文档库 最新最全的文档下载
当前位置:文档库 › EIS real time quantitative monitorization of isothermal amplification

EIS real time quantitative monitorization of isothermal amplification

EIS real time quantitative monitorization of isothermal amplification
EIS real time quantitative monitorization of isothermal amplification

Ion sensing(EIS)real-time quantitative monitorization of isothermal

DNA ampli?cation

Bruno Veigas a,b,Rita Branquinho b,Joana V.Pinto b,Pawel J.Wojcik b,Rodrigo Martins b,

Elvira Fortunato b,n,Pedro V.Baptista a,nn

a CIGMH,Departamento de Ciências da Vida,Faculdade de Ciências e Tecnologia,Universidade Nova de Lisboa,Campus de Caparica,2829-516Caparica,

Portugal

b CENIMAT/I3N,Departamento de Ciência dos Materiais,Faculdade de Ciências e Tecnologia,Universidade Nova de Lisboa and CEMOP-UNINOVA,Campus de

Caparica,2829-516Caparica,Portugal

a r t i c l e i n f o

Article history:

Received9July2013

Received in revised form

15August2013

Accepted16August2013

Available online24August2013

Keywords:

DNA

LAMP

Isothermal ampli?cation

EIS

Ion sensitive?eld effect sensors

Tantalum pentoxide

qRT-PCR

Real time

c-Myc

Cancer

Label free

a b s t r a c t

Field-effect-based devices are becoming a basic structural element in a new generation of microbio-

sensors.Reliable molecular characterization of DNA and/or RNA is of paramount importance for disease

diagnostics and to follow up alterations in gene expression pro?les.The use of such devices for point-of-

need diagnostics has been hindered by the need of standard or real-time PCR ampli?cation procedures.

The present work focuses on the development of a tantalum pentoxide(Ta2O5)based sensor for the real-

time label free detection of DNA ampli?cation via loop mediated isothermal ampli?cation(LAMP)

allowing for quantitative analysis of the cMYC proto-oncogene.The strategy based on the?eld effect

sensor was tested within a range of1?108–1011copies of target DNA,and a linear relationship between

the log copy number of the initial template DNA and threshold time was observed allowing for a semi-

quantitative analysis of DNA template.The concept offers many of the advantages of isothermal

quantitative real-time DNA ampli?cation in a label free approach and may pave the way to point-of-

care quantitative molecular analysis focused on ease of use and low cost.

&2013Elsevier B.V.All rights reserved.

1.Introduction

Molecular diagnostics based on DNA detection has increased

tremendously over the past few years,in particular towards

pathogen identi?cation,drug screening and diagnosis of genetic

diseases(Sadik et al.,2009).Most standard technologies showing

high sensitivity and low detection limits are usually performed via

optical methods,with emphasis on?uorescence intensity mea-

surement from a reporter molecule(Espy et al.,2006).Still,these

methods can be expensive and complex to implement,and the

majority of these methodologies rely on the enzymatic ampli?ca-

tion of DNA via polymerase chain reaction(PCR),generally

regarded as an essential method in molecular genetics(Aoi et al.,

2006).Real-time monitoring of enzymatic DNA polymerization

reaction is of paramount relevance in molecular diagnostics,in

particular quantitative DNA ampli?cation real-time PCR(qRT-PCR)

is highly effective for monitoring gene expression.Following

reverse transcription(conversion of mRNA to cDNA),the ampli?-

cation reaction can then occur allowing for comparison between

samples and/or comparative quantitation(Ginzinger,2002;

Sakurai and Husimi,1992;VanGuilder et al.,2008;Wong and

Medrano,2005).

Loop-mediated isothermal DNA ampli?cation(LAMP)has

emerged as a powerful ampli?cation technique to be used as simple

and rapid diagnostics tool(Notomi et al.,2000;Parida et al.,2008).

LAMP relies on auto-cycling DNA synthesis performed by a DNA

polymerase with strand displacement activity and a set of two

specially designed inner and two outer primers.Because of the strand

displacement capability,the reaction can be performed at the same

temperature without the need for temperature cycling.The?nal

products are a mixture of stem-loop DNAs with various stem lengths

and cauli?ower-like structures with multiple loops formed by anneal-

ing between alternately inverted repeats of the target sequence.

Because LAMP is performed under isothermal conditions and at a

relatively low temperature,reverse transcription can simultaneously

Contents lists available at ScienceDirect

journal homepage:https://www.wendangku.net/doc/3a1204853.html,/locate/bios

Biosensors and Bioelectronics

0956-5663/$-see front matter&2013Elsevier B.V.All rights reserved.

https://www.wendangku.net/doc/3a1204853.html,/10.1016/j.bios.2013.08.029

n Corresponding author.

nn Corresponding author.Tel.:t351212948530.

E-mail addresses:emf@fct.unl.pt(E.Fortunato),pmvb@fct.unl.pt(P.V.Baptista).

Biosensors and Bioelectronics52(2014)50–55

occur when the reaction mixture contains reverse transcriptase (Notomi et al.,2000;Aoi et al.,2006).However,thus far,the effectiveness of LAMP to quantitatively monitor gene expression has not been extensively used,probably due to the lack of automated equipment(Aoi et al.,2006;Maeda et al.,2005;Mori et al.,2004;Parida et al.,2004).The potential to quantify template DNA or RNA by the real-time monitoring of LAMP reaction has already been investigated using standard?uorescence real-time methodologies and apparatus(Mori et al.,2004).

Since the introduction of the ion sensitive?eld-effect transistor in the70's by Bergveld(2003),the use of these devices and the number applications has signi?cantly grown and?eld effect devices(FEDs)are now a promising alternative for label free DNA analysis.A change in DNA content,either due to hybridization or ampli?cation reaction,yields a local pH variation and a rearrangement of ionic species near the sensor surface that modulate the sensor's response.Examples include DNA sequen-cing equipment–IonTorrent?(Rothberg et al.,2011),real-time monitoring of PCR ampli?cation(Branquinho et al.,2011)and electrochemical DNA microarray technologies(Audrey et al.,2008; Sadik et al.,2009).Despite the increasing use of electrochemical DNA detection approaches,only a few have been directed towards gene expression analysis.Kivlehan and co-workers developed an electrochemical method to monitor in real-time the isothermal helicase-dependent ampli?cation of nucleic acids(Kivlehan et al., 2011).Still,these methods rely on the indirect detection of an intercalating redox probe during DNA ampli?cation and/or elec-trode functionalization with a recognition probe(Priano et al., 2007;Sadik et al.,2009).Very recently,an integrated chip for real-time ampli?cation and detection of nucleic acid using pH-sensing complementary metal-oxide semiconductor(CMOS)technology has been reported(Toumazou et al.,2013).

Here,we report on the development of a Ta2O5electrolyte–insulator–semiconductor sensor for label free real-time quantita-tive LAMP DNA ampli?cation towards gene expression pro?ling, without the need for additional labeling and/or reporter mole-cules.The accumulation of the reaction by-product of polymeriza-tion(protons)is detected by the Ta2O5EIS sensor(Fig.1).We demonstrate the potential to quantify in real-time cMYC,a proto-oncogene ampli?ed and overexpressed in most human cancers (Dang et al.,2006).Quantitative comparison of tumor vs.normal tissue can be easily monitored.Optimization and integration of this sensing technology into a suitable platform could signi?cantly lower the costs associated with gene expression analysis and consequently allowing for the molecular diagnostics of cancer at point-of-need.

2.Experimental details

2.1.Sensor fabrication and characterization

The electrolyte–insulator–semiconductor sensors were fabri-cated,characterized and optimized as previously described (Branquinho et al.,2011,2012).Devices with a Ta2O5sensing membrane were fabricated on p-type(100)Si wafers with a thermally grown SiO2?lm(100nm).A100nm Ta2O5?lm was deposited at room temperature on the SiO2/p-Si substrate by radio frequency(rf)magnetron sputtering(AJA ATC-1300sputtering system)from a3″Ta2O5ceramic target(SCM,USA).The deposition pressure was0.3Pa with an Ar/O2ratio of14/1sccm and no intentional substrate heating was applied.The wafer's backside was etched with a buffered HF solution in order to remove the SiO2?lm prior to the Al(200nm)back-contact deposition by electron beam assisted evaporation in a homemade system.The sensors were annealed at2001C for one hour in air with a101C/min heating ramp using a Barnstead Thermolyne F21130tubular furnace(Germany).The fabricated Ta2O5sensor's structure is the following:back-contact Al/Si/SiO2/Ta2O5/electrolyte.The measure-ment cell shows a sensitive area of4mm,which is inserted into an aluminum housing to allow for uniform heating and temperature control.A temperature sensor is connected to the cell and a thermoelectric power generation Peltier module(2001C, 6.4V, 3.1W,Thermovoltaik)is pasted to the back of the aluminum housing with thermal paste and assembled to a small fan;these are then combined to a temperature controller(TC-XX-PR-59, Supercool AB)to allow for computer management of heating/ cooling of the cell and temperature monitoring.

