文档库 最新最全的文档下载
当前位置:文档库 › 基于Copula理论的计及输入随机变量相关性的概率潮流计算_看图王

基于Copula理论的计及输入随机变量相关性的概率潮流计算_看图王

基于Copula理论的计及输入随机变量相关性的概率潮流计算_看图王
基于Copula理论的计及输入随机变量相关性的概率潮流计算_看图王

电力系统计算程序设计(包含源程序)

电力系统计算程序设计(包含matlab源程序)

广西大学电气工程学院 2007年1月 第一章原始数据 电力系统原始数据是电力系统计算的基础。电力系统每个计算程序都要求输入一定的原始数据,这些数据可以反映电力网络结构、电力系统正常运行条件、电力系统各元件参数和特性曲线。不同的计算程序需要不用的原始数据。 第一节电力网络的描述 电力网络是由输电线路、电力变压器、电容器和电抗器等元件组成。这些元件一般用集中参数的电阻、电抗和电容表示。为了表示电力网络中各元件是怎样互相连接的,通常要对网络节点进行编号。电力网络的结构和参数由电力网络中各支路的特性来描述。 1.1.1 线路参数 在电力系统程序设计中,线路参数一般采用线路的Π型数学模型,即线路用节点间的阻抗和节点对地容性电纳来表示,由于线路的对地电导很小,一般可忽略不计。其等价回路如下: r+jx -jb/2 对于线路参数的数据文件格式一般可写为: 线路参数(序号,节点i,节点j,r,x,b/2) 1.1.2 变压器参数

在电力系统程序设计中,变压器参数一般采用Π型等值变压器模型,这是一种可等值地体现变压器电压变换功能的模型。在多电压级网络计算中采用这种变压器模型后,就可不必进行参数和变量的归算。双绕组变压器的等值回路如下: k Z T k:1 Z T (a)接入理想变压器后的等值电路(b) 等值电路以导纳表示 (c) 等值电路以导纳表示 三绕组变压器的等值回路如下: 综合所述,三绕组变压器的等值电路可以用两个双绕组变压器的等值电

路来表示。因此,对于变压器参数的数据文件格式一般可写为:变压器参数(序号,节点i,节点j,r,x,k0) 其中,k0表示变压器变比。 1.1.3对地支路参数 对地支路参数一般以导纳形式表示,其等价回路如下: i g-jb 对地支路参数的数据文件格式一般可写为: 接地支路参数(序号,节点i,g i,b i) 第二节电力系统运行条件数据 电力系统运行条件数据包括发电机(含调相机)所连接的节点号、有功与无功功率;负荷所连接的节点号、有功与无功功率;PV节点与给定电压值;平衡节点的节点号与给定电压值。 1.2.1节点功率参数 电力系统中有流入流出功率的称为功率节点,有流入功率的称发电节点,一般为各发电站、枢纽变电站等节点;有流出功率的称负荷节点。对于电力系统稳态计算来说,功率节点都用有功功率P和无功功率Q来简单表示。其等价回路如下: Q G P G P L Q L 节点功率参数的数据文件格式一般可写为:

潮流计算的计算机算法

第四章潮流计算的计算机算法 第一节概述 潮流计算是电力系统最基本、最常用的计算。根据系统给定的运行条件、网络接线及元件参数,通过潮流计算可以确定各母线的电压(幅值及相角),各元件中流过的功率、整个系统的功率损耗等。潮流计算是实现电力系统安全经济发供电的必要手段和重要工作环节。因此潮流计算在电力系统的规划设计、生产运行、调度管理及科学研究中都有着广泛的应用。 电力系统潮流计算分为离线潮流计算和在线潮流计算。前者主要用于系统规划设计和安排系统的运行方式,后者则用于正在运行系统的经常监视及实时控制。本章主要讨论离线潮流计算问题,它的基本算法同样适用于在线潮流计算。 潮流计算在数学上是多元非线性方程组的求解问题,求解的方法有很多种。自从五十年代计算机应用于电力系统以来,当时求解潮流的方法是以节点导纳矩阵为基础的逐次代入法(导纳法),后来为解决导纳法的收敛性较差的问题,出现了以阻抗矩阵为基础的逐次代入法(阻抗法)。到六十年代,针对阻抗法占用计算机内存大的问题又出现了分块阻抗法及牛顿-拉夫逊(Newton-Raphson)法。Newton —Raphson法是数学上解非线形方程式的有效方法,有较好的收敛性。将N-R法用于潮流计算是以导纳矩阵为基础的,由于利用了导纳矩阵的对称性、稀疏性及节点编号顺序优化等技巧,使N-R法在收敛性、占用内存、计算速度方面的优点都超过了阻抗法,成为六十年代末期以后普遍采用的方法。同时国内外广泛研究了诸如非线形规划法、直流法、交流法等各种不同的潮流计算方法。七十年代以来,又涌现出了更新的潮流计算方法。其中有1974年由B、Stott、O、Alsac 提出的快速分解法以及1978年由岩本伸一等提出的保留非线性的高 129

