文档库 最新最全的文档下载
当前位置:文档库 › 自动电位滴定法与手动滴定法测定药品含量的比较

自动电位滴定法与手动滴定法测定药品含量的比较

自动电位滴定法与手动滴定法测定药品含量的比较
自动电位滴定法与手动滴定法测定药品含量的比较

自动电位滴定法与手动滴定法测定药品含量的比较

摘要: 分别用自动电位滴定法和手动滴定法测定12 种药品的含量,对12 个样本进行F 检验和t 检验判断两种方法的差异性。结果表明,自动电位滴定法与手动滴定法无显著性差异,自动滴定法精密度优于手动方法。

关键词: 自动电位滴定法;手动滴定法;含量

The Comparison of Automatic Titration Method with the Manul Titration in the Test

Drug Content

Abstract: Determination of 12 kinds of drugs were be used automatic potentiometric titration and manual titration.Judge the difference of the two methods on 12 samples by F test and T test.The results showed no significant difference between the two methods,and automatic titration precision is better than the manual method.

Keyword: automatic potentiometric titration; manual titration; content

滴定分析法是化学定量分析中最基本的分析方法,在现行的《中国药典》2000 年版检验方法中占有很大比重,其中主要采用的是手动滴定法。手动滴定法是将滴定液通过滴定管逐滴加到被测物质溶液中,借助指示剂颜色变化来确定终点。而自动电位滴定法是通过电极电位变化由仪器自动判断终点并进行结果处理。为比较上述两种滴定方法有无显著性差异,笔者用自动电位滴定法和手动滴定法分别测定12 种药品的含量,对结果进行F 检验和t 检验判断两种方法有无显著性差异。从其中选择4种代表不同反应类型的药物测定含量,计算RSD 值,比较两种方法的精密度。

1 实验仪器

自动电位滴定仪,复合pH 玻璃电极(水相酸碱滴定) , 复合pH 电极(非水相酸碱滴定) ,复合Pt 电极(氧化- 还原滴定) ,复合Ag 电极(沉淀滴定)。

2 实验方法与结果

2. 1 实验方法

按照《中国药典》2000 年版二部[1 ]、《国家药品监督管理局药品标准》(化学药品地方标准上升国家标准) 第十六册[2 ]各药品项下含量测定方法。

2. 2 两种滴定方法测定药品含量结果见表1。

F 检验和t 检验说明在95 %的置信水平下两种测定方法的精密度相当,而且不存在系统误差,表明自动电位滴定法测定得到的含量结果与现行国家标准结果相近,可以替代手动滴定法。

2. 3 两种滴定方法测定结果的精密度见表2。

通过4 种代表不同反应类型的药物含量比较,自动电位滴定法测定结果得到的RSD 值明显小于手动滴定法,实验重现性更好,精密度高。

3 讨论

通过以上实验分析,可以得出自动电位滴定法测定得到的含量结果与现行国家标准结果相近,精密度更优于手动方法。手动滴定由于体积读数误差、终点颜色判断误差、锥形瓶摇动不均匀等因素均可引入误差,以指示剂终点判断为例[3 ]:非水滴定中,指示剂结晶紫随溶液酸度的增加,颜色由紫色(碱式色) 变至蓝紫、蓝、蓝绿、黄绿,最后变为黄色(酸式色) 。不同酸度中指示剂颜色较为接近,使得滴定时人的影响因素较大,对经验要求比较高。在无合适的指示剂时

手动滴定无法进行。相比之下,自动滴定仪有高分辨率的加液器,判断终点无需指示剂,通过对电极反应的实时跟踪和数字计算得到终点,并配有电磁搅拌台使滴定反应充分完成。自动电位滴定仪相配套有不同种类的电极,几乎可以适用于所有滴定反应类型,应用在原料药、制剂的含量测定以及滴定液的标化工作。自动滴定仪还设置多种滴定模式适用于不同滴定反应。随着传感器等新技术不断发展,自动滴定仪已经可以完成自动预处理、进样、测定、分析处理、打印报告等在线一体化过程,无疑这将大大提高实验者的工作效率,更有利于实验室的管理,将逐渐取代手动滴定方法。

参考文献

[1 ]中国药典(2000 年版二部) [ S] . 327 ,368 ,516 ,565 ,747 ,788 ,816 ,907 ,附录180.

[2 ]国家药品监督管理局药品标准(化学药品地方标准上升国家标准) 第十六册[ S] . 2001 ,278 - 279.

[3 ]李发美主编. 分析化学[M] . 第5 版1 人民卫生出版社,2003. 80.

电位法测定氯和碘

实验5 电位滴定法测定氯、碘离子浓度及AgI和AgCl的K sp 一、实验目的 1.掌握电位滴定法测量离子浓度的一般原理; 2.学会用电位滴定法测定难溶盐的溶度积常数。 二、方法原理 当银丝电极插入含有Ag+的溶液时,其电极反应的能斯特响应可表示为: 如果与一参比电极组成电池可表示为: 进一步简化为: 式中包括和r(Ag+)常数项。银电极不仅可指示溶液中Ag+的浓度变化,而且也能指示与Ag+反应的阴离子的浓度变化。例如,卤素离子。 本实验利用卤素阴离子(I-、Cl-)与银离子生成沉淀的溶度积K sp非常小,在化学计量点附近发生电位突跃,从而通过测量电池电动势的变化来确定滴定终点。在终点时: 其中X-为Cl-、I-,代入终点时的滴定电池方程: 用该式即可计算出被滴定物质难溶盐的K sp。而式中K′和S值可利用第二终点之后过量的[Ag+]与E(电池)关系作图求得,由直线的截距确定K′,斜率确定S。 通常的电位滴定使用甘汞或AgCl/Ag参比电极,由于它们的盐桥中含有氯离子会渗漏于溶液中,不适合在这个实验中使用,故可选用甘汞双液接硝酸盐盐桥,或硫酸亚汞电极。 三、仪器设备与试剂材料 1.pH/mV计,电磁搅拌器。 2.银电极,双液接饱和甘汞电极。