The Ta2O5?lms were analyzed by XRD and results show an absence of diffraction peaks that indicate the existence of an amorphous phase,which is maintained after post-deposition annealing.RBS analysis showed that the Ta2O5?lms present a quasi-stoichiometric oxygen proportion(2:4.8vs.2:5)–Ta2O4.8. Surface morphology was studied by SEM and AFM and results show that the Ta2O5?lms a very homogeneous and smooth surface,with a root mean square roughness of less than0.5nm (Supplementary information–Table S1).

2.2.PCR ampli?cation of the C-MYC gene fragment

A229base pair(bp)fragment of the human cMYC proto-oncogene(Ac.no.NM_002467)was PCR ampli?ed using the primers MYCforward and MYCreverse(see Supplementary infor-mation–Table S2).PCR ampli?cation was performed in triplicate on a Bio-Rad MyCycler Thermocycler(Bio-Rad,CA,USA)in100μl using1μM of the speci?c primers,2.5mM dNTPs with1U Taq DNA Polymerase(GE Healthcare Europe,Germany),with the following thermal cycling conditions:initial5min denaturation at951C,followed by24ampli?cation cycles of denaturation at 951C for30s,annealing at621C for30s,elongation at721C for 30s,and a?nal elongation at721C for5min(Supplementary information–Table S2).

https://www.wendangku.net/doc/3a1204853.html,MP ampli?cation primer design

The loop mediated isothermal ampli?cation of a207base pair (bp)fragment of the human cMYC proto-oncogene requires four speci?c primers;forward outer primer(FP),backward outer primer(BP),forward inner primer(FIP),backward inner primer (BIP)(Supplementary information–Table S2).LAMP primers for cMYC were designed using Primer Explorer V4(http://primerex-plorer.jp/elamp4.0.0/)and all primers were synthesized by STAB-Vida,Portugal.

https://www.wendangku.net/doc/3a1204853.html,MP ampli?cation of the cMYC gene fragment

LAMP was performed as described by Notomi et al.(Notomi et al.,2000).The reaction was carried out in a200μl reaction mixture containing1μM of each inner primer FIP and BIP,0.1μM of each outer primer FP and BP,0.3mM of dNTP mix,0.5M betaine (Sigma-Aldrich,St.Louis,MO,USA),2mM MgCl2,0.8?of the supplied buffer,and(106–1011)target copy number per50μl of reaction https://www.wendangku.net/doc/3a1204853.html,MP reaction was performed by subjecting the reaction mixture to an initial10min denaturation step at951C on a Bio-Rad MyCycler Thermocycler(BioRad,CA,USA);after which it was cooled down to41C for one minute.The addition of8U of Bst DNA polymerase(large fragment;New England Biolabs Inc., Beverly,MA,USA)followed,and then the?nal reaction mixture was transferred to the LAMP measurement cell,covered with mineral oil to prevent evaporation,and allowed to react for90min at651C.As a control,a sample solution submitted to the same reaction procedure without any template DNA was used,i.e.negative

B.Veigas et al./Biosensors and Bioelectronics52(2014)50–5551

control where no ampli ?cation is expected.To con ?rm the speci ?city of the ampli ?ed products,the resulting LAMP products were digested with Hinf I that recognizes a sequence in a single site,yielding a 207bp digestion fragment (see Supplementary information S3).

2.5.Quantitative real-time PCR (qRT-PCR)

qRT-PCR was performed in a Corbett Research Rotor-Gene RG3000using SYBR GreenER Real-Time PCR Kit (Invitrogen,Karlsbad,CA,USA)according to manufacturer's speci ?cations in 50μl reactions containing DNA from c-MYC amplicon,1X SYBR Green SuperMix and 200nM of MYCforward and MYCreverse.The ampli ?cation conditions consisted of 501C for 2min hold,951C during 10min hold,followed by 40cycles consisting of denatura-tion at 951C for 30s,annealing at 621C for 30s,extension at 721C for 30s,with a ?nal extension step at 721C for 5min.All the results were originated from three independent experiments.2.6.Quantitative real-time LAMP (qRT-LAMP)

qRT-LAMP was performed in a 50μl reaction mixture contain-ing SYBR Green ?uorescent dye (Invitrogen,Karlsbad,CA,USA)according to manufacturer's speci ?cations,1μM of each inner primer FIP and BIP,0.1μM of each outer primer FP and BP,0.3mM of dNTP mix,0.5M betaine (Sigma-Aldrich,St.Louis,MO,USA),2mM MgCl 2,0.8?of the supplied buffer,and template DNA (106–1011target copy number).LAMP reaction was prepared as described above (Section 2.4).The addition of 2U of Bst DNA polymerase (large fragment;New England Biolabs Inc.,Beverly,

MA,USA)followed,and then the ?nal reaction mixture was transferred to a Corbett Research Rotor-Gene RG3000and allowed to react for 90min at 651C with ?uorescence measurement taken every minute.As a control,a sample solution submitted to the same reaction procedure without any template DNA was used.All the results were originated from at least three independent experiments.

2.7.qRT-LAMP using the Ta 2O 5EIS sensor

Capacitance –voltage (C –V )curves were recorded every 10min and measurements were performed by means of electrochemical impedance using a Gamry Instruments Reference 600in a two electrode con ?guration with a Ag/AgCl micro reference electrode (Unisense)and using a speci ?cally designed cell (Fig.2).A bias voltage with a superimposed 10mV AC voltage with frequency of 500Hz was applied on the back-contact of the EIS structure with respect to the reference electrode.At least three independent assays were registered for each ampli ?cation reaction sample solution to evaluate measurement stability.When changing sam-ples,the sensor was thoroughly rinsed with ultra-pure water and dried under N 2?ow.The reference voltages (VRef)were calculated at 60%of the maximum capacitance of C –V curves.All measure-ments were conducted in a dark Faraday cage to minimize exterior noise.Sensor drifting assessment was made by collecting C-V data for phosphate buffer (pH 7);LAMP buffer 1?(20mM Tris –HCl;10mM (NH 4)2SO 4;50mM KCl;2mM MgSO 4;0.1%Tween s 20;pH 8.8)and LAMP control sample solutions in an identical manner as for the samples.A differential calculation of the potential

variation

Fig.1.Representation of the DNA ampli ?cation detection scheme with typically obtained C –V curves.The elongation reaction results in accumulation of protons,thus producing a pH shift of the surrounding solution proportional to the number of nucleotides incorporated.Hydrogen protons accumulation measured by impedance spectroscopy.

B.Veigas et al./Biosensors and Bioelectronics 52(2014)50–55

52

was applied to diminish the contribution of the buffer solution composition to the overall sensor signal.

3.Results

3.1.Device construction and characterization

A measurement cell with the necessary requirements for real-time monitoring of LAMP was designed and fabricated (see Supplementary information S4).A thermal analysis of the ?nal prototype was performed with a FLIR A305sc thermal imaging infrared camera,allowing the development of the thermal cycling or optimal reaction conditions (Fig.2).The thermal analysis demonstrated a uniform radial heating process with a ?nal stable temperature of 64.070.51C in agreement with the speci ?cation of the polymer-ase.The designed cell is capable of measuring the shift in the C –V curve of the sensor while maintaining constant temperature to conduct real-time measurements of LAMP reactions.3.2.Quantitative real time LAMP (qRT-LAMP)

Loop-mediated isothermal ampli ?cation (LAMP)of DNA is capable of amplifying DNA under isothermal conditions.The mechanism relies on auto-cycling strand displacement DNA synth-esis by the Bst DNA polymerase with four different primers speci ?cally designed to recognize six distinct regions,yielding products of various lengths.A speci ?c LAMP reaction was devel-oped for the human cMYC proto-oncogene locus .Quantitative DNA ampli ?cation was performed by measuring the ?uorescence signal derived from an intercalating dye.Each LAMP cycle yields addi-tional DNA strands that incorporate the dye,thus enabling the follow up in real-time the increase in ampli ?ed product.The quantitative LAMP reactions were performed in a thermal cycler and directly compared to standard real-time PCR.For this,standard template DNA solutions were prepared by making serial dilutions of a known concentration of cMYC amplicon,i.e.serial 10-fold dilutions of the template DNA (see Supplementary information S5).

The same procedure was followed for qRT-LAMP using the same serial dilution set of cMYC DNA as template in the kinetic analysis of the LAMP reaction.The qRT-LAMP curves show the characteristic exponential increase of ?uorescence as function of ampli ?cation time (Fig.3A).The increase in ?uorescence showed a linear dependence on the logarithm of the starting number of DNA template copies (Fig.3B),similarly to what was attained for the standard RT-PCR.In LAMP ampli ?cation process there are no cycles and so the output signal analysis may be based on the time required to attain the imposed threshold time value (T T ).This was accomplished by setting a threshold line and the T T value of each curve retrieved as the intercept with this line (dashed horizontal line in Fig.3A)resulting in a semi-logarithmic calibration plot.Plotting the T T of qRT-LAMP against the log of the copy number of initial template DNA (Fig.3B)shows a highly linear correlation (r 2?0.984).