用matlab电力系统潮流计算

题目:潮流计算与matlab 教学单位电气信息学院姓名 学号 年级 专业电气工程及其自动化指导教师 职称副教授

摘要 电力系统稳态分析包括潮流计算和静态安全分析。本文主要运用的事潮流计算,潮流计算是电力网络设计与运行中最基本的运算,对电力网络的各种设计方案及各种运行方式进行潮流计算,可以得到各种电网各节点的电压,并求得网络的潮流及网络中的各元件的电力损耗,进而求得电能损耗。本位就是运用潮流计算具体分析,并有MATLAB仿真。 关键词:电力系统潮流计算 MATLAB Abstract Electric power system steady flow calculation and analysis of the static safety analysis. This paper, by means of the calculation, flow calculation is the trend of the power network design and operation of the most basic operations of electric power network, various design scheme and the operation ways to tide computation, can get all kinds of each node of the power grid voltage and seek the trend of the network and the network of the components of the power loss, and getting electric power. The standard is to use the power flow calculation and analysis, the specific have MATLAB simulation. Key words: Power system; Flow calculation; MATLAB simulation

基于MATLAB的潮流计算源程序代码(优.选)

%*************************电力系统直角坐标系下的牛顿拉夫逊法潮流计算********** clear clc load E:\data\IEEE014_Node.txt Node=IEEE014_Node; weishu=size(Node); nnum=weishu(1,1); %节点总数 load E:\data\IEEE014_Branch.txt branch=IEEE014_Branch; bwei=size(branch); bnum=bwei(1,1); %支路总数 Y=(zeros(nnum)); Sj=100; %********************************节点导纳矩阵******************************* for m=1:bnum; s=branch(m,1); %首节点 e=branch(m,2); %末节点 R=branch(m,3); %支路电阻 X=branch(m,4); %支路电抗 B=branch(m,5); %支路对地电纳 k=branch(m,6); if k==0 %无变压器支路情形 Y(s,e)=-1/(R+j*X); %互导纳 Y(e,s)=Y(s,e); end if k~=0 %有变压器支路情形 Y(s,e)=-(1/((R+j*X)*k)); Y(e,s)=Y(s,e); Y(s,s)=-(1-k)/((R+j*X)*k^2); Y(e,e)=-(k-1)/((R+j*X)*k); %对地导纳 end Y(s,s)=Y(s,s)-j*B/2; Y(e,e)=Y(e,e)-j*B/2; %自导纳的计算情形 end for t=1:nnum; Y(t,t)=-sum(Y(t,:))+Node(t,12)+j*Node(t,13); %求支路自导纳 end G=real(Y); %电导 B=imag(Y); %电纳 %******************节点分类************************************* * pq=0; pv=0; blancenode=0; pqnode=zeros(1,nnum); pvnode=zeros(1,nnum); for m=1:nnum; if Node(m,2)==3 blancenode=m; %平衡节点编号 else if Node(m,2)==0 pq=pq+1; pqnode(1,pq)=m; %PQ 节点编号 else if Node(m,2)==2 pv=pv+1; pvnode(1,pv)=m; %PV 节点编号 end end end end %*****************************设置电压初值********************************** Uoriginal=zeros(1,nnum); %对各节点电压矩阵初始化 for n=1:nnum Uoriginal(1,n)=Node(n,9); %对各点电压赋初值 if Node(n,9)==0;

