文档库 最新最全的文档下载
当前位置:文档库 › 锂电池发展跃迁简述

锂电池发展跃迁简述

锂电池发展跃迁简述
锂电池发展跃迁简述

锂电池发展简述

鄢子觉

摘要由于具有很高的能量密度,锂金属被引入电池领域。围绕锂电池的非水电解质、可逆性、安全性问题的解决,正极材料、负极材料与电解质不断革新。如今锂电池技术仍在继续发展并将进一步改善人类生活。本文就元系统跃迁的内因进行了总结。

关键词锂电池,元系统跃迁,工程演化

1.选题理由

在选修了工程演化课程后,对于元系统跃迁理论颇感兴趣。决定就本专业的主要内容之一锂电池,进行研究以期将元系统跃迁理论试用于实践。

2.概述

锂电池分为锂一次电池与锂二次电池。锂原电池通常以金属锂或者锂合金为负极,用MnO2,SOCl2,(CF)n 等材料为正极。锂二次电池研发分为金属锂二次电池、锂离子电池与锂聚合物电池三个阶段。

锂原电池的研究开始于20世纪50年代,在70年代实现了军用与民用,后来基于环保与资源的考虑,研究重点转向可反复使用的二次电池。锂金属二次电池研究只比锂原电池晚了十年,它在80年代推出市场。但由于安全性等问题,除以色列Tadiran电池公司和加拿大的Hydro Quebec公司仍在研发外,锂金属二次电池发展基本处于停顿状态。

锂离子电池的设计贯彻了全新的电池概念。一般来讲,普通电池的工作原理大都基于“氧化—还原反应”;而锂离子电池原理除“氧化—还原”外,还基于电化学嵌入/脱嵌反应。在两极形成的电压降的驱动下,锂离子可恶意从电极材料提供的“空间”中“嵌入”或者“脱嵌”,在充放电过程中,锂离子在正负极间定向地移动。由于“嵌入与脱嵌”并没有造成电极材料晶格结构的变化,反应具有良好的可逆性。这让锂离子电池具有一般高能量密度和充电电池所不具备的高循环寿命。

事实上,这个概念早在上世纪80年代初就提出了,但概念的最终实现历时十年之久。1991年6月,日本索尼公司推出第一块商品化锂离子电池,标志着电池工业的一次革命,有人甚至将它同1940—1950年代晶体管取代电子管的半导体革命相提并论。

锂聚合物电池的发展先后经历“锂固体聚合物电解质电池”与“锂离子凝胶聚合物电解质电池”两个阶段。后者在1994年出现,并在1999年实现商品化。

3.工程演化分期

锂电池概念与锂原电池发展时期 1960—1970

锂金属二次电池时期 1972—1984

锂离子电池时期 1980—1990

锂聚合物电池时期 1978—1999

4.工程演化阶段特点

4.1锂电池概念与锂原电池发展时期

1960-1970年代的石油危机迫使人们去寻找新的替代能源,同时军事、航空、医药等领域也对电源提出新的要求。当时的电池己不能满足高能量密度电源的需要。由于在所有金属中锂比重很小(M= 6 94g/mo} β= 0 53g/cm3)、电极电势极低(-3 04V相对标准氢电极),它是能量密度很大的金属,锂电池体系理论上能获得最大的能量密度,因此它顺理成章地进入了电池设计者的视野。

与其他碱金属相比较,锂金属在室温下与水反应速度比较慢,但要让锂金属应用在电池体系中,“非水电解质”的引入是关键的一步。

1958年,H arris用有机电解质作为锂金属原电池的电解质。1962年,在波士顿召开的电化学学会秋季会议上,来自美国军方Lockheed M is-silo and Space Co的Chilton Jr和Cook提出“锂非水电解质体系”的设想。

1970年,日本松下电器公司与美国军方几乎同时独立合成出新型正极材料一碳氟化物。

这时候,另辟蹊径的三洋公司在过渡金属氧化物电极材料取得突破,1975年,Li/M nO2功。

1975年以后,各式各样的商品化锂原电池“粉墨登场”。1976年,锂碘原电池的出现。接着,许多医药领域的专用锂电池应运而生,其中锂银钒氧化物(Li/Ag2V4O11)电池最为畅销,它占据植入

4.2锂金属二次电池时期

锂原电池的成功激起了二次电池的研究热潮。

除E xxon等零星几家公司继续氟化碳的理论问题研究外,学术界的目光都集中在“如何使该电池反应变得可逆”这个问题上,锂二次电池的研究正式拉开了序幕。

60年代末,有两个研究团队开始了“电化学嵌入反应”的研究。一个是贝尔实验室Broadhead等人。他们将碘或硫嵌入到二元硫化物(如NbS2)的层间结构时发现,在放电深度低的情况下,反应具有良好的可逆性。另一个是斯坦福大学的Armand等人。他们发现一系列富电子的分子与离子可以嵌入到层状二硫化物的层间结构中,例如二硫化钽(TaS2)。除此以外,他们还研究了碱金属嵌入石墨晶格中的反应,并指出石墨嵌碱金属的混合导体能够用在二次电池中。

随着嵌入化合物化学研究的深入,在该类化合物中寻找具有应用价值的电极材料的目标逐渐清晰起来。研究在1970-1980年间取得长足进展,直接导致第一块商品化锂金属二次电池的诞生。

Exxon公司研发人员继续斯坦福大学团队的研究,他们让水合碱金属离子K x(H20)嵌入到二硫化钽TaS2中,在分析生成化合物K x (H20)-TaS2时,研究人员发现它非常稳定,与对应的碳嵌入化合物C8K相比较,它的表现更接近于盐而非金属的性质。同族的硫化物逐渐被证实具有相同特性,不但嵌入容量较高,化学性质稳定,而且在化学电池体系中反应可逆性良好。这一切都预示着:在层状二元硫化物中选出具有应用价值的材料作为锂二次电池的正极将是非常有可能的。最终二硫化钛(TiS2)以其优良表现得到电池设计者的青睐。

Exxon一直致力于锂金属二次电池的研究。1972年,他们设计了一种以TiS2,为正极、锂金属为负极、LiClO4/二恶茂烷为电解液的电池体系。实验表明,Li/TiS2迅电池的性能表现良好:与过量的锂金属阳极搭配,TiS2的稳定性能容许它深度循环接近1000次,每次循环损失低于0.05%。

这些研究成果公诸于众,很快说服了大批“听众”。但电池体系的循环效率却与理论值仍然相差甚远,实际电池寿命短、安全性能差等问题也接踵而来。充放电机理的研究表明,锂枝晶的生成是“罪魁祸首”。

充电过程中,由于金属锂电极表面凹凸不平,电沉积速率的差异造成不均匀沉积,导致树枝状锂晶体在负极生成。当枝晶生长到一定程度就会折断,产生“死锂”,造成锂的不可逆,使电池充放电实际容量降低。锂枝晶也有可能刺穿隔膜,将正极与负极连接起来,电池产生内短路。短路生成大量的热会令电池着火甚至发生爆炸。

1989年,因为Li/Mo2二次电池发生起火事故,除少数公司外,大部分企业都退出金属锂二次电池的开发。锂金属二次电池研发基本停顿,关键原因还是没有从根本上解决安全问题。