3.3.EIS based qRT-LAMP

The optimized sensor was then used to monitor LAMP DNA ampli ?cation by measuring in real-time the shift in C –V curve using identical samples as above.The sensitive layer material is a crucial component of the sensor device and,amongst the com-monly used dielectric oxides,Ta 2O 5has the largest buffer capacity due to the large number of active surface sites providing high sensitivity to protons (vanHal 1995;Bergveld,2003).Also,we have previously demonstrated that it is suitable for quanti ?cation of DNA amplicons (Branquinho et al.,2011).For these reasons,sensors comprising Ta 2O 5?lms produced with optimized condi-tions demonstrating near Nernstian pH sensitivity,58.070.3mV/pH (Branquinho et al.,2012),were manufactured for the real time monitorization of LAMP DNA ampli ?cation.First,sensor drifting was assessed by collecting C (V )data for LAMP buffer containing 0.5M betaine,2mM MgCl 2and 0.8?of the commercially sup-plied buffer in a ?nal volume of 200μl,in an identical manner as for the samples (Fig.3C).For this speci ?c measurement protocol almost no drift was observed,with variations lower than $2mV for the buffer solution.Results for the negative ampli ?

cation

https://www.wendangku.net/doc/3a1204853.html,MP DNA ampli ?cation measurement cell .Prototype and schematic assembly representation (Left)and thermal heating pro ?le characterization of the designed prototype.Thermal analysis of the ?nal prototype was performed with a FLIR A305sc thermal imaging infrared camera in real-time during the heating step.The observed circular shape corresponds to the entire heating cell with a diameter of 4mm.

B.Veigas et al./Biosensors and Bioelectronics 52(2014)50–5553

control showed little variation of the system ($5mV)and were similar to the data attained for the buffer (Fig.3C).

The real-time monitoring of LAMP ampli ?cation was performed by following the increase of free protons in solution,and data analyzed as above for ?uorescence.Fig.3C shows the shift in the C –V curve of the sensor response as a function of LAMP reaction time,allowing de ?nition of a threshold value that correlates inversely with the initial amount of template DNA.A plot of T T vs.log 10initial copy number of cMYC DNA (Fig.3D)results in a similar curve to that of ?uorescent-based real-time LAMP (see Fig.3A),where the initial template concentration correlates inversely with the time required to increase the signal above the de ?ned threshold level.From the ampli ?cation pro ?les of EIS-qRT-LAMP,a linear relationship between the log copy number of the initial template DNA (108to 1011copies)and threshold time is attained (r 2?0.995).

For ampli ?ed samples and with increasing reaction time (i.e.,increasing DNA concentration),the observed potential shifts occur towards more positive potentials,consistent with an increase of positive charge near the sensor's surface,for the measurement setup used.The chain-elongation reaction results in accumulation of protons,thus producing a shift in the pH of the surrounding solution proportional to the number of nucleotides incorporated (Rothberg et al.,2011).For this reason,by decreasing the buffer concentration,and thus the buffering capability of the reaction mixture,we were able to improve the ef ?ciency of detection.The observed signal amplitudes in the real-time ampli ?cation plots were higher than those attained in our previous report on DNA

ampli ?cation using a Ta 2O 5sensor (Branquinho et al.,2011).This allowed for improved detection as the threshold ampli ?cation time was easily de ?ned,and a clear discrimination between positive and negative ampli ?cation reactions was obtained.

Comparison of the electrochemical T T values with those attained from the intercalating ?uorescence dye show that,despite a slightly lower ef ?ciency,the sensor response seems to be higher than that of the standard ?uorescence method.In fact,a clear difference in the capacitance –voltage curves is observed immediately as the reaction is initiated.

4.Conclusions

Successful LAMP ampli ?cation of cMYC was achieved in the speci ?cally developed isothermal ampli ?cation cell with an in-house temperature control setup.The ampli ?cation reaction was monitored in real-time with the optimized Ta 2O 5-based sensor and a clear discrimination of template DNA initial concentration was observed.As a result,it was possible to develop a quantitative method for following DNA ampli ?cation in real-time comparable to the performance of commonly available standard methodolo-gies.For the ?rst time,we describe an electrolyte –insulator –semiconductor qRT-LAMP approach for the simple quantitative analysis of DNA.

Because LAMP has been applied to the quanti ?cation of RNA in a single closed tube by adding reverse transcriptase (Parida et al.,2004),the strategy here proposed can be easily extended to

the

Fig.3.Development of the real-time EIS quantitative LAMP Ampli ?cation of cMYC gene.(A)Typical RT-LAMP ampli ?cation curves for cMYC DNA.(B)Relationship between log copies of initial template DNA and threshold time,T T (RT-LAMP).(C)Typical EIS RT-LAMP ampli ?cation curves for (- -)cMYC DNA,with 10fold dilutions of initial DNA template,( )buffer solution,( )LAMP negative control.(D)Relationship between log copies of initial template DNA and threshold time,T T (EIS RT-LAMP).Results represent the average of three independent measurements and the error bars indicate standard deviation.The horizontal line represents the de ?ned threshold cycle/time.

B.Veigas et al./Biosensors and Bioelectronics 52(2014)50–55

54

monitorization of gene expression levels.Signi?cant progress can be expected from the development of an entirely automated device with an improved cell design for multiple sample analysis and lower volumes.

Acknowledgments

We acknowledge Funda??o para a Ciência e a Tecnologia(FCT-MCTES)for the?nancial support CENIMAT/I3N,CIGMH;through PEst-C/CTM/LA0025/2013-14(Strategic Project-LA25-2013-2014) and PEst-OE/SAU/UI0009/2011;Projects PTDC/BBB-NAN/1812/2012, PTDC/QUI-QUI/112597/2009,PTDC/CTM-NAN/109877/2009,Blood-FET-PTDC/SAU-BEB/098125/2009,Multinox-EXCL/CTM-NAN/0201/ 2012and ERC2008Advanced Grant(INVISIBLE contract no. 228144).SFRH/BD/78970/2011for BV and SFRH/BD/45224/2008 for PJW.

Appendix A.Supplementary materials

Supplementary data associated with this article can be found in the online version at https://www.wendangku.net/doc/3a1204853.html,/10.1016/j.bios.2013.08.029. References

Aoi,Y.,Hosogai,M.,Tsuneda,S.,2006.Journal of Biotechnology125(4),484–491. Audrey,S.,Leca,B.,Beatrice,D.,Blum,L.J.,2008.Chemical Review108(1),109–139. Bergveld,P.,2003.Sensors and Actuators B:Chemical88(1),1–20. Branquinho,R.,Veigas,B.,Pinto,J.V.,Martins,R.,Fortunato,E.,Baptista,P.V.,2011.

Biosensors and Bioelectronics28(1),44–49.Branquinho,R.,Pinto,J.V.,Busani,T.,Barquinha,P.,Pereira,L.,Baptista,P.V.,Martins, R.,Fortunato,E.,2013.IEEE/OSA Journal of Display Technology.(in press). Dang,C.V.,O'Donnell,K.A.,Zeller,K.I.,Nguyen,T.,Osthus,R.C.,Li,F.,2006.Seminars in Cancer Biology16(4),253–264.

Espy,M.J.,Uhl,J.R.,Sloan,L.M.,Buckwalter,S.P.,Jones,M.F.,Vetter,E.A.,Yao,J.D., Wengenack,N.L.,Rosenblatt,J.E.,Cockerill, F.R.,Smith,T.F.,2006.Clinical Microbiology Reviews19(1),165–256.

Ginzinger,D.G.,2002.Experimental Hematology30(6),503–512.

Kivlehan,F.,Mavré,F.,Talini,L.,Limoges,B.,Marchal,D.,2011.Analyst136(18), 3635–3642.

Maeda,H.,Kokeguchi,S.,Fujimoto,C.,Tanimoto,I.,Yoshizumi,W.,Nishimura,F., Takashiba,S.,2005.FEMS Immunology and Medical Microbiology43,233–239. Mori,Y.,Kitano,M.,Tomita,N.,Notomi,T.,2004.Journal of Biochemical and Biophysical Methods59,145–157.

Notomi,T.,Okayama,H.,Masubuchi,H.,Yonekawa,T.,Watanabe,K.,Amino,N., Hase,T.,2000.Nucleic Acids Research28(12),E63.

Parida,M.,Posadas,G.,Inoue,S.,Hasebe,F.,Morita,K.,2004.Journal of Clinical Microbiology42,257–263.

Parida,M.,Sannarangaiah,S.,Dash,P.K.,Rao,P.V.,Morita,K.,2008.Reviews in Medical Virology18(6),407–421.