3.硝酸银标准溶液,0.100mol?L-1:溶解8.5g AgNO3于500mL去离子水中,将溶液转入棕色试剂瓶中置暗处保存。准确称取1.461g基准NaCl,置于小烧杯中,用去离子水溶解后转入250mL容量瓶中,加水稀释至刻度,摇匀。准确移取25.00mL NaCl标准溶液于锥形瓶中,加25mL水,加1mL15% K2CrO4,在不断摇动下,用AgNO3溶液滴定至呈现砖红色即为终点。根据NaCl标准溶液浓度和滴定中所消耗的AgNO3体积(mL),计算AgNO3的浓度。 4.Ba(NO3)2(固体)。 5.硝酸,6mol?L-1。 6.试样溶液(其中含Cl-和I-分别都为0.05mol?L-1左右)。 四、实验步骤 1.按图示安装仪器。 电位滴定装置 1-银电极;2-双盐桥饱和甘汞电极;3-滴定管;4-滴定池(100mL烧杯);5-搅拌子;6-磁力搅拌器。 2.用移液管取20.00mL的Cl-、I-混合试样溶液于100mL烧杯中,再加约30mL水,加几滴6mol?L-1硝酸和约0.5g Ba(NO3)2固体。将此烧杯放在磁力搅拌器上,放入搅拌磁子,然后将清洗后的银电极和参比电极插入溶液。滴定管应装在烧杯上方适当位置,便于滴定操作。 3.开动搅拌器,溶液应稳定而缓慢地转动。开始每次加入滴定剂1.0mL,待电位稳定后,读取其值和相应滴定剂体积记录在表格里。随着电位差的增大,减少每次加入滴定剂的量。当电位差值变化迅速,即接近滴定终点时,每次加入0.1mL滴定剂。第一终点过后,电位读数变化变缓,就增大每次加入滴定剂量,接近第二终点时,按前述操作进行。 4.重复测定两次。每次的电极、烧杯及搅拌磁子都要清洗干净。

实验八干燥实验

实验八 干燥实验 一、实验目的 1. 了解洞道式循环干燥器的基本流程、工作原理和操作技术。 2. 掌握恒定条件下物料干燥速率曲线的测定方法。 3. 测定湿物料的临界含水量X C ,加深对其概念及影响因素的理解。 4. 熟悉恒速阶段传质系数K H 、物料与空气之间的对流传热系数α的测定方法。 二、实验内容 1. 在空气流量、温度不变的情况下,测定物料的干燥速率曲线和临界含水量,并了解其 影响因素。 2. 测定恒速阶段物料与空气之间的对流传热系数α和传质系数K H 。 三、基本原理 干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。干燥 操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的 机理。由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。概括起来 说,影响传递速率的因素主要有:固体物料的种类、含水量、含水性质;固体物料层的厚 度或颗粒的大小;热空气的温度、湿度和流速;热空气与固体物料间的相对运动方式。目 前尚无法利用理论方法来计算干燥速率(除了绝对不吸水物质外),因此研究干燥速率大 多采用实验的方法。 干燥实验的目的是用来测定干燥曲线和干燥速率曲线。为简化实验的影响因素,干燥 实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料, 且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不 变。 本实验以热空气为加热介质,甘蔗渣滤饼为被干燥物。测定单位时间内湿物料的质量 变化,实验进行到物料质量基本恒定为止。物料的含水量常用相对与物料总量的水分含量, 即以湿物料为基准的水分含量,用ω来表示。但因干燥时物料总量在变化,所以采用以干 基料为基准的含水量X 表示更为方便。ω与X 的关系为: X =-ωω 1 (8—1) 式中: X —干基含水量 kg 水/kg 绝干料; ω—湿基含水量 kg 水/kg 湿物料。 物料的绝干质量G C 是指在指定温度下物料放在恒温干燥箱中干燥到恒重时的质量。 干燥曲线即物料的干基含水量X 与干燥时间τ的关系曲线,它说明物料在干燥过程中,干 基含水量随干燥时间变化的关系。物料的干燥曲线的具体形状因物料性质及干燥条件而 变,但是曲线的一般形状,如图(8—1)所示,开始的一小段为持续时间很短、斜率较 小的直线段AB 段;随后为持续时间长、斜率较大的直线BC ;段以后的一段为曲线

电位滴定法测定硫酸铜槽液中氯离子含量

滴定水份应用报告A-T-CN(sh)- 电位滴定法测定电镀铜槽液中氯离子含量应用领域:电镀 关键词 氯离子/809/银电极 摘要 Ag电极经电镀上Ag2S(或AgCl)后用于强酸性环境下氯离子的滴定分析 样品 硫酸铜槽液 试剂 - 滴定剂:AgNO3溶液c=0.1mol/L - 氯化钠(AR) - 5mol/L 硝酸溶液 - D.I. 水 仪器及附件 Titrando 809 2.809.0010 801 Stirrer 2.801.0010 800 Dosino 2.800.0010 Dosing unit 6.3032.220 Electrode with Ag2S coating 6.0430.100 Electrode cable 6.2104.020 分析 0.1mol/L AgNO3标定 滴定参数 Parameters DETU >titration parameters meas.pt.density 4 Dos.rate max.ml/min signal drift 50 mV/min Min waiting time 0s Max waiting time 26s temperature 25.0 °C >stop conditions stop V 10ml Stop measured value off stop EP 1 Stop after EP 1.5ml Potentiometric Evaluation EP Criterion 5 EP Recognition Greatest 分析步骤 取100ml干燥烧杯,准确称取约0.04g 经烘干处理的氯化钠,分别加入60ml DI水中、1ml 硝酸溶液,用0.1mol/L AgNO3溶液滴定至电位突跃点。 计算 AgNO3(mol/L) =Sample size×1000/58.44/EP1 样品测试 滴定参数 Parameters DETU >titration parameters meas.pt.density 2 Dos.rate max.ml/min signal drift 20 mV/min Min waiting time 0s Max waiting time 38s temperature 25.0 °C >stop conditions stop V 10ml Stop measured value off stop EP 1 Stop after EP 1.5ml Potentiometric Evaluation EP Criterion 5 EP Recognition Greatest 分析步骤 将0.1mol/L AgNO3用容量瓶定量稀释10倍待用。 取100ml干燥烧杯,准确移取10ml硫酸铜槽液样品,加入50ml DI水中和1ml 硝酸溶液,用0.01mol/L AgNO3溶液滴定至电位突跃点。 计算 Cl(mg/L)=EP *C39*35.5/Sample size' 1000 C39: 稀释后AgNO3浓度本次分析为0.01001mol/L) 分析结果

