文档库 最新最全的文档下载
当前位置:文档库 › 硫脲热解制备G-C3N4分解NO如何获得更佳G-C3N4

硫脲热解制备G-C3N4分解NO如何获得更佳G-C3N4

硫脲热解制备G-C3N4分解NO如何获得更佳G-C3N4
硫脲热解制备G-C3N4分解NO如何获得更佳G-C3N4

E ?cient and Durable Visible Light Photocatalytic Performance of Porous Carbon Nitride Nanosheets for Air Puri ?cation

Fan Dong,*,?Meiya Ou,?Yanke Jiang,?Sen Guo,?and Zhongbiao Wu ?

?Chongqing Key Laboratory of Catalysis and Functional Organic Molecules,College of Environmental and Biological Engineering,Chongqing Technology and Business University,Chongqing 400067,China

?Department of Environmental Engineering,Zhejiang University,Hangzhou,Zhejiang 310027,China

*Supporting Information

The development of visible light driven photocatalysts has been the focus of considerable worldwide attention as photocatalysis technology is intensively applied in several important areas,including especially environmental pollution control and solar energy conversion.1?5In general,most of the photocatalysts are metal-containing,such as metal oxide,metal sul ?de,tungstates,niobates,tantalates,and vandates.6?8Until recently,a new kind of conjugated polymer semi-conductor (graphitic carbon nitride,g-C 3N 4)has been discovered as a fascinating metal-free organic photocatalyst working under visible light.9?13Graphite-like covalent g-C 3N 4is constructed by poly(heptazine)heterocyclic planes packed closely in a way similar to graphite.9The g-C 3N 4is multifunctional with broad applications (energy conversion and storage,contaminants degradation,carbon dioxide storage and reduction,catalysis,solar cells,and sensing)owing to its high stability,appealing electronic structure,and medium band gap.14,15The g-C 3N 4can be facilely prepared by pyrolysis of nitrogen-rich precursors via polycondensation.9?15The texture,electronic structure,and performance of g-C 3N 4are largely depended on the condensation conditions and the types of precursor.14,15The precursors employed for synthesis of g-C 3N 4include cyanamide,dicyandiamide,trithiocyanuric acid,melamine,triazine,heptazine derivatives,and more recently discovered urea and thiourea.16?23The texture and band structure of g-C 3N 4can also be tuned by templating,doping,heterostrucutre design,and postfunctionalization in order to enhance the reactivity in photocatalysis,selective synthesis,and CO 2reduction.24?29increase of surface

areas could improve the photocatalytic activity of materials.30,31The former factor is favorable for the reduction of defects and inhibiting charge carriers recombina-tion,while the later one could provide more active sites for

adsorption and reaction.30,31However,high crystallinity and

large surface areas are contradictory in most of the cases.In another word,the synthesis of catalytic materials with high crystallinity can be normally realized at the expense of large surface areas.Thermal treatment is the most common way to

enhance crystallinity of the catalytic materials.For example,by

increasing the annealing temperature and prolonging the annealing time during synthesis of TiO

2and other inorganic photocatalysts,the crystallinity could be enhanced,which however inevitably resulted in the decrease of surface areas.30,31It is highly desirable that high crystallinity and large surface areas for a catalyst can be achieved simultaneously.In spite of the advances made on the synthesis of g-C

3N 4as a photocatalyst for hydrogen evolution and aqueous pollutant degradation,the micro/nanostructures

of g-C 3N 4need to be improved for better photocatalysis.16?23Moreover,the photo-catalytic treatment e ?ciency of g-C

3N 4for gaseous air pollutants has seldom

been reported.Previously,we have synthesized g-C

3N 4by pyrolysis of urea and found that the pyrolysis conditions have signi ?cant e ?ects on the microstructure and photocatalytic activity of g-C 3N 4.16,22Received:November 11,2013Revised:January 21,2014

Accepted:January 23,2014Published:January 23,2014

In the present work,we develop a simple method to engineer the micro/nanostructures of g-C 3N 4from pyrolysis of thiourea and apply the as-prepared g-C 3N 4in visible light photocatalytic air puri ?cation.The easily available thiourea is a superior precursor because it is nontoxic,low-cost,and earth-abundant.A layer-by-layer coupled with layer-splitting process was proposed for the gradual reduction of layer thickness and size of g-C 3N 4obtained at elevated temperature and prolonged time.The formation mechanism of g-C 3N 4from thiourea was also revealed.Interestingly and importantly,we ?nd that both the crystallinity and the surface areas of g-C 3N 4increase spontaneously with elevated pyrolysis temperature and prolonged pyrolysis time,which is very important to enhance the activity of g-C 3N 4.The morphology and band structure of g-C 3N 4can also be simply engineered by variation of pyrolysis conditions.The optimized g-C 3N 4nanosheets exhibit e ?cient and durable visible light photocatalytic performance in NO removal.This unique ?nding will shed new light on synthesis and engineering of organic photocatalysts for large-scale environmental applications.2.EXPERIMENTAL SECTION 2.1.Synthesis of g-C 3N 4from Thiourea.All chemicals

used in this study were analytical grade and were used without further puri ?cation.In a typical synthesis,10g of thiourea powder was put into an alumina crucible with a cover.The crucible was heated to 550°C at a heating rate of 15°C/min in a tube furnace in air and maintained for 120min.The released air products during thermal treatment were absorbed by dilute NaOH solution of 0.05M.The resulted ?nal yellow powder was ground and collected for use without further treatment.In order to investigate the e ?ects of pyrolysis temperature,g-C 3N 4was synthesized at 500,525,550,575,and 600°C for 120min,respectively.The resulted samples were labeled as CN-500°C,CN-525°C,CN-550°C,CN-575°C,and CN-600°C.In order to investigate the e ?ects of pyrolysis time,g-C 3N 4was synthesized at 550°C for 0,15,30,60,120,and 240min,respectively.The resulted samples were labeled as CN-0min,CN-15min,CN-30min,CN-60min,CN-120min,and CN-240min.Note that the pyrolysis time does not include the time the furnace spent to raise the temperature to 550°C.2.2.Characterization Methods.The crystal phase was analyzed by X-ray di ?raction with Cu K αradiation (XRD:model D/max RA,Japan).The scan rate was 0.02deg/s.The accelerating voltage and the emission current were 40kV and 40mA,respectively.FT-IR spectra were recorded on a Nicolet Nexus spectrometer on samples embedded in KBr pellets.To perform the thermogravimetric-di ?erential scanning calorim-etry analysis (TG-DSC:NETZSCH STA 409PC/PG,

German),20mg of dry sample was sealed in an Al 2O

3crucible

with a lid and scanned at a rate of 20°C/min.A scanning

electron microscope (SEM,JEOL model JSM-6490,Japan)was used to characterize the morphology of the samples.The morphology and structure were examined by transmission

electron microscopy (TEM:JEM-2010,Japan).The UV ?vis

di ?use re ?ection spectra were obtained for the dry-pressed disk

samples using a Scan UV ?vis spectrophotometer (UV ?vis DRS:UV-2450,Shimadzu,Japan)equipped with an integrating sphere assembly,using BaSO

4as re ?ectance sample.Nitrogen

adsorption ?desorption isotherms were obtained on a nitrogen adsorption apparatus (ASAP 2020,USA)with all samples

degassed at 150°C prior to measurements.

2.3.Visible Light Photocatalytic Performance for NO Puri ?cation.The photocatalytic activity was investigated by removal of NO at ppb levels in a continuous ?ow reactor as shown in Figure 1(Figure S1shows the photo of the reactor

system).The volume of the rectangular reactor,made of

stainless steel and covered with Saint-Glass,was 4.5L (30cm ×

15cm ×10cm).A 150W commercial tungsten halogen lamp

was vertically placed outside the reactor.A UV cuto ??lter (420nm)was adopted to remove UV light in the light beam.Photocatalyst (0.2g)was coated onto a dish with a diameter of 12.0cm.The coated dish was then pretreated at 70°C to remove water in the suspension.The catalyst adhesion on the dish was ?rm enough to avoid the erosion (or removal)of the catalyst during air ?owing.

The NO gas was acquired from a compressed gas cylinder at a concentration of 100ppm of NO (N

2balance,BOC gas).

The initial concentration of NO was diluted to about 600ppb

by the air stream.The desired relative humidity (RH)level of the NO ?ow was controlled at 50%by passing the zero air streams through a humidi ?cation chamber.The gas streams

were premixed completely by a gas blender,and the ?ow rate was controlled at 2.4L/min by a mass ?ow controller.After the adsorption ?desorption equilibrium was achieved,the lamp was turned on.The concentration of NO was continuously measured by a chemiluminescence NO analyzer (Thermo

Environmental Instruments Inc.,42i-TL),which monitors NO,NO 2,and NO x (NO x represents NO +NO

2)with a sampling

rate of 1.0L/min.The removal ratio (η)of NO was calculated

as η(%)=(1?C /C

0)×100%,where C and C

0are

concentrations of NO in the outlet stream

and the feeding stream,

respectively.

Figure 1.Schematic ?ow diagram of the reactor system.

