配置 1.RCS-943 包括以分相电流差动和零序电流差动为主体的快速主保护,由三段相间和接地距离保护、四段零序方向过电流保护构成的全套后备保护;装置配有三相一次重合闸功能、过负荷告警功能。

二、线路保护简介 1.光纤纵差保护 首先,光纤差动保护的原理和一般的纵联差动保护原理基本上是一样的,都是保护装置通过计算三相电流的变化,判断三相电流的向量和是否为零来确定是否动作,当接在电流互感器的二次侧的电流继电器(包括零序电流)中有电流流过达到保护动作整定值是,保护就动作,跳开故障线路的开关。即使是微机保护装置,其原理也是这样的。但是,光纤差动保护采用分相电流差动元件作为快速主保护,并采用PCM光纤或光缆作为通道,使其动作速度更快,因而是短线路的主保护!另外,光纤差动保护和其它差动保护的不同之处,还在于所采用的通道形式不同。纵联保护的通道一般有以下几种类型:(以下几点作为了解,我站为第3种) 1.)电力线载波纵联保护,也就是常说的高频保护,利用电力输电线路作为通道传输高频信号; 2.)微波纵联保护,简称微波保护,利用无线通道,需要天线无线传输; 3.)光纤纵联保护,简称光纤保护,利用光纤光缆作为通道; 4.)导引线纵联保护,简称导引线保护,利用导引线直接比较线路两端电流的幅值和相位,以判别区内、区外故障。

2.线路距离保护 我站线路距离保护分为接地距离、相间距离保护 接地距离:以保护安装处故障相对地电压为测量电压、以带有零序电流补偿的故障相电流为测量电流的方式,就能够正确地反应各种接地故障的故障距离,所以它称为接地距离保护接线方式。 相间距离:以保护安装处两故障相相间电压为测量电压、以两故障相电流之差为测量电流的方式称为相间距离保护接线方式。距离保护是反应故障点至保护安装地点之间的距离(或阻抗)。并根据距离的远近而确定动作时间的一种保护装置。该装置的主要元件为距离(阻抗)继电器,它可根据其端子上所加的电压和电流测知保护安装处至短路点间的阻抗值,此阻抗称为继电器的测量阻抗。当短路点距保护安装处近时,其测量阻抗小,动作时间短;当短路点距保护安装处远时,其测量阻抗增大,动作时间增长,这样就保证了保护有选择性地切除故障线路。 用电压与电流的比值(即阻抗)构成的继电保护,又称阻抗保护,阻抗元件的阻抗值是接入该元件的电压与电流的比值:U/I=Z,也就是短路点至保护安装处的阻抗值。因线路的阻抗值与距离成正比,所以叫距离保护或阻抗保护。距离保护分的动作行为反映保护安装处到短路点距离的远近。与电流保护和电压保护相比,距离保护的性能受系统运行方式的影响较小。 距离保护保护范围讲解:一般距离保护为Ⅲ断式距离保护,第

光纤通信传输损耗及降低方法(张骥)

光纤通信传输损耗及降低方法光纤通信由于其自身的一些优点,因此得到了广泛的使用,因此,在光纤通信中产生的问题,也值得我们去认真思考并加以解决。光纤接续工作,技术复杂、工艺要求高,是对质量标准严格要求的精细工作,也是关系到光纤通信传输质量的重要工作,因此,在施工中,技术人员要充分重视光纤接续时产生的损耗,按照严格标准做好光纤的接续工作,从而降低光缆的附加损耗,提高光纤的传输质量。同时相关的技术人员在日常的施工工作中注意总结经验教训,不断的提高施工的质量,这也是提高光纤传输效果的一条有效的途径。 1、光纤通信的相关理论 光纤即为光导纤维的简称。光纤通信是以光波作为信息载体,以 光纤作为传输媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。光纤 通信的应用在当前主要集中于各种信息的传输与控制上。以互联网的发展为例,传统互联网以电缆为传输工具,速度比较慢,随着90年 代美国信息高速公路的建设,现代互联网传输的主体为光纤。去年,我国的有线电视实现了由模拟信号向数字信号的完全转变,有线电视信号的传输也是以光纤的应用为前提的。另外,随着信息化的普及,

