文档库 最新最全的文档下载
当前位置:文档库 › 火烧油层点火室内实验分析及现场应用

火烧油层点火室内实验分析及现场应用

火烧油层点火室内实验分析及现场应用
火烧油层点火室内实验分析及现场应用

空调房间室内气流组织模拟(fluent)

模型[1] m s,送风温如图,房间左下角有一个空调,送风和回风方向如图所示。送风速度为1/ 度为25℃,壁面温度为30℃。 1.建立模型及网格划分 ①建立模型及网格划分的步骤在此处暂时省略,以后后机会再补上,这里直接读入网格文件hvac-room.msh。 ②读入网格后应检查网格及网格尺寸,通过Mesh下的Check和Scale进行实现,这里不做详细描述。 2.求解模型的设定 ①启动FLUENT。启动设置如图,这里着重说说Double Precision(双精度)复选框,对于大多数情况,单精度求解器已能很好的满足精度要求,且计算量小,这里我们选择单精度。然而对于以下一些特定的问题,使用双精度求解器可能更有利。 [1] 李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战:FLUENT GAMBIT ICEM CFD Tecplot[M]. 北京,人民邮电出版社,2011:312-317

a.几何特征包含某些极端的尺度(如非常长且窄的管道),单精度求解器可能不能足够精确地表达各尺度方向的节点信息。 b.如果几何模型包含多个通过小直径管道相互连接的体,而某一个区域的压力特别大(因为用户只能设定一个总体的参考压力位置),此时,双精度求解器可能更能体现压差带来的流动。 c.对于某些高导热系数比或高宽纵比的网格,使用单精度求解器可能会遇到收敛性不佳或精确度不足不足的问题,此时,使用双精度求解器可能会有所帮助。 ②求解器设置。这里保持默认的求解参数,即基于压力的求解器定常求解。如图: 下面说一说Pressure-based和Density-based的区别:

a.Pressure-Based Solver是Fluent的优势,它是基于压力法的求解器,使用的是压力 修正算法,求解的控制方程是标量形式的,擅长求解不可压缩流动,对于可压流动 也可以求解;Fluent 6.3以前的版本求解器,只有Segregated Solver和Coupled Solver,其实也Pressure-Based Solver的两种处理方法; b.Density-Based Solver是Fluent 6.3新发展出来的,它是基于密度法的求解器,求解 的控制方程是矢量形式的,主要离散格式有Roe,AUSM+,该方法的初衷是让Fluent 具有比较好的求解可压缩流动能力,但目前格式没有添加任何限制器,因此还不太 完善;它只有Coupled的算法;对于低速问题,他们是使用Preconditioning方法来 处理,使之也能够计算低速问题。Density-Based Solver下肯定是没有SIMPLEC, PISO这些选项的,因为这些都是压力修正算法,不会在这种类型的求解器中出现 的;一般还是使用Pressure-Based Solver解决问题。 基于压力的求解器适用于求解不可压缩和中等程度的可压缩流体的流动问题。而基于密度的求解器最初用于高速可压缩流动问题的求解。虽然目前两种求解器都适用于各类流动问题的求解(从不可压缩流动到高度可压缩流动),但对于高速可压缩流动而言,使用基于密度的求解器通常能获得比基于压力的求解器更为精确的结果。 -湍流模型,Define/Models/Viscous。 ③流动模型设置。这里使用的是kε -模型,这种模型应用较多,计算量适中, a.这里我们使用的湍流模型是Standard kε 有较多数据积累和比较高的精度,对于曲率较大和压力梯度较强等复杂流动模拟效 果欠佳。一般工程计算都使用该模型,其收敛性和计算精度能满足一般的工程计算 要求,但模拟旋流和绕流时有缺陷。 b.壁面函数的选择,我们这里选择的是,标准壁面函数法。其应用较多,计算量小, 有较高的精度。适合高雷诺数流动,对低雷诺数流动问题,有压力梯度、高度蒸腾 和大的体积力、低雷诺数和高速三维流动问题不适合。

043住宅房间通风气流模型试验相似理论

住宅房间通风气流模型试验相似理论 中国建筑科学研究院空调所王智超 西安建筑科技大学吴志勇李安桂 摘要根据相似理论的基本原理,导出了住宅房间通风气流模型试验的相似准则以及相似比例尺之间的关系,为搭建试验台打下理论基础。 关键词住宅房间自然通风机械通风模型试验相似理论 1 引言 对于大空间建筑和民用住宅房间室内气流组织的研究,主要有计算流体力学CFD模拟和模型试验两种方法。其中,模型试验方法是较为可靠的模拟方法,它借助相似理论,在等比或缩小比例的模型中通过测量来模拟和预测室内空气参数。通过模型模拟对原型所设想的气流流动状况进行可行性分析和合理性验证,从中发现原设计中的不足和缺陷,从而加以改进完善使得通风空调设计更合理科学。但它耗时多,投资高,有时存在较大的困难。 目前对于地下水电站,地铁等大型公共建筑通风气流已做过很多的模型试验,但对于民用住宅室内通风气流模型模拟国内做的很少。本文通过模型试验的方法对住宅房间进行通风模拟试验,研究室内空气温度和速度的分布流场,以及房间气流换气均匀性和通风效果等情况,从而和实测的结果进行对比。 2 住宅房间简介 测试的住宅房间位于北京市东城区兴化西里小区内,二室一厅,住宅面积约为65m2。其中主卧的几何尺寸长、宽、高为××2.8m,客卧尺寸为××2.8m,客厅尺寸为××2.8m。在两个卧室和客厅的外窗上面都装有一个ALDES自平衡式的进风口,卫生间装有一个排风扇,厨房装有一个抽油烟机。整个房间内的通风是靠自然通风和机械通风(自然进风、机械排风)相结合的方式来进行的。 3 室内外气象参数 北京地区属暖温带大陆性季风气候区,一年四季分明。室外气象参数的计算按《采暖通风与空气调节设计规范》(GBJ 19-87 2001版)计算的。室外气象参数如表1所示: 表1 室外计算气象参数 本实验是在中国建筑科学研究院实验室进行的,为了保证实验的准确性,试验过程中尽量保证试验条件与室外的平均温度,平均风速保持相等,使试验情况更接近真实情况。 4 模型试验相似理论 模型试验的理论基础是相似理论。而相似准则是使模型与原型相似所必须满足的条件,也是模型设计与模型试验的基本依据,以及模型试验结果转变为原型结果的基础。

