文档库 最新最全的文档下载
当前位置:文档库 › 聚合物粘度剪切损失与恢复的研究

聚合物粘度剪切损失与恢复的研究

聚合物粘度剪切损失与恢复的研究
聚合物粘度剪切损失与恢复的研究

剪切速率

剪切速率 基本概述 流体的流动速相对圆流道半径的变化速率—剪切速率(shear rate)公式:剪切速率=流速差/所取两页面的高度差 塑料熔体注塑时流道的剪切速率一般不低于1000ˉS 浇口的剪切速率一般在100000ˉS—1000000ˉS 具体介绍 粘度为液体分子内摩擦的量度,也是物体粘流性质的一项具体反映。粘度的定义为一对平行板,面积为A,相距dr,板间充以某液体。今对上板施加一推力F,使其产生一速度变化du。由于液体的粘性将此力层层传递,各层液体也相应运动,形成一速度梯度du/dr,称剪切速率,以r′表示。F/A称为剪切应力,以τ表示。剪切速率与剪切应力间具有如下关系:(F /A)=η(du/dr),此比例系数η即被定义为液体的剪切粘度(另有拉伸粘度,剪切粘度平时使用较多,一般不加区别简称粘度时多指剪切粘度),故η=(F/A)/(du/dr)=τ/r′。 粘度单位常用“泊”,以P表示。部分粘度单位换算如下: 1泊(P)=0.1牛顿秒/米2(Ns/m2)=3.6×102千克/米时(kg/mh)、1千克力秒/米2(kgfs/m2)=1Pa.s=98.07泊(P)。 PVC与大部分聚合物一样,影响其粘度的因素有: 1,温度T,PVC粘度随温度升高呈指数下降。 当剪切速率r′=100/s时,温度T=150℃, 软质PVC的粘度η=6200 Pa.s=608047泊(P)。 硬质PVC的粘度η=17000 Pa.s=1677900泊(P)。 温度T=190℃, 软质PVC的粘度η=310 Pa.s=30597泊(P)。 硬质PVC的粘度η=600 Pa.s=59220泊(P)。 2,剪切速率r′,剪切速率r′增加,PVC粘度下降。 温度T=150℃时,剪切速率r′=100/s, 软质PVC的粘度η=6200 Pa.s=608047泊(P)。 硬质PVC的粘度η=17000 Pa.s=1677900泊(P)。 剪切速率r′=1000/s, 软质PVC的粘度η=900 Pa.s=88263泊(P)。 硬质PVC的粘度η=2000 Pa.s=197400泊(P)。 3,压力,在同一温度下,增压会增加PVC的粘度。 剪切应力为τ,剪切速率为Y,则粘度η=τ/Y,称为动力粘度,单位为Pa.s(泊),常用单位为mPa.s (如一般原油测试的粘度)。 一般现在流变仪测试的粘度结果都是1/s;而一些以前的粘度计测试的结果却是rpm,它换算成1/s估计有些困难,因为它的转子属于相对测试系统,转子尺寸和测量杯的尺寸的影响,无法准确得到其剪切速率。

粘度测试注意事项及乌氏粘度计原理

粘度测试注意事项及乌氏粘度计原理 根据其测量原理,为了获得准确可靠的测量数据必须注意以下几点: 一、仪器的性能指标必须满足国家计量检定规程度要求。使用中的仪器要进行周期检定,必要时(仪器使用频繁或处于合格临界状态)要进行中间自查以确定其计量性能合格,系数误差在允许范围内,否则无法获得准确数据。 二、特别注意被测液体的温度。许多用户忽视这一点,认为温度差一点无所谓,我们的实验证明:当温度偏差0.5℃ 时,有些液体粘度值偏差超过5% ,温度偏差对粘 粘度计 度影响很大,温度升高, 粘度下降。所以要特别注意将被测液体的温度恒定在规定的温度点附近,对精确测量最好不要超过0.1℃。 三、测量容器(外筒)的选择。对于双筒旋转粘度计要仔细阅读仪器说明书,不同的转子(内筒)匹配相应的外筒, 否则测量结果会偏差巨大。对于单一圆筒旋转粘度计,原理上要求外筒半径无限大,实际测量时要求外筒即测量容器的内径不低于某一尺寸。例如上海天平仪器厂生产的NDJ-1型旋转粘度计,要求测量用烧杯或直筒形容器直径不小于70mm。实验证明特别在使用一号转子时,若容器内径过小引起较大的测量误差。 四、正确选择转子或调整转速,使示值在20~90格之间。该类仪器采用刻度盘加指针方式读数,其稳定性及读数偏差综合在一起有0.5格,如果读数偏小如5格附近,引起的相对误差在10%以上,如果选择合适的转子或转速使读数在50格,那么其相对误差可降低到1%。如果示值在90格以上,使游丝产生的扭矩过大,容易产生蠕变,损伤游丝,所以一定要正确选择转子和转速。 五、频率修正。对于国产仪器名义频率在50Hz,而我国目前的供电频率也是50 Hz,我们用频率计测试变动性小于0.5%,所以一般测量不需要频率修正。但对于日本和欧美的有些仪器, 名义频率在60Hz, 必须进行频率修正,否则会产生20%的误差,修正公式为: 实际粘度=指示粘度×名义频率÷实际频率 六、转子浸入液体的深度及气泡的影响。旋转粘度计对转子浸入液体的深度有严格要求,必须按照说明书要求*作(有些双筒仪器对测试的液体用量有严格要求,必须用量筒量取)。在转子浸入液体的过程中往往带有气泡,在转子旋转后一段时间大部分会上浮消失,附在转子下部的气泡有时无法消除,气泡的存在会给测量数据带来较大的偏差,所以倾斜缓慢地浸入转子是一个有效的办法。 七、转子的清洗。测量用的转子(包括外筒)要清洁无污物,一般要在测量后及时