3.RESULTS AND DISCUSSION 3.1.Phase Structure and Transformation.Figure 2a shows the XRD patterns of the prepared g-C 3N 4samples

treated under di ?erent temperatures in the range of 500?600°C.All of the g-C 3N 4samples in Figure 2a have similar

di ?raction patterns,suggesting that all samples are similar in crystal structure.A typical (002)peak around 27.5°is observed,which indicates the graphite-like stacking of the conjugated aromatic units of CN with an interlayer distance of 0.33nm.9A typical (100)di ?raction peak around 13.0°corresponding to a distance of 0.68nm could be assigned to the in-plane repeated units.9Further observation on an enlarged view of (002)peak in Figure 2b shows that the di ?raction angle 2θof (002)peak increases from 27.31°for the CN-500°C sample to 27.73°for the CN-600°C sample when the pyrolysis temperature increases from 500to 600°C.This result implies that g-C 3N 4becomes more compact when thiourea is treated at a

higher pyrolysis temperature.Figure 2c shows the XRD patterns of the prepared g-C 3N

4treated at 550°C for di ?erent

times in the range of 0?240min.The two peaks at around 27.5°and 13°can be observed for all the as-prepared samples in Figure 2c.From Figure 2d,we can see that the di ?raction angle 2θof (002)peak increases from 27.24°for CN-0min to 27.66°for CN-240min when the pyrolysis time increases from 0to 240min (Figure 2d).This result suggests that the interlayer distance of g-C 3N 4decreases with prolonged

pyrolysis time,which is similar to the e ?ects of pyrolysis temperature on the crystal structure.Figure 2also illustrates that the di ?raction peak intensity become stronger when the pyrolysis temperature is increased and pyrolysis time is prolonged.This fact implies that the crystallinity of g-C 3N 4is improved

with the elevated pyrolysis temperature and prolonged pyrolysis time.

In order to understand the phase transformation during pyrolysis of thiourea,TG-DSC was carried out.The range of temperature is from room temperature to 800°C at a heating

rate of 20°C/min.An alumina crucible with a cover was used during thermal analysis to simulate the actual thermal environment of thiourea pyrolysis.The DSC and TG thermograms for thiourea (Figure 3)clearly show that several phase transformations can be observed in the semiclosed system.An endothermic peak at 190°C is the melting point of thiourea.The strongest endothermic peak appears in the temperature range 210?295°C,and the weight of the sample decreased rapidly by 70.5%.The peak at 236°C (overlapped by

the strong peak)indicates the reaction of thiourea into cyanamide.Cyanamide is a common precursor to synthesize g-C 3N 4.The sharp peak at 266°C implies that the thermal condensation of cyanamide into melamine occurred in this temperature range.The weak endothermic peak at 312°C corresponds to the further condensation process

where

Figure 2.XRD pattern of g-C 3N 4treated under di ?erent temperatures (a)and enlarged view of (002)peak (b),XRD pattern of g-C 3N 4treated for

di ?erent times (c)and enlarged view of (002)peak (d).

melamine is transformed to melem.The weight loss in this temperature range is about 10.4%.The further weight loss (about 6.4%)with an endothermic peak at 422°C can be ascribed to the phase formation from melem to graphitic carbon nitride.Finally,the endothermic peak at 707°C with a weight loss of 12.7%can be attributed to the sublimation of carbon nitride.The TG-DSC results imply the mechanistic transformation process of carbon nitride from pyrolysis of thiourea.93.2.Chemical Composition.The FT-IR spectra of all the samples are shown in Figure 4.We can observe the absorption band at 801cm ?1corresponding to a breathing mode of triazine,the absorption bands in the range of 1200?1600cm ?1attributing to stretching mode of C ?N heterocycles,and the broad bands in the range of the 3000?3700cm ?1region attributing to the adsorbed H 2O molecules and N ?H vibration.22For the samples treated under lower temperature and for shorter time,the incomplete condensation of thiourea results in the weak vibration of the C 6N 7units.This poor condensation can be improved by increasing the pyrolysis temperature and time to promote the formation process of g-C 3N 4.3.3.Morphology and Nanostructure Formation Mechanism.The typical SEM images of the as-prepared samples are illustrated in Figure 5.Figure 5a shows that the CN-500°C sample is composed of thick layers attached with some agglomerated particles.Figure 5b demonstrates that the CN-550°C sample is mainly composed of interconnected thin layers with some pores that may result from the gas bubbles during pyrolysis of thiourea.In the case of the CN-600°C sample,as shown in Figure 5c,a large number of small thin layers with abundant pores can be observed.The gas bubbles play a key role in the formation of porous structure.Figure 5d demonstrates that the CN-0min sample is composed of large irregular particles with some layered structure.For the CN-30min sample as shown in Figure 5e,thick plates with some particles can be observed.Increasing the pyrolysis time to 240min,the thickness of the sample is signi ?cantly reduced,and porous structure is generated at the same time (Figure 5f).By summarizing the above observations,we can conclude that

elevating the pyrolysis temperature and prolonging the pyrolysis time could make the resulted g-C 3N 4samples possess small size,thin layers,and porous structure.This is a facile way to tune the microstructures of g-C

3N 4.The EDX elemental mapping of the typical CN-120min sample (Figure 5g)is shown in Figures 5h,5i,and 5j.It can be seen that the C 3N 4sample prepared from thiourea was composed of C,N,and O elements,indicating S was released from the pyrolysis.The microstructure was further investigated by TEM.Figure 6a shows that the CN-500°C sample has a bulk structure composing of large particles with a layer structure.When the pyrolysis temperature was increased to 550°C,the resulted g-

C 3N 4sample was of a sheetlike structure with reduced thickness (Figure 6b).When the pyrolysis temperature was further raised up to 600°C,the resulted g-C 3N

4sample was composed of a thinner sheetlike porous structure due to the successful introduction of mesopores of several tens of nanometers in the CN-600°C sample (Figure 6c).Further observation in Figure 6a and Figure 6c implies that the average size of the sheets are decreased with increasing temperature probably because the large layers are split into smaller ones under higher temperature.

For the g-C

3N 4samples prepared at 550°C for di ?erent times,Figure 6d shows that the CN-0min sample consists of large particles with irregular shape.A thick and smooth

sheetlike structure is clearly observed for the CN-60min in Figure 6e.The morphology of the CN-240min sample

was Figure 3.TG-DSC thermograms for heating

thiourea.Figure 4.FT-IR spectra of g-C 3N 4treated under di ?erent temperatures (a)and g-C 3N 4treated for di ?erent times (b).

quite di ?erent,and many thin ?at sheets and some mesopores can be clearly seen in Figure 6f.This typical sheetlike morphology imparts CN-240min with a large speci ?c surface https://www.wendangku.net/doc/3b1449160.html,bining the SEM and TEM results,we can ?nd that the thickness and the size of the g-C 3N 4sheetlike nanostructures

were reduced simultaneously when the pyrolysis temperature was increased and the pyrolysis time was prolonged.Such variation in structure would lead to the formation of g-C 3N

4

with high surface areas and large pore volumes,which is bene ?cial for enhancing the photocatalytic activity.The mass of g-C

3N 4products obtained under di ?erent

temperatures and times with the same amount of thiourea was

measured.The weight of g-C 3N 4products was decreased

with

Figure 5.SEM images of CN-500°C (a),CN-550°C or CN-120min (b),CN-600°C (c),CN-0min (d),CN-30min (e),CN-240min (f),SEM image (g),and EDX elemental maping of C,N,and O (h,i,j)in image (g).

elevated pyrolysis temperature and prolonged pyrolysis time,resulting from gradual decomposition of solid g-C 3N

4due to

thermal oxidation in air.The conjugated layered g-C 3N 4is

constructed by the hydrogen bonding between aromatic CN units.The energy of the hydrogen bond is weak and can be destroyed by thermal oxidation.As a result,the layer of CN units would be gradually oxidized and removed in a layer-by-layer way during thermal treatment.16Subsequently,the thickness of g-C 3N 4samples would be decreased with elevated pyrolysis temperature and prolonged pyrolysis time (Figures 5and 6).Meanwhile,large g-C 3N 4layers were split into smaller layers to reduce surface energy (Figures 5and 6).16On this basis,a layer-by-layer coupled with layer-splitting process can be proposed for the explanation of reduction of layer thickness and size of g-C 3N 4samples obtained at elevated temperature

and prolonged time.3.4.Texture Property.The nitrogen adsorption ?desorp-tion isotherms and Barrett ?Joyner ?Halenda (BJH)pore-size distribution of selected samples are displayed in Figure 7.Figures 7a and 7b show that the CN-500°C sample exhibits nonporous structure.When the pyrolysis temperature exceeds 550°C,signi ?cant enlargement of surface areas and the

generation of nanopores (mesopores)can be observed (Figure

7b and Table 1).The CN-600°C sample is type IV (Brunauer,Deming,Deming,and Teller,BDDT classi ?cation)with a hysteresis loop at high relative pressure between 0.5and 1.0,suggesting the presence of mesopores (2?50nm)and macropores (>50nm).32There are type H3hysteresis loops at 0.45

0<1.00in the isotherms of the optimized samples

(CN-600°C and CN-240min),which are often observed on

the aggregates of platelike particles giving rise to slit-shaped pores which agrees well with the nanosheet-like morphology (Figures 5c and 5f).32It can be seen from Figure 7a and Table 1that increasing the condensation temperature from 500to 600°C causes a great enhancement of surface area and pore volume from 5

m 2/g and 0.029cm 3/g for the CN-500°C sample to 36m 2/g and 0.25cm 3/g for the CN-600°C sample.The creation of a porous structure can also be observed directly from SEM images (Figures 5a-5c).The e ?ects of pyrolysis time on the texture property of the as-prepared g-C 3N 4samples

are

Figure 6.TEM images for CN-500°C (a),CN-550°C or CN-120min (b),CN-600°C (c),CN-0min (d),CN-60min (e),and CN-240min (f).

similar.With increasing thermal treating time,the hysteresis loops shift to the region of lower relative pressure,and the areas of the hysteresis loops gradually become large.Prolonging the pyrolysis time from 0to 240min leads to signi ?cant enlargement of surface area from 6m 2/g for the CN-0min sample to 71m 2/g for the CN-240min sample,together with pore volume from 0.036to 0.35cm 3/g (Figures 8a and 8b and Table 1).The change of peak pore size with pyrolysis time also con ?rms the introduction of mesopores in the CN-240min sample treated for a longer time (Table 1).The high surface area and large pore volume of CN-600°C and CN-240min samples can be attributed to the reduced layer thickness and size.This interesting result is consistent with SEM and TEM observations (Figures 5and 6).