连续型随机变量

§3 连续型随机变量 除了离散型随机变量之外,还有非离散型的随机变量,这些随机变量的取值已不再是有限个或可列个。在这类非离散型随机变量中,有一类常见而重要的类型,即所谓连续型随机变量。粗略地说,连续型随机变量可以在某特定区间内任何一点取值。例如某种树的高度;测量的误差;计算机的使用寿命等等都是连续型随机变量。对于连续型随机变量,不能一一列出它可能取值,因此不能像对离散型随机变量那样用它取各个可能值的概率来描述它的概率分布,而是要考虑该随机变量在某个区间上取值的概率,我们是用概率密度函数来研究连续型随机变量的。 一. 概率密度和连续型随机变量定义: 对于随机变量X ,如果存在非负可积函数 ()()f x x -∞<<+∞,使得对于任意实数, ,()a b a b <都有 {}()b a P a X b f x dx <<= ? , 则称X 为连续型随机变量;称()f x 为X 的概率密度函数,简称概率密度或密度. 由定义可知,分布密度()f x 具有如下基本性质: (1).()0()f x x ≥-∞<<+∞; (2). ()()1f x dx P X +∞ -∞ =-∞<<+∞=? . 这两条性质的几何意义是:概率分布密度曲线不在x 轴下方,且该曲线与x 轴所围的图形面积为1。性质(1)、(2)可以作为判定一个函数是否可以作为一个连续型随机变量的分布密度的条件。 对于连续型随机变量X 可以证明,它在某一点a 处取值的概率为零,即 对于任意实数a ,有()0P X a ==. 即研究X 在某一点处取值的概率是没有什么实际意义的。从而可知,研究X 在某区间上取值的概率时,该区间含不含端点,不影响概率值。即 (3).对于任意实数, ,()a b a b <都有 {}{}{}{}()b a P a X b P a X b P a X b P a X b f x dx <<=≤<=<≤=≤≤=? 【例1】 设X 是连续型随机变量,已知X 的概率密度为 其中λ为正常数. 试 确定常数A .

几种常用连续型随机变量

几种常用的连续型随机变量 给出一个新概念:广义概率密度函数。 设连续型随机变量ξ的概率密度函数为φ(x ), 那么任何与之成正比的函数f (x )∝φ(x ), 都叫做ξ的广义概率密度函数, 或者说, 一个函数f (x )是ξ的广义概率密度函数, 说明存在着一实数a , 使得 φ(x )=af (x ) (1) 而知道了广义概率密度函数, ξ的概率密度函数就可以根据性质1)(=?+∞ ∞ -dx x ?, 求出 将(1)式代入得: 1)()(??+∞ ∞ -+∞ ∞ -==dx x af dx x ? 则?∞+∞ -= dx x f a )(1 因此, 知道了广义概率密度函数就等于知道了一般的概率密度函数, 我们只需关心函数的形状就可以了解概率密度的性质了. 因此也不必关于那个常数是什么. 4.4 指数分布 指数分布的概率密度函数为 ?? ?>=-其它 )(x e x x λλ? 它的图形如下图所示: 它的期望和方差如下计算: () λ λ λ?ξλλλλλ1 1 )(0 =- =+-=-= = = ∞ +-∞+-∞ +-+∞ -+∞ -+∞ ∞ -????x x x x x e dx e xe e xd dx e x dx x x E

() 2 20 202 2 2 2 2 2)(|λξλ λ?ξλλλλ= = +-=-= = = ????∞+-∞+-+∞ -+∞ -+∞∞ -E dx xe e x e d x dx e x dx x x E x x x x 2 2 2 221 1 2 )(λ λ λ ξξξ= - = -=E E D 指数分布常用来作为各种"寿命"分布的近似. 4.5 Γ-分布 如果一个随机变量ξ只取正值, 且在正半轴的广义概率密度函数的形式是x 的某次方x k 乘上指数函数e -λx , 即 ?? ?>->>=-其它 ) 0,1(0)(λλk x e x x f x k 那么就称ξ服从Γ-分布了. 上式中之所以要求k >-1, λ>0, 是因为广义积分 ?? +∞ -+∞ ∞ -= )(dx e x dx x f x k λ 只有在这种条件下才收敛. 此外, 传统上为了方便起见, 用另一个常数r =k +1, 因此广义概率密度函数写为 ?? ?>>>=--其它 ) 0,0(0)(1λλr x e x x f x r 而真实的概率密度函数φ(x )=af (x ), 可以给出常数a 由下式计算: ?∞ +--= 11 dx e x a x r λ 这样, 计算的关键就是要计算广义积分 ?+∞ --0 1dx e x x r λ, 作代换t =λx , 则x =t /λ, dx =dt /λ, 则???+∞ --+∞ --+∞ --= ? ?? ? ?=0 101 011 1 dt e t dt e t dx e x t r r t r x r λ λ λλ, 问题就转成怎样计算广义积分? +∞ --0 1dt e t t r , 这个积分有一个参数r >0, 在r 为一些特定 的参数时, 如当r =1时, 上面的广义积分还是可以计算的, 但是当r 为任意的正实数时, 此广 义积分就没有一般的公式, 一般的原函数表达式. 在这种情况下数学家常用的办法就是定义一个新的函数. 比如说, 在中学学的三角函数就无法用一个加减乘除的公式表示, 因此就发明了sin , cos 这样的记号来代表三角函数. 同样, 上面的广义积分的取值只依赖于参数r , 每给定一个r 值就有一个积分值与之对应, 因此也可以定义一个函数, 叫Γ-函数, 定义为

