文档库 最新最全的文档下载
当前位置:文档库 › 英文文献1

英文文献1

英文文献1
英文文献1

Improving the Markowitz Model

using the Notion of Entropy The Mean-variance framework proposed by Markowitz is the most common model for portfolio selection problem. The most important concept in his theory is diversification. Diversification means designing an investment portfolio that reduces exposure risk by combining a variety of investments. But actually, the portfolios’ weights are often extremely concentrated on few assets when using mean-variance framework; this is a contradiction to the notion of diversification. Entropy is a well accepted measure of diversity. In this thesis, we discuss an improved mean-variance model based on maximum entropy theory (MVME). Entropy can be viewed as a measure of disparity from the uniform probability distribution. This approach can be viewed as a direct shrinkage of portfolio weights. The estimation errors, stability of portfolio weights, portfolio performance and degree of diversification for both mean-variance and the MVME framework are tested. Compared with the mean-variance framework, the improved model leads to a well diversified portfolio.Chapter 1. Introduction. Modern portfolio theory (MPT) was first discovered and developed by Harry Markowitz in his paper "Portfolio Selection," [1] published in the1952. This article presents the method to construct a portfolio that could achieve a desired level of return while minimizing the investment risk. The mean-variance framework is the most widely used model in solving portfolio diversification problems. But i t has one big weakness; the portfolios’ weights are often extremely concentrated on few assets, which is a contradiction to the notion of diversification. In this thesis, an improved model based on maximum entropy theory is discussed and we also compare it with the classical mean-variance framework. This new approach could be viewed as a combination methodology of the mean-variance and the maximum entropy theory [2].

In Chapter2, the classical mean-variance framework is presented comprehensively. In Chapter 3, the conventional improvements of mean-variance framework are depicted; the properties of entropy and maximum entropy theory are

introduced. At the end of this section, the improved model based on maximum entropy theory is proposed; the parameters in MVME model and unique solution are also discussed. In Chapter 4, the comparison between mean-variance and MVME framework will be made in four aspects:

? Estimation error.

? Portfolio performance, including the comparison on efficient frontier, Sharp ratio,actual return and final return.

? Stability of portfolio weights.

? Degree of diversification.

1.Introduction of Markowitz Portfolio Theory.

Modern portfolio theory (MPT) is an attempt to find the balance relation of the risk-reward in the investment portfolios. MPT proposes the idea of diversification as a tool to optimize the portfolios.This theory was first discovered and developed by Harry Markowitz in the 1950’s. Markowitz showed the benefits of diversification, also known as “not putting all of your eggs in one basket” in this theory. In other words, investment is not only about picking stocks, but also about choosing the right combination of stocks. His theory emphasized the importance of risk, correlation and diversification on expected investment portfolio returns. His work changed the way that people invest.

Before Markowitz, people thought that there was one optimal portfolio which could offer the maximum expected return while minimizing risk. Markowitz clarified that it is impossible from the mathematic point of view. In the real world, the optimal portfolio selection is the problem about how much should be invested in each security to achieve a desired level of return while minimizing investment risk or getting the maximum expected return at a fixed risk level. Markowitz offered an answer by the Efficient Frontier. It is possible to construct a portfolio in the “efficient frontier” to offer the maximum return for any given level of risk. Based on the above concept, Markowitz developed the famous financial portfolio model Mean-Variance model (MV model), which was published in << Portfolio Selection >> in 1952. This model is the most common formulation of the portfolio selection problem. The

mean-variance analysis provides the first quantitative treatment of the tradeoff between reward and risk. As we know, the two most important factors to be considered in Markowitz portfolio selection theory are reward and risk. A fundamental question is how to measure risk. In the MV model, reward is defined by expected return while the risk is defined by variance. 2.2 Assumptions of Mean-Variance Analysis.

The mean-variance analysis is based on the following assumptions [3]:

1). Investors are rational and behave in a manner as to maximize their utility with a given level of income or money.

2). Investors have free access to fair and correct information on the returns and the investment risk. Each investor could master the information sufficiently.

3). The markets are efficient and absorb the information quickly and perfectly.

4) All investors are risk-averse and try to minimize the risk and maximize return. It means that for some assets which offer the same return, the investors will prefer the lower risky one or for that level of risk an alternative portfolio which has higher expected returns exists.

5). Investors make decisions based on expected returns and variance or standard deviation of these returns. Investors will accept increased risk only if compensated by higher expected rewards. Conversely, an investor who wants to seek higher returns must accept more risk.

6). The returns of the investment security are random variables with a known multivariate normal distribution. With this assumption, portfolio efficiency is determined by simply compounding the expected returns and the standard deviations of their expected returns. For building up the efficient set of portfolio, as laid down by Markowitz, we need to look into these important parameters [4]:

2. Rate of return.

The rate of return of the asset is defined by r , satisfying that 0)1(X r X T +=where 0X and T X are the prices of the asset at purchase and selling respectively. As an example, the rate of return from deposits in a bank account is the

interest rate.

3. Expected return

The rewards of an investment in an asset have some level of uncertainty. The value of X T is unknown at time 0, which means the rates of returns are often not known in advance. We consider the rate of return as random variables. To characterize the asset we shall consider the expected rate of return. In the MV ramework, we estimate the expected value i μfor asset i as follows:

∑=====N

t i i i i N t t r N r E r 1

....1,1)(μ The estimated expected return is a useful way to describe the assets and gives us a generalmeasurement of how large the return it is.

Variance and Standard deviation To characterize the uncertainty of an asset, we usually use the variance or standard deviation of the historical returns. It quantifies how much the rate of return deviates from the expected rate of return. The variance is defined as the risk measurement in MV framework. The estimated variance and standard deviation for asset i is given by: i N

t i it i it i sdi and u r N u r E σσ=-=-=∑=122

2)(1))(( 4. Covariance between two assets

In choosing an investment, one natural way to reduce the risk of losing value for an asset when a given event occurs is to find another asset with increasing valuewhen this event occurs. So we should not only take into account the individual returns of assets but also consider the relationship of the returns among the assets. We use the covariance to exhibit the way asset returns move together or move inversely. The covariance between asset i and j is defined as follows,

))((1)))(((j jt i it j jt i it ji ij u r u r N

u r u r E --=--==σσ We note that ji ij σσ= when i ≠ j and 2i ii σσ=when i = j .If the return of asset i and j move in the same direction, we have ij σ>0 , inversely,ij σ< 0 . To describe the

relation of n possible assets, we define the covariance matrix as follows: From the expression and the character of covariance, we know the covariance matrix C is symmetric and it also can be proved that matrix C is positive definite.