材料力学剪切力概念

材料力学剪切力的概念 材料力学的定义很清楚:“剪切”是在一对(1)相距很近、(2)大小相同、(3)指向相反的横向外力(即垂直于作用面的力)作用下,材料的横截面沿该外力作用方向发生的相对错动变形现象。能够使材料产生剪切变形的力称为剪力或剪切力。发生剪切变形的截面称为剪切面。 判断是否“剪切”的关键是材料的横截面是否发生相对错动。因此,菜刀切菜不是剪切现象(因蔬菜的横截面没有发生相对错动),而用剪刀剪指甲则是(指甲的横截面发生相对错动。注:用指甲剪剪指甲不是一种剪切现象,虽然它同样能把指甲剪下来。为什么?)。 至于“剪切力”的来源,当然是压力造成的。也可以说,剪切力是一种特殊形式的压力。 流变学是针对物体的流动和变形所展开的研究科目。涂料配方中颜料的选择,流变性能是一项极其重要的指标。简单的说,颜料添加入涂料基料中将不可避免的改变涂料的流变特性。 反映流变性能最常用的指标就是涂料体系的粘度。当涂料体系流动的时候,通过粘度,我们很容易了解到流体发生的变化。如果是在任意小的外力下都可以流动的流体,同时所加的剪切应力的大小(单位面积上流体所受的力)和流体的速度梯度(D)(也被称之为剪切速率,即流体受力以后两层流体间的速度随位置的变化率)成正比,

我们称之为牛顿流体。 从本质上讲,黏度是流体抗拒流动的一种性质,是流体分子间相互吸引而产生的阻碍分子间相对运动能力的量度,即流体流动的内部阻力。而牛顿流体中切应力和速度梯度D的比值是固定不变的。此项比值被称为液体黏度系数,简称黏度。然而有另一种流体,背离了上述的比例关系,被称为非牛顿流体。非牛顿流体分为塑性流体,触变性流体,假塑性流体,膨胀性流体等不同类型。 当一种流体受到外力作用时,并不立即开始流动。只有在所加外力大到某一程度时才开始流动。流体开始流动所需的最小切应力被称为屈服值。此类流体被称为属于非牛顿流体的塑性流体。黏度已不能独立于所受切应力之外而保持不变。而是随着剪切速率的变化呈现复杂的变化。大体上说,随着剪切速率的上升,黏度往往会下降。通常的解释是剪切力破坏了涂料体系的内部结构。在绝大多数情况下,一旦剪切力消失,涂料体系的结构将恢复。此种流体特性在涂料工业中有非常大的现实意义,能导入此种特性的助剂称为触变剂。此类流体称为触变性流体。 当剪切应力到达一定值时,液体突然开始流动,在低中剪切力作用下基本呈现牛顿流体特性,在高剪切力作用下,粘度随剪切速率增加而下降的流体被称为假塑性流体。粘度随剪切速率增加而增加的流体被称为膨胀性流体,也称剪切变稠流体。在剪切力作用下,流体将很快变得不能移动,形成近似刚性结构。流变性能对于涂料生产的分散阶段,涂料仓储阶段和施工阶段都具有非常重大的意义。

粘度测试

实验三十 黏度的测定和应用 (一) 溶液黏度的测定 【实验目的】 1. 掌握用奥氏黏度计测量溶液黏度的方法。 2. 了解黏度的物理意义、测定原理和方法。 【实验原理】 当流体受外力作用产生流动时,在流动着的液体层之间存在着切向的内部摩擦力。如果要使液体通过管子,必须消耗一部分功来克服这种流动的阻力。在流速低时管子中的液体沿着与管壁平行的直线方向前进,最靠近管壁的液体实际上是静止的,与管壁距离愈远,流动的速度也愈大。 流层之间的切向力f 与两层间的接触面积A 和速度差Δv 成正比,而与两层间的距离Δx 成反比: x A f ??=ν η (1) 式中,η是比例系数,称为液体的黏度系数,简称黏度。黏度系数的单位在C.G.S.制中用“泊”表示,在国际单位制(SI)中用Pa ·S 表示,1泊=10-1Pa ·S 。 液体的黏度可用毛细管法测定。泊肃叶(Poiseuille)得出液体流出毛细管的速度与黏度系数之间存在如下关系式: VL t pr 84πη= (2) 式中,V 为在时间t 内流过毛细管的液体体积;p 为管两端的压力差;r 为管半径;L 为管长。按(2)式由实验直接来测定液体的绝对黏度是困难的,但测定液体对标准液体(如水)的相对黏度是简单实用的。在已知标准液体的绝对黏度时,即可算出被测液体的绝对黏度。设两种液体在本身重力作用下分别流经同一毛细管,且流出的体积相等,则 221 12 12242114188t p t p VL t p r VL t p r =?= = ηηπηπη (3) 式中,p = hgρ,其中h 为推动液体流动的液位差;ρ为液体密度;g 为重力加速度。如果每次取用试样的体积一定,则可保持h 在实验中的情况相同,因此可得:

零剪切粘度的影响因素

1. 乳胶粒子流变性质作为高聚物溶液/熔体流变性质的典型代表,已被研究了近百年,但到目前尚有一些内在的流变机理未完全被揭示。例如流体的零切粘度(这里是指任意一流体流动层与相邻流体静止层间的层间剪切粘度,用η0表示)。尽管许多文献基于数学推导的方式已经给出了相关的流体动态粘度性质关系,但对于流体层间的零切粘度,迄今仅给出一个并不确切的定义。零切粘度(η0)是一个与时间无关的值,它直接反映了流体层间的微观属性,是评价不同高聚物溶液流体粘度和流体层间化学特性的重要基本参数。本文阐述聚甲基丙烯酸甲酯乳胶粒子体系流动特性与其流变性质的对应关系,同时确定流体层间的零切粘度求值方法,并依据实验数据,求出了不同粒径聚甲基丙烯酸甲酯乳胶粒子体系的η0值。 参考文献见附件二:《聚甲基丙烯酸甲酯乳胶粒子流变特性及零切粘度的研究》 2.乳状液在工业中有着广泛的应用。乳状液最重要的特性是稳定性,乳状液的稳定性主要是由油水界面膜的强度决定的。界面膜稳定是乳状液稳定的一个重要因素。界面粘度是油水界面膜的一种重要性质,是界面膜强度的反映,对乳状液的稳定性有很大的影响。界面剪切粘度的大小取决于成膜物质排列的紧密程度,成膜物质相互作用力的大小和是否有结构形成。 表面活性剂和固体粒子对煤油--水动态界面剪切粘度的影响,结果表明: 1) 表面活性剂和固体粒子的存在可以改变油水界面膜的流变特性,

提高界面膜剪切粘度,提高油水界面膜的强度。 2) 表面活性剂在油水界面上的吸附是可逆吸附,而固体粒子在油水 界面上的吸附是不可逆吸附。 参考文献见附件三:《表面活性剂和固体粒子对动态界面剪切粘度的影响》 3.在低的总相对分子质量下,引入支链通过降低粘度会改变许多聚合物的线性粘弹行为。然而,当支链的相对分子质量大于缠结相对分子质量时,观察到了低剪切粘度的增加,即零剪切黏度增加了。 链的结构影响着整体流变性能,在同等的相对分子质量下,星形支化结构的回转半径小,溶液的粘度低。详细的流变分析证实:在几种频率下对其进行振荡剪切时,线性和星形支化结构具有截然不同的响应。当与同等相对分子质量的线性材料比较时,在线性粘弹区支化材料具有较高的低剪切粘度。不过,支化材料粘度对剪切速率的依赖性高得多,造成在高的剪切速率下粘度较低。在较高的剪切速率下,支化材料具有较低的粘度,这就表明加工性能获得了改善。 同时根据高分子物理课本的记载,因为支化分子比同分子量的线型分子在结构上更为紧凑,使短支链高聚物的零切粘度比同分子量的线型高聚物略低一些。但是,如果支链长到足以相互缠结,则其影响就相当显著了,即零切粘度大幅增加。对于三臂支化和四臂支化高分子来说,这种变化更加明显。

制冷剂粘度测量

制冷剂粘度测量 1、服务范围 测量范围:动力粘度:0.1~100 mPa·s 运动粘度:0.1~2500 mm2/s 温度范围:-30 ℃~350 ℃ 压力范围:0.1~30 MPa 2、测量方法 测量粘度的方法很多,如毛细管法、落体法、旋转法、振动法等。在众多的测量方法中,振动弦方法因为结构简单、适用于宽广的粘度、温度、压力范围而备受研究人员的广泛关注。 相比于其他方法,振动弦法具有一些特别的优势,因而受到国际流体粘度研究领域的普遍关注。比如振动弦法拥有一系列严谨的工作方程以及有明确含义的物理参数;由于测量量基本为电测量,理论上振动弦法可以实现全自动化测量;由于传感器的几何结构简单,可以避免了进行任何关于温度和压力的标定;振动弦系统可以避免逐级标定,且理论上可以实现绝对测量,不需要任何标定(已经有实验室实现);振动弦法特别适合高压和低温下其他方法不能测量的场合,因此近二三十年来受到越来越多的关注和研究。随着研究的深入和电子技术的发展,到目前为止,无论是理论模型、影响因素分析还是实验装置系统,振动弦方法都得到飞速的进步,其测量准确度得到很大的提升,应用领域得到快速扩展,同时成为IATP (International Association for Transport Properties)建立高粘度标准物质的首选测量方法。 3、样品种类 可测量的液体种类包括各种极性和非极性流体的纯质及混合物: ●油品:导热油、润滑油、压缩机油、冷冻机油、硅油等; ●液体燃料:汽油、煤油、柴油等; ●制冷剂:R134a、R12、R22、R123、二甲醚等; ●纳米流体:氧化铝纳米流体、石墨纳米流体、Fe3O4纳米流体等; ●化学试剂:水、甲苯、醇类、离子液体等。

油墨粘度暂行标准

油墨验收暂行标准 、粘度:(3号量杯)使用粘度检测须上机后跟踪测量 东方机高档墨: 线条、文字版的验收粘度不高于 20秒,使用粘度不高于 15秒; 满版用墨验收粘度不高于 30秒,使用粘度不高于 25秒; 圣龙机高档墨: 线条、文字版的验收粘度不高于 20秒,使用粘度不高于 18秒; 满版用墨验收粘度不高于 30秒,使用粘度不高于 25秒; 链条机普通墨: 三、初干速度:水墨的初干速度,如无检测工具,可暂由供应合作商每一个月提供一次相关检测报告;测 试方法:将油墨调稀到印刷粘度 25± 2S ,用展色仪印刷于牛卡纸张上,在 3S 内即用一张白纸迅速盖 于印品上,白纸不粘油墨即为合格。 四、 耐水性:将印好的产品放置自然环境 2个小时,将纸板倾斜 45度后,将200ml 水在5cm 的距离泼向 图文,检查水流不能带有墨色,为合格; 五、 耐磨性:将印好的产品放置自然环境 2个小时,将白纸用约 2公斤的力反复擦拭 5次,白纸上不能有 明显的墨迹; 六、 色相饱和度:在规定粘度以内印刷,图文布墨均匀不露底、不起毛、不糊版,色彩鲜艳、图文饱满; 七、 外观:包装完好,具有氨水淡淡的气味,无其它刺激性异味。 丿八、抽样数量 九、合格判定:初干速度、PH 值、粘度、耐水性、耐磨性、色相饱和度、外观 其中只要有一项不 合格,则该件油墨为不合格,抽样2—3件不合格或抽样4件有2件不合格则该批油墨为 不合格。 十、不合格处置:粘度不合格按 1元/秒?公斤扣款,其它不合格按退货处置。 品保部 2008年12月28日 线条、文字版的验收粘度 满版用墨验收粘度不高于 酸碱 度:PH 值:在一之间; 18-25 秒; 40秒,使用粘度不高于 35秒;