直接剪切试验报告

实验五 直接剪切试验 实验人: 学号: 一、概述 直接剪切试验就是直接对试样进行剪切的试验,简称直剪试验,是测定土的抗剪强度的一种常用方法,通常采用4个试样,分别在不同的垂直压力p 下,施加水平剪切力,测得试样破坏时的剪应力τ,然后根据库仑定律确定土的抗剪强度参数内摩擦角?和粘聚力c 。 二、仪器设备 1、直剪仪。采用应变控制式直接剪切仪,如图所示,由剪切盒、垂直加压设备、剪切传动装置、测力计以及位移量测系统等组成。加压设备采用杠杆传动。 2、测力计。采用应变圈,量表为百分表。 3、环刀。内径6.18cm ,高2.0cm 。 4、其他。切土刀、钢丝锯、滤纸、毛玻璃板、凡士林等。 三、操作步骤 1、将试样表面削平,用环刀切取试件,测密度,每组试验至少取四个试样,各级垂直荷载的大小根据工程实际和土的软硬程度而定,一般可按100kPa ,200kPa ,300kPa ,400kPa (即1.0 kg/cm 2,2.0 kg/cm 2,3.0 kg/cm 2,4.0 kg/cm 2)施加。 2、检查下盒底下两滑槽内钢珠是否分布均匀,在上下盒接触面上涂抹少许润滑油,对准剪切盒的上下盒,插入固定销钉,在下盒内顺次放洁净透水石一块及湿润滤纸一张。 图7-1 应变控制式直剪仪 1—轮轴;2—底座;3—透水石;4—测微表;5—活塞; 6—上盒;7—土样;8—测微表;9—量力环;10—下盒

3、将盛有试样的环刀平口朝下,刀口朝上,在试样面放湿润滤纸一张及透水石一块,对准剪切盒的上盒,然后将试样通过透水石徐徐压入剪切盒底,移去环刀,并顺次加上传压板及加压框架。 4、在量力环的安装水平测微表,装好后应检查测微表是否装反,表脚是否灵活和水平,然后按顺时针方向徐徐转动手轮,使上盒两端的钢珠恰好与量力环按触(即量力环中测微表指针被触动)。 5、顺次小心地加上传压板、钢珠,加压框架和相应质量的砝码(避免撞击和摇动)。 6、施加垂直压力后应立即拔去固定销(此项工作切勿忘记)。开动秒表,同时以每分钟4~12转的均匀速度转动手轮(学生可用6转/分),转动过程不应中途停顿或时快时慢,使试样在3~5分钟内剪破,手轮每转一圈应测记测微表读数一次,直至量力环中的测微表指针不再前进或有后退,即说明试样已经剪破,如测微表指针一直缓慢前进,说明不出现峰值和终值,则试验应进行至剪切变形达到4mm(手轮转20转)为止。 7、剪切结束后,吸去剪切盒中积水,倒转手轮,尽快移去砝码,加压框架,传压板等,取出试样,测定剪切面附近土的剪后含水率。 8、另装试样,重复以上步骤,测定其它三种垂直荷载(200kPa,300kPa,400kPa)下的抗剪强度。 四、成果整理 1、按式(7-1)计算抗剪强度: τ(7-1) = CR 式中R—量力环中测微表最大读数,或位移4mm时的读数。精确至0.01mm。 C—量力环校正系数,(N/mm2/0.01mm)。 2、按式(7-2)计算剪切位移: L- ?2.0(7-2) = R n 式中0.2 —手轮每转一周,剪切盒位移0.2mm; n—手轮转数。 3、制图 ?(1)以剪应力为纵坐标,剪切位移为横坐标,绘制剪应力τ与剪切位移L 的关系曲线,如试验图7-2所示。取曲线上剪应力的峰值为抗剪强度,无峰值时,取剪切位移4mm所对应的剪应力为抗剪强度。 (2)以抗剪强度为纵坐标,垂直压力为横坐标,绘制抗剪强度与垂直压力关系曲线(图7-3),直线的倾角为土的内摩擦角?,直线在纵坐标上的截距为土

实验一室内气流组织模拟实验 一、实验目的 通过室内气流组织模拟

实验一 室内气流组织模拟实验 一、实验目的 通过室内气流组织模拟实验,掌握常用风口、常见室内送回风口布置对室内气流分布、工作区温度速度均匀性的影响;掌握室内工作区温度和速度的测量方法、气流演示实验方法。 二、实验原理 室内气流组织的优劣直接影响室内热环境的舒适性和空调设计的实现,同时也直接影响空调系统的能耗量。通常室内工作区由余热而形成的负荷只占全室总负荷的一部分。另一部分产生于工作区之上。良好而经济的气流组织形式,应在保证工作区满足空调参数要求的前提下,使空调送风有效地排出工作区的余热,而不使工作区以外的余热带入工作区,从而达到不增加送风量且提高排风温度的效果,直接排除这部分热量,以提高空调系统的经济性。为此引入评价室内气流组织经济性指标——能量利用系数η: o n o p t t t t --= η 式中,t n 、t o 、t p 分别为室内工作区空气平均温度、送风温度及排(回)风温度。 通过实测获得能量利用系数η,以评价室内气流组织的经济性。 三、实验方法 1.气流组织测量方法 (1).烟雾法 将棉球蘸上发烟剂(如四氯化钦、四氯化锡等)放在送风口处,烟雾随气流在室内流动。仔细观察烟雾的流动方向和范围,在记录图上描绘出射流边界线、回漩涡流区和回流区的轮廓,或者采用摄影法直接记录气流形态。由于从风口射出的烟雾不大而且扩散较快,不易看清楚流动情况,可将蘸上发烟剂的棉花球绑在测杆上,放到需要测定的部位,以观察气流流型。这种方法比较快,但准确性差,只在粗测时采用。 (2).逐点描绘法 将很细的合成纤维丝线或点燃的香绑在测杆上,放在测定断面各测点位置上,观察丝线或烟的流动方向,并在记录图上逐点描绘出气流流型,或者采用摄影法直接记录气流形态。这种测试方法比较接近于实际情况。 应注意上述用于记录气流形态的摄影法对拍摄焦距、烟雾与背景的对比度等要求较高。 2.能量利用系数测量方法 分别在室内工作区、送回风口处布置温度测点,温度测量仪器采用热电偶测量,工作区温度应采用多点布置取其平均值,计算求得能量利用系数。 3.风口、气流组织的选择 目前环境室内可供测量的风口有散流器、双层百叶两种风口,可供观察的气流组织形式有上送上回、上送下回,其中散流器送风口有二个。 四、实验步骤 1. 选择一种风口形式及其气流组织方式,调整送风温度及其送风量至设定值,待稳定后进行实验;