《概率论与数理统计》习题随机变量及其分布

第二章 随机变量及其分布 一. 填空题 1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ≥ 1) =9 5 , 则P(Y ≥ 1) = _________. 解. 9 4951)1(1)0(=-=≥-==X P X P 94)1(2 = -p , 3 1=p 2719321)0(1)1(3 =?? ? ??-==-=≥Y P Y P 2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为c c c c 162 ,85,43,21, 则c = ______. 解. 2,16321628543211==+++= c c c c c c 3. 用随机变量X 的分布函数F(x)表示下述概率: P(X ≤ a) = ________. P(X = a) = ________. P(X > a) = ________. P(x 1 < X ≤ x 2) = ________. 解. P(X ≤ a) = F(a) P(X = a) = P(X ≤ a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ≤ x 2) = F(x 2)-F(x 1) 4. 设k 在(0, 5)上服从均匀分布, 则02442 =+++k kx x 有实根的概率为_____. 解. k 的分布密度为??? ??=0 51 )(k f 其它50≤≤k P{02442 =+++k kx x 有实根} = P{03216162 ≥--k k } = P{k ≤-1或k ≥ 2} =5 3 515 2=?dk 5. 已知2}{,}{k b k Y P k a k X P =-== =(k = 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++a a a a . 49 36,194==++b b b b

潮流计算的计算机算法

高等电力系统分析 (潮流计算的计算机算法)PQ分解法潮流计算(IEEE14)

目录 一、MATLAB源程序 二、对支路参数(B1)、节点参数(B2)的说明 三、带入数据,运行结果

一、MATLAB源程序 clear close all n=input('请输入节点数:n='); n1=input('请输入支路数:n1='); isb=input('请输入平衡节点号:isb='); pr=input('请输入误差精度:pr='); B1=input('请输入支路参数:B1='); B2=input('请输入节点参数:B2='); n2=input('请输入PQ节点个数:n2='); Y=zeros(n); for i=1:n1 p=B1(i,1); q=B1(i,2); Y(p,q)=Y(p,q)-1/(B1(i,3)+B1(i,4)*1j); %非对角元 Y(q,p)=Y(p,q); Y(p,p)=Y(p,p)+1/(B1(i,3)+B1(i,4)*1j)+B1(i,6)*1j; %对角元 Y(q,q)=Y(q,q)+1/(B1(i,3)+B1(i,4)*1j)+B1(i,6)*1j; end disp('导纳矩阵Y='); disp(Y) %--------------------------------------------- %---------------下面是求P,Q,V,O矩阵--------------- V=zeros(1,n);O=zeros(1,n);P=zeros(1,n);Q=zeros(1,n); G=real(Y);B=imag(Y); for i=1:n P(i)=B2(i,3); Q(i)=B2(i,4); V(i)=B2(i,5); O(i)=B2(i,6); end B3=B(1:n-1,1:n-1); %不含平衡节点,由节点导纳虚部构成 B4=B(1:n2,1:n2); %所有PQ节点 %---------------------------------------------- %---------------下面是求ΔP,ΔQ矩阵--------------- DX=0;ICT=1;Mp=1;Mq=1; while ICT~=0 m1=1;m2=1; for i=1:n

潮流计算C++程序

程序为计算书3-4的过程 程序可以解决开式单直网络和树状网络的计算。树状网络计算时要自己先设定好支路的起始节点和终止节点标号以及计算顺序源代码: #include #include #include #include using namespace std; struct node{//节点类 int i;//节点编号 double U,P,Q,delta;//额定电压计算负荷电压相角 }; struct line{//线路类连接父节点子节点 node f_node,s_node;//父节点子节点 double R,X,B;//线路参数R X B/2 double P_in,Q_in,P_out,Q_out,d_P,d_Q,D_U,d_U;//线路输入输出功率以及线路消耗功率 void Set_node(node nod1,node nod2){ f_node=nod1; s_node=nod2; } }; void fun1(line &lin){//由后往前递推功率 double p=lin.P_out; double q=lin.Q_out; double u=lin.s_node.U; lin.d_P=(p*p+q*q)/u/u*lin.R; lin.d_Q=(p*p+q*q)/u/u*lin.X; lin.P_in=lin.d_P+lin.P_out; lin.Q_in=lin.d_Q+lin.Q_out; }; void fun2(line &lin){//由前往后推电压 double p=lin.P_in; double q=lin.Q_in; double u=lin.f_node.U; lin.D_U=(p*lin.R+q*lin.X)/u; lin.d_U=(p*lin.X-q*lin.R)/u; lin.s_node.U=sqrt(pow(lin.f_node.U-lin.D_U,2)+pow(lin.d_U,2));//子节点电压 lin.s_node.delta=lin.f_node.delta-atan(lin.d_U/(lin.f_node.U-lin.D_U)); }; void fun3(line &lin){//由前往后推电压不计横向分量 double p=lin.P_in; double q=lin.Q_in;