5.Investment weights

Assume that the investor wants to select a portfolio from n possible assets, i

ωis the proportion invested in asset i . So if all wealth is invested, we have

∑==

n

i

i

1

1

ω.The situation that a weight iωis negative corresponds to a short selling of

the asset which means that the investor buys the asset and sells it to someone else, and uses the amount received to invest in other assets. When short selling is not allowed, we require that .

6.Background.

As we mentioned before, the Markowitz mean-variance framework is the most common model for solving portfolio selection problems. The most important concept in his theory is diversification. Diversification means designing an investment portfolio that reduces exposure risk by combining a variety of investments. The goal of diversification is to reduce the risk in a portfolio. However, the portfolios’ weights obtained from mean-variance framework are often extremely concentrated on a few assets. This is a contradiction to the notion of diversification. In practice, sample mean and covariance matrix are estimated from historical data. There are lots of factors that influence the estimation, such as the sample size. If the sample size is too small, the sample mean and covariance could have large estimation errors. It is generally thought that the concentrated position problem is caused by the statistical errors when estimating the mean and covariance matrix. Jobson and Korkie [8] showed that these statistical errors change the portfolio weights in such a way that often leads to that the portfolios’ weights are concentrated on some positions. And we also know that the mean-variance framework is extremely sensitive to input parameters. Small changes of the sample mean and covariance matrix will have a large effect on the optimal portfolios. So the precise estimation of sample mean and

covariance matrix is the most important prerequisite for the mean-variance framework. The method for reducing statistical errors in sample mean and covariance matrix has been widely researched. References showed that in order to reduce the statistical errors in mean-variance model, we should improve the estimation of the sample mean at least. Three different approaches may carry a good effect on estimation errors for the mean-variance model. Two of them are shrinkage estimators of sample means and the other is the bootstrap approach. So called “shrinkage” estimator i s intended to shrink the historical means to some grand mean. Consider ),(.....21T r r r R as a N×T matrix, where the rows are the time series of historical returns for each asset, the columns are the returns of different assets at a specific time. The first shrinkage estimator used to improve the sample means is called the James-Stein estimator [9]. The difference between these two shrinkage estimators is that they shrink the sample means to different targets. In the first case, the target is the arithmetic average of sample means, while the target is the mean of the MVP portfolio in sample in the second case. But we cannot say which shrinkage estimator is better in general. And The third method is the bootstrap approach [10].The bootstrap means using the resampling method to replace the actual data. The notion of bootstrap is to extract more information about the actual distribution of observed data by the generated bootstrap samples.

These three methods introduced above reduce statistical errors in the parameter estimations. Furthermore, they may improve the diversification for mean-variance framework. In the next section, we will introduce a different concept called entropy to improve the diversification. This method could also be understood as a form of shrinkage of portfolio weights [11]. 3.3 Improve Portfolio Diversification Using Maximum Entropy Theory. In this section, the proposed portfolio optimization approach could be viewed as one alternative of Mean-Variance approach. As we mentioned before, we want to improve the concentrated position of portfolio weights in the mean-variance framework by directly shrinking the portfolio weights. We have already seen in the last section that entropy is a well accepted measure for

diversification. Due the nice property of entropy that the optimal solution obtained from maximizing entropy is closest to the uniform distribution, we want to add a shrink weights factor into mean-variance optimization model, hoping that it will lead to a well diversified portfolio.The following new approach could be viewed as a combination of model (1) and (8). The mean-variance model is sensitive to given data. On the other hand, the approach for finding maximum entropy is independent of given data. The use of entropy could be viewed as compensation to the risk part in MV model. It can thus decrease the reliance on data. This new approach not only uses given partial information obtained from the history sample efficiently, but also applies the entropy to adjust how much the portfolio is diversified.

使用熵的概念改进马柯维茨模型

马柯维茨提出的均值- 方差框架是最常用的投资组合模型选择问题。在他的理论中最重要的概念是多样化。多元化意味着设计一个投资组合,通过多种投资相结合降低暴露的风险。但实际上,组合权重往往非常集中在少数资产使用的均值- 方差框架内,这是一个多元化的概念的矛盾。熵是一个广泛的多样性的措施。在这篇论文中,我们讨论了一种基于最大熵原理(MVME)改进的均值- 方差模型。熵可以被看作是措施的差距,服从概率分布均匀。这种方法可以被看作是一个投资组合权重的直接收缩。估计错误,稳定的投资组合权重,投资组合表现和均值- 方差和MVME框架的多元化程度进行测试。改进后的模型与均值- 方差框架相比,导致一个多元化的组合。第一章:简介,现代投资组合理(MPT)是哈里·马科维茨在他的论文“投资组合选择最早发现和开发。”[1]在1952发表。本文介绍构建一个组合的方法,可以达到理想水平的回报,同时最大限度地降低投资风险。均值- 方差框架是在解决投资组合多样化问题的最广泛使用的模型。但它有一个很大的弱点,往往极少数的资产,这是一个多元化的概念矛盾集中的投资组合权重。在这篇论文中,改进后的模型基于最大熵原理的讨论,我们也比较它与传统的均值- 方差框架。这种新方法以被视为作为一个组合的均值- 方差方法和最大熵理论[2]。

第2章中,经典的均值- 方差框架全面介绍。第3章中,描绘传统的均值- 方差框架改善;最大熵和熵理论的属性介绍。在本节结束时,基于最大熵理论提出了改进后的模型;在MVME模式和独特的解决方案的参数进行了讨论。在第四章中,均值- 方差和MVME框架之间的比较体现在以下四个方面:

?估计错误。

?投资组合表现,包括比较有效前沿上,夏普比率,实际回报和最终回报。

?投资组合权重的稳定性。

?多样化的学位。

1、马科维茨资产组合理论的介绍

现代投资组合理论(MPT)是试图找到在投资组合的风险回报的平衡关系。邮电部提出多样化的想法,作为一种工具,是哈里·马科维茨在1950年开发的,这个理论被首次发现是以优化组合的形式。马科维茨呈现了多样化的好处,这一

理论也称为“不把所有的鸡蛋放在一个篮子里”。换句话说,投资不仅挑选股票,但也要选择好股票组合。他的理论强调风险的重要性,在预期投资组合回报的的问题上注重投资的相关性和多样化,他的工作改变了人们投资的方式。