光纤通信基本已经深入到每个人的生活。除此之外,由于光纤通信具有保密性高、受干扰性能高的优点,其在军事与科技中的应用也十分广泛。当然光纤在实际应用中也有一些缺陷,比如玻璃的质地比较脆,比较容易折断,因此加工难度高,价格也较昂贵,要求的加工工艺与电缆相比也复杂很多。而且由于光纤通信自身存在着传输过程中的光能损耗等问题,因此,对于光纤通信要有全面的认识。 2、光纤传输损耗的种类及原因 光纤在传输中的损耗一般可分为接续损耗和非接续损耗。接续损耗包括由于光纤自身特性引起的固有损耗以及非自身因素(一般为工业加工下艺以及机械的设置)引起的的熔接损耗和活动接头的损耗。非接续损耗包括光纤自身的弯曲损耗和由于施工等因素造成的损耗,另外由于具体光纤应用环境对光纤传输带来的损耗也属于非接续损耗。除此之外,按照光纤传输过程中损耗产生的原因,可分为吸收损耗、散射损耗和其他损耗。 2.1 吸收损耗 吸收损耗是指光波通过光纤材料时,一部分光能变成热能,造成光功率的损失。光在传输过程中会与介质发生作用,由于光含有能量,因此在传输过程中必然有一部分被介质所吸收,转化为自身的热能。比如太阳以光的形式向地球传输能量,在阳光经过大气层时,由于大气层具有吸收光的作用,因此造成海拔不同的地方,空气含量发生变化,温度也随之变化。这是吸收损耗的一个最典型的例子。

光纤差动保护装置原理分析及其调试、运行注意事项

RCS-9613CS型光纤差动保护原理分析及其 调试、运行注意事项 一、开放条件 在保护功能已投入的情况下, RC S9613CS 型光纤差动保护装置的开放条件是: a) 保护启动且满足差动方程。 b) 保护没有启动, 但是相电压或相间电压由正常值变为低于65 % Ur ( Ur 为线路的额定电压) ,且满足差动方程。 c) 开关置于分位, 且满足差动方程。 一旦上述任一条件得到满足, 保护装置将给对侧发差动允许信号, 对侧如检测到有区内故障, 两侧保护出口将动作。上述开放条件仅对瞬时金属性短路故障而言。 二、闭锁条件 RC S9613CS型光纤差动保护装置的闭锁条件是: a) 保护功能压板不投; b) 开关位置为合位, 且三相电压正常(三相对称且幅值大于 65 %Ur ) ; c) 开关位置为分位, 但是保护没有接受到跳闸信号(如控制电源被切除) 。上述任一条件不满足, 则对侧保护装置检测到任何瞬时故障, 两侧光纤分相差动保护均被闭锁。上述闭锁条件只是针对瞬时金属性短路故障而言的, 当后备保护在投入状态或发生零序高阻接地故障时, 闭锁条件将不起作用。

三、特殊试验条件下的反应 特殊试验条件下RC S9613CS型光纤差动保护装置的反应情况: a) 对空载充电线路, 在断路器断开侧对保护装置进行加电流试验。若只投主保护压板, 其它后备保护压板不投, 模拟各类型故障(故障电压低于40 V) ,则两侧光纤差动保护装置均不动作; 投入主保护压板及其它后备保护压板, 加故障电流, 如本侧开关断开, 则后备加速保护动作, 开关合位时, 后备保护动作, 经一定延时后, 光纤差动保护装置动作, 此时,对侧光纤差动保护装置也随之跳闸; 若只投主保护压板, 其它后备保护压板不投, 空载充电线路有启动电流, 则两侧光纤差动保护装置动作; 任一侧开关跳闸异常, 不影响两侧光纤差动保护的逻辑判别。 b) 空载充电线路发生故障时, 断路器断开侧光纤差动保护装置不动作。 c) 当空载充电线路发生非高阻接地的瞬时故障(故障延时小于50 ms) 时, 如断路器断开侧控制电源被误退出, 将导致电源侧光纤差动保护拒动。 d) 任一侧主保护压板退出, 均闭锁两侧光纤差动保护。 e) 通道异常, 则可靠闭锁两侧主保护。 f ) 光纤差动保护不经复合电压、电压互感器断线等闭锁。 g) 任一侧断路器断开或三相电压低于65 %Ur ,将开放对侧光纤差动保护。 四、RC S9613CS型光纤差动保护装置的特点