铜合金中铜的测定

实验十五 铜合金中铜的测定(间接碘量法) 一 实验目的 1 掌握Na 2S 2O 3溶液配制及标定 2 了解淀粉指示剂的作用原理 3 了解间接碘量法测定铜的原理 4 学习铜含量试样的分解方法 二 实验原理 1 铜合金的分解 铜合金的种类较多,主要有黄铜和各种青铜等。试样可以用HNO 3分解,但低价氮的氧化物能氧化I -而干扰测定,故需用浓H 2SO 4蒸发将它们除去。也可用H 2O 2和HCl 分解试样:Cu + 2HCl + H 2O 2 = CuCl 2 + 2H 2O 煮沸以除尽过量的H 2O 2 2 含量的测定 <1> Cu 2+与过量碘化钾的反应; 在弱酸性溶液中,Cu 2+与过量 KI 作用,生成CuI 沉淀,同时析出定量的 I 2: 2Cu 2+ + 4I - = 2CuIˉ + I 2 或 2Cu 2+ + 5I -= 2CuI ˉ+ I 3- 通常用HAc-NH 4Ac 或NH 4HF 2等缓冲溶液将溶液的酸度控制为pH=3.5~4.0,酸度过低,Cu 2+易水解,使反应不完全,结果偏低,而且反应速率慢,终点拖长;酸度过高,则I -被空气中的氧氧化为I 2(Cu 2+催化此反应),使结果偏高。Cu 2+与I -之间的反应是可逆的,任何引起 Cu 2+浓度减小或引起CuI 溶解度增加的因素均使反应不完全。加入过量的KI 可使反应趋于完全。这里KI 是Cu 2+的还原剂,又是生成的Cu +的沉淀剂,还是生成的I 2的络合剂,使生成I 3-, 增加I 2的溶解度,减少I 2的挥发。由于CuI 沉淀强烈吸咐I 3-会使测定结果偏低。故加入SCN -使CuI(K sp = l.l x l0-12)转化为溶解度更小的CuSCN (K sp = 4.8 x 10-15) ,释放出被吸附的I 3-。 <2> 铜的测定。生成的I 2用Na 2S 2O 3标准溶液滴定,以淀粉为指示剂。由于CuI 沉淀表面吸附I 2,使分析结果偏低,终点变色不敏锐。为了减少CuI 对I 2的吸附,可在大部分I 2被Na 2S 2O 3溶液滴定后,加入NH 4SCN ,使CuI 转化为溶解度更小的CuSCN :CuI + SCN - = CuSCN↓ + I -噢它基本上不吸附I 2,使终点变色敏锐。 试样中有Fe 存在时,Fe 3+也能氧化I -为I 2,2Fe 3+ + 2I - = 2Fe 2+ + I 2↓ 可加入NH 4F ,使Fe 3+生成稳定的FeF 63-,降低了Fe 3+/Fe 2+电对的电势,使Fe 3+不能将I -氧化为I 2。 以上方法也适用于测定铜矿、炉渣、电镀液及胆矾等试样中的铜。

电位滴定法试题库(填空题)

电位滴定法试题库(填空题) 1.正负离子都可以由扩散通过界面的电位称为__扩散电位; __, 它没有__强制性和_选择_____性, 而渗透膜, 只能让某种离子通过, 造成相界面上电荷分布不均, 产生双电层,形成___选择;- Donnan ____电位。; 2.用氟离子选择电极的标准曲线法测定试液中F-浓度时, 对较复杂的试液需要加入总离子强度调节剂(TISAB)试剂, 其目的有第一_维持试样与标准试液有恒定的离子活度_______;第二__使试液在离子选择电极适合的pH范围内,避免H+或OH-干扰_______;第三__使被测离子释放成为可检测的游离离子 _________。 3.用直读法测定试液的pH值, 其操作定义可用式_______来表示。用pH玻璃电极测定酸度时, 测定强酸溶液时, 测得的pH比实际数值___偏高____, 这种现象称为 ___酸差___。测定强碱时, 测得的pH值比实际数值___偏低__, 这种现象称为_____钠差_____。 4.由LaF 单晶片制成的氟离子选择电极, 晶体中__F-___是电荷的传递者, ___ 3 La3+_是固定在膜相中不参与电荷的传递, 内参比电极是______ Ag|AgCl ___, 内参比电极由_____0.1mol/LNaCl和0.1mol/LNaF溶液______组成。 5.在电化学分析方法中, 由于测量电池的参数不同而分成各种方法:测量电动势为_电位分析法_;测量电流随电压变化的是_伏安法_,其中若使用_滴汞_电极的则称为极谱法_;测量电阻的方法称为_电导分析法_;测量电量的方法称为_库仑分析法__。 6.电位法测量常以___待测试液_______作为电池的电解质溶液, 浸入两个电极, 一个是指示电极, 另一个是参比电极, 在零电流条件下, 测量所组成的原电池___电动势____。

化工原理干燥实验报告

北京化工大学 学生实验报告 院(部):化学工程学院 姓名:王敬尧学号: 2010016068 专业:化学工程与工艺班级:化工1012班 同组人员:雷雄飞、雍维 课程名称:化工原理实验 实验名称:流化床干燥实验 实验日期: 2013.6.4 北京化工大学

干燥实验 一、摘要 本实验在了解沸腾流化床干燥器的基本流程及操作方法的基础上,通过沸腾流化床干燥器的实验装置测定干燥速率曲线,物料含水量、床层温度与时间的关系曲线,流化床压降与气速曲线。 干燥实验中通过计算含水率、平均含水率、干燥速率来测定干燥速率曲线和含水量、床层温度与时间的关系曲线;流化床实验中通过计算标准状况下空气体积、使用状态下空气体积、空气流速来测定流化床压降与气速曲线。 二、实验目的 1、了解流化床干燥器的基本流程及操作方法。 2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3、测定物料含水量及床层温度时间变化的关系曲线。 4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶 段的传质系数k H及降速阶段的比例系数K X。 三、实验原理 1、流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线(如图)。 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处的流速即被称为带出速度(u0)。 在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。C点处的流速被称为起始流