在马科维茨之前,人们认为一个最佳的组合,是可以提供最大的预期回报,同时最大限度地降低风险。马科维茨澄清,从数学的观点来看,这是不可能的。在现实世界中,选择最优组合是多少应在每个安全投入,同时尽量减少投资风险或在一个固定的风险水平最高的预期回报,以实现所需的回报水平的问题。马科维茨的有效前沿提供一个答案。它可以构建一个投资组合中的“有效前沿”,任何风险的水平,以提供最大的回报。基于上述概念,马科维茨开发著名的金融投资组合模型,均值- 方差模型(MV模型),在1952年出版的<<投资组合选择>>。这种模式是最常见的投资组合选择问题制定。均值- 方差分析提供的报酬和风险之间的权衡量化处理。因为我们知道,马科维茨组合选择理论认为最重要的两个因素是报酬和风险。一个根本的问题是如何来衡量风险。在MV模型,报酬是指由预期收益,而风险由方差的定义。2.2均值- 方差分析的假设。

均值- 方差分析是基于以下假设[3]:

1)、投资者是以理性的行为和方式,以最大限度地提高他们的收入或金钱的实用。2)、投资者免费获得关于回报和投资风险的公平和正确的信息。每个投资者能掌握充分的信息。

3)、市场是有效的,并迅速和完全吸收信息。

4)、所有投资者规避风险,尽量减少风险和寻求回报最大化。这意味着,对于一些资产提供相同的回报,投资者将倾向于低风险的一个或替代的组合,其中有更高的存在的预期回报,风险水平。

5)、投资者根据这些回报的预期收益和方差或标准偏差做出决定。投资者将接受的风险增加,只有通过较高的预期回报补偿。相反,投资者要寻求更高的回报,必须接受更多的风险。

6)、投资安全的回报是一个著名的多元正态分布的随机变量。有了这个假设,投资组合的效率是由简单复利的预期回报和预期回报率的标准偏差。为建立一套高效的组合,由马科维茨规定,我们需要考虑这些重要的参数。

2、回报率

资产的回报率被定义为R ,满足0)1(X r X T +=,X 0,X T 分别是有代表性的购买和销售的资产的价格。作为一个例子,从银行帐户中的存款的回报率是利率。

3、预期回报

在资产投资回报有一定程度的不确定性。X T 的价值是在时间0未知,这意味着回报率往往在事先不知道。我们认为作为随机变量的回报率,对于有特点的资产,我们应考虑预期回报率。我们在的MV 模型中,估计预期收益i μ的资产i 如下:∑=====N

t i i i i N t t r N r E r 1

....1,1)(μ 估计预期回报是一个有用的方式来描述资产,并给我们带来一个一般性的方式预估回报的大小。

方差和标准差来描述资产的不确定性,我们通常使用的历史回报率的方差或标准差。它量化率的预期回报率的回报偏离多少。被定义为在MV 框架的风测量的方差。估计资产的方差和标准差,我给予:

i N t i it i it i sdi and u r N u r E σσ=-=-=∑=122

2)(1))(( 4、 两项资产之间的协方差

在选择一种投资采取一种自然的方式,以减少损失资产的价值,当某一特定事件发生时的风险是为了增加发生此事件的另一项资产价值。所以我们不应该只考虑个人资产回报,还要考虑资产之间的回报的关系。我们使用的协展示的方式,资产收益率成反比一起移动。资产i 和j 之间的协方差的定义如下:

i N t i it i it i sdi and u r N u r E σσ=-=-=∑=122

2)(1))(( 我们注意到,当i≠j 时ji ij σσ=,当i = j 时2i ii σσ=,如果资产i 和j 在同一个方向移动的回报,我们有ij σ> 0成反比,ij σ<0。描述n 个可能的资产的关系,我们定义的协方差矩阵如下:

?????

???????=nn n n n n C σσσσσσσσσ...21......2...22211 (1211)

从表达和协方差的性质,我们知道的协方差矩阵C是对称的,它也可以证明,矩阵C是正定的。

5、投资权重

假设投资者要选择一个可能资产组合从n个资产中,iω投资于资产i的比例

∑==

n

i

i

1

1

ω。因此,如果所有的财富投资,我们有重量的情况是消极对应的资产,

这意味着投资者购买的资产,并出售给他人,并使用收到的金额投资于其他资产的卖空。我们要求当卖空是不允许的。

6、背景

正如我们之前提到的,马柯维茨均值- 方差框架是最常见的模式,为解决投资组合选择问题。在他的理论的最重要的概念是多样化的。多元化意味着设计一个投资组合,降低暴露的风险,通过多种投资相结合。多元化的目标是,以减少投资组合的风险。然而从均值- 方差框架内获得的投资组合权重往往非常集中在是少数资产,这是一个多元化的概念的矛盾。在实践中,样本均值和协方差矩阵往往从历史数据估计。有许多影响因素,如样本大小的估计。如果样本量太小,样本均值和方差可以有较大的估计误差。人们普遍认为,集中的位置问题造成的统计误差时估计的均值和协方差矩阵。乔布森和Korkie [8]表明,这些统计错误改变投资组合权重,在这样一种方式,往往会导致投资组合权重集中在一些职位。同时我们也知道,均值- 方差框架是极其敏感的输入参数。小样本的变化意味着,协方差矩阵的最优组合上有很大的影响。因此,样本均值和协方差矩阵的精确估计的均值- 方差框架是最重要的先决条件。为减少样品中的统计误差的方法意味着,协方差矩阵已被广泛研究。文献表明,为了减少统计误差在均值- 方差模型,我们应该提高样本估计平均至少。三种不同的方法可以进行良好的效果上估计误差的均值- 方差模型。其中两个是收缩估计的样本均值和其他引导方法。所谓的“收缩”的估计是一些盛大平均缩小历史的手段。考虑作为一个N×T矩阵,行的每个资产的历史回报率的时间序列,列在特定的时间不同资产的回报。用于改善样本均值的首次收缩估计被称为詹姆斯·斯坦因估计[9]。

这两者之间的收缩估计的区别是他们收缩样品是指不同的目标。在第一种情况下,目标是样本均值的算术平均数,而目标是在第二种情况下的样品MVP

组合的平均值。但是,我们不能说收缩估计是在一般更好。和第三种方法是引导方法[10]。引导意味着使用重采样的方法来代替实际的数据。观念的引导以提取更多的信息所产生的引导样本观测数据的实际分布。

上面介绍的这三种方法减少参数估计的统计误差。此外,他们可能会提高多样化的均值- 方差框架。在下一节,我们将介绍不同的概念称为熵提高多样化。这种方法也可以理解为一个收缩投资组合权重的形式[11]。3.3提高基于最大熵理论的投资组合多样化。在本节中,建议的投资组合优化方法可以看作是一个均值- 方差方法的替代。正如我们之前提到的,我们要提高直接缩小投资组合权重的投资组合权重集中在均值- 方差框架位置。我们已经看到,在最后一节,熵是一个多元化的措。由于很好的属性熵最大化熵获得最佳的解决方案是最接近的均匀分布,我们要添加到均值- 方差优化模型收缩权重的因素,希望它会导致一个多元化的组合。以下新方法可以被视为一个组合模型(1)及(8)。给定的数据是敏感的均值- 方差模型。另一方面,寻找最大熵的方法是独立于给定的数据。使用熵可以被视为MV模型中的部分风险补偿。因此,它可以减少对数据的依赖。这种新方法不仅使用从历史样本得到有效的部分信息,但也适用于调整是多样化的投资组合的熵。