The crystallinity and the surface areas of g-C 3N 4organic photocatalyst can be enhanced with elevated pyrolysis temper-ature and prolonged pyrolysis time (Figures 2and 8).This thermal behavior of g-C 3N 4is contrary to most porous inorganic photocatalysts,which typically undergo structure deformation/pore collapse with decreased surface area upon increasing the heating temperature in order to improve the crystallinity,as it is known that the creation of porous structures with high surface area in g-C

3N 4relied largely on

templates (for example SiO 2,zeolite,and Triton X-100)followed by etching of the templates.33?36Such a process is relatively tedious and thus prevents the large scale applications.

This drawback can be overcome by our remarkable observation in this research.The porous nanostructure of g-C 3N 4can be self-generated by a facilely optimized thermal treatment.Porous g-C

3N 4with high surface area has been readily synthesized by a template-free method though treating thiourea at higher temperature for a longer time.The creation of porous nanostructure could facilitate catalytic sorption and promote the localization of light-induced electrons in the

conjugated

Figure 7.N 2adsorption ?desorption isotherms of CN-500°C,CN-550°C,and CN-600°C (a)and the corresponding pore-size distribution curves (b),N 2adsorption ?desorption isotherms of CN-0min,CN-30min,CN-60min,CN-120min,and CN-240min (c)and corresponding pore-size distribution curves (d).Table 1.S BET ,Pore Volume,Peak Pore Size,and NO Removal Ratio for Selected g-C 3N 4Samples a sample name S BET (m 2/g)total pore volume (cm 3/g)peak pore size (nm)η(NO)(%)CN-500°C 50.029nonporous 10.2CN-550°C 270.142 2.6/4.122.0CN-600°C 360.25 2.6/3.8/32.632.7CN-0min 60.036 3.87.7CN-30min 100.060 3.814.1CN-60min 120.073 3.817.6CN-120min 270.142 2.6/4.122.0CN-240min 710.35 2.8/3.8/31.132.3C-doped TiO 2451230.25 3.521.8

BiOI 5060.027 3.7/18.314.9a The data for C-doped TiO 2and BiOI were collected from references.

systems,which are bene ?cial for photocatalysis by carbon nitride.113.5.Variation of Band Gap.The relationship between optical property and pyrolysis conditions is investigated by UV ?vis DRS,as shown in Figure 9.An absorption edge located in a visible light region is observed for all the samples,which originates from band gap transitions from valence band to conduction band.The absorption edges of g-C 3N 4samples change with the variation of pyrolysis temperature and time.The band gap energy can be estimated from the intercept of the

tangents to the plots of (αh ν)1/2vs photon energy,as shown in Figures 9b and 9d.Figures 9a and 9b indicate that when the temperature increases from 400to 550°C,slight reduction band gap energy from 2.49to 2.42eV can be detected.This bathochromic shift in band gap is ascribed to the enhanced structural connections with enhanced van der Waals

interaction

Figure 8.The correlation between S BET and the pyrolysis temperature and time for selected samples (a)and the correlation between pore volume and the pyrolysis temperature and time for selected samples

(b).Figure 9.UV ?vis DRS (a,c)and plots of (αh ν)1/2vs photon energy (b,d)of g-C 3N 4samples treated under di ?erent temperatures and treated for di ?erent

times.

between the tri-s-triazine cores as higher pyrolysis temperature results in a higher degree of polymerization and a denser packing of the tri-s-triazine units (Figure 2).37This,in turn,leads to a stronger overlapping of molecular orbitals of the aromatic sheet stacks.Further increasing the temperature from 550to 600°C leads to the hypsochromic shift of the absorption edges from 2.42eV for CN-550°C to 2.57eV for CN-600°C due to the quantum con ?nement e ?ects induced by nanozised particles as high temperatures could signi ?cantly reduce the size of g-C 3N 4through layer-by-layer oxidation coupled with layer splitting (Figures 5and 6).38Figures 9c and 9d imply that prolonging the pyrolysis time from 0to 240min causes the band gap energy of g-C 3N 4samples to increase from 2.37to 2.90eV obviously.The relationship between band gap energy of g-C 3N 4and pyrolysis conditions can be found in Figure 9.Recently,Wang et al.developed a novel comonomer strategy to tentatively modify the texture and band structure of g-C 3N 4by chemical incorporation of monomer building blocks into the conjugated polymeric network of g-C 3N 4.39In this research,we can ?nd a simple approach to control the microstructure and band gap of g-C 3N 4by tuning the pyrolysis temperature and time,being a potentially valuable way to alter the physical and chemical properties of polymeric semiconductors.3.6.Visible Light Photocatalytic Activity and Stability for NO Removal.3.6.1.Photocatalytic Removal of NO and Monitoring of Reaction Intermediates.The as-prepared g-C 3N 4samples were applied for gaseous NO degradation under visible light irradiation in a continuous reactor in order to demonstrate their potential ability for air puri ?cation.Figures 10a and 10b show the variation of NO concentration (C /C 0%)with irradiation time over g-C 3N 4samples treated under di ?erent temperatures.Here,C 0is the initial concentration of NO,and C is the concentration of NO after photocatalytic reaction at time t .Previous investigation indicated that NO could not be photolyzed under light irradiation.40It can be found in Figure 10a that NO could not be degraded without photocatalyst under light irradiation or with photocatalyst (CN-600°C)for lack of light irradiation.In the presence of photocatalyst,the NO reacted with the photogenerated reactive radicals to produce the ?nal product of HNO 3.Because g-C 3N 4has a suitable band gap that can be directly excited by visible light,all g-C 3N 4samples treated under di ?erent temperatures and for di ?erent times show decent visible light photocatalytic activity toward NO removal,as shown in Figure 10.Figure 10a indicates that the NO removal ratio of g-C 3N 4samples increases from 10.2%to 32.7%when the pyrolysis temperatures increase from 500to 600°C after 45min irradiation.Figure 10b implies that the NO removal ratio of g-C 3N 4samples increases from 7.7%to as high as 32.3%when the pyrolysis time increases from 0to 240min (Table 1).The visible light activity of CN-600°C and CN-240min samples exceeds that of C-doped TiO 2(21.8%)and BiOI (14.9%),suggesting

that

Figure 10.Visible light photocatalytic activities of g-C 3N 4samples treated under di ?erent temperatures (a)and g-C 3N 4samples treated for di ?erent times (b)for removal NO in air (continuous reactor,NO concentration:600ppb).Monitoring of the fraction of NO 2intermediate over g-C 3N 4

samples treated under di ?erent temperatures (c)and g-C 3N 4samples treated for di ?erent times (d)

during photocatalytic reaction.

variation of thermal treatment conditions is an e ?ective approach to enhance the activity of g-C 3N 4.Under the optimized thermal conditions,the photocatalytic activity of g-C 3N 4from thiourea is higher than that of the sample from urea,demonstrating the advantage of thiourea as precursor.16The reaction intermediate of NO 2during photocatalytic oxidation of NO is monitored online as shown in Figures 10c and 10d.The fraction of NO 2generated over g-C 3N 4samples during irradiation decreases with increased pyrolysis temper-ature and prolonged pyrolysis time,which can be ascribed to the fact that the surface areas and pore volumes are increased accordingly.The di ?usion rate of reaction intermediate over g-C 3N 4samples with high surface areas and large pore volume is faster,thus promoting the oxidation of intermediate NO 2to

?nal NO 3?,as shown in the following reactions.40The ?nal oxidation products (nitric acid or nitrate ions)can be simply washed away by water wash.Note that as the photocatalytic reaction was going on,the NO concentration in the outlet was decreased gradually due to the conversion of NO to NO 3?.The NO concentration would reach minima until the photocatalytic reaction reached equilibrium.The slight rising of NO concentration was due to the accumulation of NO 3?product on the catalyst surface.40,44After long-term irradiation,the NO concentration in the outlet would reach a steady state.+?→+NO 2OH NO H O 22(1)+?→+?+NO OH NO H 23(2)++→NO NO H O 2HNO 222(3)+?→??NO O NO 23(4)Thermal treatment is a general process employed to crystallize catalytic materials.The e ?ects of thermal treatment conditions on the microstructure and photocatalytic activity of di ?erent types of photocatalysts have been widely inves-tigated.23,30,31,41?43Yu et al.studied the e ?ects of calcination temperature on the photocatalytic activity of TiO 2from titanate and found that activity of TiO 2deceased with an increase in calcination temperature in the range of 400to 900°C due to the sintering and crystallite growth and decrease of surface areas and pore volume.41In most cases,there was a medium calcination temperature (not too high and not too low)to make a balance between the surface areas and crystallinity in order to optimize the activity of photocatalysts.For example,Zaleska et al.42found that the optimal preparation temperature for boron-doped TiO 2with the highest activity was 400°C in the range of 300?600°C.However,in our case,the activity of the g-C 3N 4sample is enhanced progressively with continuous elevated temperature and prolonged pyrolysis time (Table 1).

This unique variation of the activity should be related to the

unusual change of texture property and band gap of g-C 3N

4

with di ?erent thermal treatment conditions (Figures 5,6,8,and 9).