油层保护研究成果

油层保护技术的研究成果 一、作业过程中的油层保护措施 入井液对油层的伤害已为人们所共知。由于人力、物力等方面的限制,入井液的改进工作主要集中在渤南油田。渤南油田属高温、低渗透油藏,其油层保护工作更为重要。 (一)、入井液损害机理研究 通过室内实验,渤南油田入井液对油层的损害主要表现为固体颗粒损害、结垢和毛管阻力的损害。其中,最主要的损害因素是固体颗粒和结垢堵塞。固体颗粒损害是入井液中的悬浮固体如粘土、细菌、腐蚀产物的微粒堵塞地层孔隙,可称为表皮堵塞。污水粒径中值10.02um,卤水粒径中值27.29um。这些微粒堵塞地层造成渗透率下降。其渗透率伤害程度50%以上。试验结果见表1。 表1 污水、卤水岩心伤害试验结果 结垢是地层温度高引起的。渤南油田温度高达120度,破坏了入井液中各项离子的化学平衡,生成碳酸钙、镁的沉淀,从而堵塞了地层孔隙,可称为深部堵塞。室内实验表明,80℃条件下,卤水与地层水:1:1结垢总量为1656.9mg/L,污水与地层水:1:1垢总量为189.0mg/L。120℃(地层温度)产生了更为严重的结垢现象。 (二)、油层保护措施 根据上述损害机理,油层保护措施从两个方面实施:采用屏蔽暂堵技术和对入井液进行改进。所谓屏蔽暂堵技术,就是在作业时,先挤入一种材料。这种材料附在地层表面或轻微进入地层,在地层周围形成一个渗透率为零的薄层。这样,就有效地阻止了不合格入井液的污染。正常生产时,化学剂排出,地层恢复渗透率。入井液的改进,则是开发一种适合渤南油田的添加剂。该剂在高温下起作用,具有防垢、抗乳化、降低表面张力等多种功能。 (1).高温屏蔽暂堵技术的研究暂堵剂的耐温实验共进行了8种材料的实验,

火烧油层

火烧油层 定义:火烧油层是一种用电的、化学的等方法使油层温度达到原油燃点,并向油层注入空气或氧气使油层原油持续燃烧的采油方法。 火烧油藏有向前燃烧、反向燃烧和湿式燃烧三种基本方式。向前燃烧是常用的方法,该法驱动的流体必须通过油藏的低温区流向生产井,对特稠原油,可能形成流体阻塞。反向燃烧可以克服阻塞问题,但其耗风量大,约为向前燃烧法的2倍。湿式燃烧是新发展的一种方法,使得其耗风量约为向前燃烧法的三分之一。 优点:(1)是一种有效的提高采收率技术。用这种方法开采高粘度稠油或沥青砂。可以把重质原油开采出来,并通过燃烧部分地裂解重质油分,采出轻质油分。这种方法的采收率很高,可达80%以上。因此火烧油层的方法更适用于深井。 (2)是把随石油采出来的天然气等可燃气体,在还未达到爆炸浓度之前烧掉。 缺点:实施工艺难度大,不易控制地下燃烧,同时高压注入大量空气的成本又十分昂贵。其原理是通过燃烧少量的地层原油产生热量和压力,从而降低地层原油的黏度。 基本特点 火烧油层方法分为三类:正向燃烧、反向燃烧和联合热驱。正向燃烧注入的是空气或氧气,在空气注入井的附近将油层点燃,燃烧前缘由注入井向外传播,连续注入的空气驱动着燃烧带穿过油层达到附近的生产井,其优点是作为燃烧的是原油中无价值的焦油(焦炭)。缺点是采出原油必须经过低温地区,可能形成原油堵塞,高黏油尤其明显,且热能利用率低。反向燃烧法克服了这两个缺点,在开始时与正向燃烧相同,但从点火井向外燃烧一段距离之后,即转为向邻近井注空气,驱动着原油向原来的点火井推进,而燃烧前缘却从点火井向邻近井移动,与原油运动的方向恰好相反。反向燃烧主要用于开采特稠油,但此法需要大量的氧气,而且燃烧的是相对较轻的原油馏分,而不是正向燃烧中的重质组分。联合热驱将火驱与水驱结合,水的热容和汽化潜热较高,能有效利用燃烧前缘后面储存的大量热量,消耗较少的燃料驱动高粘原油,此外,水的来源广泛、成本低。但火烧油层的油井事故较多 (这与高温和腐蚀性有关),有一定的风险,技术也较复杂。 火烧油层的采收率常可达到50%以上,并且可以在比蒸汽驱采油更复杂,更苛刻的地层条件下应用,因而是对稠油和残余油开采的一种具有诱惑力的热采技术。与注蒸汽相比火烧油层有着一些本质上的优势:①它普遍使用的注入剂——空气到处都有,而注蒸汽则需要大量的水,水资源在