Priano,G.,Gonzalez,G.,Guenther,M.,Battaglini,F.,2007.Electroanalysis20,91–97. Rothberg,J.M.,Hinz,W.,Rearick,T.M.,Schultz,J.,Mileski,W.,Davey,M.,Leamon,J.H., Johnson,K.,Milgrew,M.J.,Edwards,M.,Hoon,J.,Simons,J.F.,Marran, D., Myers,J.W.,Davidson,J.F.,Branting,A.,Nobile,J.R.,Puc,B.P.,Light,D.,Clark,T.A., Huber,M.,Branciforte,J.T.,Stoner,I.B.,Cawley,S.E.,Lyons,M.,Fu,Y.,Homer,N., Sedova,M.,Miao,X.,Reed,B.,Sabina,J.,Feierstein,E.,Schorn,M.,Alanjary,M., Dimalanta,E.,Dressman,D.,Kasinskas,R.,Sokolsky,T.,Fidanza,J.A.,Namsaraev,E., McKernan,K.J.,Williams,A.,Roth,G.T.,Bustillo,J.,2011.Nature475(7356), 348–352.

Sadik,O.A.,Aluoch, A.O.,Zhou, A.,2009.Biosensors and Bioelectronics24(9), 2749–2765.

Sakurai,T.,Husimi,Y.,1992.Analytical Chemistry64(17),1996–1997. Toumazou,C,Shepherd,LM,Reed,SC,Chen,GI,Patel,A,Garner,DM,Wang,CJ, Ou,CP,Amin-Desai,K,Athanasiou,P,Bai,H,Brizido,IM,Caldwell,B,Coomber-Alford,D,Georgiou,P,Jordan,KS,Joyce,JC,La Mura,M,Morley,D,Sathyav-ruthan,S,Temelso,S,Thomas,RE,Zhang,L.,2013.Nature Methods10(7), 641–646.

VanGuilder,H.D.,Vrana,K.E.,Freeman,W.M.,2008.Biotechniques44(5),619–626. Wong,M.L.,Medrano,J.F.,2005.Biotechniques39(1),75–85.

B.Veigas et al./Biosensors and Bioelectronics52(2014)50–5555

经纬仪,全站仪操作步骤

电子经纬仪操作步骤 经纬仪是测量工作中的主要测角仪器,由照准部、度盘、基座等部分组成。经纬仪根据度盘刻度和读数方式的不同,分为游标经纬仪,光学经纬仪和电子经纬仪。目前我国较为普遍使用的是电子经纬仪,游标经纬仪和光学经纬仪已逐渐淘汰。 下图为经纬仪各部件组成名称:

经纬仪的安置: 1 、架设仪器: 三脚架调成等长并使架头高度与观测者身高适宜,打开三脚架,使架头大致水平,将经纬仪固定在三脚架上,拧紧连接螺旋,置于测站点之上。 2 、对中: 对中就是使仪器的中心与测站点位于同一铅垂线上。用双手各提一条架脚前后、左右摆动,同时使架头大致保持水平状态,眼观对中标志(激光或十字丝交点)与测站点重合,同时使架头大致保持水平 状态,放稳并踩实架脚。

3 、整平: 整平的目的是使仪器竖轴铅垂,水平度盘水平。根据水平角的定义,是两条方向线的夹角在水平面上的投影,水平度盘一定要水平。(1)粗平:伸缩脚架腿,使圆水准气泡居中。同时检查对中标志是否偏离地面测站点。如果偏离了,旋松三角架上的连接螺旋,平移仪器基座使对中标志精确对准测站点的中心,拧紧连接螺旋并使圆水准气泡居中。 (2)精平:旋转照准部,使其水准管与基座上的任意两只脚螺旋的连线方向平行(图a)。双手同时相向转动两只脚螺旋,使水准管气泡居中;然后将照准部旋转90°(图b),旋转第三只脚螺旋,使气泡居中;如此反复进行,直到水准管在任何方向,气泡均居中为止。 4 、瞄准与读数: 首先将望远镜对向明亮的背景或天空,旋转目镜使十字丝变清晰;然后旋转照准部和望远镜,通过望远镜上的粗瞄准器大概瞄准目标,并将照准部和望远镜制动螺旋制紧;再旋转照准部和望远镜的微动螺旋照准目标,注意检查并消除视差。最后进行读数。

RealTimeRTPCR常见问题分析

Real-Time RT-PCR常见问题分析 1.某一孔荧光信号特别强 问题:同一批样品,其中某一个荧光信号特别强? 原因:①试剂配制时反应液没完全溶化,导致探针量在一管中增多;②试剂配制时没有充分混匀致各管中各成分的量不同;③也可能是PCR仪热槽被荧光物质污染,这 时就要清除热槽中的污染; 2. 扩增曲线有一向上或向下的尖峰 问题:扩增曲线有一向上或向下的尖峰? 原因:①反应过程中电压不稳定;②可能在20循环左右仪器有停下或者仪器有开盖,使得光线突然增强;③如果尖峰向下,也可能是卤素灯老化所致,这时应更换;

3. 部分样本扩增效率过低 问题:部分样本扩增效率过低? 原因:①提取液残留,一定程度抑制了PCR反应;②反应液未严格取量混匀或分装不均匀;③试剂失效; 4.阴性对照或空白对照翘尾,可能原因:1、模板提取环境有污染。2、模板提取操作有 污染。3、配液过程存在污染。 问题:阴性对照或空白对照翘尾? 原因:①模板提取环境有污染;②模板提取操作有污染;③试剂配制过程存在污染;

5. 直线型扩增曲线 问题:直线型扩增曲线? 原因:①探针部分降解(探针降解原因:a.探针反复冻融――稀释的探针可在4℃保存至少3个月,应避免反复冻融;b.探针在光线下暴露时间太长);②反应液中有PCR抑 制物; 6.没有扩增曲线 问题:没有扩增曲线? 原因:①PCR参数设置错误,在设计循环参数时将荧光信号读取时间设在反应的第一步,即stage 1阶段;②电脑设定了自动休眠;

7.基线下滑 问题:扩增曲线有一个下滑阶段? 原因:基线选取范围不对,可试着将基线范围改大一些,这一问题常因试剂质量所致;8.扩增曲线断裂 问题:扩增曲线断裂? 原因:基线选取范围不对,基线终点大于Ct值,这通常是由于模板DNA浓度过高所致,因Ct值<15,而基线范围仍取3-15,其中包含部分扩增信号,导致标准差偏大, 阈值过高,解决办法:减少基线终点至Ct值前4个循环,重新分析数据 9.样品浓度跨度过大 样品浓度过高,至阳性样品扩增曲线在后面循环中呈一向下的直线,原因及解决办法同“扩增曲线断裂”。

经纬仪的使用方法(免费)

第三节经纬仪的使用 一、安臵仪器 安臵仪器是将经纬仪安臵在测站点上,包括对中和整平两项内容。对中的目的是使仪器中心与测站点标志中心位于同一铅垂线上;整平的目的是使仪器竖轴处于铅垂位臵,水平度盘处于水平位臵。 1.初步对中整平 (1)用锤球对中,其操作方法如下: 1)将三脚架调整到合适高度,张开三脚架安臵在测站点上方,在脚架的连接螺旋上挂上锤球,如果锤球尖离标志中心太远,可固定一脚移动另外两脚,或将三脚架整体平移,使锤球尖大致对准测站点标志中心,并注意使架头大致水平,然后将三脚架的脚尖踩入土中。 2)将经纬仪从箱中取出,用连接螺旋将经纬仪安装在三脚架上。调整脚螺旋,使圆水准器气泡居中。 3)此时,如果锤球尖偏离测站点标志中心,可旋松连接螺旋,在架头上移动经纬仪,使锤球尖精确对中测站点标志中心,然后旋紧连接螺旋。 (2)用光学对中器对中时,其操作方法如下: 1)使架头大致对中和水平,连接经纬仪;调节光学对中器的目镜和物镜对光螺旋,使光学对中器的分划板小圆圈和测站点标志的影像清晰。 2)转动脚螺旋,使光学对中器对准测站标志中心,此时圆水准器气泡偏离,伸缩三脚架架腿,使圆水准器气泡居中,注意脚架尖位臵不得移动。 2.精确对中和整平

(1)整平 先转动照准部,使水准管平行于任意一对脚螺旋的连线,如图3-7a 所示,两手同时向内或向外转动这两个脚螺旋,使气泡居中,注意气泡移动方向始终与左手大拇指移动方向一致;然后将照准部转动90°,如图3-7b 所示,转动第三个脚螺旋,使水准管气泡居中。再将照准部转回原位臵,检查气泡是否居中,若不居中,按上述步骤反复进行,直到水准管在任何位臵,气泡偏离零点不超过一格为止。 (2)对中 先旋松连接螺旋,在架头上轻轻移动经纬仪,使锤球尖精确对中测站点标志中心,或使对中器分划板的刻划中心与测站点标志影像重合;然后旋紧连接螺旋。锤球对中误差一般可控制在3mm 以内,光学对中器对中误差一般可控制在1mm 以内。 对中和整平,一般都需要经过几次“整平—对中—整平”的循环过程,直至整平和对中均符合要求。 二、瞄准目标 (1)松开望远镜制动螺旋和照准部制动螺旋,将望远镜朝向明亮背景,调节目镜对光螺旋,使十字丝清晰。 (2)利用望远镜上的照门和准星粗略对准目标,拧紧照准部及望远镜制动螺旋;调节物镜对光螺旋,使目标影像清晰,并注意消除图3-7 经纬仪的整平