电位滴定法测定钴

电位滴定法测定钴 2008-8-22 10:38:04 中国选矿技术网浏览 480 次收藏我来说两句在氨性溶液中,加入一定量的铁氰化钾,将钴(Ⅱ)氧化为钴(Ⅲ),过量的铁氰化钾用硫酸钴溶液滴定,按电位法确定终点。其反应式如下: Co2++Fe(CN)63-→Co3++Fe(CN)64- 镍、锌、铜(Ⅱ)和砷(Ⅴ)对本法无干扰。 铁(Ⅱ)和砷(Ⅱ)干扰测定,可在分解试样时,氧化至高价而消除其影响。 空气中的氧能把钴(Ⅱ)氧化成钴(Ⅲ),大量铁的存在能加速这一反应。为防止生成大量氢氧化铁而吸附钴,须加入柠檬酸铵络合铁。一次加入过量的铁氰化钾,用返滴定法可消除空气的影响。 锰(Ⅱ)在氨性溶液中被铁氰化钾氧化为锰(Ⅲ),因此当锰(Ⅱ)存在时,本法测得的结果系钴、锰含量。应预先用硝酸—氯酸钾将锰分离后,再用电位滴定法测定钴。或在含氟化物的酸性溶液中,用高锰酸钾预先滴定锰(Ⅱ)为锰(Ⅲ),由于氟化物与锰(Ⅲ)生成稳定的络合物,所以反应能定量的进行。然后再在氨性溶液中用铁氰化钾测定钴。 有的资料认为可加入甘油和六偏磷酸钠以消除铁、空气中的氧及一定量锰的干扰,钴含量在10毫克以上时,10毫克以下的锰不影响测定。 有机物对电位滴定有严重干扰,应在分解试样时,用高氯酸除去。 本法适用于含1%以上钴的测定。 一、试剂 混合溶液 100克硫酸铵和60克柠檬酸铵溶解于500毫升水中,加入氨水500毫升,混匀。 钴标准溶液称取纯金属钴克,置于250毫升烧杯中,加1∶1硝酸30毫升,加热溶解完全后,加1∶1硫酸10~15毫升,继续加热蒸发至剩少许硫酸。冷却后,加水20~

30毫升,加热溶解。冷至室温,移入500毫升容量瓶中,用水稀释至刻度,摇匀。此溶液每毫升含3毫克钴。 硫酸钴溶液约称取硫酸钴(CoSO4·7H2O)14克,溶解于水中并稀释至1000毫升,混匀。此溶液每毫升约含3毫克钴。 铁氰化钾标准溶液约称取铁氰化钾克,溶于水中,用水稀释至1000毫升,混匀,贮存于棕色瓶中。 标定:准确吸取钴标准溶液20毫升,置于250毫升烧杯中,加水20毫升、混合溶液50毫升,准确加入铁氰化钾标准溶液25毫升,然后按分析手续进行滴定。求出铁氰化钾标准溶液对钴的滴定度。 T=W/V-KV1 式中 T—铁氰化钾标准溶液对钴的滴定度(克/毫升); W—吸取钴标准溶液含钴量(克); V—加入铁氰化钾标准溶液毫升数; K—每毫升硫酸钴溶液相当于铁氰化钾标准溶液的毫升数; V1—滴定消耗硫酸钴溶液毫升数。 K值的确定:准确吸取铁氰化钾标准溶液20毫升,置于250毫升烧杯中,加水25毫升、混合溶液50毫升,然后按分析手续进行滴定。 K=吸取铁氰化钾标准溶液毫升数/滴定消耗硫酸钴溶液毫升数 二、分析手续 称取1~2克试样(钴含量在10~60毫克为宜),置于250毫升烧杯中,加盐酸15毫升,加热数分钟。加硝酸10毫升,继续加热至试样分解完全(如有黑色残渣,可加克氟化铵助溶)。蒸发至小体积,加入1∶1硫酸10毫升,加热蒸至冒三氧化硫白烟。取下稍冷,加水并煮沸至可溶性盐类溶解,冷却,用水稀释至50毫升。加混合溶液50毫升,准确加入20~25毫升铁氰化钾标准溶液,然后用硫酸钴溶液滴定至电位突跃。以铂电极为指示电极,钨电极为参比电极。 Co%=100(V-KV1)T/G

实验八 间接碘量法测定胆矾中铜的含量教案

实验八间接碘量法测定胆矾中铜的含量教案 课程名称:分析化学实验B 教学内容:间接碘量法测定胆矾中铜的含量 实验类型:验证 教学对象:化工、环境工程、药学、生物科学、应用化学、医学检验、制药、复合材料、生物工程、生物技术 授课地点:中南大学南校区化学实验楼302 授课学时:4学时 一、教学目的与要求 1、练习巩固移液管、滴定管、容量瓶、电子分析天平的使用; 2、了解间接碘量法测定胆矾中铜含量的测定意义; 3、学习硫代硫酸钠标准溶液的配制和标定; 4、掌握铜盐中铜的测定的原理、方法和计算; 5、掌握碘量法的测定方法的原理、方法和计算; 6、熟悉氧化还原特殊指示剂终点颜色判断和近终点时滴定操作控制 二、知识点 氧化还原反应、化学计量点、氧化还原特殊指示剂、滴定终点、铜盐中铜含量的表示方法、标准溶液、移液管、酸式滴定管、容量瓶、电子分析天平、实验报告的撰写(数据处理三线表表格化)、有效数字 三、技能点 玻璃器皿的洗涤、移液管的使用、酸式滴定管的使用、容量瓶的使用、电子分析天平的使用、标准溶液的配制与标定 四、教学重点及难点 重点:铜盐中铜的测定的基本原理和操作方法 难点:淀粉指示剂的变色特征和近终点时滴定操作控制 五、教学方法 任务驱动法、分组讨论法、阅读指导法、现场讲解指导等 六、复习引入