室内气流组织数值模拟与舒适度分析

室内气流组织数值模拟与舒适度分析 摘要:分别对采用百叶侧送侧回、喷口侧送侧回、散流器顶送下回、分层空调、置换通风方式的室内空调室内气流的速度场和温度场进行了数值模拟,并对其结 果进行了实验验证。根据ADPI指标对这几种送回风方式进行了热舒适性评价。 结果表明,分层空调和置换通风是室内中较好的气流组织方式。 关键词:室内;气流组织;速度场;温度场;数值模拟;热舒适 引言 传统空调系统的气流组织是以送风射流为基础的,通过反复迭代检查温度和 速度。最后,找到合理的回风方案和参数。空调房间内的供气射流大多是多个非 等温湍流射流,一般设计方法是基于单股等温紊流射流的规律,射流约束修正系数、射流重合度和非等温射流的修正系数。介绍。这种方法忽略了很多其他因素,如排风口的尺寸和位置、热源的性质和位置等,因此必然有一定的误差,在某些 情况下甚至有很大的误差。若简单地将这种方法用于空间空调系统的气流组织设计,是不合适的。 空间空调系统的气流设计没有成熟的理论和实验结论。主要研究方法是将气 流的数值分析与模型相结合。由于气流的数值分析涉及到各种可能的内部扰动、 边界条件和初始条件,所以可以完全反映房间内的气流分布,从而确定气流的最 佳方案。 1室内空气流动的有限元数值模拟 机械通风房间内的空气流动多属于非稳态湍流流动,直接模拟尚不现实。在 解决实际问题时,需要对物理模型进行一定的假设和简化处理。笔者作了以下假设: 1)室内空气为低速不可压缩气体,且符合 Boussinesq 假设; 2)室内空气流动为准稳态湍流流动; 3)忽略能量方程中粘性效应引起的能量耗散。 2各种送风方式下大空间室内气流组织数值模拟 2.1研宄对象 本文的研宄对象为有内热源、尺寸为12 mX &4 mX5.0 m(长X宽X高)的长 方体建筑模型(如图1所示),风口设在外墙侧。人员和设备由于不断放出热量,对室内气流分布特性有重要影响,将其视作内热源处理。内热源模型为0.4 mX 1.2 mX 1.3 m(长X宽X高)的长方体。在内热源模型内部不求解控制方程,把它的内表面视作速度为0的壁面。考虑模型的对称性,取一个空调送风单元(3 mX 4.2 mX 5.0 m)进行模拟计算分析。本文主要讨论0.1 m和1.1m高度的情况,这 两个平面之间的区域可以代表工作区。 2.2边界条件的处理 室内温度设定为(26±2)°C,内墙的温度设定为26°C,外墙为26.5屋顶为26°C。人体和设备的发热功率之和为600 W。本文应用有限元的非统一网格,在 人体和设备周围、外墙附近及风口附近对网格进行加密,在壁面附近采用壁面函 数法。非线性方程组由FIDAP(流体力学有限元软件包)的求解器通过迭代求解。 2.3常用送回风方式下室内气流组织模拟及气流分布特性评价

低渗透油藏的油层保护技术

低渗透油藏的油层保护技术 摘要:油田在勘探开发的各个环节均可造成低渗透层油层损害。究其原因,均属油层本身的潜在损害因素,它包括储层的敏感性矿物,储渗空间,岩石表面性质及储层的液体性质等。在外在条件变化时,包括钻开油气层、射孔试油、酸化、压裂等,储层不能适应变化情况,就会导致油层渗透率降低,造成油层损害。对低渗透油层特别强调油层保护并不是因为这类油层比高渗透油层更易受污染,而是因为低渗透油层自然渗透能力差,任何轻微的污染伤害都会导致产能的大幅度降低,因此,低渗透油层的油层保护尤为重要。 一、射孔过程中的油层保护技术 射孔过程中对油层的损坏主要有两方面的原因:一是射孔弹的碎屑物堵塞孔眼;二是射孔液的固相和滤液伤害油层。在射孔打开油层的短时间内,如果井内液柱压力过大或射孔液性能不符合要求,就可能通过射孔孔眼进入油层的较深部位,其对油层的损害比钻井还要严重。针对射孔过程中可能损害油层的原因,主要采用以下几方面的保护油层措施: 1、选用新型无杵堵、穿透能力又强的聚能射孔弹,如89弹、102弹、127弹及1米弹。 2、改进射孔工艺技术,采用油管传输射孔和负压射孔工艺。

3、使用优质射孔液,射孔液要与地层水相配伍,不堵塞孔眼,不与地层水发生反应而损害地层。 4、采用负压射孔技术 二、压裂过程中的油层保护技术 虽然压裂所造成的填砂裂缝具有很高的导流能力,但在压裂过程中由于压裂液性能和压裂工艺的不当又可能会造成对油层的损害,这种损坏不仅会大大降低填砂裂缝的导流能力,而且还会损害储层本身的渗流能力,在压裂中对填砂裂缝和油层的损害主要有以下几个方面: 1、压裂液残渣损害填砂裂缝导流能力:例如普通田箐冻胶压裂液残渣可达20%—30%,可使填砂裂缝导流能力降低60%—90%。 2、压裂液滤液损害油层导流能力:在高压高温影响下,压裂液的滤失量可以达到相当大的数量。据有关实验资料表明,当田菁压裂液水化液挤入量达到孔隙体积2—3倍时,岩心渗透率伤害达75%左右。渗透率越低,损害越严重。 3、返排液不及时,不彻底时损害油层:压裂液的滤液在地下长时间停留,不仅会加重粘土膨胀和油水乳化程度,而且还会产生物理和化学沉淀,加重对油层的损害。压裂后不及时排液对岩心渗透率的伤害比及时排液高3—4倍以上。 针对上述原因,在压裂过程中主要采取以下防护技术措施:

某综合体项目办公大堂空调气流组织的CFD模拟分析

某综合体项目办公大堂空调气流组织的CFD模拟分析 发表时间:2018-05-28T15:01:08.897Z 来源:《建筑学研究前沿》2017年第35期作者:张晓洁[导读] 高大空间建筑有体积大、空调负荷大、能源消耗量大、对空调质量要求高等特点,其气流组织方式和空调节能问题尤显重要。 摘要:高大空间建筑有体积大、空调负荷大、能源消耗量大、对空调质量要求高等特点,其气流组织方式和空调节能问题尤显重要。有效地通风和合理的气流组织对于改善室内空气品质,保证实现健康建筑、健康舒适性空调有着重要的意义。做好大空间内气流组织的CFD模拟分析,可以从人员舒适性角度考虑风口布置的合理性,满足大空间档次提升需求。同时可在室内精装设计阶段作为风口布置参考。关键词:高大空间;气流组织 CFD模拟分析;速度场;温度场 引言:空调的使用越来越普及,人们对居住和工作环境的要求也越来越高,对通风空调技术也提出了更高的要求。在空调房间内,气流组织是通风和空调系统的重要组成部分,直接影响室内空调效果,是关系着房间工作区的温度、湿度基数、精度及区域温差、工作区的气流速度及清洁程度和人们舒适感的重要因素。随着计算机技术的发展,越来越多的项目在设计阶段利用CFD技术对空调房间气流组织进行优化和研究,从而了解由空调通风所形成的室内空气速度场、温度场、湿度场以及有害物浓度场等的分布情况,以制定出最佳的气流组织方案。本文以南宁某综合体项目办公大堂为例,对设计的空调送回风系统进行CFD模拟分析。 一、CFD技术简介 室内气流组织,是指一定的送风口形式和送风参数所带来的室内气流分布。在实际工程中,常用的气流组织形式有:侧送侧回、上送下回、上送上回、下送上回等。影响空调房间气流组织的主要因素是入口风速、进风口的位置、进回风口的相对位置等。由于影响因素较多,加上实际工程中具体条件的多样性,因此难于用简单的理论或经验表达式来综合上述诸多因素的影响。目前,在空间气流分布计算方面较多采用CFD技术进行模拟分析。 CFD是计算流体力学(Computational Fluid Dynamics)的简称,是流体力学和计算机科学相互融合的一门新兴交叉学科,它从计算方法出发,利用计算机快速的计算能力得到流体控制方程的近似解。CFD兴起于20世纪60年代,随着90年代后计算机的迅猛发展,CFD得到了飞速发展,逐渐与实验流体力学一起成为产品开发中的重要手段。CFD 技术具有成本低和能模拟较复杂或较理想的过程等优点,可以拓宽实验研究的范围,减少成本昂贵的实验工作量。在给定的参数下用计算机对现象进行一次数值模拟相当于进行一次数值实验。常用的CFD软件有:CFX、Fluent、Phoenics、Star-CD、comsol、star-ccm+、flow-3D、AUTODESK CFD。 二、项目概况 本综合体项目位于南宁市凤岭片区东盟商务区核心区内,北侧为民族大道,西侧为青秀路,东南侧临中新路。该项目为一栋超高层办公楼,总建筑面积约为28.73万平方米,地面以上九十层,地下三层,建筑高度为445米,集商业、办公、酒店为一体的超高层综合楼。 办公大堂位于项目首层,为三层通高,高度为16.75m,其中电梯厅区域为局部两层通高,高度为11.25m,总建筑面积为1473.24㎡。大堂空调采用全空气系统,选用两台风量为45789m3/h,冷量为136Kw的组合式空调机组,设置在二层空调机房内。空调送风口为均匀布置,回风口集中设置在电梯厅上空,大堂空调送回风口平面布置如下图所示:

气流组织实验指导书参考资料

室内气流组织测定 实验指导书 2008年3月 实验:室内气流组织测定 一、实验目的 1.通过对空调房间的温度、湿度、风速的测定,检查空气处理设备的实际工作能力及空调房间的温度场、速度场的分布情况,从而进一步理解空调房间的舒适度的概念。 2.通过对空调房间的各项指标的测试,了解空调房间的送风、回风口的配置。 3.学会测量仪器工具的使用方法。 二、实验仪器 红液温度计(0~150℃、±℃)、湿度计、QDF热球风速仪,单元式空气调节机组、玻璃钢冷却塔。 三、实验内容 1.空气状态参数测定 当空调系统运行基本稳定后,在室内工作区里选定一些具有代表性的点(一般不少于5个),所选的测定点应尽可能位于气流比较稳定而且空气混合比较均匀的断面上。测定点高度应离地面 1.5~2m,离外墙不少于0.5~1m,且须远离冷热源表面和不受阳光直射。再选取送风口和回风口的中心作为固定测点。选定测定点后,将温度计安

装在测定点位置,经3~5分钟后,待温度计读数稳定后才能读数记录。 测量湿度时,湿度计的安装方法和温度计相同,读数步骤也相同。 测定数据每隔0.5~1小时进行一次。 2.风量的测定 在稳定的空调房间内,我们可以通过对风口风速测定得到风量,进出风口的风速可直接用风速仪器测量,测量进出口风速时,风速仪要尽可能的靠近进出风口的中心位置,以减少误差。每隔0.5~1小时测量一次。 3.室内气流组织的测定 空气气流速度是指在工作区内的气流速度,一般要求普通空调房间工作区的风速不超过0.5m/s,这项测定可以选定用于测定室内空气状态的测定点位置同时进行。 四、数据处理 1.湿度 室内工作区的湿度可简化计算为各个测定点的湿度的算术平均值。 2.风速 室内工作区的风速可简化计算为各个测定点的风速的算术平均值。 3.温度 室内温度的计算: 式中,