The remarkably improved photocatalytic activities of the g-C 3N 4samples with respect to elevated temperature and prolonged pyrolysis time demonstrated above can be explained as the synergistic e ?ects of enhanced crystallinity,nanosheet-like morphology,large surface area,large pore volume,and increased band gap.First,for the g-C 3N 4sample treated at high temperature and for a long time,the enhancement of crystallization (Figure 2)is advantageous to reduce the recombination rate of photogenerated electrons and holes due to a decrease in the number of the defects.43Second,the

nanosheet-like structure (Figures 5and 6)enhances the

transport of photogenerated electrons along the nanosheet,thus lowering the hole ?electron recombination.44?47Third,the thin thickness and porous character result in a large surface area for pollutant adsorption.48,49Fourthly,large pore volume (Figure 8)provides more active site for quick reactant

di ?usion.31,49,50Lastly and importantly,the increase in the

band gap increases the redox ability of charge carriers generated

under irradiation (Figure 9).46All these favorable factors

cocontribute to the signi ?cantly improved photocatalytic activities of g-C 3N 4samples synthesized at elevated temper-

ature (600°C)and treated for a long time (240min).

3.6.2.Photochemical Stability with Multiple Runs.To further test the stability of the optimized CN-600°C and CN-240min samples for practical application,repeated reaction tests were carried out.The sample after one run was used

directly without further treatment for the next photocatalytic

reaction run.As shown in Figure 11,the NO removal ratios of

CN-600°C and CN-240min samples could be well maintained

after ?ve cycles under visible light irradiation.Except for a slight drop in the activity during the third running,no further decrease in activity in the following runs can be observed.These results clearly demonstrate that nanostructured porous g-C

3N 4photocatalysts with enhanced and durable activity can

be successfully synthesized and applied for e ?cient air

puri ?

cation.

Figure 11.Multiple photocatalytic reaction over the CN-600°C sample (a)and the CN-240min sample (b)for removal of NO in air.

The stability of CN-600°C and CN-240min samples is further con ?rmed by XRD and FT-IR spectra after repeated reaction runs,as shown in Figure 12.It can be seen in Figure 12a that the crystal structure of CN-600°C and CN-240min samples were almost identical to the fresh samples (Figure 2),indicating their good phase stability.All the absorption bands for both samples are identical to the FT-IR spectra of fresh samples (Figure 4).The reaction intermediates and reaction products during photocatalytic oxidation of NO (such as NO 2

and HNO 2)cannot be observed.These results indicate that the reaction intermediates and products could di ?use rapidly owing to the bene ?cial porous nanostructures (Figures 6c and 6f).42For the ?rst time,we have discovered the unique e ?ects of pyrolysis temperature and time on the texture property,band gap structure,and visible light photocatalytic activity of g-C 3N 4

derived from thiourea.By facile variation of the pyrolysis conditions,we can engineer the nanostructures of g-C 3N 4and make them possess e ?cient and durable visible light photo-catalytic performance for air pollutant puri ?cation.The as-prepared g-C 3N 4nanostructures can also be applied in other related areas such as solar energy conversion,photosynthesis,and catalyst support.4.CONCLUSION Conjugated g-C 3N 4nanostructures were synthesized by direct pyrolysis of thiourea in air.The formation of g-C 3N 4from thiourea involved multiple processes under thermal treatment.The unique e ?ects of pyrolysis temperature and time on the microstructure and photocatalytic activity of g-C 3N 4were investigated and revealed.The crystallinity,morphology,surface area,pore structures,band gap structure,and photo-catalytic activity of g-C 3N 4was strongly dependent on the pyrolysis temperature and time.For the g-C 3N 4samples obtained at elevated temperature and prolonged time,the layer thickness and size of g-C 3N 4were reduced through a layer-by-layer coupled with layer-splitting process.When the pyrolysis temperature was increased from 500to 600°C and the pyrolysis time was prolonged from 0to 240min,the visible light photocatalytic activity of porous g-C 3N 4nanosheets toward gaseous NO puri ?cation was signi ?cantly enhanced,exceeding that of C-doped TiO 2and BiOI.The activity enhancement of porous g-C 3N 4nanostructures can be ascribed to the synergistic contributions of enhanced crystallinity,nanosheet-like morphology,large surface area,large pore volume,and enlarged band gap.The optimized CN-600°C and CN-240min nanosheets samples can be used multiplely without obvious deactivation,demonstrating their high stability under repeated light irradiation.The present work demon-strated that the nanostructures of conjugated carbon nitride derived from thiourea can be facilely engineered and improved by facile thermal treatment for e ?cient visible light photo-catalytic

air puri ?cation.■ASSOCIATED CONTENT *Supporting Information

The photo of the reactor system (Figure S1).This material is available free of charge via the Internet at https://www.wendangku.net/doc/3b1449160.html,.■AUTHOR INFORMATION Corresponding

Author *

Phone:+862362769785605.Fax:+862362769785605.E-

mail:dfctbu@https://www.wendangku.net/doc/3b1449160.html,.Author Contributions

All authors have seen and given approval to the ?nal version of the manuscript.

Notes

The authors declare no competing ?nancial interest.■ACKNOWLEDGMENTS

This research is ?nancially supported by the National Natural Science Foundation of China (51108487),the Natural Science Foundation Project of CQ CSTC (cstc2013jcyjA20018,cstc2013yykfB50008),the Science and Technology Project from Chongqing Education Commission (KJ130725),the Innovative Research Team Development Program in University of Chongqing (KJTD201314),and the Opening Project of Key Laboratory of Green Catalysis of Sichuan Institutes of High Education

(LZJ1204).■REFERENCES (1)Chen,C.C.;Ma,W.H.;Zhao,J.C.Semiconductor-Mediated Photodegradation of Pollutants under Visible-Light Irradiation.Chem.

Soc.

Rev.2010,39,4206.(2)Liu,G.;Wang,L.;Yang,H.;Cheng,H.;Lu,G.Q.Titania-Based Photocatalysts:

Crystal Growth,Doping and Heterostructuring.J.

Mater.

Chem.2010,20,831.(3)Xiang,Q.J.;Yu,J.G.;Jaroniec,M.Graphene-Based Semiconductor Photocatalysts.Chem.Soc.Rev.2012,41,

782.

Figure 12.XRD pattern (a)and FT-IR spectra (b)of CN-600°C and CN-240min samples after multiple photocatalytic reactions.

(4)Rehman,S.;Ullah,R.;Butt,A.M.;Gohar,N.D.Strategies of Making TiO2and ZnO Visible Light Active.J.Hazard.Mater.2009, 170,560.

(5)Di Paola,A.;García-Lo p ez,E.;Marcì,G.;Palmisano,L.A Survey of Photocatalytic Materials for Environmental Remediation.J.Hazard. Mater.2012,211?212,3.

(6)Tong,H.;Ouyang,S.;Bi,Y.;Umezawa,N.;Oshikiri,M.;Ye,J.H. Nano-Photocatalytic Materials:Possibilities and Challenges.Adv. Mater.2012,24,229?251.

(7)Liu,G.;Yu,J.C.;Lu,G.Q.;Cheng,H.M.Crystal Facet Engineering of Semiconductor Photocatalysts-Motivations,Advances and Unique https://www.wendangku.net/doc/3b1449160.html,mun.2011,47,6763.

(8)Kudo,A.;Miseki,Y.Heterogeneous Photocatalyst Materials for Water Splitting.Chem.Soc.Rev.2009,38,253.

(9)Wang,X.C.;Maeda,K.;Thomas,A.;Takanabe,K.;Xin,G.; Carlsson,J.M.;Domen,K.;Antonietti,M.A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light.Nat.Mater.2009,8,76.

(10)Li,X.H.;Zhang,J.S.;Chen,X.F.;Fischer,A.;Thomas,A.; Antonietti,M.;Wang,X.C.Condensed Graphitic Carbon Nitride Nanorods by Nanoconfinement:Promotion of Crystallinity on Photocatalytic Conversion.Chem.Mater.2011,23,4344.

(11)Zhang,G.;Zhang,J.;Zhang,M.;Wang,X.C Polycondensation of Thiourea into Carbon Nitride Semiconductors As Visible Light Photocatalysts.J.Mater.Chem.2012,22,8083.

(12)Ge,L.;Han,C.Synthesis of MWNTs/g-C3N4Composite Photocatalysts with Efficient Visible Light Photocatalytic Hydrogen Evolution Activity.Appl.Catal.,B2012,117?118,268.

(13)Zhang,W.D.;Zhang,Q.;Dong,F.;Zhao,Z.W.The Multiple Effects of Precursors on the Physicochemical and Photocatalytic Properties of Polymeric Carbon Nitride.Int.J.Photoenergy2013,2013, 685038.

(14)Wang,Y.;Wang,X.;Antonietti,M.Polymeric Graphitic Carbon Nitride as a Heterogenous Organocatalyst:From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry.Angew.Chem.,Int. Ed.2012,51,68?89.

(15)Zheng,Y.;Liu,J.;Liang,J.;Jaroniec,M.;Qiao,S.Graphitic Carbon Nitride Materials-Controllable Synthesis and Applications in Fuel Cells and Photocatalysis.Energy Environ.Sci.2012,5,6717. (16)Dong,F.;Wang,Z.Y.;Sun,Y.J.;Ho,W.K.;Zhang,H.D. Engineering the Nanoarchitecture and Texture of Polymeric Carbon Nitride Semiconductor for Enhanced Visible Light Photocatalytic Activity.J.Colloid Interface Sci.2013,401,70.

(17)Xiang,Q.J.;Yu,J.G.;Jaroniec,M.Preparation and Enhanced Visible-Light Photocatalytic H2-Production activity of Graphene/C3N4 Composites.J.Phys.Chem.C2011,115,7355.

(18)Zhang,J.;Sun,J.;Maeda,K.;Domen,K.;Liu,P.;Antonietti,M.; Fu,X.Z.;Wang,X.C.Sulfur-Mediated Synthesis of Carbon Nitride: Band-Gap Engineering and Improved Functions for Photocatalysis. Energy Environ.Sci.2011,4,675.

(19)Yan,S.C.;Li,Z.S.;Zou,Z.G.Photodegradation Performance of g-C3N4Fabricated by Directly Heating https://www.wendangku.net/doc/3b1449160.html,ngmuir2009, 25,10397.