经纬仪使用及操作的步骤(光学对中法)

经纬仪使用及操作的步骤(光学对中法) 1、架设仪器: 将经纬仪放置在架头上,使架头大致水平,旋紧连接螺旋。 2、对中: 目的是使仪器中心与测站点位于同一铅垂线上。可以移动脚架、旋转脚螺旋使对中标志准确对准测站点的中心。 3、整平: 目的是使仪器竖轴铅垂,水平度盘水平。根据水平角的定义,是两条方向线的夹角在水平面上的投影,所以水平度盘一定要水平。 粗平:伸缩脚架腿,使圆水准气泡居中。 检查并精确对中:检查对中标志是否偏离地面点。如果偏离了,旋松三角架上的连接螺旋,平移仪器基座使对中标志准确对准测站点的中心,拧紧连接螺旋。 精平:旋转脚螺旋,使管水准气泡居中。 4、瞄准与读数: ①目镜对光:目镜调焦使十字丝清晰。 ②瞄准和物镜对光:粗瞄目标,物镜调焦使目标清晰。注意消除视差。精瞄目标。 ③读数: 调整照明反光镜,使读数窗亮度适中,旋转读数显微镜的目镜使刻划线清晰,然后读数。 现在很多都是使用全站仪,全站仪的使用(以拓普康全站仪为例进行介绍)介绍: (1)测量前的准备工作

1)电池的安装(注意:测量前电池需充足电) ①把电池盒底部的导块插入装电池的导孔。 ②按电池盒的顶部直至听到“咔嚓”响声。 ③向下按解锁钮,取出电池。 2)仪器的安置。 ①在实验场地上选择一点,作为测站,另外两点作为观测点。 ②将全站仪安置于点,对中、整平。 ③在两点分别安置棱镜。 3)竖直度盘和水平度盘指标的设置。 ①竖直度盘指标设置。 松开竖直度盘制动钮,将望远镜纵转一周(望远镜处于盘左,当物镜穿过水平面时),竖直度盘指标即已设置。随即听见一声鸣响,并显示出竖直角。 ②水平度盘指标设置。 松开水平制动螺旋,旋转照准部360,水平度盘指标即自动设置。随即一声鸣响,同时显示水平角。至此,竖直度盘和水平度盘指标已设置完毕。注意:每当打开仪器电源时,必须重新设置和的指标。 4)调焦与照准目标。 操作步骤与一般经纬仪相同,注意消除视差。 (2)角度测量 1)首先从显示屏上确定是否处于角度测量模式,如果不是,则按操作转换为距离模式。 2)盘左瞄准左目标A,按置零键,使水平度盘读数显示为0°00′00〃,顺时针旋转照准部,瞄准右目标B,读取显示读数。

引物设计原则(含Realtime引物)

1.引物最好在模板cDNA的保守区内设计。 DNA序列的保守区是通过物种间相似序列的比较确定的。在NCBI上搜索不同物种的同一基因,通过序列分析软件(比如DNAman)比对(Alignment),各基因相同的序列就是该基因的保守区。 2.引物长度一般在15~30碱基之间。 引物长度(primer length)常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA 聚合酶进行反应。 3.引物GC含量在40%~60%之间,Tm值最好接近72℃。 GC含量(composition)过高或过低都不利于引发反应。上下游引物的GC含量不能相差太大。另外,上下游引物的Tm值(melting temperature)是寡核苷酸的解链温度,即在一定盐浓度条件下,50%寡核苷酸双链解链的温度。有效启动温度,一般高于Tm值5~10℃。若按公式Tm= 4(G+C)+2(A+T)估计引物的Tm值,则有效引物的Tm为55~80℃,其Tm 值最好接近72℃以使复性条件最佳。 4.引物3′端要避开密码子的第3位。 如扩增编码区域,引物3′端不要终止于密码子的第3位,因密码子的第3位易发生简并,会影响扩增的特异性与效率。 5.引物3′端不能选择A,最好选择T。 引物3′端错配时,不同碱基引发效率存在着很大的差异,当末位的碱基为A时,即使在错配的情况下,也能有引发链的合成,而当末位链为T时,错配的引发效率大大降低,G、C 错配的引发效率介于A、T之间,所以3′端最好选择T。 6. 碱基要随机分布。 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错误引发(False priming)。降低引物与模板相似性的一种方法是,引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。尤其3′端不应超过3个连续的G或C,因这样会使引物在GC富集序列区错误引发。 7. 引物自身及引物之间不应存在互补序列。 引物自身不应存在互补序列,否则引物自身会折叠成发夹结构(Hairpin)使引物本身复性。这种二级结构会因空间位阻而影响引物与模板的复性结合。引物自身不能有连续4个碱基的互补。 两引物之间也不应具有互补性,尤其应避免3′ 端的互补重叠以防止引物二聚体(Dimer与Cross dimer)的形成。引物之间不能有连续4个碱基的互补。 引物二聚体及发夹结构如果不可避免的话,应尽量使其△G值不要过高(应小于4.5kcal/mol)。否则易导致产生引物二聚体带,并且降低引物有效浓度而使PCR 反应不能正常进行。 8. 引物5′ 端和中间△G值应该相对较高,而3′ 端△G值较低。 △G值是指DNA 双链形成所需的自由能,它反映了双链结构内部碱基对的相对稳定性,△G 值越大,则双链越稳定。应当选用5′ 端和中间△G值相对较高,而3′ 端△G值较低(绝对值不超过9)的引物。引物3′ 端的△G 值过高,容易在错配位点形成双链结构并引发DNA 聚合反应。(不同位置的△G值可以用Oligo 6软件进行分析) 9.引物的5′端可以修饰,而3′端不可修饰。 引物的5′ 端决定着PCR产物的长度,它对扩增特异性影响不大。因此,可以被修饰而不影响扩增的特异性。引物5′ 端修饰包括:加酶切位点;标记生物素、荧光、地高辛、Eu3+等;引入蛋白质结合DNA序列;引入点突变、插入突变、缺失突变序列;引入启动子序列等。引物的延伸是从3′ 端开始的,不能进行任何修饰。3′ 端也不能有形成任何二级结构可能。 10. 扩增产物的单链不能形成二级结构。

经纬仪的操作步骤

经纬仪的操作步骤 1、HR—右旋(顺时针)水平角,HL—左旋(逆时针)水平角。 2、经纬仪的操作步骤(光学对中法) 1 、架设仪器: 将经纬仪放置在架头上,使架头大致水平,旋紧连接螺旋。 2 、对中: 目的是使仪器中心与测站点位于同一铅垂线上。可以移动脚架、旋转脚螺旋使对中标志准确对准测站点的中心。

3 、整平: 目的是使仪器竖轴铅垂,水平度盘水平。根据水平角的定义,是两条方向线的夹角在水平面上的投影,所以水平度盘一定要水平。 粗平:伸缩脚架腿,使圆水准气泡居中。 检查并精确对中:检查对中标志是否偏离地面点。如果偏离了,旋松三角架上的连接螺旋,平移仪器基座使对中标志准确对准测站点的中心,拧紧连接螺旋。 精平:旋转脚螺旋,使管水准气泡居中。 4 、瞄准与读数: ①目镜对光:目镜调焦使十字丝清晰。 ②瞄准和物镜对光:粗瞄目标,物镜调焦使目标清晰。注意消除视差。

精瞄目标。 ③读数: 调整照明反光镜,使读数窗亮度适中,旋转读数显微镜的目镜使刻划线清晰,然后读数。 现在很多都是使用全站仪,全站仪的使用(以拓普康全站仪为例进行介绍)介绍: (1)测量前的准备工作 1)电池的安装(注意:测量前电池需充足电) ①把电池盒底部的导块插入装电池的导孔。 ②按电池盒的顶部直至听到“咔嚓”响声。

③向下按解锁钮,取出电池。 2)仪器的安置。 ①在实验场地上选择一点,作为测站,另外两点作为观测点。 ②将全站仪安置于点,对中、整平。 ③在两点分别安置棱镜。 3)竖直度盘和水平度盘指标的设置。 ①竖直度盘指标设置。 松开竖直度盘制动钮,将望远镜纵转一周(望远镜处于盘左,当物镜穿过水平面时),竖直度盘指标即已设置。随即听见一声鸣响,并显示出竖直角。 ②水平度盘指标设置。

水准仪经纬仪使用方法详细图解

水 准 测 量 基本知识 1.水准测量原理 工程上常用的高程测量方法有几何水准测量、三角高程测量、GPS 测高及在特定对象和条件下采用的物理高程测量,其中几何水准测量是目前高程测量中精度最高、应用最普遍的测量方法。 如图2-1所示,设在地面A 、B 两点上竖立标尺(水准尺),在A 、B 两点之间安置水准仪,利用水准仪提供一条水平视线,分别截取A 、B 两点标尺上读数a 、b ,显然 A B H a H b +=+ A 、 B 两点的高差h AB 可写为 AB h a b =- A 点高程H A 已知, 求出 B 点高程 B A AB H H h =+ 我们规定A 点水准尺读数a 为后视读数,B 点水准尺读数b 为前视读数。 图 2-1 如果A 、B 两地距离较远时,可以用连续水准测量的方法。中间可设置转点TP (临时高程传递点,须放置尺垫),如图2-2所示 11h a =, 333h a b =-,……, n n n h a b =-。 123......AB n i h h h h h h =+++=∑