大空间建筑室内气流组织数值模拟与舒适性分析

大空间建筑室内气流组织数值模拟与舒适性分析 发表时间:2019-04-30T10:40:18.810Z 来源:《基层建设》2019年第4期作者:王雷谢恩 [导读] 摘要:在我国快速发展的过程中,我国的国民经济得到了快速的发展,分别对采用百叶侧送侧回、喷口侧送侧回、散流器顶送下回、分层空调、置换通风方式的大空间建筑空调室内气流的速度场和温度场进行了数值模拟,并对其结果进行了实验验证。 中建三局第一建设工程有限责任公司湖北武汉 430040 摘要:在我国快速发展的过程中,我国的国民经济得到了快速的发展,分别对采用百叶侧送侧回、喷口侧送侧回、散流器顶送下回、分层空调、置换通风方式的大空间建筑空调室内气流的速度场和温度场进行了数值模拟,并对其结果进行了实验验证。根据ADPI指标对这几种送回风方式进行了热舒适性评价。结果表明,分层空调和置换通风是大空间建筑中较好的气流组织方式。 关键词:大空间建筑;气流组织;速度场;温度场;数值模拟 引言 常规空调系统气流组织的设计是以送风射流为基础,通过反复迭代对温度和速度进行校核,最后找到合理的送回风方案和参数。空调房间的送风射流大多属于多股非等温受限湍流射流,而一般的设计方法是在单股等温湍流送风射流规律的基础上,引入射流受限、射流重合和非等温射流修正系数,这种方法忽略了很多其他因素,如排风口的尺寸和位置、热源的性质和位置等,因此必然有一定的误差,在某些情况下甚至有很大的误差。若简单地将这种方法用于高大空间空调系统的气流组织设计,是不合适的。对于高大空间空调系统的气流组织设计,目前尚无成熟的理论和实验结论,主要研究手段是将气流数值分析和模型相结合。由于气流数值分析涉及室内各种可能的内扰、边界条件和初始条件,因此能全面地反映室内的气流分布情况,从而便于确定最优的气流组织方案。 1大空间气流组织的研究意义 对于现代的工艺空调车间,不但要满足工艺方面的要求,而且还要营造良好的室内人工环境。在生产过程中必须保证生产工艺所要求的温度、风速、湿度,为生产提供条件,同时也要求提供合适的新风量,保证一定的洁净度和噪声标准,为工作人员提供良好的工作环境。在各类工艺空调建筑内,空气调节是实现这些人工环境的最佳手段。在大空间空调中,经过处理的空气由送风口进入,与室内空气进行热湿交换,经过回风口排出。空气的进入与排出,必然引起室内空气的流动,而不同的空气流动状况有不同的空调效果,合理组织室内空气的流动,使室内空气的温度、湿度、流动速度等能更好地满足工艺要求,符合人们的舒适感觉。由此可见,大空间气流组织直接影响室内的空调效果,是关系到工作区的温湿度基数、精度及区域温差、工作区的气流速度及洁净度和人们舒适感觉的重要因素,是空气调节的重要环节,对其进行研究己口渐成为一项重要的课题。 2大空间建筑室内气流组织有限元法数值模拟 2.1物理模型假设 机械通风房间内的空气流动多属于非稳态湍流流动,直接模拟尚不现实。在解决实际问题时,需要对物理模型进行一定的假设和简化处理。笔者作了以下假设:1)室内空气为低速不可压缩气体,且符合Boussinesq假设;2)室内空气流动为准稳态湍流流动;3)忽略能量方程中由于黏性作用引起的能量耗散。4)控制方程求解与罚函数的采用应用K-ε两方程模型模拟湍流,加上连续性方程、动量方程、能量方程组成控制方程组。方程组中空气密度ρ=1.1941kg/m3,黏度μ=1.81×10-5Pas,6个经验系数的取值如下:Cμ=0.09,C1=1.44,C2=1.92,σT=0.9~ 1.0,σK=1.0,σε=1.3。对流场控制方程用有限元法求解。为防止病态方程组出现,本文采用罚函数法。罚函数模型是压力速度模型的变形形式,把连续方程作为罚函数约束导入动量方程从而消去压力项,得到只有速度项的动量方程,即令p=-λp(v)(1)式中λp是罚参数。在求解其他变量之前,将压力从全部未知量中消去,这将减少求解未知量的数目。压力在其他变量求出后重新求得。 2.2各种送风方式下大空间室内气流组织数值模拟 2.2.1下送风方式(置换通风)室内气流组织模拟 置换通风气流组织的影响因素很多,例如热源的大小和位置、送风温度以及障碍物的高度和位置等。由于长方体内热源模型的假设不能很好反映置换通风的流动特点,所以在此将内热源简化为一个处于房间底部正中间的面积为0.4m×0.4m的面热源,热源温度为40℃。为了模拟热源气流的上升,假设送风速度为0.3m/s,考虑冷气流的特点,假定地面温度为22℃,其余边界条件与前文相同。置换通风的送风温差一般为2~4℃,本文取4℃,则送风温度为22℃,送风速度为0.25m/s,送风口尺寸为1.0m×0.5m。尺寸为1.0m×0.5m的回风口布置在屋顶靠近置换装置的一侧,回风速度为0.35m/s。模拟显示z=0.1m断面上平均温度为22.66℃,平均速度为0.025m/s。 2.2.2边界条件的处理 室内温度设定为(26±2)℃,内墙的温度设定为26℃,外墙为26.5℃,屋顶为26℃。人体和设备的发热功率之和为600W。本文应用有限元的非统一网格,在人体和设备周围、外墙附近及风口附近对网格进行加密,在壁面附近采用壁面函数法。非线性方程组由FIDAP(流体力学有限元软件包)的求解器通过迭代求解。 2.3五种送回风方式室内气流分布特性评价 对舒适性空调来说,评价标准不外乎舒适性和经济性两个方面,前者是对气流在工作区形成的温度场、速度场能否满足人员的卫生和舒适要求的评价,后者则考虑为消除工作区的余热,送风的耗冷量是否最低。对气流组织性能有多种评价指标,如温度不均匀系数kt,速度不均匀系数kv,符合给定条件测点比例数F,以及能量利用系数η等。 3送回风参数对地面附近温度场和速度场的影响 前面我们对子午胎车间在冬夏两季最不利情况下进行了气流组织模拟预测,并对其设计效果进行了评价,结果表明原来的设计将使车间内冬季温度偏高,夏季温度偏低,不利于节能。这一章中我们将对夏季最不利工况进行研究,模拟预测子午胎车间在不同送风参数和回风口高度下的温度场和速度场,对比分析找出最佳送风参数和回风口高度,力图得出同类大空间车间的设计规律。 4结论 从流场情况看,上送风的几种形式中,百叶侧送侧回、喷口侧送侧回、散流器顶送下回、分层空调有相似的气流流动规律,但分层空调较为节能;喷口送风工作区平均温度、速度均较低,垂直温差、不均匀系数均较小,能量利用系数较大;散流器顶送下回方式气流在整个空间的分布较均匀,可较好地减少内热源对周围环境的热影响(z=1.1m平面上最高温度值比其他方式小),但其平均速度较大,在风口下部的人有吹风感;百叶