电力系统分析潮流计算大作业

电力系统分析潮流计算大作业(源程序及实验报告)

源程序如下: 采用直角坐标系的牛顿-拉夫逊迭代 function chaoliujisuan() m=3; %m=PQ节点个数 v=1;%v=PV节点个数 P=[-0.8055 -0.18 0]; %P=PQ节点的P值 Q=[-0.5320 -0.12 0]; %Q=PQ节点的Q值 PP=[0.5];%PP=PV节点的P值 V=[1.0];%V=PV节点的U值 E=[1 1 1 1.0 1.0]'; %E=PQ,PV,Vθ节点e的初值 F=[0 0 0 0 0]'; %F=PQ,PV,Vθ节点f的初值 G=[ 6.3110 -3.5587 -2.7523 0 0; -3.5587 8.5587 -5 0 0; -2.7523 -5 7.7523 0 0; 0 0 0 0 0; 0 0 0 0 0 ]; B=[ -20.4022 11.3879 9.1743 0 0; 11.3879 -31.00937 15 4.9889 0; 9.1743 15 -28.7757 0 4.9889; 0 4.9889 0 5.2493 0; 0 0 4.9889 0 -5.2493 ]; Y=G+j*B; X=[]; %X=△X n=m+v+1;%总的节点数 FX=ones(2*n-2,1);%F(x)矩阵 F1=zeros(n-1,n-1);%F(x)导数矩阵 a=0;%记录迭代次数 EF=zeros(n-1,n-1);%最后的节点电压矩阵 while max(FX)>=10^(-5) for i=1:m %PQ节点 FX(i)=P(i);%△P FX(n+i-1)=Q(i);%△Q for w=1:n FX(i)= FX(i)-E(i)*G(i,w)*E(w)+E(i)*B(i,w)*F(w)-F(i)*G(i,w)*F(w)-F(i)*B(i,w)*E(w); %△P FX(n+i-1)=FX(n+i-1)-F(i)*G(i,w)*E(w)+F(i)*B(i,w)*F(w)+E(i)*G(i,w)*F(w)+E(i)*B(i ,w)*E(w); %△Q end

潮流计算简答题

潮流计算数学模型与数值方法 1. 什么是潮流计算潮流计算的主要作用有哪些 潮流计算,电力学名词,指在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算有功功率、无功功率及电压在电力网中的分布。 潮流计算是电力系统非常重要的分析计算,用以研究系统规划和运行中提出的各种问题。对规划中的电力系统,通过潮流计算可以检验所提出的电力系统规划方案能否满足各种运行方式的要求;对运行中的电力系统,通过潮流计算可以预知各种负荷变化和网络结构的改变会不会危及系统的安全,系统中所有母线的电压是否在允许的范围以内,系统中各种元件(线路、变压器等)是否会出现过负荷,以及可能出现过负荷时应事先采取哪些预防措施等。 2. 潮流计算有哪些待求量、已知量 (已知量:1、电力系统网络结构、参数 2、决定系统运行状态的边界条件 待求量:系统稳态运行状态 例如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等) 3. 潮流计算节点分成哪几类分类根据是什么 (分成三类:PQ 节点、PV 节点和平衡节点,分类依据是给定变量的不同) 4. 教材牛顿-拉夫逊法及有功-无功分解法是基于何种电路方程可否采用其它类型方程 答:基于节点电压方程,还可以采用回路电流方程和割集电压方程等。但是后两者不常用。 5. 教材牛顿-拉夫逊法是基于节点阻抗方程、还是基于节点导纳方程进行迭代计算的试阐述这两种方程的优点与缺点。 1.不能由等值电路直接求出 2.满秩矩阵内存量大 3.对角占优矩阵。。 节点导纳矩阵的特点:1.直观容易形成2.对称阵3.稀疏矩阵(零元素多):每一行的零元素个数=该节点直接连出的支路数。 6. 说出至少两种建立节点导纳矩阵的方法,阐述其中一种方法的原理与过程。 方法:1.根据自导纳和互导纳的定义直接求取2.运用一节点关联矩阵计算3.阻抗矩阵的逆矩阵 节点导纳矩阵的形成:1.对角线元素ii Y 的求解)1,,0(=≠==i j I i ii U i j U U I Y 【除i 外的其他节点接地,0=j U ,只在i 节点加单位电压值】解析ii Y 等于与i 节点直接相连的的所有支路导纳和2.互导纳),0,1(j k U U U I Y k j j i ij ≠===,ji ij Y Y =(无源网络导纳之间是对称的)解析:ij Y 等于j i ,节点之间直接相连的支路导纳的负值。 7. 潮流计算需要考虑哪些约束条件 答: 为了保证系统的正常运行必须满足以下的约束条件: 对控制变量