4.3锂离子电池时期

鉴于各种改良方案不奏效,锂金属二次电池研究停滞不前,研究人员选择了颠覆性方案。

第一种方案是抛弃锂金属,选择另一种嵌入化合物代替锂。这种概念的电池被形象地称为“摇椅式电池”。将这一概念产品化,花了足足十年的时间,最早到达成功彼岸的是日本索尼公司,他们把这项技术命名为“Li-ion” (锂离子技术)。

“摇椅式电池”是一种电池的设计概念,其创新之处在于:它用嵌入化合物代替了锂金属,电池两极都由嵌入化合物充当。这样,两边都有“空间”让锂离子嵌入,在充放电循环过程中,锂离子在正负电极来回“嵌入”与“脱嵌”,就像摇椅一样“摇摆”,因此得名。

4.4 锂聚合物电池时期

除了抛弃金属锂电极的第一种方案之外,研发人员还做出了另一种选择,那就是抛弃液体电解质的第二种方案,选择离子导电聚合物电解质取代液体电解质。聚合物电解质同时还兼有液态锂离子电池中隔膜的作用。按照锂电池中应用的不同,它大致可以划分成两种类型:(1)固体聚合物电解质,简称SPE s (2)凝胶聚合物电解质,简称GPE s

19世纪末期,Warburg发现一些固态化合物为纯离子导体。1975年,Wright等人发现聚氧化乙烯PEO 能够溶解无机盐并且在室温下表现出离子导电性。1978年,Armand首次将这种聚合物电解质作为锂电池电解质研究。当时,SPE s首先引起锂金属二次电池研发者的兴趣,因为SPE电解质层可以做得很薄,电池可做成任意形状而且防漏,并且可防止锂枝晶的形成,改善电池的循环性能。

但在Aanand最初提议之后的20年内,SPE s在没有在锂电池应用上取得实质性的进展。离子导电率不高是SPE s无法克服的障碍。没有良好的离子导电率,研发者难以知道各种嵌入型电极材料与SPE s的电化学稳定性如何,也无法得知SPE s在电池实际循环中的表现如何。

后来的研究指出,离子导电率不是让SPE s止步不前的唯一原因。1994年,Anderman发表了有关SPE s在锂电池中的应用前景评论,从电池设计到电池工程各个方面提出担忧。研究认为,即使当SPE s在机械强度、离子导电率、界面阻抗等方面的障碍都完全解决之后,SPE s要在锂电池领域广泛应用,依然要面对电极表面化学的问题。对SPE s的发展,没有乐观的理由。

由于离子导电偏低,当研究者们对SPE s一筹莫展的时候,他们发现当多余的有机溶剂作为增塑剂添加到SPE电解质中时,原来的固体的SPE电解质变成了像“果冻”那样的凝胶状电解质GPE s。GPE s许多特性都从液体电解质那里继承过来,除了离子导电性以外,与正负电极材料相交界面的电化学稳定性、安全性、机械耐受性都比SPE s优良,电池过充

电时的耐受性也比SPE s好。但由于聚合物在“凝胶状态”时的浓度不高,它机械强度不高,GPE材料的空间稳定性比不上SPE s。

1994年,Bellcore公司Tarascon小组申请专利,率先提出使用具有离子导电性的聚合物作为电解质制造聚合物锂二次电池。1996年,Tarascon等人报道了Bellcore/Telcordia商品化GPE电池性能与制备工艺。因为电池壳是由两层或者三层塑料薄膜加一层铝箔制成的塑料软包装袋,因此该电池也被称为“软包装锂离子电池”。它的外形不同于通常的纽扣型、圆柱型、棱柱型电池,它具有“胶卷’似的外形,使用这样一种薄膜电池技术产品,可以不受电池限制,设计成各种各样的形状。

事实上,除了Bellcore为代表的Li离子GPE电池以外,在决定采用GPE s作为锂电池的电解质之时,像Valence与Danionics等公司有在设计和制造Li锂属GPE电池体系上作努力,但是锂金属与GPE s结合的体系从来没有在量产规模下实现商品化,因为锂金属枝晶的问题依然存在。

5. 工程演化机制特点比较

5.1锂电池概念与锂原电池发展时期

能源危机与行业对能源的需求迫使人民寻找一种具有高能量密度的电源。锂电池概念与锂原电池的发展围绕高能量密度金属锂展开。由于锂在室温下与水反应速度比较慢,推动人们寻找一种新的“非水电解质”。最初提出Ag,Cu,Ni等卤化物作正极,低熔点金属盐LiCl-AlCl3溶解在丙烯碳酸脂(PC)中作为电解液。但其电化学性能无法达到要求于是研究者沿着两条路径摸索前进:一是“嵌入化合物”的电极材料;二是二氧化锰为代表的过渡金属氧化物。后者使锂电池首次实现了商业化。1970年,日美同时合成新型正极材料碳氟化物。发明者并未意识到,而后被证明是嵌入机理的引入。此阶段围绕“非水电解质”问题的解决展开,元系统通过解决“非水电解质”问题,从低电化学性能锂电池跃迁到一定领域内适用的一次锂电池

5.2 锂二次电池时期

在基本解决“非水电解质”难题后,学术界将目光集中在锂电池的“可逆性”问题上。而嵌入原理具有“可逆性”。通过对嵌入原理的研究深入,寻找具有应用价值的电极材料目标逐渐清晰。最终二硫化钛以其优良表现得到电池设计者的青睐。但锂的腐蚀与锂枝晶的存在引发安全问题成了设计者新的课题。此阶

段围绕“可逆性”问题展开,通过适应嵌入原理的电极材料使一次锂电池通过元系统跃迁到二次锂电池。但随之而来的是“安全性”的问题。

5.3锂离子电池时期

由于各种对于“安全性”的改良方案不凑效,锂金属二次电池的研究停滞,研究人员选择了颠覆性方案。一是抛弃锂金属,寻找替代品。但由于锂电极电势低的特点,让替代难度极大。最终寻找到尖晶石材料。此阶段的锂二次电池的“安全性”解决通过舍弃锂金属这个基础的要素,寻找替代品实现解决系统由锂二次电池跃迁到锂离子电池。

5.4 锂聚合物电池时期

对于“安全性”的另一种方案是选择离子导电聚合物电解质取代液体电解质。SPE s由于其性能欠缺被淘汰,GPE s 体系下解决了部分问题并保持较好的性能。此阶段的锂二次电池的“安全性”解决通过选择离子导电聚合物电解质取代液体电解质。锂二次电池跃迁到锂聚合物电池。

6.结论

锂电池的研究首先围绕高能量密度金属锂展开,在研究过程中遇到了“非水电解质”、“可逆性”、“安全性”问题,并通过对这三个问题解决寻找、合成新材料实现元系统的跃迁,从一次锂电池到二次锂电池到锂离子电池和锂聚合物电池。通过控制电池结构实现锂电池的发展,无疑是元系统跃迁的体现。不得不提的是,锂离子电池与锂聚合物电池都是锂二次电池的元系统跃迁的方向,未来可能其一会被取代,然而现在,两者的发展都较好。这证明元系统跃迁并非线性的,而是围绕一定期望发展的。而对于“安全性”问题无法解决时,通过颠覆性方案,推倒先前的研究成果,重新开始也具有一定的借鉴性意义。通过对锂电池发展跃迁的研究,我对于元系统跃迁理论有了一个更好的理解。

7. 参考文献

[1]黄彦瑜. 锂电池发展简史[J].物理学史和物理学家,2007,36(8):643-651

中国锂电池行业上下游产业链分析报告

深圳中企智业投资咨询有限公司

中国锂电池行业上下游产业链分析 (最新版报告请登陆我司官方网站联系) 公司网址: https://www.wendangku.net/doc/3a1131726.html, 1