1外文文献翻译原文及译文汇总

华北电力大学科技学院 毕业设计(论文)附件 外文文献翻译 学号:121912020115姓名:彭钰钊 所在系别:动力工程系专业班级:测控技术与仪器12K1指导教师:李冰 原文标题:Infrared Remote Control System Abstract 2016 年 4 月 19 日

红外遥控系统 摘要 红外数据通信技术是目前在世界范围内被广泛使用的一种无线连接技术,被众多的硬件和软件平台所支持。红外收发器产品具有成本低,小型化,传输速率快,点对点安全传输,不受电磁干扰等特点,可以实现信息在不同产品之间快速、方便、安全地交换与传送,在短距离无线传输方面拥有十分明显的优势。红外遥控收发系统的设计在具有很高的实用价值,目前红外收发器产品在可携式产品中的应用潜力很大。全世界约有1亿5千万台设备采用红外技术,在电子产品和工业设备、医疗设备等领域广泛使用。绝大多数笔记本电脑和手机都配置红外收发器接口。随着红外数据传输技术更加成熟、成本下降,红外收发器在短距离通讯领域必将得到更广泛的应用。 本系统的设计目的是用红外线作为传输媒质来传输用户的操作信息并由接收电路解调出原始信号,主要用到编码芯片和解码芯片对信号进行调制与解调,其中编码芯片用的是台湾生产的PT2262,解码芯片是PT2272。主要工作原理是:利用编码键盘可以为PT2262提供的输入信息,PT2262对输入的信息进行编码并加载到38KHZ的载波上并调制红外发射二极管并辐射到空间,然后再由接收系统接收到发射的信号并解调出原始信息,由PT2272对原信号进行解码以驱动相应的电路完成用户的操作要求。 关键字:红外线;编码;解码;LM386;红外收发器。 1 绪论

关于力的外文文献翻译、中英文翻译、外文翻译

五、外文资料翻译 Stress and Strain 1.Introduction to Mechanics of Materials Mechanics of materials is a branch of applied mechanics that deals with the behavior of solid bodies subjected to various types of loading. It is a field of study that i s known by a variety of names, including “strength of materials” and “mechanics of deformable bodies”. The solid bodies considered in this book include axially-loaded bars, shafts, beams, and columns, as well as structures that are assemblies of these components. Usually the objective of our analysis will be the determination of the stresses, strains, and deformations produced by the loads; if these quantities can be found for all values of load up to the failure load, then we will have obtained a complete picture of the mechanics behavior of the body. Theoretical analyses and experimental results have equally important roles in the study of mechanics of materials . On many occasion we will make logical derivations to obtain formulas and equations for predicting mechanics behavior, but at the same time we must recognize that these formulas cannot be used in a realistic way unless certain properties of the been made in the laboratory. Also , many problems of importance in engineering cannot be handled efficiently by theoretical means, and experimental measurements become a practical necessity. The historical development of mechanics of materials is a fascinating blend of both theory and experiment, with experiments pointing the way to useful results in some instances and with theory doing so in others①. Such famous men as Leonardo da Vinci(1452-1519) and Galileo Galilei (1564-1642) made experiments to adequate to determine the strength of wires , bars , and beams , although they did not develop any adequate theo ries (by today’s standards ) to explain their test results . By contrast , the famous mathematician Leonhard Euler(1707-1783) developed the mathematical theory any of columns and calculated the critical load of a column in 1744 , long before any experimental evidence existed to show the significance of his results ②. Thus , Euler’s theoretical results remained unused for many years, although today they form the basis of column theory. The importance of combining theoretical derivations with experimentally determined properties of materials will be evident theoretical derivations with experimentally determined properties of materials will be evident as we proceed with

中英文参考文献格式

中文参考文献格式 参考文献(即引文出处)的类型以单字母方式标识: M——专著,C——论文集,N——报纸文章,J——期刊文章,D——学位论文,R——报告,S——标准,P——专利;对于不属于上述的文献类型,采用字母“Z”标识。 参考文献一律置于文末。其格式为: (一)专著 示例 [1] 张志建.严复思想研究[M]. 桂林:广西师范大学出版社,1989. [2] 马克思恩格斯全集:第1卷[M]. 北京:人民出版社,1956. [3] [英]蔼理士.性心理学[M]. 潘光旦译注.北京:商务印书馆,1997. (二)论文集 示例 [1] 伍蠡甫.西方文论选[C]. 上海:上海译文出版社,1979. [2] 别林斯基.论俄国中篇小说和果戈里君的中篇小说[A]. 伍蠡甫.西方文论选:下册[C]. 上海:上海译文出版社,1979. 凡引专著的页码,加圆括号置于文中序号之后。 (三)报纸文章 示例 [1] 李大伦.经济全球化的重要性[N]. 光明日报,1998-12-27,(3) (四)期刊文章 示例 [1] 郭英德.元明文学史观散论[J]. 北京师范大学学报(社会科学版),1995(3). (五)学位论文 示例 [1] 刘伟.汉字不同视觉识别方式的理论和实证研究[D]. 北京:北京师范大学心理系,1998. (六)报告 示例 [1] 白秀水,刘敢,任保平. 西安金融、人才、技术三大要素市场培育与发展研究[R]. 西安:陕西师范大学西北经济发展研究中心,1998. (七)、对论文正文中某一特定内容的进一步解释或补充说明性的注释,置于本页地脚,前面用圈码标识。 参考文献的类型 根据GB3469-83《文献类型与文献载体代码》规定,以单字母标识: M——专著(含古籍中的史、志论著) C——论文集 N——报纸文章 J——期刊文章 D——学位论文 R——研究报告 S——标准 P——专利 A——专著、论文集中的析出文献 Z——其他未说明的文献类型 电子文献类型以双字母作为标识: DB——数据库 CP——计算机程序 EB——电子公告