连续型随机变量的分布与例题讲解

连续型随机变量的分布 (一)连续型随机变量及其概率密度函数 1.定义:对于随机变量X 的分布函数 F(X) ,若存在非负函数f(x), 使对于 任意的实数 x,有F ( x)x f(x) 称为 X f (t)dt ,则称X为连续性随机变量, 的概率密度函数,简称概率密度。 注: F(x)表示曲线下x 左边的面积,曲线下的整个面积为1。 2 .密度函数f(x) 的性质:注: f( x)不是概率。 1) f( x)≥ 0 + f ( x) dx = 1 2) ò-x 2 3)P{x 1 < X ? x 2 }òx1 f (x) dx = F (x 2 ) - F (x 1 ) 特别地,连续型随机变量在某一点的概率为零,即 P{ X = x} = 0. (但 { X=x} 并不一定是不可能事件) 因此P(a≤X ≤ b)= P(a< X

电力系统潮流计算C语言程序及说明知识分享

实验目的 根据所给的电力系统,编制潮流计算程序,通过计算机进行调试,最后完成一个切实可行的电力系统计算应用程序。通过自己设计电力系统计算程序使同学对电力系统分析有进一步理解,同时加强计算机实际应用能力的训练。 程序计算原理 1、概述 应用计算机进行电力系统计算,首先要掌握电力系统相应计算的数学模型;其次是运用合理的计算方法;第三则是选择合适的计算机语言编制计算程序。 建立电力系统计算的相关数学模型,就是建立用于描述电力系统相应计算的有关参数间的相互关系的数学方程式。该数学模型的建立往往要突出问题的主要方面,即考虑影响问题的主要因素,而忽略一些次要因素,使数学模型既能正确地反映实际问题,又使计算不过于复杂。 运用合理的计算方法,就是要求所选用的计算方法能快速准确地得出正确结果,同时还应要求在解算过程中占用内存少,以利提高计算机的解题规模。 选择合适的语言编写程序,就是首先确定用什么计算机语言来编制程序;其次是作出计算的流程图;第三根据流程图用选择的语言编写计算程序。然后上机调试,直到语法上无错误。本程序采用C 语言进行编程。 所编制的程序难免存在逻辑错误,因此先用一个已知结果的系统作为例题进行计算。用程序计算的结果和已知结果相比较,如果结果相差甚远就要逐步分析程序的计算步骤,查出问题的出处;如果结果比较接近,则逐步分析误差来源;直到结果正确为止。 2、电力系统潮流计算的程序算法 潮流计算是电力系统分析中的一种最基本的计算,它的任务是对给定的运行条件确定系统的运行状态,如母线上的电压(幅值及相角)、网络中的功率分布及功率损耗等。 目前计算机潮流计算的方法主要有牛顿-拉夫逊算法和PQ 分解法。牛顿-拉夫逊算法是数学上求解非线形方程组的有效方法,具有较好的收敛性,曾经是潮流计算中应用比较普遍的方法。PQ 快速分解法是从牛顿-拉夫逊算法演变而来的,是将纯数学的牛顿-拉夫逊算法与电力系统具体特点相结合并进行简化与改进而得出的。PQ 快速分解法比牛顿-拉夫逊算法大大提高了计算速度和节省了内存,故而本程序以PQ 快速分解法进行潮流计算。 1)形成节点导纳矩阵 (1)自导纳的形成 对节点i 其自导纳Y ii 是节点i 以外的所有节点都接地时节点i 对地的总导纳。显然,Y ii 应等于与节点i 相接的各支路导纳之和,即0ii i ij j Y y y =+ ∑ 式中,y i0为节点i 与零电位节点之间的支路导纳;y ij 为节点i 与节点j 之间的支路导纳。 (2)互导纳的形成 对节点i 与节点k 之间的互导纳是节点i 、k 之间的支路导纳的负值,即ik ik Y y =- 不难理解ki ik Y Y =。若节点i 和k 没有支路直接相连时,便有Y ik =0 (3)含变压器支路的处理 若节点p 、q 间接有变压器,如下图所示,则可作出其∏型等值电路为:

连续型随机变量

江苏科技大学 毕业论文(设计) 题目:连续型随机变量在实际生活中的应用 姓名:顾苗 学号:1140503102 教学院:数理学院 专业班级:11级统计一班 指导教师:王康康 完成时间:2015年06月10日 二零一伍年六月