影响黏度的因素

影响黏度的因素:1 温度一般来说,温度升高粘度下降 2 时间在玻璃转变区域内,形成的玻璃液体的黏度与时间有关 3 组成硅酸盐材料的黏度总是随着不同改性阳离子的加入而变化粘弹性:在一些特定的情况下,一些非晶体和多晶体在受到比较小的应力作用时可以同时表现出弹性和粘性. 滞弹性:无机固体和金属表现出的这种与时间有关的弹性 影响蠕变的因素:1 温度温度升高,稳态蠕变速率增大2应力稳态蠕变速率随应力增加而增大3显微结构随着气孔率增加,稳态蠕变速率也增大; 晶粒愈小,稳态蠕变速率愈大; 当温度升高时,玻璃相的黏度下降,因而变形速率增大,蠕变速率增大4组成组成不同的材料其蠕变行为不同 5 晶体结构随着共价键结构程度增加,扩散及位错运动降低,蠕变就小材料的理论断裂强度与弹性模量,表面能和晶格常数的有关 影响材料断裂强度的因素:1内在因素材料的物理性能,如弹性模量,热膨胀系,导热性,断裂能等 2 显微结构有相组成,气孔,晶界和微裂纹 3 外界因素温度,应力,气氛及试样的形状大小和表面能 4 工艺原料的纯度粒度形状成型方法等 材料的断裂强度不是取决于裂纹的数量,而是取决于裂纹的大小 防止裂纹扩展的措施:·1 应使作用应力不超过临界应力 2 在材料中设置吸收能量的机构3 人为地在材料中造成大量极微细的裂纹也能吸收能量,阻止裂纹扩展 陶瓷材料显微结构的两个参数是晶粒尺寸和气孔率 提高无机材料强度改进韧性的途径:1 微晶高纯度和高密度(消除缺陷)2提高抗裂能力和预加应力(热韧化技术)3化学强度改变化学组成(大离子换小离子)4相变增韧5弥散增韧6复合材料 影响热容的因素:1温度对热容的影响高于德拜温度时,热容趋于常数;低于时,与(T/θ)3成正比2 化学键弹性模量熔点的影响原子越轻,原子间的作用力越大3无机材料的热容对材料的结构不敏感4相变由于热量不连续变化,热容出现突变 热膨胀系数:物体的体积或长度随温度的升高而增大的现象 影响热导率的因素:1温度的影响声子的自由程随温度升高而降低2显微结构的影响

透明和不透明液体运动粘度标准测试方法(及动力学粘度的计

透明和不透明液体运动粘度标准测试方法(及动力学粘度的计算)1 (ASTM D445-04标准翻译) 苏秀丽 (新疆出入境检验检疫局技术中心乌鲁木齐 830063) 标准自发布日起,命名为D 445; D445后的“-04”是标准最初采用时间,如标准有变更,则为最后修改时间。括号内数字是本标准最后采用时间。上标第五个希腊字母ε表示从最后修改时间或标准采用时间起,标准在编辑上的变化。本标准已经被国防部批准使用 。 1.范围 1.1 本测试方法指定了通过测量一定体积的液体,在重力作用下流经校准过的玻璃毛细管粘度计所需的时间,来确定包括透明及不透明液体石油产品的运动粘度ν的方法。动力学粘度η,等于运动粘度ν乘以液体密度ρ。 注释1:沥青的动力学粘度及运动粘度的测量参看测试方法D 2170及D2171。 1.2 本测试方法获得的结果取决于样品自身行为,并仅限于测定切应力和剪切速率成比例的液体,即遵守牛顿流体力学行为的液体。否则,如果粘度随剪切速率变化而产生明显的变化时,采用不同直径毛细管粘度计测量同一液体时,将会得到不同的结果。尽管残余燃料油的测量程序和精密度值,某些情况下会产生非牛顿行为,但是也被包括在本标准测量范围内。 1.3 本测试方法适用于所有温度条件(详见本标准6.3和6.4部分),运动粘度在0.2~300000 mm2/s之间的液体的动力学运动粘度的测定(参见附表A1.1)。本标准中精密度的测定仅限于运动粘度范围和测试温度范围在相关部分的脚注中标示出的液体。 1.4 在本测试方法中,数字单位均使用SI 单位制。 1.5 本测试方法申明,方法建立过程中未考虑到所有可能的安全因素。因此凡使用本方法者,有 责任进行必要的安全及健康测试实践,以确定使用本方法前适当调整标准的适用性。 2. 参考文献 2.1 ASTM 标准 D446 玻璃毛细管粘度计的说明及操作指导 D1193 试剂水的说明 D1217宾汉比重瓶法测定液体密度及相对密度 D1480宾汉比重瓶法测定粘性液体密度及相对密度 D1481 Lipkin双毛细管比重瓶法测定粘性液体密度及相对密度 D2162标准粘度计(或毛细管型主粘度计)及粘质油标准样品的校准方法。 D2170沥青动力学粘度测定方法。 D2171真空毛细管粘度计法测定沥青粘度。 D6074烃类润滑油基础油性质指南 D6617标准物质单个测定结果检验实验偏离的实践操作。 E1ASTM内装液体玻璃温度计使用说明 E77温度计的确认及检查测定方法 2.2 ISO标准 ISO3104 石油产品-透明及不透明液体-运动粘度的测定和动力学粘度的计算 ISO3105玻璃毛细管动力学粘度计-操作说明 ISO3696分析实验室用水-说明及测试方法 ISO5725测量方法及结果准确性(包括真实性与精密度) ISO9000质量管理与质量保证标准-选择与使用的方针