外文文献及翻译

外文文献及翻译 题目:利用固定化过氧化氢酶 回收纺织品漂染的废水 专业食品科学与工程 学生姓名梁金龙 班级B食品072 学号0710308119 指导教师郑清

利用固定化过氧化氢酶回收纺织品漂染的废水 Silgia A. Costa1, Tzanko Tzanov1, Filipa Carneiro1, Georg M. Gübitz2 &Artur Cavaco-Paulo1,? 1纺织工程系, 米尼奥大学, 4810吉马尔, 葡萄牙 2环境生物技术系, 格拉茨技术大学, 8010格拉茨, 奥地利 ?作者联系方式(Fax: +351 253 510293; E-mail: artur@det.uminho.pt) 关键词:过氧化氢酶的固定化,酶稳定,过氧化氢,纺织印染 摘要 过氧化氢酶固定在氧化铝载体上并用戊二醛交联,在再循环塔反应器和CSTR反应器中研究贮存稳定性,温度和pH值对酶的活性。固定化酶的在的活性维持在44%,pH值11(30?C),对照组是活性为90%,pH值7(80?C),过氧化氢酶固定化的半衰期时间被提高到2小时(pH12,60?C)。用过氧化氢漂白织物后,洗涤过程中的残留水被固定化酶处理,可以用于再次印染时,记录实验数据。 1 序言 由于新的法规的出台,从生态经济的角度来看(Dickinson1984年),对于纺织行业中存在的成本和剩余水域的污染问题,必须给予更多的关注。过氧化氢是一种漂白剂,广泛应用于工业纺织工艺(Spiro & Griffith1997年)。在去除H2O2时,会消耗大量的水和能源(Weck 1991, St?hr & Petry 1995),以避免对氧气敏感的染料(Jensen 2000)产生后续问题。过氧化氢酶可用于降低过氧化氢的含量(Vasudevan & Thakur 1994, Emerson et al. 1996),从而减少水分消耗或方便回收印染洗涤液。过氧化氢酶的使用主要问题出在漂白时温度和清洗液碱度过高。以前,我们试图通过筛选新的嗜热嗜碱的微生物(Paar et al. 2001)或使用不同的酶稳定剂(Costa et al. 2001)来解决此问题。但是染料与蛋白质之间的潜在相互作用(Tzanov et al. 2001a, b)表明,可溶性过氧化氢酶的使用是不恰当的。固定化过氧化氢酶的使用还有一种选择(Costa et al. 2001, Amar et al. 2000)。在这项研究中,我们对氧化铝进行共价固定并使用戊二醛作为交联剂,这种方法在商业中得到验证。本项研究的目的就是探讨过氧化氢酶的固定化动力学,及其稳定性和工艺条件,这将使我们能够应用此系统,以处理可能被用于清洗染色的反复使用的酒。 2 材料和方法 2.1 酶 Terminox(EC1.11.1.6),50L以上,由AQUITEX- Maia提供,葡萄牙产。 2.2 过氧化氢酶的固定化 取Al2O3颗粒或薄片(Aldrich),直径分别为3和7毫米,在45摄氏度下,先经浓度4%的γ-氨丙基三乙氧基硅烷(Sigma)烷基化,再放入丙酮中浸泡24小时。用蒸馏水洗涤硅烷化载体后,放入浓度为2%戊二醛水溶液中室温下浸泡2小时(Aldrich),重复清洗一次并在60?C下干燥1小时。取五克的烷基化载体,室温24?C下浸泡在25毫升粗酶制剂中(Costa et al. 2001)。得出,每克Al2O3

英文文献译文word版

资产重估或减值准备:了解占固定资产在Release 12 布赖恩·刘易斯 eprentise 介绍 显著的变化在财务报告的要求已经改变的固定资产核算框架公司。国际财务报告准则(IFRS)要求的固定资产进行初步按成本入账,但有两种会计模式-成本模式计量的重估模式。那么,有什么区别,当你应该考虑升值与减值?没有R12带给固定资产哪些重要变化? 国际财务报告准则和美国公认会计准则报告的甲骨文?电子商务套件但很显然,美国证券交易委员会(SEC)将不会要求美国公司使用国际财务报告准则在不久的将来,大多数玩家在资本市场倾向于认为它是不可避免的,将国际财务报告准则最终成为美国的财务报告环境的更显著的部分。这实际上是对发生的程度,超过400基于在美国以外的全球企业都被允许提交美国证券交易所(SEC)的财务报告(10K和10Q -通常被称为年度/季度财务报告)。为海外谁也不在美国的证券交易委员会提交的公司,国际财务报告准则正在成为金融世界标准报 告。对于谁住在多个资本市场运作的公司,有可能实际上是一个双重报告要求国际财务报告准则和美国公认会计原则(公认会计原则)的财务报表。与11i版,随后与12版时,Ora cle?电子商务套件(EBS)添加功能让用户生活在两个国际财务报告准则和美国公认会计准则的世界。这两个报告之间的差异框架是广泛的,但对于本白皮书的目的,我们将专注于固定资产中核算EBS -特别是资产重估或减值。

根据美国公认会计准则,固定资产乃按历史成本,然后以折旧出售或剩余价值。如果有某些迹象表明固定资产的变现价值造成负面改变,则该资产写下来,损失记录。这被称为减值。根据国际财务报告准则,财务报表发行人有权选择成本模式(这是大多数方面的选项类似美国公认会计原则机型)或重估模式(其中有没有下的并行报告美国公认会计原则)。根据重估模式,固定资产可定期写入,以反映公平市场价值- 这是专门美国公认会计原则和美国证券交易委员会的权威所禁止的东西。本白皮书的平衡都将与美国公认会计原则下,专注于固定资产重估及减值国际财务报告准则。在此之前潜水深入到这个问题,它通过R12的与固定的新特性列表来运行是非常有用的资产。 在12版的新功能和变更功能的固定资产 神谕 ? 电子商务套件(EBS)R12有许多有用的新功能,其中许多以固定发了言资产,包括: ? 明细分类账会计(SLA)的体系结构- Oracle资产管理系统完全与SLA 集成,允许 为一个单一的交易或商业活动的多个会计交涉。