于是,可以求得A 、B 之间的高程差 AB i i h a b =-∑∑ B 点高程 B A AB H H h =+. 图 2-2 2.水准仪介绍: 水准仪是提供水平视线的仪器,按精度分,水准仪通常有DS 05、DS 1、DS 3等几种。其中“D ”和“S ”分别为“”和“水准仪”首字汉语拼音的首字母,而下标是仪器的精度指标,即每千米测量中的偶然误差(以mm 为单位)。目前常用的水准仪从构造上可分为两大类:利用水准管来获得水平视线的“微倾式水准仪”和利用补偿器来获得水平视线的“自动安平水准仪”。此外,还有一种新型的水准仪——“电子水准仪”,它配合条形码标尺,利用数字化图像处理的方法,可自动显示高程和距离,使水准测量实现了自动化。 水准仪主要由望远镜、水准器、基座三部分组成。 (1) DS 3微倾式水准仪 1.仪器介绍

经纬仪操作步骤

经纬仪的基本操作为:对中、整平、瞄准和读数。 (一)对中 对中的目的是使仪器度盘中心与测站点标志中心位于同一铅垂线上。操作步骤为: 张开脚架,调节脚架腿,使其高度适宜,并通过目估使架头水平、架头中心大致对准测站点。 从箱中取出经纬仪安置于架头上,旋紧连接螺旋,并挂上锤球。如锤球尖偏离测站点较远,则需移动三脚架,使锤球尖大致对准测站点,然后将脚架尖踩实。 略微松开连接螺旋,在架头上移动仪器,直至锤球尖准确对准测站点,最后再旋紧连接螺旋。 (二)整平 整平的目的是调节脚螺旋使水准管气泡居中,从而使经纬仪的竖轴竖直,水平度盘处于水平位置。其操作步骤如下: 1.旋转照准部,使水准管平行于任一对脚螺旋[如图3-7A ]。转动这两个脚螺旋,使水准管气泡居中。

2.将照准部旋转90°,转动第三个脚螺旋,使水准管气泡居中[如图3-7B] 图3-7 整平 3.按以上步骤重复操作,直至水准管在这两个位置上气泡都居中为止。使用光学对中器进行对中、整平时,首先通过目估初步对中(也可利用锤球),旋转对中器目镜看清分划板上的刻划圆圈,再拉伸对中器的目镜筒,使地面标志点成像清晰。转动脚螺旋使标志点的影像移至刻划圆圈中心。然后,通过伸缩三脚架腿,调节三脚架的长度,使经纬仪圆水准器气泡居中,再调节脚螺旋精确整平仪器。接着通过对中器观察地面标志点,如偏刻划圆圈中心,可稍微松开连接螺旋,在架头移动仪器,使其精确对中,此时,如水准管气泡偏移,则再整平仪器,如此反复进行,直至对中、整平同时完成。 瞄准 瞄准目标的步骤如下: 1.目镜对光:将望远镜对向明亮背景,转动目镜对光螺旋,使十字丝成像清晰。

经纬仪操作方法步骤图解

在这里经纬仪操作方法步骤详解图解添加日志标题 经纬仪操作方法步骤详解图解 步骤图解 1、连接螺旋:旋紧连接螺旋, 将仪器固定在三脚架上。 2、调节三脚架:将三脚架打开, 调节高度适中,三条架腿分别 处于测站周围。如果地面松软, 应将架腿踩实。 3、光学对中器:调节光学对中 器的目镜和物镜,使地面清晰 成像。

4、脚螺旋:调节脚螺旋,将仪器精确整平。 5、水平制动螺旋:旋紧水平制动螺旋,照准部被固定。望远镜无法在水平方向内转动。 6、水平微动螺旋:水平制动螺旋旋紧后,旋转水平微动螺旋,照准部在水平方向内微微转动。 7、竖直制动螺旋:旋紧竖直制动螺旋,望远镜被固定在支架上无法转动。

8、目镜调焦螺旋:转动目镜调焦螺旋,使十字丝清晰。 9、水平度盘反光镜:调整水平度盘反光镜,读书窗内数字明亮。 10、竖直度盘反光镜:调整竖直度盘反光镜,使读数窗内读数明亮。 11、读数显微镜:调节读数显微镜,使读书清晰。

12、配盘手轮:调整配盘手轮, 改变水平度盘读数。 水准仪操作步骤方法详解图解 发布: 2009-10-06 09:32 | 作者: admin | 查看: 4次水准仪操作步骤方法详解图解 步骤图解 1、安放三角架:调节三脚架腿至适当 高度,尽量保持三脚架顶面水平。如 果地面松软,应将架腿踩入土中。 2、连接螺旋:旋紧连接螺旋, 将水准仪和三脚架连接在一 起。

3、脚螺旋:调节脚螺旋,使圆水准气泡居中。 4、制动螺旋:旋紧制动螺旋,望远镜被固定。 5、水平微动螺旋:在制动螺旋旋紧后,调节水平微动螺旋,望远镜在水平方向内微小转动。 6、目镜调焦螺旋:调节目镜调焦螺旋,使十字丝清晰成像。

经纬仪全站仪操作步骤

电子经纬仪操作步骤经纬仪是测量工作中的主要测角仪器,由照准部、度盘、基座等部分组成。经纬仪根据度盘刻度和读数方式的不同,分为游标经纬仪,光学经纬仪和电子经纬仪。目前我国较为普遍使用的是电子经纬仪,游标经纬仪和光学经纬仪已逐渐淘汰。 下图为经纬仪各部件组成名称: 经纬仪的安置: 1 、架设仪器: 三脚架调成等长并使架头高度与观测者身高适宜,打开三脚架,使架头大致水平,将经纬仪固定在三脚架上,拧紧连接螺旋,置于测站点之上。 2 、对中: 对中就是使仪器的中心与测站点位于同一铅垂线上。用双手各提一条架脚前后、左右摆动,同时使架头大致保持水平状态,眼观对中标志(激光或十字丝交点)与测站点重合,同时使架头大致保持水平状态,放稳并踩实架脚。 3 、整平: 整平的目的是使仪器竖轴铅垂,水平度盘水平。根据水平角的定义,是两条方向线的夹角在水平面上的投影,水平度盘一定要水平。 (1)粗平:伸缩脚架腿,使圆水准气泡居中。同时检查对中标志是否偏离地面测站点。如果偏离了,旋松三角架上的连接螺旋,平移仪器基座使对中标志精确对准测站点的中心,拧紧连接螺旋并使圆水准气泡居中。

(2)精平:旋转照准部,使其水准管与基座上的任意两只脚螺旋的连线方向平行(图a)。双手同时相向转动两只脚螺旋,使水准管气泡居中;然后将照准部旋转90°(图b),旋转第三只脚螺旋,使气泡居中;如此反复进行,直到水准管在任何方向,气泡均居中为止。 4 、瞄准与读数: 首先将望远镜对向明亮的背景或天空,旋转目镜使十字丝变清晰;然后旋转照准部和望远镜,通过望远镜上的粗瞄准器大概瞄准目标,并将照准部和望远镜制动螺旋制紧;再旋转照准部和望远镜的微动螺旋照准目标,注意检查并消除视差。最后进行读数。 5、水平角测量 在建筑工程施工中,经纬仪主要用于水平角测量,下面只简单介绍一下经纬仪测量水平角的基本步骤: 如图所示: (1)安置经纬仪置于o点,精确调平仪器,使经纬仪处于水平角度测量模式,照准第一个目标A,制动。 (2)按置零键,设置A方向的水平度盘读数为0°00′00"。 (3)顺时针旋转望远镜,照准第二个目标B,制动。此时显示的水平度盘读数即为两方向间的水平夹角β。 竖直角的测量与水平角的测量方法一致,数值也同时显示,若要测量竖直角按上述方法操作,同时读取竖直角即可。 全站仪操作步骤

Real-Time PCR详细介绍

荧光定量PCR实验指南 来源:易生物实验浏览次数:901网友评论0 条 荧光定量PCR实验指南 关键词:荧光实验指南 第一部分 一、基本步骤: 1、目的基因(DNA和mRNA)的查找和比对; 2、引物、探针的设计; 3、引物探针的合成; 4、反应体系的配制; 5、反应条件的设定; 6、反应体系和条件的优化; 7、荧光曲线和数据分析; 8、标准品的制备; 二、技术关键: 1、目的基因(DNA和mRNA)的查找和比对; 从https://www.wendangku.net/doc/3a1204853.html,/网点的genbank中下载所需要的序列。下载的方式有两种:一为打开某个序列后,直接点击“save”,保存格式为“.txt”文件。保存的名称中要包括序列的物种、序列的亚型、