(20)Zhang,J.S.;Chen,X.F.;Takanabe,K.;Maeda,K.;Domen,K.; Epping,J.D.;Fu,X.Z.;Antonietti,M.;Wang,X.C.Synthesis of a Carbon Nitride Structure for Visible-Light Catalysis by Copolymeriza-tion.Angew.Chem.,Int.Ed.2010,49,441.

(21)Bojdys,M.J.;Mller,J.;Antonietti,M.;Thomas,A.Ionothermal Synthesis of Crystalline,Condensed,Graphitic Carbon Nitride. Chem. Eur.J.2008,14,8177.

(22)Dong,F.;Wu,L.W.;Sun,Y.J.;Fu,M.;Wu,Z.B.;Lee,S.C. Efficient Synthesis of Polymeric g-C3N4Layered Materials as Novel Efficient Visible Light Driven Photocatalyst.J.Mater.Chem.2011,21, 15171.

(23)Dong,F.;Sun,Y.J.;Wu,L.W.;Fu,M.;Wu,Z.B.Facile Transformation of Low Cost Thiourea into Nitrogen-Rich Graphitic Carbon Nitride Nanocatalyst with High Visible Light Photocatalytic Performance.Catal.Sci.Technol.2012,2,1332.

(24)Long,B.H.;Ding,Z.X.;Wang,X.C.Carbon Nitride for the Selective Oxidation of Aromatic Alcohols in Water under Visible Light. ChemSusChem.2013,6,2024.

(25)Zhang,J.S.;Guo,F.S.;Wang,X.C.An Optimized and General Synthetic Strategy for Fabrication of Polymeric Carbon Nitride Nanoarchitectures.Adv.Funct.Mater.2013,23,3008.

(26)Chen,Y.;Zhang,J.S.;Zhang,M.W.Molecular and Textural Engineering of Conjugated Carbon Nitride Catalysts for Selective Oxidation of Alcohols with Visible Light.Chem.Sci.2013,4,3244.

(27)Lin,Z.Z.;Wang,X.C.Nanostructure Engineering and Doping of Conjugated Carbon Nitride Semiconductors for Hydrogen Photosynthesis.Angew.Chem.,Int.Ed.2013,52,1735.

(28)Zhang,J.S.;Zhang,M.W.;Sun,R.Q.;Wang,X.C.A Facile Band Alignment of Polymeric Carbon Nitride Semiconductors to Construct Isotype Heterojunctions.Angew.Chem.,Int.Ed.2012,51, 10145.

(29)Dong,F.;Zhao,Z.W;Xiong,T.;Ni,Z.L.;Zhang,W.D.;Sun, Y.J.;Ho,W.K.In Situ Construction of g-C3N4/g-C3N4Metal-Free Heterojunction for Enhanced Visible Light Photocatalysis.ACS Appl. Mater.Interfaces2013,5,11392.

(30)Zhou,W.;Sun,F.;Pan,K.;Tian,G.;Jiang,B.;Ren,Z.;Tian,C.; Fu,H.Well-Ordered Large-Pore Mesoporous Anatase TiO2with Remarkably High Thermal Stability and Improved Crystallinity: Preparation,Characterization and Photocatalytic Performance.Adv. Funct.Mater.2011,21,1922.

(31)Yu,J.G.;Su,Y.;Cheng,B.Template-Free Fabrication and Enhanced Photocatalytic Activity of Hierarchical Macro/Mesoporous Titania.Adv.Funct.Mater.2007,17,1984.

(32)Sing,K.S.W.;Everett,D.H.;Haul,R.A.W.;Moscou,L.; Pierotti,R. A.;Rouquerol,J.;Siemieniewska,T.Reporting Physisorption Data for Gas/Solid Systems.Pure Appl.Chem.1985, 57,603.

(33)Lee,S.;Lintang,H.O.;Yuliati,L.A Urea Precursor to Synthesize Carbon Nitride with Mesoporosity for Enhanced Activity in the Photocatalytic Removal of https://www.wendangku.net/doc/3b1449160.html,n J.2012,7,2139.

(34)Kwon,K.;Sa,Y.;Cheon,J.;Joo,S.Ordered Mesoporous Carbon Nitrides with Graphitic Frameworks as Metal-Free,Highly Durable,Methanol-Tolerant Oxygen Reduction Catalysts in an Acidic https://www.wendangku.net/doc/3b1449160.html,ngmuir2012,28,991.

(35)Jin,X.;Balasubramanian,V.V.;Selvan,S.T.;Sawant,D.P.; Chari,M.A.;Lu,G.Q.;Vinu,A.Highly Ordered Mesoporous Carbon Nitride Nanoparticles with High Nitrogen Content:a Metal-Free Basic Catalyst.Angew.Chem.,Int.Ed.2009,48,7884.

(36)Shen,W.;Ren,L.;Zhou,H.;Zhang,S.;Fan,W.Facile One-Pot Synthesis of Bimodal Mesoporous Carbon Nitride and its Function as

a Lipase Immobilization Support.J.Mater.Chem.2011,21,3890.

(37)Cui,Y.;Zhang,J.;Zhang,G.;Huang,J.;Liu,P.;Antonietti,M.; Wang,X.C.Synthesis of Bulk and Nanoporous Carbon Nitride Polymers from Ammonium Thiocyanate for Photocatalytic Hydrogen Evolution.J.Mater.Chem.2011,21,13032.

(38)Alivisatos,A.P.Semiconductor Clusters,Nanocrystals,and Quantum Dots.Science1996,271,933.

(39)Zhang,J.;Zhang,G.;Chen,X.;Lin,S.;Mo h lmann,L.;Do??ga,

G.;Lipner,G.;Antonietti,M.;Blechert,S.;Wang,X.C.Co-Monomer Control of Carbon Nitride Semiconductors to Optimize Hydrogen Evolution with Visible Light.Angew.Chem.,Int.Ed.2012,51,3183.

(40)Ai,Z.H.;Ho,W.K.;Lee,S.C.;Zhang,L.Z.Efficient Photocatalytic Removal of NO in Indoor Air with Hierarchical Bismuth Oxybromide Nanoplate Microspheres under Visible Light. Environ.Sci.Technol.2009,43,4143.

(41)Yu,J.G.;Yu,H.G.;Cheng, B.;Trapalis, C.Effects of Calcination Temperature on the Microstructures and Photocatalytic Activity of Titanate Nanotubes.J.Mol.Catal.A:Chem.2006,249,135.

(42)Zaleska,A.;Grabowska,E.;Sobczak,J.W.;Gazda,M.;Hupka,J. Photocatalytic Activity of Boron-Modified TiO2under Visible Light: The Effect of Boron Content,Calcination Temperature and TiO2 Matrix.Appl.Catal.,B2009,89,469.

(43)Yu,J.G.;Zhang,L.J.;Cheng,B.;Su,Y.Y.Hydrothermal Preparation and Photocatalytic Activity of Hierarchically Sponge-like Macro-/Mesoporous Titania.J.Phys.Chem.C2007,111,10582. (44)Dong,F.;Sun,Y.J.;Fu,M.;Ho,W.K.;Lee,S.C;Wu,Z.B. Novel in Situ N-Doped(BiO)2CO3Hierarchical Microspheres Self-Assembled by Nanosheets as Efficient and Durable Visible Light Driven https://www.wendangku.net/doc/3b1449160.html,ngmuir2012,28,766.

(45)Dong,F.;Sun,Y.J.;Ho,W.K.;Wu,Z.B.Controlled Synthesis, Growth Mechanism and Highly Efficient Solar Photocatalysis of Nitrogen-Doped Bismuth Subcarbonate Hierarchical Nanosheets Architectures.Dalton Trans.2012,41,8270.

(46)Niu,P.;Zhang,L.;Liu,G.;Cheng,H.M.Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities. Adv.Funct.Mater.2012,22,4763.

(47)Dong,F.;Liu,H.T.;Ho,W.K.;Fu,M.;Wu,Z.B.(NH4)2CO3 Mediated Hydrothermal Synthesis of N-doped(BiO)2CO3Hollow Nanoplates Microspheres as High-Performance and Durable Visible Light Photocatalyst for Air Cleaning.Chem.Eng.J.2013,214,198.

(48)Yan,H.J.Soft-Templating Synthesis of Mesoporous Graphitic Carbon Nitride with Enhanced Photocatalytic H2Evolution under Visible https://www.wendangku.net/doc/3b1449160.html,mun.2012,48,3430.

(49)Li,Z.;Zhou,Y.;Xue,G.;Yu,T.;Liu,J.;Zou,Z.Fabrication of Hierarchically Assembled Microspheres Consisting of Nanoporous ZnO Nanosheets for High-Efficiency Dye-Sensitized Solar Cells.J. Mater.Chem.2012,22,14341.

(50)Dong,F.;Sun,Y.J.;Fu,M.;Wu,Z.B.;Lee,S.C.Room Temperature Synthesis and Highly Enhanced Visible Light Photo-catalytic Activity of Porous BiOI/BiOCl Composites Nanoplates Microflowers.J.Hazard.Mater.2012,219?220,26.