目录 中国锂电池行业上下游产业链分析 (3) 第一节锂电池行业上下游产业链概述 (3) 第二节锂电池上游行业发展状况分析 (3) 一、上游原材料市场发展现状 (3) 1、正极材料 (4) 2、负极材料 (4) 3、电解液 (5) 4、隔膜 (6) 二、上游原材料供应情况分析 (6) 三、上游原材料价格走势分析 (7) 第三节锂电池下游行业需求市场分析 (7) 一、下游行业发展现状分析 (7) (1)手机市场 (8) (2)平板电脑和笔记本电脑市场 (8) (2)电动自行车市场 (9) 二、下游行业需求状况分析 (9) 三、下游行业需求前景分析 (10) 2

中国锂电池行业上下游产业链分析 第一节锂电池行业上下游产业链概述 锂电池上游是金属矿产资源,下游为各种数码产品、电动工具以及电动汽车行业。 图表- 1:锂电池行业产业链 锂电池上游材料包含正极材料、负极材料、电解液、隔膜以及其他材料,而其行业源头则为金属矿产资源行业。金属矿产资源行业为锂电池制造行业提供了锂、镍、锌等初始原料。 锂电池的下游客户包含电子产品行业、电动工具制造行业、新能源汽车制造业以及相关新能源存储行业。 除此之外,一个完整的锂电池产业链还应包括锂电池的回收利用。 第二节锂电池上游行业发展状况分析 一、上游原材料市场发展现状 目前中国在四大关键材料领域中,正极材料、负极材料和电解液都已逐步自给,只有隔膜材料还高度依赖进口,但是发展速度也非常快。 3

电池的发展

1780年的一天,意大利解剖学家伽伐尼在做青蛙解剖时,两手分别拿着不同的金属器械,无意中同时碰在青蛙的大腿上,青蛙腿部的肌肉立刻抽搐了一下,仿佛受到电流的刺激,而只用一种金属器械去触动青蛙,却并无此种反就。伽伐尼认为,出现这种现象是因为动物躯体内部产生的一种电,他称之为“生物电”。 伽伐尼的发现引起了物理学家们极大兴趣,他们竞相重复枷伐尼的实验,企图找到一种产生电流的方法,意大利物理学家伏特在多次实验后认为:伽伐尼的“生物电”之说并不正确,青蛙的肌肉之所以能产生电流,大概是肌肉中某种液体在起作用。为了论证自己的观点,伏特把两种不同的金属片浸在各种溶液中进行试验。结果发现,这两种金属片中,只要有一种与溶液发生了化学反应,金属片之间就能够产生电流。 1799年,伏特把一块锌板和一块银板浸在盐水里,发现连接两块金属的导线中有电流通过。于是,他就把许多锌片与银片之间垫上浸透盐水的绒布或纸片,平叠起来。用手触摸两端时,会感到强烈的电流刺激。伏特用这种方法成功的制成了世界上第一个电池──“伏特电堆”。这个“伏特电堆”实际上就是串联的电池组。它成为早期电学实验,电报机的电力来源。 意大利物理学家伏打就多次重复了伽伐尼的实验。实验证明,只要在两种金属片中间隔以用盐水或碱水浸过的硬纸、麻布、皮革或其它海绵状的东西,并用金属线把两个金属片连接起来,不管有没有青蛙的肌肉,都会有电流通过。这就说明电并不是从蛙的组织中产生的,蛙腿的作用只不过相当于一个非常灵敏的验电器而已。 1836年,英国的丹尼尔对“伏打电堆”进行了改良。他使用稀硫酸作电解液,解决了电池极化问题,制造出第一个不极化,能保持平衡电流的锌─铜电池, 1860年,法国的普朗泰发明出用铅做电极的电池。。 然而,无论哪种电池都需在两个金属板之间灌装液体,因此搬运很不方便,特别是蓄电池所用液体是硫酸,在挪动时很危险。 在1860年,法国的雷克兰士(GeorgeLeclanche)还发明了世界广受使用的电池(碳锌电池)的前身。 1887年,英国人赫勒森发明了最早的干电池。干电池的电解液为糊状,不会溢漏,便于携带,因此获得了广泛应用。 1890年Thomas Edison 发明可充电的铁镍电池 1896年在美国批量生产干电池 1896年发明D型电池. 1899年Waldmar Jungner 发明镍镉电池. (1902年5月28日,爱迪生今天宣布发明了一种新式蓄电池。这种电池比以前的铅酸电池重量轻,但使用寿命长。这位多产的发明家说,这种电池是用镍、铁和碱溶液制成的。它能使电力汽车与汽油发动机汽车相媲美。) 1910年可充电的铁镍电池商业化生产 1911年我国建厂生产干电池和铅酸蓄电池(上海交通部电池厂),1914年Thomas Edison 发明碱性电池. 1934年Schlecht and Akermann 发明镍镉电池烧结极板. 1947年Neumann 开发出密封镍镉电池. 1949年Lew Urry (Energizer) 开发出小型碱性电池. 1954年Gerald Pearson, Calvin Fuller and Daryl Chapin 开发出太阳能电池. 1956年Energizer.制造第一个9伏电池 1956年我国建设第一个镍镉电池工厂(风云器材厂(厂)) 1960前后Union Carbide.商业化生产碱性电池,我国开始研究碱性电池(西安庆华厂

锂电池行业发展现状及未来发展前景预测

锂电池行业发展现状及未来发展前景预测 Revised by Chen Zhen in 2021

2017年中国锂离子电池行业发展现状分析及未来发展前景预测 核心提示:全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争 全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争策略上关注技术领先。韩国更偏重于消费型锂离子电池的发展。中国锂离子电池市场规模在全球市场的份额呈现逐年上升的态势。 2010-2020年中国及全球锂电产值 数据来源:公开资料整理 国内锂离子电池市场的发展处于行业的高速增长期。2010年至2016年我国锂离子电池下游应用占比呈现消费型电池占比逐年下降、动力类占比逐年提升的格局。2016年受消费电子产品增速趋缓以及电动汽车迅猛发展影响,我国锂离子电池行业发展呈现出“一快一慢”新常态。2016年,我国电动汽车产量达到51.7万辆,带动我国动力电池产量达到33.0GWh,同比增长65.83%。随着储能电站建设步伐加快,锂离子电池在移动通信基站储能电池领域逐步推广,2016年储能型锂离子电池的应用占比达到4.94%。 2010-2016年我国锂离子电池下游应用占比 数据来源:公开资料整理 业务发展方向契合政策,发展前景良好。我国锂离子电池材料及设备行业平均利润水平总体上呈现平稳波动态势,在不同应用领域及细分市场行业利润水平存在差异。一般而言,在低端负极产品和涂布机领域,门槛低,竞争充分,利润水平相对较低。而中高端负极材料、涂布机以及新兴的涂覆隔膜、铝塑包装膜,产品技术含量高,在研发、工艺改善、客户积累、资金投入等方面进入壁垒较高,附加价值较高,优质企业能够在该领域获得较好的利润率水平。 全球负极材料产业集中度极高,江西紫宸全球份额持续提升。目前锂离子电池负极材料生产企业主要在中国和日本,两国总量占全球负极材料产销量