序列的注册号。然后,再打开DNAstar软件中的Editseq软件,点击“file”菜单中的“import”,打开后点击“save”,保存为“.seq”文件。另一种直接用DNAstar软件中的Editseq软件,点击“file”菜单中的“openentrezsequence”,导入后保存为“.seq”文件,保存的名称中要包括序列的物种、序列的亚型、序列的注册号。然后要对所有的序列进行排序。用DNAstar软件中的Seqman软件,点击“sequence”菜单中的“add”,选择要比较的“.seq”的所有文件,点击“add”或“adda ll”,然后点击“Done”导入要比较的序列,再点击“assemble”进行比较。横线的上列为一致性序列,所有红色的碱基是不同的序列,一致的序列用黑色碱基表示。有时要设定比较序列的开始与结尾。有时因为参数设置的原因,可能分为几组(contig),若想全部放在一组中进行比较,就调整“project”菜单下的“parameter”,在“assembling”内的“minimum math percentage”默认设置为80,可调低即可。再选择几个组,点击“contig”菜单下的“reassemble contig”即可。选择高低的原则是在保证所分析的序列在一个“contig”内的前提下,尽量提高“minimum math percentage”的值。有时因此个别序列原因,会出现重复序列,碱基的缺失或插入,要对“contig”的序列的排列进行修改,确保排列是每个序列的真实且排列同源性最好的排列。然后,点击“save”保存即可。分析时,主要是观察是否全部为一致性的黑色或红色,对于弥散性的红色是不可用的。 2、引物和探针设计 2.1引物设计

经纬仪使用教程讲解

经纬仪及角度测量 第一节 角度测量原理 角度测量包括水平角测量和竖直角测量,是测量的三项基本工作之一。角度测量最常用的仪器是经纬仪。水平角测量用于计算点的平面位置,竖直角测量用于测定高差或将倾斜距离改算成水平距离。 一、水平角测量原理 水平角是地面上一点到两目标的方向线投影到水平面上的夹角,也就是过这两方向线所作两竖直面间的二面角。用β表示,角值范围0o~360 o。如图3-1所示,设A 、B 、C 是任意三个位于地面上不同高程的点,B 1A 1、B 1C 1为空间直线BA 、BC 在水平面上的投影,B 1A 1与B 1C 1的夹角β就是为地面上BA 、BC 两方向之间的水平角。 为了测出水平角的大小,可以设想在B 点的上方水平地安置一个带有顺时针刻画、注记的圆盘,并使其圆心O 在过B 点的铅垂线上,有一刻度盘和在刻度盘上读数的指标。观测水平角时,刻度盘中心应安放在过测站点的铅垂线上,直线BA 、BC 在水平圆盘上的投影是om 、on ,此时如果能读出om 、on 在水平圆盘上的读数m 和n ,那么水平角β就等于m 减去n ,即n m -=β。 因此,用于测量水平角的仪器必须有一个能读数的度盘,并能使之水平。为了瞄准不同方向,该度盘应能沿水平方向转动,也能高低俯仰。当度盘高低俯仰时,其视准独应划出一竖直面,这样才能使得在同一竖直面内高低不同的目标有相同的水平度盘读数。 经纬仪就是根据上述要求设计制造的一种测角仪器。 图3-1 水平角测量原理 图3-2 竖直角测量原理 二、竖直角测量原理 竖直角是同一竖直面内视线与水平线间的夹角。角值范围为-90°~+ 90°。视线向上倾斜,竖直角为仰角,符号为正。视线向下倾斜,竖直角为俯角,符号为负。 竖直角与水平角一样,其角值也是度盘上两个方向读数之差。不同的是竖直角的两个方向中必有一个是水平方向。任何类型的经纬仪,制作上都要求当竖直指标水准管气泡居中,望远镜视准轴水平时,其竖盘读数是一个固定值。因此,在观测竖直角时,只要观测目标点一个方向并读取竖盘读数便可算得该目标点的竖直角,而不必观测水平方向。

经纬仪操作规程

经纬仪操作规程 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

经伟仪操作规程 一、操作前准备: 1、到达工作地点后,要先打开经纬仪箱盖,使仪器与环境一致。 2、打开三角架,调节好脚架高度使架头大致水平,稳固地架设在所测角点的上方。 3、用中心连接螺钉将经纬仪固连在在角架上。 二、操作规程: 1、对中: (1)对中时,在连接中心螺旋的钩上悬挂垂球移动三角架,使垂球尖大致对准测站点,将三角架的各脚稳固地踩入地中。 (2)若垂球尖偏离测站点较大,需平移脚架,使垂球尖大致对准测站点,再踩紧脚架;若偏离较小,可略旋移连接中心螺旋,将仪器在架头的圈孔范围内移动,使垂球尖对准测站点,再拧紧连接中心螺旋。 (3)使用光学对中器进行对中时,应首先目估对中和使仪器概略整平。用光学对中器是地,先要对光,然后将仪器在架头上平移,交替使用对中和整平的方法,直到测站点的像落在对中器圆圈的中央,达到既对中又整平。,最后拧紧中心连接螺旋。 2、整平: (1)使照准部水准管平行于任意两个脚螺旋中心的连线方向。 (2)两手同时向内或外旋转这两个脚螺旋,使气泡居中。

(3)旋转照准部90°,使水准管垂直于上述两个脚螺旋连线的方向,然后用第三个脚螺旋使气泡居中。 3、反复多项上述步骤,直至照准部转到任意位置,气泡偏离中央均不超过半格时为止。瞄准: (1)调节目镜使十字丝最清晰,然后用望远镜上的准星和照门(或粗瞄准器),先从镜外找到目标。 (2)当在望远镜内看到目标后,拧紧水平制动螺旋,调节对光螺旋,消除视差,然后调节水平微动螺旋,用十字丝精确瞄准目标。 4、水平角观测方法: (1)测回法,只适用于观测两个方向的单角。 (2)盘左位置。 (3)松开照准部和望远镜照部,由望远镜外的制动螺旋(或板手)转动通过照门和准星粗略瞄准左目标A,拧紧制动螺旋,仔细对光,用照准部与望远镜的微动螺旋,精确瞄准A目标,读取的水平度盘读数。 (4)松开照准部和望远镜制动螺旋,顺时针转动照准部,用上述同样方法瞄准目标B,读记水平度盘读数。 (5)以上两步称上半测回,测得该角角值。 (6)盘右位置。 (7)松开照准部和望远镜制动螺旋,倒转望远镜,逆时针转动照准部、瞄准B点,读记水平度盘读数。 (8)再松开照准部和望远镜制动螺旋,逆时针方向转动照部,瞄准A,读记水平度盘读数。

realtimePCR和RT-PCR详解及其区别要点

real-time PCR技术的原理及应用 摘要:一、实时荧光定量PCR原理(一)定义:在PCR反应体系中 加入荧光基团,利用荧光信号累积实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。(二)实时原理 1、常规PCR技术:对PCR扩增反应的终点产物进行定量和定性分析无法对起始模板准 一、实时荧光定量PCR原理 (一)定义:在PCR反应体系中加入荧光基团,利用荧光信号累积实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。 (二)实时原理 1、常规PCR技术: 对PCR扩增反应的终点产物进行定量和定性分析无法对起始模板准确定量,无法对扩增反应实时检测。 2、实时定量PCR技术: 利用荧光信号的变化实时检测PCR扩增反应中每一个循环扩增产物量的变化,通过Ct值和标准曲线的分析对起始模板进行定量分析 3、如何对起始模板定量?

通过Ct值和标准曲线对起始模板进行定量分析. 4、几个概念: (1)扩增曲线: (2)荧光阈值: (3)Ct值:

CT值的重现性: 5、定量原理: 理想的PCR反应: X=X0*2n 非理想的PCR反应: X=X0 (1+Ex)n

n:扩增反应的循环次数 X:第n次循环后的产物量 X0:初始模板量 Ex:扩增效率 5、标准曲线 6、绝对定量 1)确定未知样品的 C(t)值 2)通过标准曲线由未知样品的C(t)值推算出其初始量

7、DNA的荧光标记: 二、实时荧光定量PCR的几种方法介绍 方法一:SYBR Green法 (一)工作原理 1、SYBR Green 能结合到双链DNA的小沟部位

经纬仪的使用方法

1、HR—右旋(顺时针)水平角,HL—左旋(逆时针)水平角。 2、经纬仪的操作步骤(光学对中法) 1 、架设仪器: 将经纬仪放置在架头上,使架头大致水平,旋紧连接螺旋。 2 、对中: 目的是使仪器中心与测站点位于同一铅垂线上。可以移动脚架、旋转脚螺旋使对中标志准确对准测站点的中心。 3 、整平: 目的是使仪器竖轴铅垂,水平度盘水平。根据水平角的定义,是两条方向线的夹角在水平面上的投影,所以水平度盘一定要水平。 粗平:伸缩脚架腿,使圆水准气泡居中。 检查并精确对中:检查对中标志是否偏离地面点。如果偏离了,旋松三角架上的连接螺旋,平移仪器基座使对中标志准确对准测站点的中心,拧紧连接螺旋。 精平:旋转脚螺旋,使管水准气泡居中。 4 、瞄准与读数: ①目镜对光:目镜调焦使十字丝清晰。 ②瞄准和物镜对光:粗瞄目标,物镜调焦使目标清晰。注意消除视差。精瞄目标。 ③读数: 调整照明反光镜,使读数窗亮度适中,旋转读数显微镜的目镜使刻划线清晰,然后读数。现在很多都是使用全站仪,全站仪的使用(以拓普康全站仪为例进行介绍)介绍: (1)测量前的准备工作 1)电池的安装(注意:测量前电池需充足电) ①把电池盒底部的导块插入装电池的导孔。