1、复习配位滴定法有关知识,提问学生: (1) 铜盐中铜的含量测定是用什么方法测定的?(间接碘量法) (2) 铜盐中铜的测定中以什么作指示剂?(淀粉溶液) (3) 滴定终点颜色如何判断?(蓝色消失30s后不返色为终点) [引入] 氧化还原滴定法的应用:间接碘量法测定胆矾中铜含量 [引言] 硫酸铜又名蓝矾、胆矾、石胆,为透明的深蓝色结晶或粉末,溶于水,其溶液呈弱酸性。在无机工业上用于制备其他铜盐的原料;也可用作纺织品媒染剂、农业杀虫剂、水的杀菌剂,饲料添加剂,并用于镀铜。在防治鱼病中,硫酸铜的作用非常明显,硫酸铜是鱼病防治中常用的药品,它可治疗鱼的原生寄生虫病,农业上主要用于防治果树、麦芽、马铃薯、水稻等多种病害,也可用于稻田、池塘除藻。无机农药波尔多液就是硫酸铜和石灰乳的混合液,在有机农业中可以做杀真菌剂用。蓝矾韭菜中的蓝矾也可能是农药的残留,而不是菜农为保鲜而涂抹。硫酸铜是可溶于水的,消费者可以在水中浸泡再用淘米水清洗就可放心食用。硫酸铜中铜的含量常用滴定碘法来测定。 [新授]课题:间接碘量法测定胆矾中铜含量 [提出任务]教师提出本课题的学习任务: 1、间接碘量法测定胆矾中铜含量的基本原理是什么? 2、用K2Cr2O7作基准物质标定Na2S2O3溶液时,为什么要加入过量的KI和HCl 溶液?为什么要放置一定时间后才能加水稀释?为什么在滴定前还要加水稀释? 3、间接碘量法测定胆矾中铜含量的操作方法。 [任务探索] 1、间接碘量法测定胆矾中铜含量的基本原理是什么? 根据有关学习资料,思考下列问题: (1) 在实验中加入KI的作用是什么? (2) 碘量法测定铜时,溶液的酸度如何控制?酸性介质如何选择? (3) 在实验中加入KSCN溶液的作用是什么?为什么不能过早的加入? [归纳]引导学生归纳总结出间接碘量法测定胆矾中铜含量的基本原理在以硫酸或HAc为介质的酸性溶液中(pH=3~4)Cu2+与过量的I -作用生成

电位滴定法测定水中氯离子的含量

电位滴定法测定水中氯离子的含量 1 / 1 电位滴定法测定水中氯离子的含量 一 实验目的:学习电位滴定法的基本原理和操作技术 掌握了解氯离子的测定过程和现象 二 实验原理 利用滴定分析中化学计量点附近的突跃,以一对适当的电极对监测滴定过程中的电位变化,从而确定滴定终点,并由此求得待测组分的含量的方法称为电位滴定法。本实验根据Nerst 方程E = E θ- RT/nF lgC Cl- ,滴定过程中, Cl - + Ag + = AgCl ↓,使得氯离子浓度降低,电位发生改变,接近化学计量点时,氯离子浓度发生突变,电位相应发生突变,而后继续加入滴定剂,溶液电位变化幅度减缓。以突变时滴定剂的消耗体积(mL )来确定滴定终点(AgNO 3标准溶液的体积)。 三 仪器和试剂 酸度计(mv 计),磁力搅拌器,转子。KNO 3甘汞参比电极,银电极,滴定管,烧杯(电解池),0.05mol·L -1NaCl ,0.05mol·L -1AgNO 3,KNO 3固体 四 实验内容和步骤 1 0.05mol·L -1AgNO 3标准溶液的标定 准确移取0.05mol.L -1NaCl 标准溶液10.00mL 于烧杯中,加蒸馏水20mL ,KNO 3固体2g ,搅拌均匀。 开启酸度计,开关调在mv 位置,加入滴定剂,记录溶液电位随滴定剂的体积变化情况。随着AgNO 3标准溶液的滴入,电位读数将不断变化,读数间隔可先大些(1-2mL ),至一定量后,电位读数变化较大,则预示临近终点,此时应逐滴加入AgNO 3标准溶液(0.5-0.2mL ),并记录电位变化,直至继续加入AgNO 3标准溶液后电位变化不再明显为止。做E(mv)-V(mL)曲线,求得终点时所消耗AgNO 3标准溶液的确切体积。 2水中氯离子含量的测定 准确移取水样10.00mL 于烧杯中,加蒸馏水20mL ,KNO 3固体2g ,搅拌均匀。加入滴定剂,记录溶液电位随滴定剂的体积变化情况。同标定的步骤,做E(mv)-V(mL)曲线,求出与水样中氯离子反应至终点所消耗的AgNO 3标准溶液的确切体积。 五数据处理 根据实验数据做E(mv)-V(mL)曲线,从两个图中获得终点所消耗的AgNO 3标准溶液体积,从而根据物质反应平衡公式C Cl-V Cl-=V Ag+C Ag+计算求出水中氯离子的含量(mol·L -1)。 实验过程中的注意事项:1参比电极所装电解液应为饱和KNO 3溶液。 2甘汞电极比银电极略低些,有利于提高灵敏度。 3读数应在相对稳定后再读数,若数据一直变化,可考虑读数时降低转子的转数。 问题:实验中KNO 3的作用? 终点滴定剂体积的确定方法有哪几种?

干燥实验报告

北京化工大学 实验报告 课程名称:干燥实验实验日期:2012-5 班级:化工0906 姓名:郭智博 同组人:常成维尉博然黄金祖学号:200911175 干燥实验 一、摘要 本实验在了解沸腾流化床干燥器的基本流程及操作方法的基础上,通过沸腾流化床干燥器的实验装置测定干燥速率曲线,物料含水量、床层温度与时间的关系曲线,流化床压降与气速曲线。 干燥实验中通过计算含水率、平均含水率、干燥速率来测定干燥速率曲线和含水量、床层温度与时间的关系曲线;流化床实验中通过计算标准状况下空气体积、使用状态下空气体积、空气流速来测定流化床压降与气速曲线。 二、实验目的 1、了解流化床干燥器的基本流程及操作方法。 2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3、测定物料含水量及床层温度时间变化的关系曲线。 4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶 段的传质系数k H及降速阶段的比例系数K X。 三、实验原理 1、流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线(如图)。 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从