动力锂电池行业基本情况

动力锂电池行业基本情况

一、动力锂电池相关概念 1、电池行业整体结构 根据台湾工研院数据,2013 年全球电池市场規模为4589 亿元,其中一次性电池占907 亿元。各类电池中以铅酸电池市场规模最大,2013 年迖2535 亿元,2014 年略有增加预计为2605 亿元。二次电池中的镍氢电池的产值持平而镍镉电池产值降低较为明显,两者总收入在2013 年与2014 年的产值分别为170 亿元与161 亿元。而被寄予厚望用于电动汽车领域中的锂电池产值略有增加,在2013 年的销售收入为901 亿元,在2014 年的销售收入预计为926 亿元,同比增长2.7%。 2、动力锂电池按正极材料分类

锂电池依据用途的特性有多种分类,小型电池(消费电子)、动力电池、储能电池等。新能源汽车主要和动力锂电池相关。按照正极材料的划分,目前有三种比较成熟的动力锂电池技术路线,分别是磷酸铁锂(LFP)路线、锰酸锂(LMO+NCM)路线和三元材料(NCA)路线。目前各国走的电池路线大相径庭,日韩企业集中在锰酸锂与三元的混用体系,美国特斯拉采用的是日本的镍酸锂体系(NCA),中国主推的使磷酸铁锂体系。不同的电池技术路线对上述的五个关键指标表现出不一样,同样对整个配套系统的要求不同,导致使用的领域也存在较大差异。 上表中/C表示负极为石墨,/LTO表示负极为钛酸锂 3、动力锂电各主要技术路线的现状 从动力锂电池的技术现状来看,日本、韩国的企业基本以三元、锰酸锂或者其混合材料作为

动力电池首选正极材料,而中国企业大规模地采用磷酸铁锂。 锰酸锂系(LMO):主要采用LMO 作为正极材料,但一般经过改性处理,并混合少量NCM 或LNO 提高电池能量密度,主要代表厂商是LGC、AESC、LEJ 等,在中国主要是中信国安盟固利,目前已成为全球电动汽车领域的主流技术路线。 三元材料系(NCA/NCM):主要采用NCA 和NCM 作为正极材料,NCM电池能量密度高,但成本高于LMO 电池,主要代表厂商是SDI、SKI,在中国主要是ATL、力神、万向等;NCA 采用18650 型电池,主要应用于特斯拉,能量密度在目前是最高的,但由于安全性能较差,需要先进的BMS以监控电池工作状态,并未被广泛采用。 磷酸铁锂体系(LFP):美国和加拿大最先开始研发的磷酸铁锂材料技术,专利主要拥有者包括美国Valence、A123、加拿大Phostech 和魁北克水电公司。目前中国众多的动力电池厂商采用LFP 技术,代表厂商BYD、国轩高科、沃特玛等,在中国和美国推广使用。目前美国汽车厂

蓄电池的发展历史

1969年,美国登月计划实施,阀控式密封铅酸蓄电池和镉镍电池被列入月球车用动力电源,最后镉镍电池被采用,但密封铅酸蓄电池技术从此得到发展。1992 年,经过许多年努力并付出高昂代价的情况下,密封铅酸蓄电池得到了广大用户的认可。其基本特点是使用期间不用加酸加水维护,电池为密封结构,不会漏酸,也不会排酸雾,电池盖子上设有单向排气阀(也叫安全阀),该阀的作用是当电池内部气体量超过一定值(通常用气压值表示),即当电池内部气压升高到一定值时,排气阀自动打,排出气体,然后自动关阀,防止空气进入电池内部。 胶体电池属于铅酸蓄电池的一种发展分类,最简单的做法,是在硫酸中添加胶凝剂,使硫酸电液变为胶态。电液呈胶态的电池通常称之为胶体电池。 胶体电池与常规铅酸电池的区别,从最初理解的电解质胶凝,进一步发展至电解质基础结构的电化学特性研究,以及在板栅和活性物质中的应用推广。其最重要的特点为:用较小的工业代价,沿已有150年历史的铅酸电池工业路子制造出更优质的电池,其放电曲线平直,拐点高,比能量特别是比功率要比常规铅酸电池大20%以上,寿命一般也比常规铅酸电池长一倍左右,高温及低温特性要好得多。 胶体电池是目前世界上各项性能最优越的阀控式铅酸免维护蓄电池,它在使用时性能稳定,可靠性高,使用寿命长,具有以下的技术特点: 内部无游离的液体存在,无内部短路的可能。 采用无锑合金电池极板,电池自放电率极低.在20摄氏度下电池存放两年不需补充电. 长时间放电能力及循环放电能力强。 采用滑动密闭技术(德国阳光公司专利),即允许由电化学反应必然产生的电池使用后期的的极柱生长,又能保证其极高的密封性能。 电池厂家泰科源

锂离子电池和锂聚合物电池概述

18通信电源技术 761^00111?0霣打’1'枕|11|0|0#682002年10月第5期 能源技术 锂离子电池和锂聚合物电池概述 0*061^1 00 11161汕丨皿1~ !011831^30^ 1池1画沈63^ 郑如定 武汉洲际通信电源集团公司430035武汉 识1111811211011)1X61600111?0^61 811^1^ (^(^口’乙10. 摘要高比能量、长循环寿命的二次电池是电化学界专家致力研制对象。当前,安全可靠、有利于环保、高功率密度、体积小、重量轻的新型二次锂电池正被广泛应用。文中通过对新型 的锂离子电池、锂聚合物电池与铅酸电池、镍镉电池、镍氩电池等比较,突出了其优点;介绍了 新型的貍离子电池、锂聚合物电池的构成、工作原理、电极材料特性及发展前景。 关键词锂离子电池锂聚合物电池电极材料工作原理 分类号1财911 ^5511^01 7116 360011(131^ 1)^1161^ ^1111 3 名如 1)11 0&011(1 ^011^ 011^16 11(6 16 #116 0^601 1636810116|1^6160100―01161010811^0^3^8^8,111600^6111(111111111)81161^“1186(1?01 11 18 88(6 311(11^1181)16^ 60)311 811汾 12名1)1,客00(1 101-6211110111116111 ^016^11011 评I'出乂名如口0界611 ^611311^ ^『101110010^)81180115 1^61^6611 110761 11~10111)31161^,11(11111111只1)31161^如。1^9^ ~ 8011^11101561~0&011111)111161113^^81113^6 15 旧名卜衫名“鉍丄1116 8180 11111-0(111069 11)6 00111^08111011 ^0^61~311011 卩『把亡七匕0? 1)16 110^*1 11~1011 1)31(61^ 311(11|~只01^1!167 1)81161^ 311(11|16 01181-8016081108 0?山6斤6160170(16 1113161181 311(1 1116^ ^01^5 11-100 1)81161^,1!~ 00&11161 1)311衍了,61601?0^6 111816081^ 0^1811011 ^011011)16 自1859年0381011?丨抑化提出铅酸电池概念以来,化学电源界一直在研制新的髙比能量、长循环寿命的二次电池,经历了铅酸电池、键镉电池、镍氢电池、锂离子电池、锂聚合物电池几个阶段。 镍镉电池电路简单,充电速度较快I能承载较大电流。但由于镍镉电池重、储电量小、污染性强,加之具有记忆效应,此类电池正逐步退出 主流市场。 镍氢电池不含有镉金属,分解后对环境的污 染很小,是一种安全可靠、有利于环保的电池。它的贮能密度比旧式镍镉电池高一倍,比新式镍 收稿镉电池高30^~509^,用于移动电话中可使通 话时间延长30亨6。不过,这种电池和镍镉电池 一样,也有记忆功能,不过没有那么明显。镍氧电池储电量较大,待机时间长,价格适中,基本上可以满足一般用户的需求。 近年来,重量轻、能量大、自放电率低的二次锂电池在市场出现,备受广大消费者的欢迎。目前,投人市场的二次锂电池也多为锂离子电池 和裡聚合物电池。 1(液态丨锂离子电池 1.1锂离子电池基本原理 现在被广泛使用的锂离子电池是由锂电池发 展而来的。锂离子电池的正极材料是氧化钻锂