机油小知识-粘度指数与剪切稳定性

机油小知识 粘度指数 英文名:Viscosity Index. 粘度指数表示一切流体粘度随温度变化的程度。粘度指数越高,表示流体粘度受温度的影响越小,粘度对温度越不敏感。 根据粘度指数不同,可将润滑油分为三级:35—80为中粘度指数润滑油;80—110为高粘度指数润滑油;110以上为特高级粘度指数润滑油。粘度指数处于100—170的机油,为高档次多级润滑油,它具有粘温曲线变化平缓性和良好的粘温性。在较低温度时,这些粘度指数改进剂中的高分子有机化合物分子在油中的溶解度小,分子蜷曲成紧密的小团,因而油的粘度增加很小;而在高温时,它在油中的溶解度增大,蜷曲状的线形分子膨胀伸长,从而使粘度增长较大,弥补了基础油由于温度升高而下降的粘度。所以说粘度指数越高,粘度随温度变化越小。 润滑油的剪切稳定性能 英文名:SHEAR STABILITY INDEX (SSI) 在生产润滑油过程中,常常加入一种改善粘度和粘度指数性能的改进剂。这种润滑油添加剂均属于一些高分子聚合体。这些聚合物添加入润滑油基础油后,在遇到高温的情况下,聚合的分子链会发生膨

胀。而遇到低温的时候,由于分子链的缩合,也不至于对润滑油低温粘度的增加产生更多的不利影响,从而改善润滑油粘度和粘度指数。但是,嵌入大量粘度指数添加剂的润滑油在使用过程中,由于受机械设备应力剪切和热剪切的影响,往往导致润滑油粘度指数改进性能的下降,这种下降的评定值就是润滑油的剪切稳定性能。 一般情况下,高负荷高增压的汽车润滑油要求使用具有高剪切稳定性能的粘度指数改进剂。而某些中低档润滑油产品,由于使用周期相对较短,对剪切性能往往要求不高。剪切稳定性能的表述使用SSI,不高于55是发动机油剪切稳定性评定的最低值 剪切稳定性指数(SSI)---> SHEAR STABILITY INDEX (SSI) 在发动机运转或进行特殊测试时,黏指剂对油造成的不可逆黏度损失。有时也被称为永久剪切稳定性指数(PSSI)。SSI的计算方程是:SSI=100(Vo-Vs)/(Vo-Vb),其中Vo=未经剪切的油品黏度,Vs=经过剪切的油品黏度,Vb=基础油的黏度。 欧洲发动机润滑油对剪切稳定的要求SSI值不能高于25,而美 国和套用API标准的我国汽车润滑油,对SSI的要求不可大于35。

粘度测定SOP

黏度测定SOP

1 主题内容 建立粘度测定操作程序,规范粘度测定的操作方法,为物料的检测和判定提供依据。 2 适用范围 本标准适用于流体的运动黏度、动力黏度测定。 3引用标准 《中国药典》2010年版二部。 4 职责 QC主管:保证该标准的执行; QC检验员:负责按该标准进行操作。 5 内容 5.1 原理 5.1.1 黏度系指流体对流动的阻抗能力,一般采用动力黏度、运动黏度或特性黏度数表示。5.1.2 流体分牛顿流体和非牛顿流体两类。毛细管式黏度计适用于牛顿流体的黏度测定。 5.1.3 液体以1cm/s的速度流动时,在每1cm2平面上所需切应力的大小,称之为动力黏度,以 Pa·s为单位。在相同温度下,液体的动力黏度与其密度的比值,再乘以106,即得该液体的运动黏度,以mm2/s为单位。药典采用在规定条件下测定供试品在平氏黏度计中流出时间(s),与该黏度计用已知黏度的标准液测得的黏度计常数(mm2/s2)相乘,即得供试品的运动黏度。 5.2 仪器用具 5.2.1 恒温水浴能恒温±0.1℃(运动黏度的测定) 5.2.2 温度计分度为0.1℃ 5.2.3 秒表分度为0.2秒 5.2.4 平氏黏度计 5.3 操作 5.3.1 用平氏黏度计测定运动黏度或动力黏度。 5.3.1.1 照各药品项下的规定,取毛细管内径符合要求的平氏黏度计1支,在支管F上连接一 橡皮管,用手指堵住管口2,倒置黏度计,将管口1插入供试品(或供试溶液,下同)中, 处,提出黏度计并迅速倒自橡皮管的另一端抽气,使供试品充满球C与A并达到测定线m 2 转,抹去黏附管外的供试品,取下橡皮管使连接于管口1上,将黏度计垂直固定于被测物体所规定温度的恒温水浴中,并使水浴的液面高于球C的中部,放置15分钟后,自橡皮管的