生产车间各岗位操作规程

生产车间安全操作规程 为保证操作工人的人身安全以及财产不受损失,根据《危险化学品安全条例》,操作工人必须按照以下操作规程进行操作。 一、操作工人必须掌握化学物品的特性(物理、化学性能),熟悉操作工艺。 二、操作工必须持证上岗,有高度的安全意识。 严格做好双人领料、双人投料制度。 三、在化学危险品操作过程中必须佩带防护用品,对接触化学危险品的容器,要及时进行加工处理。 四、操作工必须对防护用品及急救用品进行检查,定期更换,确保防护用品及急救用品能有效使用。 五、不允许将化学危险品以及其有关的物品带出车间。 六、严禁在车间内进食、喝茶、娱乐等与工作无关的行为。 七、化学危险品工作区域内除持证人员外,其他工作人员及闲杂人员等不得进入。 八、对违规操作以及发生的大小事故将追究各级责任人的责任。 称量工序操作规程 设备:台秤、捕尘设施 状态标志:已清洁、正在运行、清场合格证、生产证; 记录填写:批生产记录;所需容器具准备齐全;所用物料确认无

误。 操作: ? 1 操作人员根据称量配料的数量到净桶存放室领取洁净的桶和舀子等器具,将其用小车运至称量配料间,并用75%酒精擦拭消毒。 ? 2 操作人员依据“生产指令”和限额领料单到中间站领取所需物料,核对其名称、规格、编号、数量等,并在交接单和物料进出记录上签字确认领用,用小车运至称量配料室。 ? 3 在QA人员监控下,按照制剂指令的规定比例,称量各物料的单锅数量。 ? 4 物料按比例称重后及时悬挂标示牌,填写称量配料记录,将所配物料递交下一工序。 ? 5 称量配料结束后取下“生产证”,换上“待清洁”标示牌。 ?清场 制粒工序操作规程 设备:摇摆式颗粒机 状态标志:已清洁、正在运行、清场合格证、生产证; 记录填写:设备运行和维护保养记录、批生产记录;所需容器具准备齐全;所用物料确认无误。

2氨基硫脲的合成

化学通报990311
Page 1 of 4
化学通报
CHEMISTRY 1999年 第3期 No.3 1999
1,3-二氨基硫脲的合成研究
孙晓红 关键词 二氨基硫脲 合成 催化 刘源发
1,3-二氨基硫脲(简称TCH)是一种重要的有机合成中间体,在一些杂环类医药、 农药的合成中有广泛的用途,同时它的一些金属衍生物也具有较大的应用价值。关于 其合成方法文献已有报道[1],且一直受到研究工作者的重视。在几种不同的合成方 法中,通常采用的是以二硫化碳和水合肼为原料,经两步反应制得TCH,以反应式表示 如下:
从原料来源及工艺条件来看,这是一条合理的工艺路线,二硫化碳与水合肼在较 低温度下反应,先生成二硫代肼基甲酸钅 井(简称HDTC),后者经加热分解,放出硫 化氢,冷却后过滤,即可得到TCH。但此种方法早期文献报道收率一般低于70%[2,3], 如加热温度控制不当,反应剧烈,难以控制,TCH的收率会更低,且不安全,目前国内 有关生产厂家仍采用此工艺路线。后有一些文献报道了有关此方法的改进研究,发现 过量的水合肼存在可提高收率[4],加入水及一些低烷基醇有利于反应进行,但并不 增加反应收率;一些胺或强碱如四亚甲基二胺、氢氧化钠存在下可增加TCH的收率 [5];在巯基乙醇存在下,二硫化碳与过量水合肼反应不仅可提高收率,同时可减少 副产物生成,可使水合肼循环套用次数增加,TCH的平均收率~90%[6]。但是以上方 法存在反应时间过长,一般需20h左右及催化剂巯基乙醇价格贵,来源困难的问题。 我们在文献[6]的基础上,对此方法进行了改进研究,研究成功以氯乙醇等卤代 醇代替巯基乙醇,并适当提高脱硫化氢的反应温度,使反应时间大为缩短,在10h以内 即可完成反应,过量的水合肼可循环套用的工艺条件,TCH的收率一般均在90%以上。
1 实验部分
1.1 主要原料及规格 二硫化碳,化学纯; 80%水合肼,化学纯; 2-氯乙醇,分析纯; 1,3-氯-2丙醇,自制; 巯基乙醇,化学纯。 1.2 实验步骤 1.2.1 操作方法 在装有搅拌器、温度计、滴液漏斗及冷凝器(上口连有尾气导出管) 的四口烧瓶中加入80%水合肼3mol及适量水,2-氯乙醇12g,冰水浴冷却至15℃左右, 搅拌下滴加二硫化碳1mol,约1h加完,然后在室温下搅拌30min,此时有黄色结晶HDTC 析出。加入6g氢氧化钠,加热升温并控制反应温度在75~85℃之间反应10h,所放出的 硫化氢气体经导气管用稀氢氧化钠吸收。冷却至室温,过滤析出的白色颗粒状TCH。用 150mL甲醇洗涤,干燥,得产物重97.5g,收率92%。 将过滤所得母液及甲醇洗涤液合并,加入反应瓶,搅拌下于15℃左右,30min之 内,滴加0.52mol二硫化碳,继续在此温度下反应1h。冷却至0℃,30min后,过滤析出 https://www.wendangku.net/doc/3b1449160.html,/web/chemistry/2000/https://www.wendangku.net/doc/3b1449160.html,/col/1999/hxtb/hxtb9903/... 2011-10-27

难处理金矿提金的现状及发展趋势

doi:10.3969/j.issn.1007-7545.2015.04.010 难处理金矿提金的现状及发展趋势 孙留根1,袁朝新1,王云1,孙彦文1,常耀超1,徐晓辉1,杜齐平2,刘永涛2(1.北京矿冶研究总院,北京100160;2.中核沽源铀业有限责任公司,河北张家口076550) 摘要:简要介绍了难处理金精矿氰化类和非氰化类处理方法的机理及国内外最新研究及应用现状,综合比较了各种方法的优缺点,并指出了研究的发展方向。 关键词:难处理金矿;预处理;焙烧;生物氧化;氰化 中图分类号:TF831 文献标志码:A 文章编号:1007-7545(2015)04-0000-00 Status and Development of Gold Extraction from Refractory Gold Ore SUN Liu-gen1, YUAN Chao-xin1, WANG Yun1, SUN Yan-wen1, CHANG Yao-chao1, XU Xiao-hui1, DU Qi-ping2, LIU Yong-tao (1. Beijing General Research Institute of Mining & Metallurgy, Beijing 100160, China; 2. Zhonghe Guyuan Uranium Industry Co., Ltd, Zhangjiakou 076550, Hebei, China) Abstract: Processing mechanism, latest research and application status of refractory gold concentrate by cyanidation and non-cyanidation were briefly introduced. Advantages and disadvantages of each method were analyzed. The development direction of processing refractory gold ore was proposed. Key words: refractory gold ore; pretreatment; roasting; biological oxidation; cyanidation 氰化法是现代湿法提金的最重要方法,世界黄金产量的80%是采用氰化法获得的。随着易处理矿石资源的减少,人们逐渐把目光投向难处理金矿,我国难处理金矿资源[1-2]约占已探明黄金地质储量的25%~30%。但这些资源不能用常规选法经济地回收,需对精矿进行预处理,再用常规氰化浸出等方法回收。 难处理金矿石分三种:中等难处理矿石、复杂难处理矿石、高度难处理矿石。 中等难处理矿石:占总量20%~30%的金以微细粒和显微形态包裹于脉石矿物中,金属硫化物含量约占1%~4%,采用常规氰化法提金或浮选法浮集,金回收率均较低。 复杂难处理矿石:含砷3%以上,碳1%~2%,硫5%~6%,锑0.5%~5%。常规氰化金浸出率一般为20%~50%,氰化钠消耗量大,虽然浮选工艺能获得较高品位的金精矿,但精矿中砷、碳、锑等有害元素的含量也比较高,会给后续提金工艺带来影响。 高度难处理矿石:金银与铅、锑硫化物和含锑的硫砷铜矿物共生,以合金和化合物形式(如银金矿、金碲化合物、AuSb2和Au2Bi等)被化学包裹。 为了提高有价金属的回收率,实现资源的综合利用,国内外冶金工作者经过多年的研究,探索出多种难处理金矿的处理方法[3],按照是否使用氰化物分为氰化法和非氰化法,详细分类如图1所示。 收稿日期:2014-10-23 基金项目:国家重大科学仪器设备开发专项(2012YQ22011905) 作者简介:孙留根(1978-),男,河南许昌人,博士研究生,高级工程师.

硫脲安全技术说明书

化学品安全技术说明书 产品名称:硫脲按照GB/T16483、GB/T17519编制 修订日期:2013年8月5日 SDS编号:2013080502 最初编制日期:2007年1月4日版本:02 第一部分化学品及企业标识 化学品中文名称:硫脲 化学品英文名称: thiourea 企业名称:南京峰文商贸有限公司 产品推荐及限制用途:用以合成磺胺噻唑、蛋氨酸和肥猪片等药物的原料。用作染料及染色助剂、树脂及压塑粉的原料。也可用作橡胶的硫化促进剂、金属矿物的浮选剂、制邻苯二甲酸酐和富马酸的催化剂,以及用作金属防锈蚀剂。在照相材料方面,可作为显影剂和调色剂。还可用于电镀工业。硫脲还用于重氮感光纸、合成树脂涂料、阴离子交换树脂、发芽促进剂、杀菌剂等许多方面。硫脲也作为化肥使用。用于制造药物、染料、树脂、压塑粉、橡胶的硫化促进剂、金属矿物的浮选剂等的原料。 第二部分危险性概述 紧急情况概述: 遇明火、高热可燃。受热分解,放出氮、硫的氧化物等毒性气体。与氧化剂能发生强烈反应. 有毒。一次作用时毒性小,反复作用时可抑制甲状腺和造血器官的机能。对水生生物有毒,对水生生物有害并且有长期持续影响。 产品名称: 硫脲 SDS编号:2013080502 修订日期: 2013年8月5日 GHS危险性类别:

急性毒性经口:类别4 生殖毒性:类别2 对水环境危害-急性:类别2 对水环境危害-慢性:类别2 标签要素: 象形图: 警示词:警告 危险性说明:吞咽有害(经口)。怀疑损害生育能力或胎儿。对水生生物有毒。对水生生物有毒并且有长期持续影响。 防范说明: 预防措施: —密闭操作,注意通风。 —操作尽可能机械化、自动化。 —操作人员必须经过专门培训,严格遵守操作规程。 —建议操作人员配戴自吸过滤式防毒面具(半面罩),戴橡胶耐酸碱手套。—远离火种、热源,工作场所严禁吸烟。 —使用防爆型通风系统和设备,防止粉尘泄漏到工作场所空气中。—避免与氧化剂、酸类接触。 —搬运时轻装轻卸,防止包装损坏; —配备相应品种和数量的消防器材,泄漏时,建议佩戴过滤式防毒面具(半面罩)。 —紧急事态抢救或撤离时,应佩戴空气呼吸器。 —作业场所不得进食、饮水、吸烟。 —禁止让该产品进入周围环境中。 事故响应: —如食入:饮足量温水,催吐。立即就医。 产品名称: 硫脲 SDS编号:2013080502 修订日期: 2013年8月5日

生产车间安全生产操作规程

生产车间安全生产操作规程 XXXX药业有限责任公司起草人日期文件类别标准管理规程审核人 日期颁发部门生产部批准人日期文件编码 SOP09001,CO 生效日期共2页第1页文件标题生产车间安全生产操作规程 分发部门质量部、生产部 变更记载: 变更摘要: 修订号批准日期生效日期 生产车间安全生产操作规程 1 目的 规范生产车间的安全操作,防止安全事故。 2 范围 适用于生产车间生产安全的管理。 3 职责 岗位操作人员对本规程的实施负责。 生产主管、安全生产领导小组负责监督检查。 4 程序 4.1.1 “安全生产,人人有责”。所有员工必须加强法制观念,认真执行国家有关安全生产、劳动保护政策法律、法规,严格遵守安全操作规程和各项安全生产规章制度。 4.1.2 凡不符合安全生产要求,有安全隐患的厂房、生产线和设备,岗位操作人员有权向上级报告,遇到可能危及生命、财产安全的情况,岗位操作人员有权立即停止操作并及时报告生产主管及生产部经理。 4.1.3 设备的安装、调试按照安全操作指导并在设备的安全运行环境下进行,一切电气机械设备的金属外壳必须有可靠的接地安全措施。 4.1.5 消防器材定置摆放,不得埋压不得上锁锁闭,不得随意挪移。

4.1.6 岗位操作人员上岗前应经安全教育培训、设备安全操作及岗位技术培训,合格后方可上岗。 4.1.7 生产前做好劳动保护和安全检查工作。 4.1.7.1 一般区岗位操作人员必须按《人员进出一般生产区操作规程》穿戴工作服,洁净区岗位操作人员必须按《人员进出D级洁净区操作规程》规定穿戴好洁净服,并在操作前带乳胶手套等劳动防护用品,避免裸手接触药液。 4.1.7.2 检查设备和工作场地,排除故障隐患。 ---- 检查设备的是否清洁完好。 ---- 检查设备润滑是否良好。 ---- 检查阀门有无泄漏。 ---- 检查设备各连接部位有无松动现象,如有应立即紧固。 ---- 检查电路气路连接所有部件是否安装正确。 4.1.8 工作中集中精力,坚守岗位,严禁酒后上岗。调整设备、拆卸防护装置时要先关机停电。 4.1.9 设备运行安全。 4.1.9.1 设备操作实行专人专岗,非本岗位操作人员严禁操作本岗位设备。4.1.9.2 按照安全操作指导、设备的操作规程并在设备的安全运行环境下对设备进行操作及维护。 4.1.9.3 在设备运行中注意观察和检查,如有异常应停机检查,如出现故障应消除了这些故障后才能重新开机。 4.1.9.3.1 机器在一些危险地方已经安装了保护装置在进行任何操作之前要注意这些保护装置的有效性。 4.1.9.3.2 在设备运行中设备有无异常声音、振动和气味。

含砷锑碳低品位难浸金矿石氰化浸出工艺试验研究

发布单位:中国黄金矿业网 含砷锑碳低品位难浸金矿石氰化浸出工艺试验研究 巫汉泉,张金矿 (河南省岩石矿物测试中心) 摘要:介绍某难浸金矿石的特性及在某些条件下的全泥氰化和柱浸试验结果,以及含碳低品位金矿石堆浸时提高金浸出率的有关措施。 关健词:金;氰化;堆浸 中图分类号:TD953 文献标识码:B 文章编号:1001一1277(2005)03一0032-03 1引言 随着黄金开采业的发展,在易处理金矿资源日趋减少的今天,深入研究难处理金矿石的选冶工艺,对开发利用这类资源有很大的现实意义。 笔者对西北某地的含砷锑碳低品位难处理金矿石的性质及处理工艺进行了一些研究,初步掌握了该矿石的特性,并探讨了用堆浸法处理该矿石的适宜工艺条件。 2矿石性质 2.1矿石的矿物组成 该矿石属褐铁矿化、绢云母化、石英网脉化砂岩型金矿石。地表矿石氧化程度高,风化破碎,泥化较严重。矿石中主要矿物有石英、褐铁矿、黄铁矿、毒砂、辉锑矿及碳质物等。 2.2矿石的化学成分 2.3矿石的粒度特性 对粒度为一4Omm、品位为2.05g/t的原矿样进行了筛析,其中一200目粒级的产率为10.76%,金品位为6.57g/t,金的分布率为34.42%。而一0.9mm级别的产率达37.20%,金品位为3.52g/t,金的分布率为63.78%。这说明矿石破碎后,金富集在细粒级中。矿石中矿泥含量较高,影响堆浸时矿堆渗透性。 2.4矿石中金的浸出特性 一200目的原矿样焙烧后用王水溶矿,测出金的品位为2.02g/t。一200目的原矿样未经焙烧直接用王水加热浸出lh,金的浸出率为58.42%,尾渣金品位为0.84g/t。当一200目的原矿样未经焙烧直接用逆王水加热浸出lh,金的浸出率为78.71%,尾渣金品位为0.43g/t。 以上浸出结果表明,该矿石属于难浸类型。一200目未焙烧物料用热王水浸出时,金的浸出率只有

1,3,4-噻二唑类化合物的合成解析

本科毕业论文 学 院 化学化工学院 专 业 化 学 年 级 2009 级 姓 名 罗红辰 论文(设计)题目 1,3,4-噻二唑类化合物的合成 指导教师 张玉霞 职称 教授 2013 年 5月 16日 学号:

信阳师范学院本科学生毕业论文(设计)开题报告

信阳师范学院本科学生毕业论文(设计)中期检查表

目录 摘要 (1) Abstract (1) 前言 (3) 1试验部分 (3) 1.1 主要仪器和实验试剂 (3) 1.2 1,3,4-噻二唑类化合物的合成 (3) 1.3 产物的结构与性能分析 (4) 2结果和讨论 (4) 2.1溶解性及熔点 (4) 2.2红外光谱 (5) 2.3 紫外光谱 (7) 2.4荧光光谱 (9) 3结语 (10) 参考文献 (11)

1,3,4-噻二唑类化合物的合成 学生姓名:罗红辰学号:20095051109 化学化工学院化学专业 指导教师:张玉霞职称:教授 摘要:乙酸在浓盐酸的催化下与氨基硫脲反应生成脂肪族类2,5-二取代-1,3,4-噻二唑,取代苯甲醛与氨基硫脲在六水合氯化铁的催化下关环生成芳香族类2,5-二取代-1,3,4-噻二唑类化合物,并对其进行了结构表征和荧光分析。 关键词:噻二唑;取代苯甲醛;氨基硫脲;合成 Abstract:Under the catalysis of concentrated hydrochloric, acetic acid react with thiosemicarbazide and generate an aliphatic 2,5 - disubstituted -1,3,4 – thiadiazole.under the catalysis of ferric chloride hexahydrate,the product of substituted benzaldehyde reacting with thiosemicarbazide synthesize Aromatic 2,5- disubstituted-1,3,4- thiadiazole compounds.And,Their structural characterization and fluorescence analysis were done after synthesis. Keywords:thiadiazole;substituted benzaldehyde;thiosemicarbazide;synthesize 前言 20世纪末以来,化学工作者发现l,3,4-噻二唑在许多领域都有重要应用。在工业方面,1,3,4-噻二唑类化合物主要被用作润滑油脂抗磨极压剂,也用作钼、石墨等矿石的浮选剂[2]。在农业方面,1,3,4-噻二唑类化合物主要用作除莠剂、灭草剂、杀菌、抑菌剂、植物生长调节剂等,用来防治水稻百叶枯病、柑橘溃疡病、蕃茄青枯病等[3]。在医药方面,l,3,4-噻二唑是一类具有较高生物活性的杂环化合物,常作为药物中间体主要用来合成具有抗菌,抗焦虑,抗癌活性的药物[4-12]。噻二唑化合物的“碳氮硫”结构作为活性中心已引起广泛关[13-17],含有3个杂原子的1,3,4-噻二唑衍生物是一类重要的杂环化合物,因该类化合物具N-C-S毒性基而具有广谱生物活性,其应用广泛,发展前景广阔。 以下是脂肪族1,3,4-噻二唑类化合物和芳香族1,3,4-噻二唑类化合物的合成路线:化合物(Ⅰ)的合成路线:

生产车间电器安全操作规程(新编版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 生产车间电器安全操作规程(新 编版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

生产车间电器安全操作规程(新编版) 为了提高全体员工的安全用电意识,有效遏止和防范各类电器安全事故的发生,特制订如下安全用电规程: 1、电柜内不准堆放杂物和其他私人用品,电柜上面不准放水杯和茶杯等其他杂物,以免电器进水造成事故,违者没收及按管理制度处罚。 2、机修或工程队维修安装烧焊时,要求在哪里烧焊,地线搭到哪里,相关车间派员监督,否则容易烧坏电线及电箱,发生火灾事故。 3、除电工外,任何人未经允许不得私自进入电房操作开关或干扰电工作业,不准合上已挂标示牌(有人工作、严禁合闸)的开关。 4、各车间保养清洁电柜时,不得用水冲洗或用湿毛巾擦电柜。当接触电器插头时,不允许带电拔或插,必须将电源开关切断后进