②按电池盒的顶部直至听到“咔嚓”响声。 ③向下按解锁钮,取出电池。 2)仪器的安置。 ①在实验场地上选择一点,作为测站,另外两点作为观测点。 ②将全站仪安置于点,对中、整平。 ③在两点分别安置棱镜。 3)竖直度盘和水平度盘指标的设置。 ①竖直度盘指标设置。 松开竖直度盘制动钮,将望远镜纵转一周(望远镜处于盘左,当物镜穿过水平面时),竖直度盘指标即已设置。随即听见一声鸣响,并显示出竖直角。 ②水平度盘指标设置。 松开水平制动螺旋,旋转照准部360,水平度盘指标即自动设置。随即一声鸣响,同时显示水平角。至此,竖直度盘和水平度盘指标已设置完毕。注意:每当打开仪器电源时,必须重新设置和的指标。 4)调焦与照准目标。 操作步骤与一般经纬仪相同,注意消除视差。 (2)角度测量 1)首先从显示屏上确定是否处于角度测量模式,如果不是,则按操作转换为距离模式。2)盘左瞄准左目标A,按置零键,使水平度盘读数显示为0°00′00〃,顺时针旋转照准部,瞄准右目标B,读取显示读数。 3)同样方法可以进行盘右观测。 4)如果测竖直角,可在读取水平度盘的同时读取竖盘的显示读数。 (3)距离测量 1)首先从显示屏上确定是否处于距离测量模式,如果不是,则按操作键转换为坐标模式。2)照准棱镜中心,这时显示屏上能显示箭头前进的动画,前进结束则完成坐标测量,得出距离,HD为水平距离,VD为倾斜距离。 (4)坐标测量 1)首先从显示屏上确定是否处于坐标测量模式,如果不是,则按操作键转换为坐标模式。2)输入本站点O点及后视点坐标,以及仪器高、棱镜高。

realtime pcr 阈值设定

Data Analysis on the ABI P RISM? 7700 Sequence Detection System: Setting Baselines and Thresholds Overview In order for accuracy and precision to be optimal, the assay must be properly evaluated and a few adjustments need to be made. There are three important parameters to be assessed: ?Baseline ?Threshold ?Ct value Data Analysis Tutorial To accurately reflect the quantity of a particular target within a reaction, i.e.the amount of PCR product, it is critical that the point of measurement be accurately determined. Real-time analysis on the ABI P RISM? 7700 Sequence Detection System involves three principle determinants for more accurate, reproducible data. Baseline Value During PCR, changing reaction conditions and environment can influence fluorescence. In general, the level of fluorescence in any one well corresponds to the amount of target present. Fluorescence levels may fluctuate due to changes in the reaction medium creating a background signal. The background signal is most evident during the initial cycles of PCR prior to significant accumulation of the target amplicon. During these early PCR cycles, the background signal in all wells is used to determine the “baseline fluorescence” across the entire reaction plate. The goal of data analysis is to determine when target amplification is sufficiently above the background signal, facilitating more accurate measurement of fluorescence. Threshold The threshold is the numerical value assigned for each run, which reflects a statistically significant point above the calculated baseline. Ct Value The Threshold Cycle (Ct) reflects the cycle number at which the fluorescence generated within a reaction crosses the threshold. The Ct value assigned to a particular well thus reflects the point during the reaction at which a sufficient number of amplicons have accumulated, in that well, to be at a statistically significant point above the baseline.

realtime 数据处理

内参基因:18s for control, 18s for treatment sample 目的基因:control sample, treatment sample 复孔取平均值 △Ct for control sample = Ct of comtrol sample - Ct 18s for control △Ct for treatment sample = Ct of treatment sample - Ct 18s for treatment sample △△Ct = △Ct for treatment sample - △Ct for control sample 2^(-△△Ct) 2^(-△△Ct) =1 means miRNA expression no change 2^(-△△Ct) <1 means expression decrease after treatment 2^(-△△Ct) >1 means expression increase after treatment 我以前是这么做的。不合理的地方,可以拍砖。 第一步,将数据(Ct mean)拷贝到excel。 第二步,计算△Ct。在excel内,计算B2-E2, B3-E3,。。。

第三步,取对照组的△Ct的算术平均数。excel里面是:average (f5,f6,f7) ,得到对照组的△Ct的算术平均数4.242524433 第四步,将F栏内的各个△Ct减去对照组的△Ct,这就是△△Ct。 第五步,将I栏里面的各数,取相反数。也就是(-△△Ct) 第六步,算出2(-△△Ct),excel里面的方程是power(2,N),N指的是(-△△Ct)所在位置。

罗氏realtimepcr操作指南

一.配制好反应体系,封好膜。接通LC480与电脑电源,电脑帐号operator,密码LC480,点击LC480软件,登录帐号user,密码Master1。 二.开始实验:点击,在列表中选择对应的程序,如H1N1或HBV,点击窗口右下角的,点击软件界面右下角的,输入实验文件名点击窗口右下角的开 始实验。 三.编辑子集:点击subset editor,点击左下角的,按ctrl键的同时鼠标选择本次实验的孔,最后点击应用。注意,一次实验可以同时运行相同扩增参数的多个实验 (如H1N1、HIV与HCV),那么可以分别设置多个子集 设置样品:先在subset中选择本次实验的子集,点击左上角的,样品输入样品名,再选择标准品类型和浓度或者阳性 对照/阴性对照 四.数据分析: 实验运行完成后进入,选择Abs Quant/Fit Ppoint, 在窗口中的Subset(第二行)中选择本次实验的子集,点 击软件界面中上方的,在Noise Band中调节 noise band高度,使之处于对数增长期并高于所有噪音信 号,如右图。 再点击进入,点击软件界面中间偏右的 自动设置阈值或手工调节阈值(鼠标左键按住拖动或在 输入阈值大小),再点击软件界面左下角的,软 件左下方出现每个样品的Ct值或浓度值等以及平均值标准误等信 息,该部分可以鼠标拖动滑块或鼠标拖曳、 鼠标点击软件右上角的为本次分析命名,如输入H1N1或其它名称 五.报告输出打印:点击软件右侧的保存当前实验的分析结果,再点击软件左侧的, 选择需要输出的分析结果,如H1N1, 点击软件中部左侧的detailed 分析中建议选择results或standard curve,点击软件界 面左下方的,生成PDF报告,如装了打印机,直接 点击软件中间上方的,或者点击,选择pdf文 件保存位置后点击save保存

罗氏realtime PCR操作指南(Roche LightCycler480)

LightCycler ? 480 系统快速操作指南 1 一.配制好反应体系,封好膜。接通LC480与电脑电源,电脑帐号operator ,密码LC480,点击LC480软件 ,登录帐号user ,密码Master1。 二.开始实验:点击 ,在列表中选择对应的程序,如H1N1或HBV ,点击窗口右下角的,点击软件界面右下角的,输入实验文件名点击窗口右下角的开始实验。 三.编辑子集:点击 subset editor ,点击左下角的,按ctrl 键的同时鼠标选择本次实验的孔,最后点击应用。注意,一次实验可以同时运行相同扩增参数的多个实验(如H1N1、HIV 与HCV ),那么可以分别设置多个子集 设置样品:先在subset 中选择本次实验的子集,点击左上角的,样品输入样品名,再选择标准品类型和浓度或者阳性对照/阴性对照 四.数据分析: 实验运行完成后进入,选择Abs Quant/Fit Ppoint ,在窗 口中的Subset (第二行)中选择本次实验的子集,点击软 件界面中上方的,在Noise Band 中调节 noise band 高度,使之处于对数增长期并高于所有噪音信号,如 右图。 再点击进入,点击软件界面中间偏右的 再点击软件界面左下角的 值或浓度值等以及平均值标准误等信 息,该部分可以鼠标拖动滑块或鼠标拖曳、 鼠标点击软件右上角的为本次分析命名,如输入H1N1或其它名称 五.报告输出打印:点击软件右侧的保存当前实验的分析结果,再点击软件左侧的,点击软件中部左侧的detailed 选择需要输出的分析结果,如H1N1, 分析中建议选择results 或standard curve ,点击软件界面左 下方的,生成PDF 报告,如装了打印机,直接 点击软件中间上方的 ,或者点击,选择pdf 文件保存位置后点击save 保存

相关文档
相关文档 最新文档