锂电池行业分析

锂电池行业分析 一、锂电池简介 锂离子电池(Lithium IonBattery,缩写为LIB),又称锂电池。锂电池分为液态锂离子电池(LIB)和聚合物锂离子电池(PLB)2 类。其中,液态锂离子电池是指Li+ 嵌入化合物为正、负极的二次电池。电池正极采用锂化合物L i C o O 2 或LiMn2O4,负极采用锂- 碳层间化合物。锂电池是迄今所有商业化使用 的二次化学电源中性能最为优秀的电池,这也是促进锂电池用于电动助力车的一个关键因素。 (一)比能量高 无论是体积比能量,还是重量比能量,锂电池均比铅酸蓄电池高出三倍以上。由此决定了锂电池体积更小、重量更轻,其市场消费感觉很好。 (二)循环寿命长 锂电池用于电动助力车的循环寿命一般在800 次以上,采用磷酸铁锂正极材料的锂电池可以达到2000 次左右,超出铅酸蓄电池1.5倍至5倍以上。这大大降低了锂电池的使用成本,提高了消费者的使用便利程度。 (三)具有较宽的充电功率范围 这是锂电池具有的独特优势。在需要时,可以使充电时间控制在20~60min,充电效率达到85% 以上。在进一步技术创新的基础上,这一特性得到更好的发挥,可以具有很好的商业价值。 (四)倍率放电性能好 锂电池的倍率放电可以达到10倍率以上,特殊制作可以达到30倍率。这一特性非常有利于电动助力车的智能控制骑行技术的发展。只是目前对这一特性尚未有很好的开发与利用。 我国锂离子电池产量全球第一,生产量占世界总量的1/3以上,100多家锂电生产企业对锂离子电池材料需求殷切,不少厂商都计划在今后2 年内把产量大幅提高。目前,中国锂电制造企业形成了液态锂电池以比亚迪为首,聚合物锂电以TCL 电池为首的两大巨头。TCL电池完成了聚合物锂离子电芯从技术研发到大规模生产的全过程,并且迅速走到了这项技术的最前沿。TCL 生产的聚合物锂电芯在电池电化学阻抗、能量密度、高低温放电等方面均已跻身世界一流行列,比亚迪是液态锂离子电池的老大,而TCL 则是新一代聚合物锂离子电池的老大,聚合物锂电

电池的发展史

电池的发展史 电池发展历史 1800年 Alessandro Volta 发明世界上第一个电池、 1802年 Dr、 William Cruikshank 设计了第一个便于生产制造的电池、 1836年 John Daniell 为提供稳定的放电电流,对电池做了改进 1859年 Gaston Planté发明可充电的铅酸电池、 1868年 George Leclanché开发出使用电解液的电池 1881年 J、 A、 Thiebaut 取得干电池专利、 1888年 Dr、 Gassner 开发出第一个干电池、 1890年 Thomas Edison 发明可充电的铁镍电池 1896年 在美国批量生产干电池 1896年 发明D型电池、 1899年 Waldmar Jungner 发明镍镉电池、 1910年 可充电的铁镍电池商业化生产 1911年 我国建厂生产干电池与铅酸蓄电池(上海交通部电池厂) 1914年 Thomas Edison 发明碱性电池、 1934年 Schlecht and Akermann 发明镍镉电池烧结极板、 1947年 Neumann 开发出密封镍镉电池、 1949年 Lew Urry (Energizer) 开发出小型碱性电池、 1954年 Gerald Pearson, Calvin Fuller and Daryl Chapin 开发出太阳能电池、1956年 Energizer、制造第一个9伏电池 1956年 我国建设第一个镍镉电池工厂(风云器材厂(755厂)) 1960前后

Union Carbide、商业化生产碱性电池,我国开始研究碱性电池(西安庆华厂等三家合作研发) 1970前后 出现免维护铅酸电池、 1970前后 一次锂电池实用化、 1976年 Philips Research的科学家发明镍氢电池、 1980前后 开发出稳定的用于镍氢电池的合金、 1983年 我国开始研究镍氢电池(南开大学) 1987年 我国改进镍镉电池工艺,采用发泡镍,电池容量提升40% 1987前 我国商业化生产一次锂电池 1989年 我国镍氢电池研究列入国家计划 1990前 出现角型(口香糖型)电池, 1990前后 镍氢电池商业化生产、 1991年 Sony、可充电锂离子电池商业化生产 1992年 Karl Kordesch, Josef Gsellmann and Klaus Tomantschger 取得碱性充电电池专利 1992年 Battery Technologies, Inc、生产碱性充电电池 1995年 我国镍氢电池商业化生产初具规模 1999年 可充电锂聚合物电池商业化生产 2000年 我国锂离子电池商业化生产 2000后 燃料电池,太阳能电池成为全世界瞩目的新能源发展问题的焦点 电池的发展史由1836年丹尼尔电池的诞生到1859年铅酸电池的发明,至1883年发明了氧化银电池,1888年实现了电池的商品化,1899年发明了镍-镉电池,1901年发明了镍-铁电池,进入20世纪后,电池理论与技术处于一度停滞时期。但在第二次世界大战之后,电池技术又进入快速发展时期。首先就是为了适应重负荷用途的需要,发展了碱性锌锰电池,1951年实现了镍-镉电池的密封化。1958年Harris提出了采用有机电解液作为锂一次电池的电解质,20世纪70年代初期便实现了军用与民用。随后基于环保考虑,研究重点转向蓄电池。镍-镉电池在20世纪初实现商品化以后,在20世纪80年代得到迅速发展。 随着人们环保意识的日益增加,铅、镉等有毒金属的使用日益受到限制,因此需要寻找新的可代替传统铅酸电池与镍-镉电池的可充电电池。锂离子电池自然成为有力的候选者之一。

锂电池行业综述报告

锂电池行业综述报告 一、锂电池分类和结构 锂电池主要是指在电极材料中使用了锂元素作为主要活性物质的一类电池,包括锂原电池与锂二次电池。锂原电池是不能充电重复使用的,二次电池是可以多次充放电使用的。锂原电池主要有锂锰电池、锂硫电池、锂亚硫酰氯电池、锂硫酰氯电池等。手表、计算器、计算机主板CMOS 中用到的3V 锂电池,主要是锂锰电池。而通常所说的锂电池,如手机锂电池,笔记本锂电池,属于锂二次电池。锂二次电池中最常见,也是应用最广泛的是锂离子二次电池,简称锂离子电池。 由于锂离子电池具备可反复充放电的性质,而且在其工作过程中碳排放为零,因此在日常生活中,特别是大型储能设备如车载用电池中得到广泛应用。另外,由于锂离子电池环保安全及循环使用的特点,在电动工具、电动车、路灯备用电源、大型电力储能设备以及手机、数码相机、笔记本计算机等电子产品中得到广泛应用,本文将重点着力于介绍锂离子电池。 锂离子电池在结构上主要有五大块:正极、负极、电解液、隔膜、外壳与电极引线。电池部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由钴酸锂(或镍钴锰酸锂、锰酸锂、磷酸亚铁锂等)及铝箔组成的电流收集极。负极由石墨化碳材料和铜箔组成的电流收集极组成。电池充有有机电解质溶液。另外还装有安全阀和PTC 元件(正温度系数热敏电阻),以便电池在不正常状态及输出短路时保护电池不受损坏。单节锂电池的电压为3.7V(磷酸亚铁锂正极的为3.2V)。由于电池容量也不可能无限大,因此常常将单节锂电池进行串、并联处理,以满足不同场合的要求。