直剪试验

八、直接剪切试验 基本原理直接剪切试验是测定土的抗剪强度的一种常用方法。试验的原理是根据库仑定律,土的内摩擦力与剪切面上的法向压力成正比。将土制备成几个土样,分别在不同的法向压力下,沿固定的剪切面直接施加水平剪力进行剪切, ,然后,根据剪切定律确定土的抗剪强得其剪坏时的剪应力,即为抗剪强度τ f 度指标Φ和C。 按土样在荷重作用下压缩及受剪时的排水情况不同,试验方法可分三种: (1) 快剪法(或称不排水剪):即在试样上施加垂直压力后,立即加水平剪切力。在整个试验中,不允许试样的原始含水率有所改变(试样两端敷以隔水纸),即在试验过程中孔隙水压力保持不变(3-5min内剪坏)。 (2) 慢剪法(或称排水剪):即在加垂直荷重后,使其充分排水(试样两端敷以滤纸),在土样达到完全固结时,再加水平剪力;每加一次水平剪力后,均需经过一段时间,待土样因剪切引起的孔隙水压力完全消失后,再继续加下一次水平剪力。 (3) 固结快剪法:在垂直压力下土样完全排水固结稳定后,以很快速度施加水平剪力。在剪切过程中不允许排水(规定在3-5min内剪坏)。 8.1 慢剪试验 1 本试验方法适用于细粒土。 2 本试验所用的主要仪器设备,应符合下列规定: (1) 主要结构(见附图8.1) 1、推动座部分 2、剪切盒部分 3、测力环部分 4、杠杆加压部分 5、加荷、卸荷部分 6、电动等应变直剪仪另加变速箱部分 (2) 环刀:内径61.8mm,高度20mm。 (3) 位移量测设备:量程为10mm,分度值为0.01mm的百分表;或准确度为全量程0.2%的传感器。 3 慢剪试验,应按下列步骤进行: (1) 原状土试样制备,应按有关标准进行,扰动土试样制备按有关标准进行,每组试样不得少于4个;当试样需要饱和时,应按有关标准的步骤进行。

空调房间室内气流组织模拟fluent

空调房间室内气流组织模拟(fluent)

————————————————————————————————作者:————————————————————————————————日期:

模型[1] m s,送风温度为?如图,房间左下角有一个空调,送风和回风方向如图所示。送风速度为1/ 25℃,壁面温度为30℃。 1.建立模型及网格划分 ①建立模型及网格划分的步骤在此处暂时省略,以后后机会再补上,这里直接读入网格文件hvac-room.msh。 ②读入网格后应检查网格及网格尺寸,通过Mesh下的Check和Scale进行实现,这里不做详细描述。 2.求解模型的设定 ①启动FLUENT。启动设置如图,这里着重说说DoublePrecision(双精度)复选框,对于大多数情况,单精度求解器已能很好的满足精度要求,且计算量小,这里我们选择单精度。然而对于以下一些特定的问题,使用双精度求解器可能更有利。 [1] 李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战:FLUENT GAMBIT ICEM CFD Tecplot[M]. 北京,人民邮电出版社,2011:312-317

a.几何特征包含某些极端的尺度(如非常长且窄的管道),单精度求解器可能不能 足够精确地表达各尺度方向的节点信息。 b.如果几何模型包含多个通过小直径管道相互连接的体,而某一个区域的压力特 别大(因为用户只能设定一个总体的参考压力位置),此时,双精度求解器可能更能体现压差带来的流动。 c.对于某些高导热系数比或高宽纵比的网格,使用单精度求解器可能会遇到收敛 性不佳或精确度不足不足的问题,此时,使用双精度求解器可能会有所帮助。 ②求解器设置。这里保持默认的求解参数,即基于压力的求解器定常求解。如图: 下面说一说Pressure-based和Density-based的区别:

室内试验

3. 室内试验 3.1 物理性质指标试验 3.1.1 含水率试验 3.1.1.1 设备 a .恒温烘箱:一般要求在50℃~200℃范围内能在任一点保持一定恒温范围。最常用的恒温范围在105℃~110℃,控制温度的精度高于±2℃; b .天平:200g ,感量0.01g 。常用天平分机械天平和电子天平两类; c .附属设备:铝盒(称量盒)、干燥器、铅丝篮、温度计等。 3.1.1.2 原理 土样含水率是指土样在105℃至110℃的温度下烘干至恒重时所失去的水分质量与烘干土质量的比值,用百分数表示。即: %100?-= s s m m m ω (3-1) 式中:ω——土样含水率(%); m ——湿土质量,单位:克(g ); s m ——烘干土质量,单位:克(g )。 含水率试验的室内试验方法以烘干法为标准方法。在野外,如条件不满足可依土的性质和工作条件选用如下试验方法: 1. 酒精燃烧法; 2. 比重法(适用于砂性土); 3. 实容积法(适用于粘性土); 4. 炒干法(适用于砾质土)。 含水率试验的上述方法在水中还会发生水解适用于无机土(有机质含量低于5%),对于有机质土和有机土,在温度较高时会发生分解,使测得的含水率偏高,从而造成试验误差。 有机质含量超过5%的有机质土和有机土,含石膏和硫酸盐矿物的土,因这些矿物晶体中含结晶水,因此需采用65℃~70℃温度将土烘干至恒重,测量其含水率。 上述各种试验方法都是利用水在加温后逐渐变成水蒸气的性质。加热一定时间后,在温度不高于110℃时,土中自由水全部变成气体挥发,之后土重不再发生变化,即处于恒重状态。这时挥发掉的水重s m m m -=ω。土恒重即认为是干土质量。对粘性土,s m 实际上是土粒质量与强结合水质量之和,因强结合水需要温度高于120℃才能析出,故将其作为固体颗粒的一部分。 3.1.1.3方法 烘干法含水率试验操作主要步骤包括: 1.取代表性试样15~30g ,对于砾类土,取100g 以上试样。放入铝盒内,迅速盖好盒盖,称量1m ,准确至0.01g ,称量结果减去铝盒质量0m ,得到湿土质量01m m m -=; 2.揭开铝盒盖,将试样和铝盒一起放入恒温烘箱,在温度105℃~110℃下烘至衡重。在设定温度下烘至恒重所需时间由土类和烘箱构造决定。一般砂土约需1~2小时,粉土和粉‘质粘土约6~8小时,粘土约10小时,有机质土用65℃~70℃烘干需48小时以上; 3.将烘干后的试样和铝盒取出,盖好铝盒盖后,放入干燥器内冷却至室温后,称铝盒

气流组织计算

气流组织的校核 空气调节区的气流组织(又称为空气分布),是指合理地布置送风口和回风口,使得经 过净化、热湿处理后的空气,由送风口送入空调区后,在与空调区内空气混合、置换并进行热湿交换的过程中,均匀地消除空调区内的余热和余湿,从而使空调区(通常指离地面高度为2m 以下的空间)内形成比较均匀而稳定的温湿度、气流速度和洁净度,以满足生产工艺和人体舒适度的要求。同时,还要由回风口抽走空调区内空气,将大部分回风返回到空气处理机组(AHU )、少部分排至室外。 影响空调区内空气分布的因素有:送风口的形式和位置、送风射流的参数(例如,送风 风量、出口风速、送风温度)、回风口的位置、房间的几何形状以及热源在室内的位置等,其中送风口的位置和形式、送风射流的参数是主要的影响因素。 5.1 双层百叶风口的气流组织校核: 标间、套房、咖啡厅以及洽谈室内风机盘管加新风系统选取上送侧回的双层百叶风口送 风。选取三层十二号老人活动室为 例,进行气流组织的校核计算。该房间其空调区域室温要求为26℃,房间长为A=5m ,宽为B=4.2m ,高为H=4.0m ,室内全热冷负荷Q=3229W 。 ①:根据空调区域的夏季冷负荷、热湿比和送风温差,绘制空气处理的h-d 图,计算夏 季空调的总送风量Ls (m 3/h )和换气次数n (1/h ): ) (2.16.3hS hN Q LS -= ----------------- (5-1) H B A L n s **= ---------------- (5-2) 式中: Q ——空调区的全热冷负荷,W ; h N 、h S ——室内空气和送风状态空气的比焓值,kJ/kg ; A ——沿射流方向的房间长度,m ; B ——房间宽度,m ; H ——房间高度,m 。 通过计算可得: Ls =1038 m 3/h n=13 1/h ②:根据总送风量和房间的建筑尺寸,确定百叶风口上网型号、个数,并进行布置。送 风口最好贴顶布置,以获得贴附射流。送冷风时,可采取水平送出;送热风时,可调节风口外层叶片的角度,向下送出。 ③:按照下式计算射流到达空调区域时的最大速度V x (m/s ),校核其是否满足要求: x Fs c b s k k mv Vx = ---------------- (5-3) 式中: Fs ——送风口的计算面积,㎡;

浅谈室内土工击实试验与现场回填土检测

浅谈室内土工击实试验与现场回填土检测 本文作者:樊晓冬 内容提要:土方开挖和回填是建筑工程项目中的十分主要工序,因此此中的填土土料的质量在此工程项目中就显的尤为十分主要。文章经过介绍室内土工击实实验和现场回填土检测,着重强调了填土实验和检测在建筑工程中的十分主要性。 本文关键词:室内土工击实实验回填土压实度 土方开挖和回填是建筑工程项目的最为基本工序,填土土料含水率的多少,直接影响到夯实(碾压)质量,在夯实(碾压)前应先试验,以得到符合密实度要求条件允许下的最优含水率和最少夯实(或碾压)遍数。含水率过小,夯压(碾压)不实;含水率过大,则易成橡皮土。 1、室内土工击实试验对试样的要求 GB/T50123-1999对室内击实试验有严格的制约条件允许,在整个工程实际中却常常被忽视。当试样中粒径小于5mm时,采纳应用轻型击实仪击实。 当试样中粒径大于5mm土的质量小于或等于试样总质量的30%时,采纳应用轻型击实仪击实,但应对结局进行校正: 最优含水率=Wopt(1-p5)+p5wab 当试样中粒径大于5mm土的质量大于试样总质量的30%,且试样最大粒径不大于20mm 时,采纳应用重型击实仪,分5层击实。 当试样中粒径大于5mm土的质量大于试样总质量的30%,且试样最大粒径不大于40mm 时,采纳应用重型击实仪,分3层击实。 2、相比特殊土样的处理 当室内试验结局不可以正确评价现场土料的最大干密度时,应在现场对土料作不一样击实功下的压实试验(依照土料性质取不一样含水率),采纳应用灌水法与灌砂法测定其密度,并按其最大干密度作为控制最大干密度。 有自由排水性能的、含细粒料少的砂性土,一般用击实试验无法得到明确的含水率—干密度关系曲线,且击实试验得出的最大干密度小于振动法测出的最大干密度。此刻,可用振动法测定砂土的最大干密度。 依照标准,粘性土与排水不良砂土(指粉砂、极细砂、含大量粉砂的粉土)在一定的粒径范围内可作击实试验。

相关文档
相关文档 最新文档