水的密度和黏度虽温度变化

水密度随温度变化表 t(℃) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 999.840 999.846 999.853 999.859 999.865 999.871 999.877 999.883 999.888 999.893 1 999.898 999.904 999.908 999.913 999.917 999.921 999.925 999.929 999.933 999.937 2 999.940 999.94 3 999.946 999.949 999.952 999.95 4 999.956 999.959 999.961 999.962 3 999.96 4 999.966 999.967 999.968 999.969 999.970 999.971 999.971 999.972 999.972 4 999.972 999.972 999.972 999.971 999.971 999.970 999.969 999.968 999.967 999.965 5 999.964 999.962 999.960 999.958 999.95 6 999.954 999.951 999.949 999.946 999.943 6 999.940 999.93 7 999.934 999.930 999.926 999.923 999.919 999.915 999.910 999.906 7 999.901 999.897 999.892 999.887 999.882 999.877 999.871 999.866 999.880 999.854 8 999.848 999.842 999.836 999.829 999.823 999.816 999.809 999.802 999.795 999.788 9 999.781 999.773 999.765 999.758 999.750 999.742 999.734 999.725 999.717 999.708 10 999.699 999.691 999.682 999.672 999.663 999.654 999.644 999.634 999.625 999.615 11 999.605 999.595 999.584 999.574 999.563 999.553 999.542 999.531 999.520 999.508 12 999.497 999.486 999.474 999.462 999.450 999.439 999.426 999.414 999.402 999.389 13 999.377 999.384 999.351 999.338 999.325 999.312 999.299 999.285 999.271 999.258 14 999.244 999.230 999.216 999.202 999.187 999.173 999.158 999.144 999.129 999.114 15 999.099 999.084 999.069 999.053 999.038 999.022 999.006 998.991 998.975 998.959 16 998.943 998.926 998.910 998.893 998.876 998.860 998.843 998.826 998.809 998.792 17 998.774 998.757 998.739 998.722 998.704 998.686 998.668 998.650 998.632 998.613 18 998.595 998.576 998.557 998.539 998.520 998.501 998.482 998.463 998.443 998.424 19 998.404 998.385 998.365 998.345 998.325 998.305 998.285 998.265 998.244 998.224 20 998.203 998.182 998.162 998.141 998.120 998.099 998.077 998.056 998.035 998.013 21 997.991 997.970 997.948 997.926 997.904 997.882 997.859 997.837 997.815 997.792 22 997.769 997.747 997.724 997.701 997.678 997.655 997.631 997.608 997.584 997.561 23 997.537 997.513 997.490 997.466 997.442 997.417 997.393 997.396 997.344 997.320 24 997.295 997.270 997.246 997.221 997.195 997.170 997.145 997.120 997.094 997.069 t(℃) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 25 997.043 997.018 996.992 996.966 996.940 996.914 996.888 996.861 996.835 996.809 26 996.782 996.755 996.729 996.702 996.675 996.648 996.621 996.594 996.566 996.539 27 996.511 996.484 996.456 996.428 996.401 996.373 996.344 996.316 996.288 996.260 28 996.231 996.203 996.174 996.146 996.117 996.088 996.059 996.030 996.001 996.972 29 995.943 995.913 995.884 995.854 995.825 995.795 995.765 995.753 995.705 995.675 30 995.645 995.615 995.584 995.554 995.523 995.493 995.462 995.431 995.401 995.370 31 995.339 995.307 995.276 995.245 995.214 995.182 995.151 995.119 995.087 995.055 32 995.024 994.992 994.960 994.927 994.895 994.863 994.831 994.798 994.766 994.733 33 994.700 994.667 994.635 994.602 994.569 994.535 994.502 994.469 994.436 994.402 34 994.369 994.335 994.301 994.267 994.234 994.200 994.166 994.132 994.098 994.063 35 994.029 993.994 993.960 993.925 993.891 993.856 993.821 993.786 993.751 993.716 36 993.681 993.646 993.610 993.575 993.540 993.504 993.469 993.433 993.397 993.361 37 993.325 993.280 993.253 993.217 993.181 993.144 993.108 993.072 993.035 992.999 38 992.962 992.925 992.888 992.851 992.814 992.777 992.740 992.703 992.665 992.628 39 992.591 992.553 992.516 992.478 992.440 992.402 992.364 992.326 992.288 992.250

关于粘度测试单位与单位换算

关于粘度测试单位与单位换算: 粘度单位直接读数:帕·秒(Pa·s)或毫帕·秒(mPa. ·s) 或(dPa ·S) 。 粘度单位换算关系:Pa.s=1000cP=1000mPa.s=10P=10dPa.s dpa.s 是decipascal-seconds 的缩写,是粘度单位 P(poise),cP(centi poise) Pa.s(pascal-seconds),dPa.s(decipascal-seconds) mPa.s(millipascal-seconds) 流体在流动时,相邻流体层间存在着相对运动,则该两流体层间会产生摩擦阻力,称为粘滞力。粘度是用来衡量粘滞力大小的一个物性数据。其大小由物质种类、温度、浓度等因素决定。 粘度一般是动力粘度的简称,其单位是帕·秒(Pa·s)或毫帕·秒(mPa·s)。 粘度分为动力粘度、运动粘度、相对粘度,三者有区别,不能混淆。 粘度还可用涂—4或涂—1杯测定,其单位为秒(s)。 (动力)粘度符号是μ,单位是帕斯卡秒(Pa·s) 由下式定义:L=μ·μ0/h μ0——平板在其自身的平面内作平行于某一固定平壁运动时的速度 h——平板至固定平壁的距离。但此距离应足够小,使平板与固定平壁间的流体的流动是层流 L——平板运动过程中作用在平板单位面积上的流体摩擦力 运动粘度符号是v ,运动粘度是在工程计算中,物质的动力粘度与其密度之比,单位是二次方米每秒(m2/s) v=μ/p 在石油工业中还使用"恩氏粘度",它不是上面介绍的粘度概念。而是流体在恩格拉粘度计中直接测定的读数。 粘度的度量方法分为绝对粘度和相对粘度两大类。绝对粘度分为动力粘度和运动粘度两种;相对粘度有恩氏粘度、赛氏粘度和雷氏粘度等几种表示方法。 1、动力粘度η在流体中取两面积各为1m2,相距1m,相对移动速度为1m/s时所产生的阻力称为动力粘度。单位Pa.s(帕.秒)。过去使用的动力粘度单位为泊或厘泊,泊(Poise)或厘泊为非法定计量单位。 单位关系:1Pa.s=1N.s/m2=10P泊=10的3次方cp=1Kcps ASTM D445标准中规定用运动粘度来计算动力粘度,即η=ρ.υ式中η-动力粘度,Pa.s期目标制ρ-密度,kg/m3 υ-运动粘度,m2/s 我国国家标准GB/T506-82为润滑油低温动力粘度测定法。该法使用于测定润滑油和深色石油产品的低温(0~-60℃)动力粘度。在严格控制温度和不同压力条件下,测定一定体积的试样在已标定常数的毛细管粘度计内流过所需的时间,秒。由试样在毛细管流过的时间与毛细管标定常数和平均压力的乘积,计算动力粘度,单位为Pa.s。该方法重复测定两个结果的差数不应超过其算术平均值的±5%。 2、运动粘度υ流体的动力粘度η与同温度下该流体的密度ρ的比值称为运动粘度。它是这种流体在重力作用下流动阻力的度量。在国际单位制(SI)中,运动粘度的单位是m2/s。过去通常使用厘斯(cSt)作运动粘度的单位,它