(一)正极材料 1.钴酸锂(LiCoO2) 钴酸锂也是目前应用最为广泛的正极材料,钴产生3.9V 的电压平台,对钴酸锂而言,对应于其理论容量,高达274mAh/g,实际容量可达155mAh/g,具有很高的能量密度。主要应用于便携电池领域:如手机、PDA、移动DVD、MP3/MP4和笔记本电脑等。 2.镍酸锂(LiNiO2) 在镍酸锂电池中,化学离子对Ni4+/Ni3+可产生3.75V 的电压平台,提供接近200mAh/g 的循环容量。但在实际中,很难得到这个结果。首先在高温下,由于Li的挥发,很难合成化学计量比LiNiO2,高温时六方相的LiNiO2 晶体很容易转变为立方相的LiNiO2 晶体。这种锂镍置换的立方的没有电化学活性,而且该反应的逆过程很慢并且不完全。此外在充放电过程中,LiNiO2 还可能发生其他一系列的结构变化,而导致嵌锂容量的损失。因此实际上镍酸锂无太大实用价值。 3.镍钴二元复合材料 考虑到钴酸锂价格昂贵,镍酸锂合成困难,研究人员开发出镍钴二元材料结合了二者的优点,用价格相对低廉的镍替代部分钴,合成具有LiCoO2 一样的优良电化学性能的正极材料,那么将具有广阔的应用前景。

电池的起源和发展史

电池的起源和发展史 电池的诞生,基于人们对于获取持续而稳定的电流的需要。不过,电池的发明,是来源于一次青蛙的解剖实验所产生的灵感,多少有些偶然。1780年的一天,意大利解剖学家伽伐尼(Luigi Galvani)在做青蛙解剖时,两手分别拿着不同的金属器械,无意中同时碰在青蛙的大腿上,青蛙腿部的肌肉立刻抽搐了一下,仿佛受到电流的刺激,而如果只用一种金属器械去触动青蛙,就无此种反应。伽伐尼认为,出现这种现像是因为动物躯体内部产生的一种电,他称之为“生物电”。伽伐尼的发现引起了物理学家们的极大兴趣,他们竞相重复伽伐尼实验,企图找到一种产生电流的方法。而意大利物理学家伏特(Alessandro Volta)在多次实验后则认为:青蛙的肌肉之所以能产生电流,大概是肌肉中某种液体在起作用。为了论证自己的观点,伏特把两种不同的金属片浸在各种溶液中进行试验。结果发现,这两种金属片中,只要有一种与溶液发生了化学反应,金属片之间就能够产生电流。1799年,伏特成功制成了世界上第一个电池“伏特电堆”。这个“伏特电堆”实际上就是串联的电池组。1836年,英国的丹尼尔对“伏特电堆”进行了改良,又陆续有效果更好的“本生电池”和“格罗夫电池”等问世。然而在当时,无论哪种电池都需在两个金属板之间灌装液体,搬运很不方便,特别是蓄电池所用液体是硫酸,在挪动时很危险。 干电池的诞生。干电池的鼻祖在19世纪中期诞生。1860年,法国的雷克兰士(George Leclanche)发明了碳锌电池,这种电池更容易制造,且最初潮湿水性的电解液,逐渐被黏浊状类似糨糊的方式取代,于是装在容器内时,“干”性电池出现了。1887年,英国人赫勒森(Wilhelm Hellesen)发明了最早的干电池。相对于液电池而言,干电池的电解液为糊状,不会溢漏,便于携带,因此获得了广泛应用。如今,干电池已经发展成为一个庞大的家族,种类达100多种。常见的有普通锌锰干电池、碱性锌-锰干电池、镁-锰干电池等。不过,最早发明的碳锌电池依然是现代干电池中产量最大的电池。在干电池技术的不断发展过程中,新的问题又出现了。人们发现,干电池尽管使用方便、价格低廉,但用完即废,无法重新利用。另外,由于以金属为原料容易造成原材料浪费,废弃电池还会造成环境污染。于是,能够经过多次充电放电循环,反复使用的蓄电池成为新的方向。事实上,蓄电池的最早发明同样可以追溯到1860年。当年,

锂电池行业研究报告

锂电池行业分析 目录 一、锂电池概述 (2) 1、锂电池构成 (2) 2、锂电池产业链 (2) 二、锂电池行业生命周期 (3) 三、锂电池行业市场现状 (4) 1、3C类产品锂电池市场 (4) 2、新能源汽车锂电池市场 (4) 四、锂电池主要材料行业市场现状 (5) 1、正极材料 (6) 2、负极材料 (8) 3、隔膜材料 (10) 4、电解液 (10) 五、锂电池材料技术特点及技术趋势 (11) 六、动力电池市场前景 (12) 1、国家对汽车动力电池的产能门槛要求 (12) 2、动力电池技术发展路线 (13) 3、纯电动汽车发展 (13) 4、锂电池的竞争格局 (14)

一、锂电池概述 1、锂电池构成 锂离子电池:是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。电池一般采用含有锂元素的材料作为电极,是现代高性能电池的代表。 锂电池材料主要由正极材料、负极材料、隔膜和电解液四大材料组成,此外还有电池外壳。 2、锂电池产业链 锂电池产业链经过二十年的发展已经形成了一个专业化程度高、分工明晰的产业链体系。 正负极材料、电解液和隔膜等材料厂商为锂离子电池产业链的上游企业,为锂离子电芯厂商提供原材料。 电芯厂商使用上游电芯材料厂商提供的正负极材料、电解液和隔膜生产出不同规格、不同容量的锂离子电芯产品;模组厂商根据下游客户产品的不同性能、使用要求选择不同的锂离子电芯、不同的电源管理系统方案、不同的精密结构件、不同的制造工艺等进行锂离子电池模组的设计与生产。

锂离子电池基本知识

锂离子二次电池简介 概述: 锂离子二次电池是指Li+嵌入化合物为正、负极的二次电池,正极采用锂化合 物LiCoO 2、LiMn 2 O 4 ,负极采用锂—碳层间化合物Li x C 6 ,电解质为溶解有锂盐LiPF 6 、 LiAsF 6 等的有机溶液。在充、放电过程中,Li+在两个电极之间往返嵌入和脱嵌,被形象地称为“摇椅电池”(Rocking Chair Batteries,缩写为RCB)。锂离子二次电池由于工作电压高(3.6V)、无记忆效应、无污染、自放电小、循环寿命长,在移动电话、摄相机、笔记本电脑、便携式电器上得到大量应用。 一、工作原理 1、化学反应方程式 锂离子电池正极主要成分为LiCoO 2 ,负极主要为C,充电时 正极反应:LiCoO 2 Li ( 1-x) CoO 2 + xLi+ + xe- 负极反应:C + xLi+ + xe- CLi x 电池总反应:LiCoO 2 + C Li ( 1-x) CoO 2 + CLix 放电时发生上述反应的逆反应。 2、化学反应原理图 二、命名 根据IEC61960标准二次锂电池的标识如下: 1. 电池标识组成3个字母后跟5个数字(圆柱形)或6个(方形数字); 2. 第一个字母表示电池的负极材料:I表示有内臵电池的锂离子,L表示锂金属电 极或锂合金电极; 3. 第二个字母表示电池的正极材料:C基于钴的电极,N基于镍的电极,M基于锰 的电极V基于钒的电极; 4. 第三个字母表示电池的形状:R表示圆柱形电池,P表示方形电池;