10kV小区供配电英文文献及中文翻译

在广州甚至广东的住宅小区电气设计中,一般都会涉及到小区的高低压供配电系统的设计.如10kV高压配电系统图,低压配电系统图等等图纸一大堆.然而在真正实施过程中,供电部门(尤其是供电公司指定的所谓电力设计小公司)根本将这些图纸作为一回事,按其电脑里原有的电子档图纸将数据稍作改动以及断路器按其所好换个厂家名称便美其名曰设计(可笑不?),拿出来的图纸根本无法满足电气设计的设计意图,致使严重存在以下问题:(也不知道是职业道德问题还是根本一窍不通) 1.跟原设计的电气系统货不对板,存在与低压开关柜后出线回路严重冲突,对实际施工造成严重阻碍,经常要求设计单位改动原有电气系统图才能满足它的要求(垄断的没话说). 2.对消防负荷和非消防负荷的供电(主要在高层建筑里)应严格分回路(从母线段)都不清楚,将消防负荷和非消防负荷按一个回路出线(尤其是将电梯和消防电梯,地下室的动力合在一起等等,有的甚至将楼顶消防风机和梯间照明合在一个回路,以一个表计量). 3.系统接地保护接地型式由原设计的TN-S系统竟曲解成"TN-S-C-S"系统(室内的还需要做TN-C,好玩吧?),严格的按照所谓的"三相四线制"再做重复接地来实施,导致后续施工中存在重复浪费资源以及安全隐患等等问题.. ............................(违反建筑电气设计规范等等问题实在不好意思一一例举,给那帮人留点混饭吃的面子算了) 总之吧,在通过图纸审查后的电气设计图纸在这帮人的眼里根本不知何物,经常是完工后的高低压供配电系统已是面目全非了,能有百分之五十的保留已经是谢天谢地了. 所以.我觉得:住宅建筑电气设计,让供电部门走!大不了留点位置,让他供几个必需回路的电,爱怎么折腾让他自个怎么折腾去.. Guangzhou, Guangdong, even in the electrical design of residential quarters, generally involving high-low cell power supply system design. 10kV power distribution systems, such as maps, drawings, etc. low-voltage distribution system map a lot. But in the real implementation of the process, the power sector (especially the so-called power supply design company appointed a small company) did these drawings for one thing, according to computer drawings of the original electronic file data to make a little change, and circuit breakers by their the name of another manufacturer will be sounding good design (ridiculously?), drawing out the design simply can not meet the electrical design intent, resulting in a serious following problems: (do not know or not know nothing about ethical issues) 1. With the original design of the electrical system not meeting board, the existence and low voltage switchgear circuit after qualifying serious conflicts seriously hinder the actual construction, often require changes to the original design unit plans to meet its electrical system requirements (monopoly impress ). 2. On the fire load and fire load of non-supply (mainly in high-rise building in) should be strictly sub-loop (from the bus segment) are not clear, the fire load and fire load of non-qualifying press of a circuit (especially the elevator and fire elevator, basement, etc.

英文文献及中文翻译

毕业设计说明书 英文文献及中文翻译 学院:专 2011年6月 电子与计算机科学技术软件工程

https://www.wendangku.net/doc/321270639.html, Overview https://www.wendangku.net/doc/321270639.html, is a unified Web development model that includes the services necessary for you to build enterprise-class Web applications with a minimum of https://www.wendangku.net/doc/321270639.html, is part of https://www.wendangku.net/doc/321270639.html, Framework,and when coding https://www.wendangku.net/doc/321270639.html, applications you have access to classes in https://www.wendangku.net/doc/321270639.html, Framework.You can code your applications in any language compatible with the common language runtime(CLR), including Microsoft Visual Basic and C#.These languages enable you to develop https://www.wendangku.net/doc/321270639.html, applications that benefit from the common language runtime,type safety, inheritance,and so on. If you want to try https://www.wendangku.net/doc/321270639.html,,you can install Visual Web Developer Express using the Microsoft Web Platform Installer,which is a free tool that makes it simple to download,install,and service components of the Microsoft Web Platform.These components include Visual Web Developer Express,Internet Information Services (IIS),SQL Server Express,and https://www.wendangku.net/doc/321270639.html, Framework.All of these are tools that you use to create https://www.wendangku.net/doc/321270639.html, Web applications.You can also use the Microsoft Web Platform Installer to install open-source https://www.wendangku.net/doc/321270639.html, and PHP Web applications. Visual Web Developer Visual Web Developer is a full-featured development environment for creating https://www.wendangku.net/doc/321270639.html, Web applications.Visual Web Developer provides an ideal environment in which to build Web sites and then publish them to a hosting https://www.wendangku.net/doc/321270639.html,ing the development tools in Visual Web Developer,you can develop https://www.wendangku.net/doc/321270639.html, Web pages on your own computer.Visual Web Developer includes a local Web server that provides all the features you need to test and debug https://www.wendangku.net/doc/321270639.html, Web pages,without requiring Internet Information Services(IIS)to be installed. Visual Web Developer provides an ideal environment in which to build Web sites and then publish them to a hosting https://www.wendangku.net/doc/321270639.html,ing the development tools in Visual Web Developer,you can develop https://www.wendangku.net/doc/321270639.html, Web pages on your own computer.

英文文献翻译

中等分辨率制备分离的 快速色谱技术 W. Clark Still,* Michael K a h n , and Abhijit Mitra Departm(7nt o/ Chemistry, Columbia Uniuersity,1Veu York, Neu; York 10027 ReceiLied January 26, 1978 我们希望找到一种简单的吸附色谱技术用于有机化合物的常规净化。这种技术是适于传统的有机物大规模制备分离,该技术需使用长柱色谱法。尽管这种技术得到的效果非常好,但是其需要消耗大量的时间,并且由于频带拖尾经常出现低复原率。当分离的样本剂量大于1或者2g时,这些问题显得更加突出。近年来,几种制备系统已经进行了改进,能将分离时间减少到1-3h,并允许各成分的分辨率ΔR f≥(使用薄层色谱分析进行分析)。在这些方法中,在我们的实验室中,媒介压力色谱法1和短柱色谱法2是最成功的。最近,我们发现一种可以将分离速度大幅度提升的技术,可用于反应产物的常规提纯,我们将这种技术称为急骤色谱法。虽然这种技术的分辨率只是中等(ΔR f≥),而且构建这个系统花费非常低,并且能在10-15min内分离重量在的样本。4 急骤色谱法是以空气压力驱动的混合介质压力以及短柱色谱法为基础,专门针对快速分离,介质压力以及短柱色谱已经进行了优化。优化实验是在一组标准条件5下进行的,优化实验使用苯甲醇作为样本,放在一个20mm*5in.的硅胶柱60内,使用Tracor 970紫外检测器监测圆柱的输出。分辨率通过持续时间(r)和峰宽(w,w/2)的比率进行测定的(Figure 1),结果如图2-4所示,图2-4分别放映分辨率随着硅胶颗粒大小、洗脱液流速和样本大小的变化。