连续型随机变量在实际生活中的应用Continuous random variables applied in real life

江苏科技大学毕业设计(论文) 江苏科技大学 毕业设计(论文)任务书 学院名称:数理学院专业:统计学 学生姓名:顾苗学号:1140503102 指导教师:王康康职称:讲师

江苏科技大学毕业设计(论文) 毕业设计(论文)题目: 连续型随机变量在实际生活中的应用 一、毕业设计(论文)内容及要求(包括原始数据、技术要求、达到的指标和应做的实验等) 连续型随机变量在现实生活中有广泛的应用,许多物理过程和社会现象均可以由各种常见的随机过程来刻画。如泊松过程、正态过程、马氏过程等等,其应用非常广泛。在实际运用时,我们考虑它们在各种经济模型中的应用和计算,它们种类繁多,形式各异。具有很强的现实意义。 1、给出连续型随机变量的基本概念。 2、给出几种常见的连续型随机变量的理论意义。 3、给出几种常见的连续型随机变量在各种经济模型中的应用。 二、完成后应交的作业(包括各种说明书、图纸等) 1、至少6000字以上的论文 2、教师指定阅读的外文文献原文 3、指定外文文献的译文6000字以上

三、完成日期及进度 2015.2.25~2015.3.16 文献检索与资料收集; 2015.3.16~2015.4.12 文献阅读及撰写开题报告; 2015.4.12~2015.5.8 论文构思与内容; 2015.5.8~2015.5.24 撰写论文; 2015.5.24~2015.6.9 论文评阅及答辩。

3.1潮流计算基本原理

3.1潮流计算基本原理 潮流是指在发电机母线上功率被注入网络,而在变(配)电站的母线上接入负荷,其间,功率在网络中流动。对于这种流动的功率,电力生产部门称之为潮流。以电力网络潮流、电压计算为主要内容的电力网络稳态行为特性计算的目的在于估计对用户电力供应的质量以及为电力网运行的安全性与经济性评估提供基础数据。配电网潮流计算是配电网络分析的基础,配电网的网络重构、无功功率优化、状态估计和故障处理都需要用到配电网潮流数据。 电力系统稳态运行应满足以下要求: 1)满足系统经济性运行的要求,每一台发电机的输出必须接近于预先设定值; 2)必须确保联络线潮流低于线路热极限和电力系统稳定极限; 3)必须保持某些中枢点母线上的电压水平在容许范围内,必要时用无功功率补偿计划来达到; 4)区域电网是互联系统的一部分,必须执行合同规定的输送至邻网的联络线功率计划; 5)用故障前的潮流控制策略使事故扰动效应最小化。 通常情况下,输电线路电压在轻载时会较高,重载时会较低,电压调整是指在负载由轻载到满载变化过程中实时调整线路电压满足运行要求;对于超高压输电线路,线路电压维持在额定电压的±5%之内, 实际运行时,通常电压调整约为10% 。对于低压输电线路,电压调整数值为10%,包含了变压器本身的电压降落。 3.1.1 潮流计算的基本物理量 潮流计算是电力系统分析中的一种最基本的计算,它的任务是对给定的运行条件确定系统的运行状态,就是在三相平衡稳态状态下计算电力系统中每条母线的电压幅值和相角,其中每一设备如传输线和变压器中的有功和无功潮流,以及各设备的损耗都需要计算出来。 潮流计算采用电力系统的单线图,对于任意一条母线i,需要以下四个变量描述:电压幅值U i、相角,电网供给母线的有功P i、无功Q i。若某一电力系统有N个节点,则共有4N个变量,对于每条母线,这些变量中的两个指定为输入数据,其它的两个是潮流程序所要计算的未知量。为方便起见,在图3.1中传送给母线i 的功率可分为发电机发出和负载吸收两部分。也就是 P i = P Gi– P Li Q i = Q Gi– Q Li 图3-1 节点的变量 每条母线被归分为以下三种母线类型中的某一类: 1)平衡节点,一般一个系统只有一个平衡节点。在潮流分布算出以前,网络中的功率损耗是未知的,因此,至少有一个节点的有功功率P和无功功率Q不能给定。另外必须选定一个节点,制定其电压相角为零,作为其它节点电压相位的参考,这个节点叫基准节点。为了计算方便,常将平衡节点和基准节点设在同一个节点上。为方便起见在本书中把它标号为母线1。平衡节点是电压参考节点,该母线的是给定值,作 为输入数据,典型取标幺值。潮流程序计算P1和Q1。因为平衡节点的P、Q事先无法确定,为使潮流计算结果符合实际,常把平衡节点选在有较大调节裕量的发电机节点,潮流计算结束时若平衡节点的有功功