5. 数字:圆柱形电池5个数字分别表示电池的直径和高度,直径的单位为毫米,高度 的单位为十分之一毫米,直径或高度任一尺寸大于或等100mm时两个尺寸之间应加 一条斜线。方型电池6个数字分别表示电池的厚度、宽度和高度,单位均为毫米, 三个尺寸任一个大于或等于100mm时尺寸之间应加斜线,三个尺寸中若有任一小于 1mm,则在此尺寸前加字母t,此尺寸单位为十分之一毫米。 例如: ICR18650:表示一个圆柱形二次锂离子电池正极材料为钴其直径约为18mm高约为 65mm。 ICR20/1050 ICP083448:表示一个方形二次锂离子电池正极材料为钴,其厚度约为8mm,宽度约 为34mm,高约为48mm。 ICP08/34/150:表示一个方形二次锂离子电池正极材料为钴其厚度约为8mm,宽度约 为34mm,高约为150mm。 ICPt73448:表示一个方形二次锂离子电池正极材料为钴其厚度约为0.7mm,宽度约 为34mm,高约为48mm。 三、组成结构 1、正极 正极材料一般由钴酸锂、导电石墨、碳黑、粘接剂、溶剂等组成。 2、负极 负极材料一般由碳黑、粘接剂、溶剂等组成。 3、隔膜纸 隔膜纸由PP、PE复合膜组成,厚度一般为25微米,国内有些厂家也有用16 微米的,著名的生产厂家有日本UBE。 4、电解液 电解液为溶解有锂盐LiPF 6、LiAsF 6 等的有机溶液,常用的有机溶液有EC(碳 酸乙烯酯)、DEC(二乙基碳酸)、DMC(二甲基碳酸)等。 5、绝缘垫片 6、外壳 有钢壳和铝壳。 四、制造工艺

锂硫电池综述

高性能锂硫电池的研究进展 摘要:目前传统的锂离子电池在电子产品中发挥着重要作用。然而受到其较低的理论比容量的限制(约150~200Wh/kg),锂离子电池将难以满足人类发展的长远需求,例如电动汽车行业的发展。锂硫电池的理论能量密度为2600Wh/kg,是锂离子二次电池的3~5倍,是极具应用前景的电化学储能体系,近年来引起了研究人员的广泛关注。人们提高电极导电性、维持电极结构稳定性、提高硫的负载率和利用率以及加强电池循环寿命等方面开展了大量的研究工作。本文将就近几年锂硫电池的发展进行相关介绍和讨论。 关键词:锂硫电池正极材料纳米结构材料改性电解质电池结构 Research progress in High-Performance Lithium-Sulphur Batteries Ren Guodong (School of Metallurgy and Environment, Central South University,0507110402) Abstract:Lithium-ion batteries has played an important role in the electronics at present.But due to its low theoretical energy density ,which is only 150~200Wh/kg,therefore the lithium-ion batteries cannot meet the long-term needs of society in the future,just in the case of the development of electric vehicles.Lithium-sulphur battery is a promising electrochemical energy storage system which has high theoretical energy density of 2600Wh/kg,that is 3~5 times to lithium-ion battery.And it has arised more and more attentions recently.Great efforts have been made by reseachers to improve the conductivity of the electrode , the stability of electrode structure,the loading capicity of sulphur ,the utilization efficiency of sulfur in the cathode and the enhancement of cycle life of the battery.In this paper,the recent research of lithium-sulphur battery will be analyzed and discussed. Keywords:lithium-sulphur battery cathode material nano-structure modification electrolyte cell configuration 1.前言 电能储存技术和设备将会在未来社会发展中成为一项十分重要的需求。传统

波特五力模型分析动力锂电池行业及其战略群组概要

动力锂电池,是以锂离子电池为材料的一种高能量密度电池。磷酸铁锂具有很好的安全性能,因而是目前最理想的动力汽车用锂电正极材料。我国车企推出的纯电动车车型中,动力电池均为锂电池,奇瑞、比亚迪使用的均是磷酸铁锂。磷酸铁锂是引发锂电革命行业的一种新兴材料,是锂电池行业发展的最前沿。 下面将用波特五力模型分析动力锂电池行业: (一新进入者的威胁 新进入者在给行业带来新生产能力、新资源的同时,将希望在已被现有企业瓜分完毕的市场中赢得一席之地,这就有可能会与现有企业发生原材料与市场份额的竞争,最终导致行业中现有企业盈利水平降低,严重的话还有可能危及这些企业的生存。 磷酸铁锂行业有一定的门槛,不是谁来做就会做成功的,尤其是材料领域,技术壁垒很高,可以避免太多的竞争。作为新进入这个产业的企业,选择做材料可能要比做电池更为明智,因为现有的一些锂电池厂商很多,尤其是大厂的地位很难撼动,他们切入到磷酸铁锂电池更具优势。 由于制造动力电池涉及到电芯的组合,必须保证电芯的一致性,这样对电池的生产设备提出了更高更专业的要求,所以设备资金投入很大,一般来说,建设一条磷酸铁锂电芯生产线至少需要5000万元的启动资金。创业企业在进入这一领域有一定的 难度,传统的电池生产企业将具有较大的优势。 (二供应商的议价能力 供方主要通过其提高投入要素价格与降低单位价值质量的能力,来影响行业中现有企业的盈利能力与产品竞争力。 锂离子电池的性能主要取决于正负极材料,其安全性能与循环寿命是其它材料所无法相比的,这些也正是动力电池最重要的技术指标。磷酸铁锂正极材料做出大

容量锂离子电池更易串联使用。以满足电动车频繁充放电的需要。具有无毒、无污染、安全性能好、原材料来源广泛、价格便宜,寿命长等优点。 目前磷酸铁锂材料全球可查的产能是1500吨,如果按照未来5年内年产100万辆电动汽车的需求,每年就需要6万吨磷酸铁锂,潜在的供需缺口非常大,锂电池原材料之一是电解液,电解液约占锂电池成本12%,毛利率约40%,是锂电 产业链中盈利能力较强的环节之一。目前全国产能约 1.8万吨,供需基本平衡。 我国磷酸铁锂原材料丰富,价格低廉,这对于磷酸铁锂产业是一个极大的利好。 (三购买商的议价能力 购买者主要通过其压价与要求提供较高的产品或服务质量的能力,来影响行业中现有企业的盈利能力。 (1目前中国大陆锂电池产业正处于优胜劣汰的发展过程,唯具有技术和品牌优势的厂家,才有机会获得更大的市场空间。 (2电芯生产由于生产工艺和技术相对成熟,在有稳定的正极材料货源情况下,国内大部分锂离子电池厂商均能生产出磷酸铁锂电芯。 (四替代品的威胁 两个处于不同行业中的企业,可能会由于所生产的产品是互为替代品,从而在它们之间产生相互竞争行为,这种源自于替代品的竞争会以各种形式影响行业中现有企业的竞争战略 随着补贴和充电便利性的解决,新能源汽车市场将出现爆发式增长,而随着新能源汽车规模的迅速扩大,对动力电池、电机、电控等的需求也将显著增加,这有望成为未来10年行业增长的核心驱动因素。这其中,动力电池的性能对新能源汽车的发展