英文论文及中文翻译

International Journal of Minerals, Metallurgy and Materials Volume 17, Number 4, August 2010, Page 500 DOI: 10.1007/s12613-010-0348-y Corresponding author: Zhuan Li E-mail: li_zhuan@https://www.wendangku.net/doc/321270639.html, ? University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2010 Preparation and properties of C/C-SiC brake composites fabricated by warm compacted-in situ reaction Zhuan Li, Peng Xiao, and Xiang Xiong State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China (Received: 12 August 2009; revised: 28 August 2009; accepted: 2 September 2009) Abstract: Carbon fibre reinforced carbon and silicon carbide dual matrix composites (C/C-SiC) were fabricated by the warm compacted-in situ reaction. The microstructure, mechanical properties, tribological properties, and wear mechanism of C/C-SiC composites at different brake speeds were investigated. The results indicate that the composites are composed of 58wt% C, 37wt% SiC, and 5wt% Si. The density and open porosity are 2.0 g·cm–3 and 10%, respectively. The C/C-SiC brake composites exhibit good mechanical properties. The flexural strength can reach up to 160 MPa, and the impact strength can reach 2.5 kJ·m–2. The C/C-SiC brake composites show excellent tribological performances. The friction coefficient is between 0.57 and 0.67 at the brake speeds from 8 to 24 m·s?1. The brake is stable, and the wear rate is less than 2.02×10?6 cm3·J?1. These results show that the C/C-SiC brake composites are the promising candidates for advanced brake and clutch systems. Keywords: C/C-SiC; ceramic matrix composites; tribological properties; microstructure [This work was financially supported by the National High-Tech Research and Development Program of China (No.2006AA03Z560) and the Graduate Degree Thesis Innovation Foundation of Central South University (No.2008yb019).] 温压-原位反应法制备C / C-SiC刹车复合材料的工艺和性能 李专,肖鹏,熊翔 粉末冶金国家重点实验室,中南大学,湖南长沙410083,中国(收稿日期:2009年8月12日修订:2009年8月28日;接受日期:2009年9月2日) 摘要:采用温压?原位反应法制备炭纤维增强炭和碳化硅双基体(C/C-SiC)复合材

英文文献及中文翻译撰写格式

关于毕业设计说明书(论文)英文文献及中文翻译撰写格式 为提高我校毕业生毕业设计说明书(毕业论文)的撰写质量,做到毕业设计说明书(毕业论文)在内容和格式上的统一和规范,特规定如下: 一、装订顺序 论文(设计说明书)英文文献及中文翻译内容一般应由3个部分组成,严格按以下顺序装订。 1、封面 2、中文翻译 3、英文文献(原文) 二、书写格式要求 1、毕业设计(论文)英文文献及中文翻译分毕业设计说明书英文文献及中文翻译和毕业论文英文文献及中文翻译两种,所有出现相关字样之处请根据具体情况选择“毕业设计说明书” 或“毕业论文”字样。 2、毕业设计说明书(毕业论文)英文文献及中文翻译中的中文翻译用Word 软件编辑,英文文献用原文,一律打印在A4幅面白纸上,单面打印。 3、毕业设计说明书(毕业论文)英文文献及中文翻译的上边距:30mm;下边距:25mm;左边距:3Omm;右边距:2Omm;行间距1.5倍行距。 4、中文翻译页眉的文字为“中北大学2019届毕业设计说明书” 或“中北大学××××届毕业论文”,用小四号黑体字,页眉线的上边距为25mm;页脚的下边距为18mm。 5、中文翻译正文用小四号宋体,每章的大标题用小三号黑体,加粗,留出上下间距为:段前0.5行,段后0.5行;二级标题用小四号黑体,加粗;其余小标题用小四号黑体,不加粗。 6、文中的图、表、附注、公式一律采用阿拉伯数字分章编号。如图1.2,表2.3,附注3.2或式4.3。 7、图表应认真设计和绘制,不得徒手勾画。表格与插图中的文字一律用5号宋体。

每一插图和表格应有明确简短的图表名,图名置于图之下,表名置于表之上,图表号与图表名之间空一格。插图和表格应安排在正文中第一次提及该图表的文字的下方。当插图或表格不能安排在该页时,应安排在该页的下一页。 图表居中放置,表尽量采用三线表。每个表应尽量放在一页内,如有困难,要加“续表X.X”字样,并有标题栏。 图、表中若有附注时,附注各项的序号一律用阿拉伯数字加圆括号顺序排,如:注①。附注写在图、表的下方。 文中公式的编号用圆括号括起写在右边行末顶格,其间不加虚线。 8、文中所用的物理量和单位及符号一律采用国家标准,可参见国家标准《量和单位》(GB3100~3102-93)。 9、文中章节编号可参照《中华人民共和国国家标准文献著录总则》。

英文文献及其翻译

步进电机的知识 什么是步进电机: 步进电机是一种把电脉冲转化为角位移的执行机构。通俗的说:当驱动程序收到一个步进脉冲信号,将驱动步进电机轴旋转一个固定的角度(步进角)。您可以通过控制脉冲个数来控制角位移,从而达到准确定位的目的;同时,你可以通过控制脉冲频率来控制电机的旋转速度和加速度,实现速度控制的目的。 步进电机的种类: 步进电机分为三种:永磁式(PM),反应式(VR)和混合式(HR)永磁式步进电机一般为两相,转矩和体积较小,步进角一步7.5度或15度;反应式一般有三相可以实现大转矩输出,步进角一般是1.5度,但噪声和振动大。在欧洲和美洲80个国家已被淘汰;混合式步进是混合了永磁式和反应的优势。它由两相和五相:一般两相的步距角是1.8度,而的五相步距角为0.72度。是使用最广泛的的步进电机。 步进电机允许的最高表面温度 步进电机温度过高首先会的磁性材料退磁,导致转矩降低甚至失步,电机表面温度允许的最大值取决于的磁性材料退磁点;一般来说,磁性材料退磁点在摄氏130度以上有些材料甚至高达摄氏200度高,所以步进电机表面温度在摄氏80-90度是正常的。 步进电机精度为多少?是否累积 一般步进电机的精度为步进角的3-5%,且不累积 如何确定步进电机驱动器直流电源 A.电压确定 混合式步进电机驱动器的电源电压范围较广(比如IM483的供电电压12?48VDC),电源电压通常根据电机的转速和响应要求来选择。如果要求较快的运行速度较高的响应速度就选用较高的电压,但注意电源电压的峰值不能超过驱动器的最大输入电压,否则可能会损坏驱动器。 B.电流确定 电源电流一般根据输出相电流I来确定。如果采用线性电源,电源电流一般可取I的1.1?1.3倍;如果采用开关电源,电源电流一般可取I的1.5?2.0倍。 步进电机的主要特性 在步进电机关机时要确保没有脉冲信号,当电机运行时 如果加入适当的脉冲信号,它会转过一定的角度(称为步距角是)。转速与脉冲频率成正比。 2龙式步进电机步距角7.5度,旋转360度,需要48个脉冲来完成。 3步进电机具有快速启动和停止的优良特性。 4只要改变脉冲,可以很容易地改变电机轴旋转的方向。 因此,目前的打印机,绘图仪,机器人设备以步进电机作为动力核心。 步进电机控制的例子 我们以四相单极步进电机为例: 四个相绕组引出四个相和两个公共线(连接到正极)。一相接地。会被激发,。我们使用四相八拍控制,即第1阶段第2阶段交替反过来,会提高分辨率。步距角0.9°,可以转移到控制电机励磁是为了转移如下: 如果电机反转的要求,传输的激励信号可以逆转的。2控制方案 控制系统框图如下