床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处的流速即被称为带出速度(u0)。 在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。C点处的流速被称为起始流化速度(u mf)。 在生产操作过程中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2、干燥特性曲线 将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线(见下图)。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速率对物料含水量作图,即为干燥速率曲线(见下下图)。干燥过程可分以下三个阶段。

电位滴定法测定非洲铜钴矿中钴

电位滴定法测定非洲铜钴矿中钴 我国是一个钴资源严重缺乏的国家,近年来随着经济的快速发展对钴的需求越来越大。国内钴企业的原料很大一部分来自非洲的铜钴矿,钴作为其中重要的有价金属元素,准确测定其含量至关重要。 标签:电位滴定法;测定;非洲铜钴矿中钴;应用 刚果(金)铜钴矿带闻名于世,横跨非洲大陆中部的刚果(金)与赞比亚的“非洲铜带”内已知矿床中含有1.4亿t铜和600万t钴金属,其中刚果(金)段的铜钴矿床含铜高达5800万t,含钴高达460万t,分别占“非洲銅带”铜、钴资源储量的41%和77%。 常量钴的测定方法有EDTA滴定法、亚硝酸钴钾重量法、亚硝基红盐分光光度法和电位滴定法等。EDTA滴定法适合于共存干扰组分少的样品,非洲铜钴矿除了铜、钴以外,钙、镁、铁、锰、铝等元素含量也不少,这些元素对EDTA滴定法的干扰很大;亚硝酸钴钾重量法分析流程长,对操作者操作熟练程度要求较高,不易掌握,在日常工作中很少采用;分光光度法则主要应用于较低含量钴的测定;而电位滴定法测定钴量,测定范围宽,分析精度高,干扰小,比较适合非洲铜钴矿中钴的测定。 一、检测依据 在氨性溶液中,铁氰化钾能将钴(Ⅱ)氧化为钴(Ⅲ),按电位法确定终点。其反应式如下: Co2++Fe(CN)63-→Co3++Fe(CN)64- 镍、锌、铜(Ⅱ)和砷(Ⅲ)对本法无干扰。铁(Ⅱ)和砷(Ⅱ)干扰测定,可在分解试样时,氧化至高价而消除其影响。空气中的氧能把钴(Ⅱ)氧化成钴(Ⅲ),大量铁的存在能加速这一反应。为防止生成大量氢氧化铁而吸附钴,须加入柠檬酸铵络合铁。锰(Ⅱ)在氨性溶液中被铁氰化钾氧化为锰(Ⅲ),因此当锰(Ⅱ)存在时,本法测得的结果系钴、锰合量。应预先用硝酸—氯酸钾将锰分离后,再用电位滴定法测定钴。 本法适用于含1%以上钴的测定。 二、试剂 1、混合溶液:将100克氯化铵和60克柠檬酸铵溶解于500毫升水中,加入氨水500毫升,混匀。 2、钴标准溶液:称取纯金属钴1.0000克,置于250毫升烧杯中,加1∶1

第四章 电位分析法习题解答

第四章电位分析法 1.M1| M1n+|| M2m+| M2在上述电池的图解表示式中,规定左边的电极为( ) (1) 正极(2) 参比电极(3) 阴极(4) 阳极 解:(4) 2. 下列强电解质溶液在无限稀释时的摩尔电导λ∞/S·m2·mol-1分别为: λ∞(NH4Cl)=1.499×10-2,λ∞(NaOH)=2.487×10-2,λ∞(NaCl)=1.265×10-2。所以NH3·H2O 溶液的λ∞(NH4OH) /S·m2·mol-1为( ) (1) 2.721×10-2(2) 2.253×10-2(3) 9.88 ×10-2(4) 1.243×10-2 解:(1) 3.钾离子选择电极的选择性系数为,当用该电极测浓度为 1.0×10-5mol/L K+,浓度为 1.0×10-2mol/L Mg溶液时,由Mg引起的K+测定误差为( ) (1) 0.00018% (2) 1.34% (3) 1.8% (4) 3.6% 解:(3) 4. 利用选择性系数可以估计干扰离子带来的误差,若,干扰离子的浓度为0.1mol/L,被测离子的浓度为0.2mol/L,其百分误差为(i、j均为一价离子)( ) (1) 2.5 (2) 5 (3) 10 (4) 20 解:(1) 5.下列说法中正确的是:

晶体膜碘离子选择电极的电位( ) (1) 随试液中银离子浓度的增高向正方向变化 (2) 随试液中碘离子浓度的增高向正方向变化 (3) 与试液中银离子的浓度无关 (4) 与试液中氰离子的浓度无关 解:(1) 6.玻璃膜钠离子选择电极对氢离子的电位选择性系数为100,当钠电极用于测定1×10-5mol/L Na+时,要满足测定的相对误差小于1%,则试液的pH 应当控制在大于( ) (1) 3 (2) 5 (3) 7 (4) 9 解:(4) 7.离子选择电极的电位选择性系数可用于( ) (1) 估计电极的检测限 (2) 估计共存离子的干扰程度 (3) 校正方法误差 (4) 计算电极的响应斜率 解:(2) 8.在电位滴定中,以?E/?V-V(?为电位,V为滴定剂体积)作图绘制滴定曲线, 滴定终点为:( ) (1) 曲线的最大斜率(最正值)点 (2) 曲线的最小斜率(最负值)点 (3) 曲线的斜率为零时的点