潮流计算

武汉理工大学《电力系统分析》课程设计说明书节点数:4 支路数:4 计算精度:0.00010 支路1:0.0200+j0.0800 1┠—————□—————┨3 支路2:0.0400+j0.1200 1┠—————□—————┨4 支路3:0.0500+j0.1400 2┠—————□—————┨4 支路4:0.0400+j0.1200 3┠—————□—————┨4 节点1:PQ节点,S(1)=-0.6000-j0.2500 节点2:PQ节点,S(2)=-0.8000-j0.3500 节点3:PV节点,P(3)=0.4000 V(3)=0.9500 节点4:平衡节点,U(4)=1.0000∠0.0000

运用matlab软件对选定课设题目进行潮流计算。潮流计算是电力系统课程中必须掌握也是非常重要的计算。潮流计算是指对电力系统正常运行状况的分析和计算。在已知系统条件情况下,给定一些初始条件,进而计算出系统运行的电压和功率等;潮流计算方法很多:高斯-塞德尔法、牛顿-拉夫逊法、PQ分解法、直流潮流法等。 通过潮流计算,可以确定各母线的电压幅值和相角,各元件流过的功率和整个系统的功率损耗。潮流计算是实现安全经济发供电的必要手段和重要工作环节。因此潮流计算在电力系统的规划计算,生产运行,调度管理及科学计算中都有广泛的运用。 本课程设计采用PQ分解法进行电力系统分析的潮流计算程序的编制与调试,获得电力系统中各节点电压,为进一步进行电力系统分析作准备。 关键词:matlab 潮流计算PQ分解法

1.题目原始数据及其化简 (1) 2.PQ分解法 (2) 2.1PQ分解法基本思想 (2) 2.2 PQ分解法潮流计算基本步骤 (5) 3编程及运行 (6) 3.1 PQ分解法潮流计算程序框图 (6) 3.2源程序代码 (7) 3.3运行程序及结果分析: (16) 4.小结 (18) 5.参考文献 (19)

潮流计算的计算机算法课程设计范文 (2)

摘要 潮流计算是电力系统非常重要的分析计算,用以研究系统规划和运行中提出的各种问题。对规划中的电力系统,通过潮流计算可以检验所提出的电力系统规划方案能否满足各种运行方式的要求;对运行中的电力系统,通过潮流计算可以预知各种负荷变化和网络结构的改变会不会危及系统的安全,系统中所有母线的电压是否在允许的范围以内,系统中各种元件(线路、变压器等)是否会出现过负荷,以及可能出现过负荷时应事先采取哪些预防措施等。 潮流计算是电力系统分析最基本的计算。除它自身的重要作用之外,在《电力系统分析综合程序》(PSASP)中,潮流计算还是网损计算、静态安全分析、暂态稳定计算、小干扰静态稳定计算、短路计算、静态和动态等值计算的基础。 传统的潮流计算程序缺乏图形用户界面,结果显示不直接难与其他分析功能集成。网络原始数据输入工作大量且易于出错。本文采用MATLAB语言运行WINDOWS操作系统的潮流计算软件。而采用MATLAB界面直观,运行稳定,计算准确。 关键词:电力系统潮流计算;牛顿—拉夫逊法潮流计算;MATLAB

目录 一、概述 1.1设计目的与要求................................................. 1.1.1 设计目的...................................................... 1.1.2 设计要求..................................................... 1.2 设计题目...................................................... 1.3 设计内容..................................................... 二、电力系统潮流计算概述..................... 2.1 电力系统简介.......................................... 2.2 潮流计算简介.......................................... 2.3 潮流计算的意义及其发展..................... .............. 三、潮流计算设计题目.......................... 3.1 潮流计算题目........................................ 3.2 对课题的分析及求解思路........................ 四、潮流计算算法及手工计算........................... 4.1 变压器的∏型等值电路.............................. 4.2 节点电压方程.............................. 4.3节点导纳矩阵............................. 4.4 导纳矩阵在潮流计算中的应用....................... 4.5 潮流计算的手工计算.......................... 五、Matlab概述.................................... 5.1 Matlab简介............................................ 5.2 Matlab的应用............................................ 5.3 矩阵的运算........................................... 5.3.1 与常数的运算............................................. 5.3.2 基本数学运算.................................. 5.3.3 逻辑关系运算.................................... 5.4 Matlab中的一些命令................................. 六、潮流计算流程图及源程序................................ 6.1 潮流计算流程图.............................. 6.2 潮流计算源程序图............................... 6.3 运行计算结果....................................... 总结 参考文献

相关文档
相关文档 最新文档