电池的简介及发展历程

电池的简介及发展历程 发布时间:2010-2-2 浏览人数:102人【返回列表】 电池概念: 电池就是把化学能量转化为电能的储存装置。它通过反应将化学能或物理能转化为电能。电池即一种化学电源,它由两种不同成分的电化学活性电极分别组成正负极,两电极浸泡在能提供媒体传导作用的电解质中,当连接在某一外部载体上时,通过转换其内部的化学能来提供能。作为一种电的贮存装置,当两种金属浸没于电解液之中,它们可以导电,并在“极板”之间产生一定电动势。电动势大小与所使用的金属有关,不同种类的电池其电动势也不同。 电池的性能参数主要有电动势、容量、比能量和电阻。电动势等于单位正电荷由负极通过电池内部移到正极时,电池非静电力(化学力)所做的功。电动势取决于电极材料的化学性质,与电池的大小无关。电池所能输出的总电荷量为电池的容量,通常用安培小时作单位。在电池反应中,1千克反应物质所产生的电能称为电池的理论比能量。电池的实际比能量要比理论比能量小。因为电池中的反应物并不全按电池反应进行,同时电池内阻也要引起电动势降,因此常把比能量高的电池称做高能电池。电池的面积越大,其内阻越小。 电池的能量储存有限,电池所能输出的总电荷量叫做它的容量,通常用安培小时作单位,它也是电池的一个性能参数。电池的容量与电极物质的数量有关,即与电极的体积有关。 实用的化学电池可以分成两个基本类型:原电池与蓄电池。原电池制成后即可以产生电流,但在放电完毕即被废弃。蓄电池又称为二次电池,使用前须先进行充电,充电后可放电使用,放电完毕后还可以充电再用。蓄电池充电时,电能转换成化学能;放电时,化学能转换成电能。 电池的发展史 1780年的一天,意大利解剖学家伽伐尼在做青蛙解剖时,两手分别拿着不同的金属器械,无意中同时碰在青蛙的大腿上,青蛙腿部的肌肉立刻抽搐了一下,仿佛受到电流的刺激,而只用一种金属器械去触动青蛙,却并无此种反就。伽伐尼认为,出现这种现象是因为动物躯体内部产生的一种电,他称之为“生物电”。 伽伐尼的发现引起了物理学家们极大兴趣,他们竞相重复枷伐尼的实验,企图找到一种产生电流的方法,意大利物理学家伏特在多次实验后认为:伽伐尼的“生物电”之说并不正确,青蛙的肌肉之所以能产生电流,大概是肌肉中某种液体在起作用。为了论证自己的观点,伏特把两种不同的金属片浸在各种溶液中进行试验。结果发现,这两种金属片中,只要有一种与溶液发生了化学反应,金属片之间就能够产生电流。 1799年,伏特把一块锌板和一块银板浸在盐水里,发现连接两块金属的导线中有电流通过。于是,他就把许多锌片与银片之间垫上浸透盐水的绒布或纸片,平叠起来。用手触摸两端时,会感到强烈的电流刺激。伏特用这种方法成功的制成了世界上第一个电池──“伏特电堆”。这个“伏特电堆”实际上就是串联的电池组。它成为早期电学实验,电报机的电力来源。 意大利物理学家伏打就多次重复了伽伐尼的实验。实验证明,只要在两种金属片中间隔以用盐水或碱水浸过的硬纸、麻布、皮革或其它海绵状的东西,并用金属线把两个金属片连接起来,不管有没有青蛙的肌肉,都会有电流通过。这就说明电并不是从蛙的组织中产生的,蛙腿的作用只不过相当于一个非常灵敏的验电器而已。 1836年,英国的丹尼尔对“伏打电堆”进行了改良。他使用稀硫酸作电解液,解决了电池极化问题,制造出第一个不极化,能保持平衡电流的锌─铜电池, 1860年,法国的普朗泰发明出用铅做电极的电池。。 然而,无论哪种电池都需在两个金属板之间灌装液体,因此搬运很不方便,特别是蓄电池所用液体是硫酸,在挪动时很危险。 在1860年,法国的雷克兰士(GeorgeLeclanche)还发明了世界广受使用的电池(碳锌电池)的前身。 1887年,英国人赫勒森发明了最早的干电池。干电池的电解液为糊状,不会溢漏,便于携带,因此获得了广泛应用。 1890年Thomas Edison 发明可充电的铁镍电池

2017年中国锂电池行业发展现状及未来发展前景预测

2017年中国锂离子电池行业发展现状分析及未来发展前景预测 核心提示:全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争 全球锂离子电池行业呈现三国鼎立的竞争格局。由于整个二次电池的产业链几乎已经转移至亚洲,在中国、日本、韩国相继扩大生产的背景下,2016年中国、韩国、日本三国占据了全球锂电池电芯产值总量的98.11%。三国的竞争策略各不相同。日本竞争策略上关注技术领先。韩国更偏重于消费型锂离子电池的发展。中国锂离子电池市场规模在全球市场的份额呈现逐年上升的态势。 2010-2020年中国及全球锂电产值 数据来源:公开资料整理 国内锂离子电池市场的发展处于行业的高速增长期。2010年至2016年我国锂离子电池下游应用占比呈现消费型电池占比逐年下降、动力类占比逐年提升的格局。2016年受消费电子产品增速趋缓以及电动汽车迅猛发展影响,我国锂离子电池行业发展呈现出“一快一慢”新常态。2016年,我国电动汽车产量达到51.7万辆,带动我国动力电池产量达到33.0GWh,同比增长65.83%。随着储能电站建设步伐加快,锂离子电池在移动通信基站储能电池领域逐步推广,2016年储能型锂离子电池的应用占比达到4.94%。 2010-2016年我国锂离子电池下游应用占比 数据来源:公开资料整理 业务发展方向契合政策,发展前景良好。我国锂离子电池材料及设备行业平均利润水平总体上呈现平稳波动态势,在不同应用领域及细分市场行业利润水平存在差异。一般而言,在低端负极产品和涂布机领域,门槛低,竞争充分,利润水平相对较低。而中高端负极材料、涂布机以及新兴的涂覆隔膜、铝塑包装膜,产品技术含量高,在研发、工艺改善、客户积累、资金投入等方面进入壁垒较高,附加价值较高,优质企业能够在该领域获得较好的利润率水平。 全球负极材料产业集中度极高,江西紫宸全球份额持续提升。目前锂离子电池负极材料生产企业主要在中国和日本,两国总量占全球负极材料产销量90%以上。负极材料产品市场呈现出明显的寡头垄断格局。2015年前五强贝特瑞、日立化成、江西紫宸、上海杉杉、三菱化学的全球市场份额分别是20%、18%、13%、10%、7%,全球前五大企业市场份额合计占比为68%。江西紫宸2016年全球份额提升至10.5%,国内份额提升至14.8%,预计2017年

相关文档