线路保护装置的调试

项目三:线路保护装置的调试 学习内容 1.不同电压等级的电力线路继电保护装置的配置和原理; 2.线路过流保护功能(含闭锁条件)的调试检验方法; 3.线路距离保护(阻抗保护)的调试检验方法; 4.线路光纤纵差保护(含通道检查)的调试检验方法。 学习目标 1.了解各个电压等级输电线路继电保护的配置和保护原理; 2.掌握微机型继电保护装置保护功能调试的基本思路和方法; 3.能对各种线路保护功能进行校验和评价; 学习指导 电力线路(输电线路)是电力系统中输电环节的重要组成部分,输电线路传输距离长,工作环境复杂,故障几率较高,因此线路保护装置就显得尤为重要。1.输电线路的故障 电力线路中输电线路的故障主要有三种,分别是接地故障,短路故障和断线故障。 (1)接地故障:一般分为单相接地故障,两相接地故障和三相接地故障,其中单相接地故障的发生率最高,约占90%以上。发生接地故障以后,电力线路短时间内表现为线路电流急剧增大,而接地相的线路迅速失压。 (2)短路故障:短路故障一般指相间短路故障,发生短路的两相线路电流均会急剧增大,线路电压也会迅速降低。 (3)断线故障:指电力线路被断开,无法完成输送电能的功能,假如出现单相断线故障,且未发生接地和短路的情况,则可能出现短线相电压升高,而非断

线两相线路电压降低等现象。 2.线路保护的配置 根据输电线路电压等级的不同,保护配置也有所不同,我们分110kV以下输电线路,110kV输电线路,110kV以上输电线路3种配置来进行说明。 (1)110kV以下输电线路保护主要以过流型保护为主,主要是检测输电线路中的电流和电压,以此作为主要判据。主要的保护功能有: 1.三段式电流保护:瞬时电流速断保护、限时电流速断保护、定时限过电流保护一同构成三段式电流保护。具体应用时,可以只取其中两段其作用,也可以三者都配置,通过时限配合辅以复合电压闭锁元件和方向闭锁元件等,可以兼顾保护的选择性和速动性。部分装置的第三段过流保护还可以整定为反时限动作特性。 2.三段式零序电流保护:同三段式电流保护类似,以零序电流和零序电压为主要判据,也可以配置零序电压闭锁和零序方向闭锁。 3.过负荷电流保护:过负荷电流保护监视三相负荷电流,最大相电流超过整定值,并且持续时间超过告警延时定值发过负荷告警,也可通过控制字配置为跳闸,延时一般可以设置为反时限动作特性。 4.电压保护:分为过电压保护和低电压保护两种,监视线路电压变化(一般取线电压值为判据),电压过高或过低时动作。 5.其他保护功能还包括低周减载,低压解列和重合闸功能等。 (2)110kV输电线路保护主要距离保护为主,再辅以110kV以下输电线路保护中配置的过流保护,零序过流保护等其他元件。距离保护也称阻抗保护,是以线路电压与电流之间的比值(称为测量阻抗)作为保护动作的主要判据,当发生线路故障时,一般可表现出线路测量阻抗降低的现象。距离保护一般分为接地距离保护和相间距离保护两种,都可设置为三段式,相互配合。 (3)110kV以上侧高压或超高压输电线路保护主要以线路电流纵联差动保护为主,再辅以距离保护和零序过流保护等其他元件。线路电流纵联差动保护是将线路两侧的线路电流向量进行运算(称为差动电流),并以此作为保护动作的判据。保护数据的传输通道一般选择光纤通道或者载波通道。 3.继电保护逻辑框图 对继电保护功能进行说明,一般采用逻辑框图的方式,通常来说,继电保护

相关文档