英文文献1 翻译

目录 1.理论............................................... - 2 - 2.实施............................................... - 3 - 3. 范例.............................................. - 4 - 4.变化和扩展......................................... - 6 - 4.1 利用梯度方向,以减少参数...................... - 6 - 4.2 Hough变换的内核............................... - 6 - 4.3Hough曲线变换与广义Hough变换.................. - 6 - 4.4 三维物体检测(平面和圆柱).................... - 6 - 4.5 基于加权特征.................................. - 7 - 4.6 选取的参数空间................................ - 7 - 4.6.1 算法实现一种高效椭圆检测................ - 8 - 5.局限性............................................. - 8 - 6. 参见.............................................. - 8 - 参考文献............................................. - 9 - 附件: ............................................... - 10 -

参考文献中英文人名的缩写规则

参考文献中英文人名的缩写规则 参考文献是科技论文的重要组成部分,也是编辑加工和重要内容。温哥华格式要求,著录文后参考文献时,英文刊名和人名一律用缩写。这一规则也是众多检索系统在人名著录时的首选规则。 下面我们先看一个例子: 在文章发表时,由于西方人士名在前姓在后,一般也采用名+姓的格式书写,如下题名、作者及正文的书写: Bis-pyranoside Alkenes: Novel Templates for the Synthesis of Adjacently Linked Tetrahydrofurans Zheming Ruan, Phyllis Wilson and David R. Mootoo 而上述文章若作为参考文献为他人引用,则需写成 Bis-pyranoside Alkenes: Novel Templates for the Synthesis of Adjacently Linked Tetrahydrofurans Tetrahedron Letters Volume: 37, Issue: 21, May 2, 1996, pp. 3619-3622 Ruan, Zheming; Wilson, Phyllis; Mootoo, David R. 由于东西方姓与名排列的差异,有的国外杂志在人名后还给出作者学位或参加的学会,因此很多人不知道如何区别姓、名、学位单位,如何缩写。 下面我们将著者姓名缩写规则的几个要点摘录如下: 1 姓名缩写只缩写名而不缩写姓; 2 无论东西方人,缩写名的书写形式都是姓在前、名在后; 3 杂志作者名中,全大写一定是姓; 4 省略所有缩写点 如R. Brain Haynes缩写为Haynes RB, Edward J. Huth缩写为Huth EJ等。 但有些特殊情况: (1)Maeve O'Conner, 正确缩写应为O'Conner M, 有人会按英文的构词习惯认为是印刷错误,认为Oconner M (2)国外也有复姓,如Julie C. Fanbury-Smith, Hartly Lorberboum-Galski等分别缩写为Fanbury-Smith JC, Lorbertoum-Galski HL (3)姓名中含前缀De,Des,Du,La,Dal,La,Von,Van,den,der等,将前缀和姓作为一个整体,按字顺排列,词间空格和大小写字母不影响排列,如Kinder Von Werder缩写为Von W erder K,不可写为Werder KV. (4)国外杂志要求作者署名后给出作者学位和加入的学会,学位与

数字信号处理英文文献及翻译

数字信号处理 一、导论 数字信号处理(DSP)是由一系列的数字或符号来表示这些信号的处理的过程的。数字信号处理与模拟信号处理属于信号处理领域。DSP包括子域的音频和语音信号处理,雷达和声纳信号处理,传感器阵列处理,谱估计,统计信号处理,数字图像处理,通信信号处理,生物医学信号处理,地震数据处理等。 由于DSP的目标通常是对连续的真实世界的模拟信号进行测量或滤波,第一步通常是通过使用一个模拟到数字的转换器将信号从模拟信号转化到数字信号。通常,所需的输出信号却是一个模拟输出信号,因此这就需要一个数字到模拟的转换器。即使这个过程比模拟处理更复杂的和而且具有离散值,由于数字信号处理的错误检测和校正不易受噪声影响,它的稳定性使得它优于许多模拟信号处理的应用(虽然不是全部)。 DSP算法一直是运行在标准的计算机,被称为数字信号处理器(DSP)的专用处理器或在专用硬件如特殊应用集成电路(ASIC)。目前有用于数字信号处理的附加技术包括更强大的通用微处理器,现场可编程门阵列(FPGA),数字信号控制器(大多为工业应用,如电机控制)和流处理器和其他相关技术。 在数字信号处理过程中,工程师通常研究数字信号的以下领域:时间域(一维信号),空间域(多维信号),频率域,域和小波域的自相关。他们选择在哪个领域过程中的一个信号,做一个明智的猜测(或通过尝试不同的可能性)作为该域的最佳代表的信号的本质特征。从测量装置对样品序列产生一个时间或空间域表示,而离散傅立叶变换产生的频谱的频率域信息。自相关的定义是互相关的信号本身在不同时间间隔的时间或空间的相关情况。 二、信号采样 随着计算机的应用越来越多地使用,数字信号处理的需要也增加了。为了在计算机上使用一个模拟信号的计算机,它上面必须使用模拟到数字的转换器(ADC)使其数字化。采样通常分两阶段进行,离散化和量化。在离散化阶段,信号的空间被划分成等价类和量化是通过一组有限的具有代表性的信号值来代替信号近似值。 奈奎斯特-香农采样定理指出,如果样本的取样频率大于两倍的信号的最高频率,一个信号可以准确地重建它的样本。在实践中,采样频率往往大大超过所需的带宽的两倍。 数字模拟转换器(DAC)用于将数字信号转化到模拟信号。数字计算机的使用是数字控制系统中的一个关键因素。 三、时间域和空间域 在时间或空间域中最常见的处理方法是对输入信号进行一种称为滤波的操作。滤波通常包括对一些周边样本的输入或输出信号电流采样进行一些改造。现在有各种不同的方法来表征的滤波器,例如: 一个线性滤波器的输入样本的线性变换;其他的过滤器都是“非线性”。线性滤波器满足叠加条件,即如果一个输入不同的信号的加权线性组合,输出的是一个同样加权线性组合所对应的输出信号。

相关文档