高剪切粘度计操作说明

HERCULES 高剪切粘度计操作说明 1. 仪器说明及用途: 仪器名称:HERCULES HI-SHEAR VISCOMETER 本仪器用于测试被测液在高剪切力作用下的流变性能。 2. 使用前检查及准备事项: 2.1 检查系统软件及测试仪是否处于正常工作状态。 2.2 将环境温度及待测液温度调整至25℃。 3 操作步骤: 3.1 打开计算机、打印机及Hercules粘度计电源。 3.2 打开桌面Win Shear程序,在"RUN"”菜单中选择“Auto”子菜单。 3.3 在“Auto”页面中输入以下内容 Input density Percent solids Temperature Operator name Sample name 3.4 单击“Auto”页面右下角“Parameters”。 3.5 在“Test Parameters”页面中根据测试要求输入以下内容 Bob Ramp Time Spring Set Max Rpm 3.6 完成“Test Parameters”页面内容后按“OK”确认。 3.7 把待测液用针筒置入杯子中,并把杯子锁定在仪器的杯子支撑器中。 3.8 将“Test Parameters”页面中选定的“Bob”旋紧到驱动轴上。” 3.9 将驱动杆通过手轮降至杯子底部,并吸附上防溅罩。 3.10 完成上述各项后,在“Auto Test”页面中单击“Run Test” 3.11 开始工作,并在微机上输出“扭矩与转速”关系图。 3.12“File”菜单选择打印(Print)或保存(Save)及“View”菜单中 “Calculations”子菜单(内含计算结果及转速与各对应粘度值关系)。 3.13 测试完成后并闭电源,并清洁“Bob”及杯子。 4. 注意事项: 4.1 把杯子装入或取出杯支撑器内必须小心,以免碰撞损坏杯子及支撑器。 4.2 若测试时发生意外情况,按紧急开关“EMERGENCY”中止作业。

剪切速率汇编

剪切速率

剪切速率 基本概述 流体的流动速相对圆流道半径的变化速率—剪切速率(shear rate)公式:剪切速率=流速差/所取两页面的高度差 塑料熔体注塑时流道的剪切速率一般不低于1000ˉS 浇口的剪切速率一般在100000ˉS—1000000ˉS 具体介绍 粘度为液体分子内摩擦的量度,也是物体粘流性质的一项具体反映。粘度的定义为一对平行板,面积为A,相距dr,板间充以某液体。今对上板施加一推力F,使其产生一速度变化du。由于液体的粘性将此力层层传递,各层液体也相应运动,形成一速度梯度du/dr,称剪切速率,以r′表示。F/A称为剪切应力,以τ表示。剪切速率与剪切应力间具有如下关系:(F/A)=η(du/dr),此比例系数η即被定义为液体的剪切粘度(另有拉伸粘度,剪切粘度平时使用较多,一般不加区别简称粘度时多指剪切粘度),故η=(F/A)/(du/dr)=τ/r′。 粘度单位常用“泊”,以P表示。部分粘度单位换算如下: 1泊(P)=0.1牛顿秒/米2(Ns/m2)=3.6×102千克/米时 (kg/mh)、 1千克力秒/米2(kgfs/m2)=1Pa.s=98.07泊(P)。 PVC与大部分聚合物一样,影响其粘度的因素有: 1,温度T,PVC粘度随温度升高呈指数下降。 当剪切速率r′=100/s时,温度T=150℃,

软质PVC的粘度η=6200 Pa.s=608047泊(P)。 硬质PVC的粘度η=17000 Pa.s=1677900泊(P)。 温度T=190℃, 软质PVC的粘度η=310 Pa.s=30597泊(P)。 硬质PVC的粘度η=600 Pa.s=59220泊(P)。 2,剪切速率r′,剪切速率r′增加,PVC粘度下降。 温度T=150℃时,剪切速率r′=100/s, 软质PVC的粘度η=6200 Pa.s=608047泊(P)。 硬质PVC的粘度η=17000 Pa.s=1677900泊(P)。 剪切速率r′=1000/s, 软质PVC的粘度η=900 Pa.s=88263泊(P)。 硬质PVC的粘度η=2000 Pa.s=197400泊(P)。 3,压力,在同一温度下,增压会增加PVC的粘度。 剪切应力为τ,剪切速率为Y,则粘度η=τ/Y,称为动力粘度,单位为Pa.s(泊),常用单位为mPa.s(如一般原油测试的粘度)。 一般现在流变仪测试的粘度结果都是1/s;而一些以前的粘度计测试的结果却是rpm,它换算成1/s估计有些困难,因为它的转子属于相对测试系统,转子尺寸和测量杯的尺寸的影响,无法准确得到其剪切速率。 一、流体流动的基本概念 1.剪切速率和剪切应力 液体与固体的重要区别之一是液体具有流动性,就是说,加很小的力就能使液体发生变形,而且只要力作用的时间相当长,很小的力就能使液体发生很大的变形。以河水在水面的流速分布为例,可以观察到越靠近河岸,流速越小,河中心处流速最大,河面水的流速分布如图3-1所示。管道中水的流速分布是中心处流速最大,越向周围流速越小,靠近管壁处流速为零。流速剖面