电位滴定法测定水中氯离子的含量

电位滴定法测定水中氯离子的含量 一实验目的:学习电位滴定法的基本原理和操作技术 掌握了解氯离子的测定过程和现象 二实验原理 利用滴定分析中化学计量点附近的突跃,以一对适当的电极对监测滴定过程中的电位变化,从而确定滴定终点,并由此求得待测组分的含量的方法称为电位滴定法。本实验根据Nerst方程E = Eθ- RT/nF lgC Cl- ,滴定过程中,Cl- + Ag+ = AgCl↓,使得氯离子浓度降低,电位发生改变,接近化学计量点时,氯离子浓度发生突变,电位相应发生突变,而后继续加入滴定剂,溶液电位变化幅度减缓。以突变时滴定剂的消耗体积(mL)来确定滴定终点(AgNO3标准溶液的体积)。 三仪器和试剂 酸度计(mv计),磁力搅拌器,转子。KNO3甘汞参比电极,银电极,滴定管,烧杯(电解池),·L-1NaCl,·L-1AgNO3,KNO3固体 四实验内容和步骤 1 ·L-1AgNO3标准溶液的标定 准确移取标准溶液于烧杯中,加蒸馏水20mL,KNO3固体2g,搅拌均匀。 开启酸度计,开关调在mv位置,加入滴定剂,记录溶液电位随滴定剂的体积变化情况。随着AgNO3标准溶液的滴入,电位读数将不断变化,读数间隔可先大些(1-2mL),至一定量后,电位读数变化较大,则预示临近终点,此时应逐滴加入AgNO3标准溶液(),并记录电位变化,直至继续加入AgNO3标准溶液后电位变化不再明显为止。做E(mv)-V(mL)曲线,求得终点时所消耗AgNO3标准溶液的确切体积。 2水中氯离子含量的测定 准确移取水样于烧杯中,加蒸馏水20mL,KNO3固体2g,搅拌均匀。加入滴定剂,记录溶液电位随滴定剂的体积变化情况。同标定的步骤,做E(mv)-V(mL)曲线,求出与水样中氯离子反应至终点所消耗的AgNO3标准溶液的确切体积。 五数据处理 根据实验数据做E(mv)-V(mL)曲线,从两个图中获得终点所消耗的AgNO3标准溶液体积,从而根据物质反应平衡公式C Cl-V Cl-=V Ag+C Ag+计算求出水中氯离子的

电位滴定法测定银

No. 61 应用报告 应用范围: 贵金属检测, 电镀 电位滴定法测定银 摘要 本报告阐述用电位滴定法测定纯银、银合金及银镀液中银含量。样品硝酸消解后, 用溴化钾滴定,以银电极(AgBr涂层)为指示电极。 仪器与附件 ?Titrino系列702或 794或798或799 ? 2.728.0040 磁力搅拌器 ? 6.3014.223交换单元 ? 6.0430.100 Ag Titrode带AgBr涂层(配6.2104.020电极电缆) 试剂 ?滴定剂:溴化钾溶液,c(KBr) = 0.1 mol/L ?硝酸,w(HNO3) = 65% ?保护胶体:2%聚乙烯醇水溶液。如Merck No.114266(溶于热蒸馏水中) 溴化钾溶液标定 消解必须在通风柜中进行!!! 称取500mg纯银(称量准确度0.02mg),在玻璃烧杯中用20ml硝酸(65%)溶 解,加热沸腾除去氮氧化物,冷却后加蒸馏水至约250 ml,然后加入5ml保护胶 体,用溴化钾溶液(c(KBr) = 0.1 mol/L)滴定。预加体积40ml。 计算 理论消耗值=样品重量,mg/10.7868 滴定度=理论消耗值/实际消耗值(EP1) 滴定度在滴定仪上以公共变量C30存储。

样品前处理 A)纯银和银合金 消解必须在通风柜中进行!!! 称取约含500mg银的样品,称量准确度0.02mg,在玻璃烧杯中用20ml硝酸 (65%)溶解,加热沸腾除去氮氧化物,冷却后加蒸馏水至约250 ml。 B)银镀液 消解必须在通风柜中进行!!! 根据银含量,移取1.0-10.0 ml镀液到玻璃烧杯中,用蒸馏水稀释至约50 ml。小心 加入5-10ml硝酸,加热沸腾至体积减半,冷却补充蒸馏水至约100 ml。 分析方法 在经过前处理的样品溶液中加入5 ml保护胶体。用溴化钾溶液(c(KBr) = 0.1 mol/L)滴定,预加体积为40ml(银镀液样品无须预加)。 计算 1ml c(KBr) = 0.1 mol/L=10.7868 mg Ag 纯银/银合金 ‰ Ag =EP1*C30*C01*C02/C00 银镀液 g/L Ag =EP1*C30*C01/C00 EP1=终点滴定剂消耗体积,mL C00=样品重量,mg 或样品体积,mL) C01=10.7868 C02=1000(‰换算系数) C30=滴定度 备注 ?加入保护胶体可防止AgBr凝聚,避免包夹及电极表面上附着沉淀。 ?Ag-Titrode电极已镀AgBr。用户可按应用报告No.25更新涂层。 ?纯银和银合金的测定精度为<1‰(通常>0.5‰)。

洞道干燥计算机实验

洞道干燥实验装置说明书 天津大学化工基础实验中心2013.06 一、实验目的 1.练习并掌握干燥曲线和干燥速率曲线的测定方法。 2.练习并掌握物料含水量的测定方法。 3.通过实验加深对物料临界含水量Xc 概念及其影响因素的理解。 4.练习并掌握恒速干燥阶段物料与空气之间对流传热系数的测定方法。 5.学会用误差分析方法对实验结果进行误差估算。 二、实验内容 1.在固定空气流量和空气温度条件下,测绘某种物料的干燥曲线、干燥速率曲线和该物料的临界含水量。 2.测定恒速干燥阶段该物料与空气之间的对流传热系数。 三、实验原理 当湿物料与干燥介质接触时,物料表面的水分开始气化,并向周围介质传递。根据介质传递特点,干燥过程可分为两个阶段。 第一阶段为恒速干燥阶段。干燥过程开始时,由于整个物料湿含量较大,其物料内部水分能迅速到达物料表面。此时干燥速率由物料表面水分的气化速率所控制,故此阶段称为表面气化控制阶段。这个阶段中,干燥介质传给物料的热量全部用于水分的气化,物料表面温度维持恒定(等于热空气湿球温度),物料表面的水蒸汽分压也维持恒定,干燥速率恒定不变,故称为恒速干燥阶段。 第二阶段为降速干燥阶段。当物料干燥其水分达到临界湿含量后,便进入降速干燥阶段。此时物料中所含水分较少,水分自物料内部向表面传递的速率低于物料表面水分的气化速率,干燥速率由水分在物料内部的传递速率所控制。称为内部迁移控制阶段。随着物料湿含量逐渐减少,物料内部水分的迁移速率逐降低,干燥速率不断下降,故称为降速干燥阶段。 恒速段干燥速率和临界含水量的影响因素主要有:固体物料的种类和性质、固体物料层的厚度或颗粒大小、空气的温度、湿度和流速以及空气与固体物料间的相对运动方式等。 恒速段干燥速率和临界含水量是干燥过程研究和干燥器设计的重要数据。本实验在恒定干燥条件下对帆布物料进行干燥,测绘干燥曲线和干燥速率曲线,目的是掌握恒速段干燥速率和临界含水量的测定方法及其影响因素。 1.干燥速率测定 τ τ??≈ = S W Sd dW U ' ' (1) 式中:U —干燥速率,kg /(m 2 ·h ); S —干燥面积,m 2 ,(实验室现场提供); τ?—时间间隔,h ; 'W ?—τ?时间间隔内干燥气化的水分量,kg 。 2.物料干基含水量 ' ' 'Gc Gc G X -= (2) 式中:X —物料干基含水量,kg 水/ kg 绝干物料; 'G —固体湿物料的量,kg ; 'Gc —绝干物料量,kg 。 3. 恒速干燥阶段对流传热系数的测定 tw w tw r t t Sd r dQ Sd dW Uc )('' -= ==αττ w tw t t r Uc -?=α (3) 式中:α—恒速干燥阶段物料表面与空气之间的对流传热系数,W/(m 2 ·℃); Uc —恒速干燥阶段的干燥速率,kg/(m 2 ·s ); w t —干燥器内空气的湿球温度,℃; t —干燥器内空气的干球温度,℃; tw r —w t ℃下水的气化热,J/ kg 。 4.干燥器内空气实际体积流量的计算 由节流式流量计的流量公式和理想气体的状态方程式可推导出:

碘量法测定铜

碘量法测定铜 一、方法原理 在弱酸性溶液中,Cu2+可被KI还原为CuI,2Cu24I-==2CuI I2这是一个可逆反应,由于CuI溶解度比较小,在有过量的KI存在时,反应定量地向右进行,析出的I2用Na2S2O3标准溶液滴定以淀粉为指示剂,间接测得铜的含量。 I22S2O32-==2I-S4O62- 由于CuI沉淀表面会吸附一些I2使滴定终点不明显,并影响准确度故在接近化学计量点时,加入少量KSCN,使CuI沉淀转变成CuSCN,因CuSCN的溶解度比CuI小得多(K sp,CuI=1.1×10-10,K sp,CuSCN=1.1×10-14)能使被吸附的I2从沉淀表面置换出来, CuI SCN-==CuSCN I- 使终点明显,提高测定结果的准确度。且此反应产生的I-离子可继续与Cu2作用,节省了价格较贵的KI。 二、主要试剂 1.0.01mol/L重铬酸钾标准溶液。用差减法准确称取干燥的(180℃烘两小时)分析纯K2Cr2O7固体0.7~0.8g于100mL烧杯中,加50mL水使其溶解之,定量转入250mL容量瓶中,用水稀释至刻度,摇匀。 2.0.05mol/L硫代硫酸钠溶液。在台秤上称取6.5g硫代硫酸钠溶液,溶于500mL 新煮沸并放冷的蒸馏水中,加入0.5g Na2CO3,转移到500mL试剂瓶中,摇匀后备用。 3.Na2SO4:30%水溶液。 4.碘化钾:A·R。 5.硫氰酸钾溶液:20%。 6.淀粉溶液:0.5%。称取0.5g可溶性淀粉,用少量水调成糊状,慢慢加入到沸腾的100mL蒸馏水中,继续煮沸至溶液透明为止。 7.盐酸:3mol/L。 8.硝酸:1:3。 9.氢氧化铵溶液:1:1。

实验5、干燥实验讲解

实验洞道干燥实验 一、实验目的 1、了解气流常压干燥设备的基本流程和工作原理; 2、掌握物料干燥速率曲线的测定方法; 3、了解操作条件改变对不同的干燥阶段所产生的影响。 二、实验原理 干燥是最常见的有效除湿的方法之一,干燥速率受众多因素的影响,主要与物料及其含水性质、干燥介质的性质、流速和干燥介质与湿物料接触方式等因素有关,一般由实验测定。 三、实验装置 图1 实验装置流程图 1.中压风机; 2.孔板流量计; 3. 空气进口温度计; 4.重量传感器; 5.被干燥物料; 6.加热器; 7.干球温度计;8.湿球温度计;9.洞道干燥器;10.废气排出阀;11.废气循环阀; 12.新鲜空气进气阀;13.干球温度显示控制仪表;14.湿球温度显示仪表; 15.进口温度显示仪表;16.流量压差显示仪表;17.重量显示仪表;18.压力变送器。

四、实验步骤 (一)实验前的准备工作 1. 将被干燥物料试样进行充分的浸泡。 2. 向湿球温度湿度计的附加蓄水池内,补充适量的水,使池内水面上升至 适当位置。 3. 将被干燥物料的空支架安装在洞道内。 4. 调节新空气入口阀到全开的位置。 (二) 装置的实验操作方法 1. 按下电源开关的绿色按键,在按风机开关按钮,开动风机。 2. 调节三个蝶阀到适当的位置,将空气流量调至所需读数。 3. 在温度显示控制仪表上,利用(<,>,︿)键调节实验所需温度值,sv窗 口显示,此时pv窗口所显示的即为干燥器的干球温度值,按下加热开关,让电热器通电。 4. 干燥器的流量和干球温度恒定达5分钟之后,即可开始实验。此时,读 )。 取数字显示仪的读数作为试样支撑架的重量(G D 5. 将被干燥物料试样从水盆内取出,控去浮挂在其表面上的水份(使用呢子 物料时,最好用力挤去所含的水分,以免干燥时间过长。将支架从干燥 器内取出,再将支架插入试样内直至尽头)。 6. 将支架连同试样放入洞道内,并安插在其支撑杆上。注意:不能用力过大, 使传感器受损。 7. 立即按下秒表开始计时,并记录显示仪表的显示值。然后每隔一段时间 记录数据一次( 记录总重量和时间 ),直至减少同样时间重量的减少是恒速阶段所用时间的8倍时,即可结束实验。 注意: 最后若发现时间已过去很长,但减少的重量还达不到所要求的克数,则可立即记录数据。 注意:放入物料后不要在点击〈读取操作条件〉,那样会使实验程序进入错误状态,无法正常数据的采集和处理。

相关文档
相关文档 最新文档