黏度计

一、YDN100型运动粘度测定仪 YDN100型运动粘度自动测定仪,用于测定液体石油产品(指牛顿液体)的运动粘度、动力粘度和乌氏粘度,该仪器采用先进的单片机,彩色中文液晶显示,触摸屏控制,采用模糊控温方式,高精度德国进口感温元件,控温准确、精度高,自动精确计时,自动计算运动粘度值和动力粘度值,自动打印并存储测定结果,采用10L玻璃浴缸,体积小,液体介质用量少,外形结构新颖,是一款先进的运动粘度自动测定仪。 符合标准: SY/T5651-93《石油产品运动粘度试验器技术条件》 GB/T265-1988《石油产品运动粘度测定法和动力粘度计算法》 GB1660-1982《增塑剂运动粘度的测定法(品氏法)》 GB 1841-1980 《聚烯烃树脂稀溶液粘度试验方 1、毛细管粘度计:符合SH/T0173-92《玻璃毛细管粘度计技术条件》; 符合JJG155《工作毛细管粘度计检定规程》; 显示方式:5吋彩色LCD,中文菜单,触摸屏操作。 主要技术指标:: 运动粘度测定范围:0.5~20000mm2/s 动力粘度测定范围:0.3~40000mPa.s 控温范围:室温~150℃(如果设定温度在100℃以上时,在介质中加添加剂); 控温精度:±0.01℃; 浴缸容积:10L; 计时精度:±0.1s; 实验孔数:4孔; 加热功率:1000W; 搅拌转速:1300转/分; 打印机:热敏微型打印机,纸宽56mm。 自动跟踪日期,掉电存储数据,存储256个历史记录。 工作电源:220V±10%,50HZ。 环境温度:5~45℃,相对湿度<80%。 外型尺寸:440*320*450mm。 二、 NDJ-5S型数显旋转粘度计

黏度测定法

黏度测定法_(中国药品检验标准操作规范)_(2010年版) 黏度测定法 1 简述 黏度系指流体对流动的阻抗能力,《中国药典》2010年版二部附录ⅥG中以动力黏度、运动黏度或特性黏数表示。 液体以1cm/s的速度流动时,在每1cm2平面上所需剪应力的大小,称为动力黏度η,以Pa·s为单位。在相同温度下,液体的动力黏度与其密度(kg/m3)的比值,再乘以10-6,即得该液体的运动黏度[ν],以mm2/s为单位。高聚物稀溶液的相对黏度的对数值与其浓度的比值,称为特性黏数[η]。 第一法用平氏黏度计测定运动黏度或动力黏度 1 简述 1.1 本法系用相对法测量一定体积的液体在重力作用下流经毛细管所需时间,以求得液体的运动黏度或动力黏度。 1.2 本法适用于测定牛顿流体(如纯液体和低分子物质的溶液)的动力黏度或运动黏度。 2 仪器与用具 2.1 平氏黏度计(见《中国药典》2010年版二部附录ⅥG中的附图1),毛细管内径有0.8mm±0.05mm,1.0mm±0.05mm,1.2mm ±0.05mm,1.5mm±0.1mm或2.0mm±0.1mm多种,可根据各品种项下规定选用(流出时间应不小于200s)。 2.2 恒温水浴直径30cm以上、高40cm以上的玻璃缸或有机

玻璃缸,附有电动搅拌器及电热装置,除另有规定外,恒温精度±0.1℃。 2.3 温度计分度0.1℃,经周期检定。 2.4 秒表分度0.2s,经周期检定。 3 操作方法 3.1 黏度计的清洗和干燥取黏度计,置铬酸洗液中浸泡2h以上(沾有油渍者,应依次先用三氯甲烷或汽油、乙醇、自来水洗涤晾干后,再用铬酸洗液浸泡6h以上),自来水冲洗至内壁不挂水珠,再用水洗3次120℃干燥,备用。 3.2 按各品种项下规定的测定温度调整恒温水浴温度。 3.3 取黏度计,在支管F上连接一橡皮管,用手指堵住管口2,倒置黏度计,将管口!插入供试品(或供试溶液)中,自橡皮管的另一端抽气,使供试品充满球C与A并达到测定线m2处,提出黏度计并迅速倒转,抹去黏附于管外的供试品,取下橡皮管接于管口1上,将黏度计垂直固定于恒温水浴中,并使水浴的液面高于球C的中部,放置15min后,自橡皮管的另一端抽气,使供试品充满球A并超过测定线m1,开放橡皮管口,使供试品在管内自然下落,用秒表准确记录液面自测定线m1下降至测定线m2处的流出时间;依法重复测定3次以上,每次测定值与平均值的差值不得超过平均值的±5%。 另取一份供试品同样操作,并重复测定3次以上。 以先后两次取样测得的总平均值按公式计算,即得。 3.4 测定动力黏度时,按“相对密度测定法”标准操作规程测

相关文档