行。接触电器时,手脚必须干净没有水,避免发生漏电触电。 5、电工维修工作时,至少应有一人监护,其他电工不能陪同前往时,班组长应由安排相关操作人员陪同完成维修工作。 6、严禁赤脚及穿拖鞋上班,电工有权制止各车间人员违反安全用电操作规程的行为及义务。 7、各车间拆接焊机或其它电器电源线时,应找电工接线,严禁用打扁的焊条或其它金属物品当螺丝批用,严禁用钩挂接线,严禁在非维修箱内接维修线。 8、对较大型设备或一通电就可运转危及人身安全的设备进行检修前,必须切断电源,验电确认后,悬挂警告标示牌才可以维修。通电运行时必须全线清场,通知在场所有人员通电启动事宜,防止发生意外。 9、所有的震筛及釉泵必须重复接地;在金属容器或窑炉内工作等密闭及狹窄场所应使用36v以下的照明电源,所有维修线及照明线路必须经漏电开关保护。动力每半月负责检查一次各车间维修漏电开关是否失灵。

硫脲合成工序工艺操作规程及安全规定标准版本

文件编号:RHD-QB-K5166 (管理制度范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 硫脲合成工序工艺操作规程及安全规定标准版 本

硫脲合成工序工艺操作规程及安全 规定标准版本 操作指导:该管理制度文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时必须遵循的程序或步骤。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 一、工艺操作规程式 1、开车前准备 (1)接碳化工序准备开车通知后(一般提前半小时通知),班长通知合成工、投料工做好开车前准备,检查各自使用的设备处于良好状态。 (2)检查硫化氢总管阀门、合成罐、气体进气阀、母液进液阀、夹套进水、进气、退水、退气阀、合成罐放液阀、石灰氮投料孔盖均处于关闭状态。 (3)投料工根据班长要求准备投小成石灰氮原料,并检查提升机是否工作正常,等待合成工进一步

投料通知。 (4)合成工检查母液池母液是否达规定量及一次渣水是否抽入并准备好。 2、开车操作 (1)合成罐打二次母液:合成工先将二次吸收液地槽泵出口管头放入合成罐人孔口内,然后将二次吸收罐底阀打开,放液至二次吸收液地槽,同时开启地槽杆式移动泵,将二次吸收液全部批入合成罐内。关闭二次吸收罐底阀,关闭地槽杆式移动打液泵,将打液胶管从合成罐人孔口取出。二次吸收液打液操作结束。 (2)合成罐打循环液:打开合成罐上循环母液进液阀,开启循环母液打液泵(潜水泵),补充循环母液,使合成罐内混合液量达8.5M3。然后关闭循环母液泵,关闭合成罐上循环母液进液阀。

(3)小成投料 合成工操作:合成工将提升机二层石灰氮出料口移动出料口接好,并对准合成罐石灰氮进料口,确认牢靠后,开启合成罐搅拌器,确定小成投料数量,并通知投料工准备投石灰氮。 投料工操作:开启提升机,待运转正常后,将规定量石灰氮投入提升机进料口内。 投料完毕后,投料工通知合成工,合成工将合成罐上投料孔盖盖好,并把移动出料口收回原来位置。 (4)二次吸收罐投料:在投小成过程中,合成工可打开二次吸收罐上循环母液进液阀,然后开启循环母液泵,往二次吸收罐内打母液2.5—3M3。然后合成工将二次吸收罐上投料孔盖盖好。 (5)依次打开硫化氢管进口管总阀,投小成后

车间安全生产规程

一、安全生产总则 为保证安全生产,全厂职工除遵守本岗位工种安全技术操作规程外,还必须遵守下列总则: 1. 认真执行国家有关劳动安全法规、规定及本厂各项安全生产规章制度。 2. 新入厂工、调换工种的工人及来厂实习、代培和临时参加生产的人员,必须经过安全教育和操作技术培训,经考试合格后在师傅的指导下进行操作。 3. 电气、起重、焊接等特种作业人员,必须持证操作。 4. 操作工必须熟悉产品性能、工艺规程及设备操作要求,会正确处理生产过程中出现的故障。 5.操作前必须按规定正确穿戴好个人的防护用品。披肩发、长辫必须罩人工作帽内。进入有可能发生物体打击的场所必须戴安全帽;有可能被传动机械绞辗伤害的作业不准戴手套;不准穿戴围巾、围裙,脖子上不准佩带装饰品;生产作业场所不准赤膊;不准穿高跟鞋、拖鞋(除规定外)。 6.工作时应集中精力、坚守岗位,不准做与本职工作无关的事。上班前不准饮酒。 7.开动非本工种以外设备时,须经有关领导批准。 8.操作对人体有发生伤害危险的机械设备时,应检查安全防护装置是否齐全可靠,否则不准进行操作。 9.不准随意拆卸、挪动各种安全防护装置,安全信号装置,防护围栏、警戒标志等。 10. 检修机械、电气设备时,必须切断电源,挂上警示牌。合闸前要仔细检查,确认无人检修后方准合闸。 11. 操作中使用的行灯及局部照明,其电压不得超过36V,金属容器内和潮湿场所作业不得超过12V。 12.生产场所应保持整齐、清洁、原材料、半成品及成品要堆放合理,安全通道畅通,废料应及时清除。 13. 高空作业人员必须系好安全带,登高用的扶梯必须坚实牢固,符合安全技术要求,并采取可靠的防滑措施。 14. 非电气作业人员严禁装修电器设备和线路。 15. 易燃、易爆等生产作业场所,严禁烟火及明火作业。 16. 禁止在产生有毒有害物质作业场所内进餐、饮水,工作时要戴好防毒口罩或其它防护用品。 17.严禁攀登吊运中的物体及在吊物下通过停留。 19.严格执行交接班制度。末班下班前要切断电源,汽(气)源,熄灭火种,清理场地,中途停电要关闭电源。 20. 工房内外配置的消防器材不准挪作它用,器材周围不得堆放其它物品妨碍取用。 21. 发生工伤事故、重大未遂事故及火灾、爆炸事故要及时启动应急救援预案进行抢救,立即报告有关领导和部门,保护好事故现场。

车间安全操作规程

编号:SM-ZD-95397 车间安全操作规程 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

车间安全操作规程 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员 之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整 体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅 读内容。 一、车间生产员工一律穿工作服,着装整洁,不准穿拖鞋,不留长发。 二、经常检查并保持各自工位消防器材设施完好、可靠。车间内不准吸烟,危险性作业应做好应急防范措施,以防万一。 三、拆卸燃油管必须按章进行卸压后,再进行拆卸。 四、做好车辆路试的防火工作,必要时带上灭火器材。 五、升降台作业必须严格按《升降台操作规程》进行。 六、对正在进行车底作业的汽车,应挂出表示“车底作业”的标牌,拉紧手制动器,脱开档位及垫角木塞住车轮。作业时应使用卧板,不要直接躺在地上。 七、千斤顶作业,按《千斤顶安全操作规定》进行。 八、在装配作业时,不得用不正确的操作方法(如用手试探螺孔、锁孔等),以免造成工伤事故。

含砷锑碳低品位难浸金矿石氰化浸出工艺试验研究

含砷锑碳低品位难浸金矿石氰化浸出工艺试验研究 2010-1-24 16:29:38 中国选矿技术网浏览232 次收藏我来说两句 一、引言 随着黄金开采业的发展,在易处理金矿资源日趋减少的今天,深入研究难处理金矿石的选冶工艺,对开发利用这类资源有很大的现实意义。 笔者对西北某地的含砷锑碳低品位难处理金矿石的性质及处理工艺进行了一些研究,初步掌握了该矿石的特性,并探讨了用堆浸法处理该矿石的适宜工艺条件。 二、矿石性质 (一)矿石的矿物组成 该矿石属褐铁矿化、绢云母化、石英网脉化砂岩型金矿石。地表矿石氧化程度高,风化破碎,泥化较严重。矿石中主要矿物有石英、褐铁矿、黄铁矿、毒砂、辉锑矿及碳质物等。 (二)矿石的化学成分 矿石的主要化学成分见表1。 表1 原矿的主要元素分析 /10-2 ﹡ /10-6 由表1结果可知,矿石中影响金氰化浸出的杂质元素As、Sb、C的含量较高。 (三)矿石的粒度特性 对粒度为-40mm、品位为2.05g/t的原矿样进行了筛析,其中-200目粒级的产率为10.76%,金品位为6.57g/t,金的分布率为34.42%。而-0.9mm级别的产率达37.20%,金品位为3.52g/t,金的分布率为63.78%。这说明矿石破碎后,金富集在细粒级中。矿石中矿泥含量较高,影响堆浸时矿堆渗透性。 (四)矿石中金的浸出特性

-200目的原矿样焙烧后用王水溶矿,测出金的品位为2.02g/t。-200目的原矿样未经焙烧直接用王水加热浸出1h,金的浸出率为58.42% ,尾渣金品位为0.84g/t。当-200目的原矿样未经焙烧直接用逆王水加热浸出1h,金的浸出率为78.71% ,尾渣金品位为0.43g/t。 以上浸出结果表明,该矿石属于难浸类型。-200目未焙烧物料用热王水浸出时,金的浸出率只有58.42% ,还有41.58%的金或被包裹在毒砂及辉锑矿中或被矿石中的碳所吸附,留在尾渣中。逆王水浸出时,金的浸出率也只有78.71%,说明有20.29%被硫化物包裹的金得到了浸出,仍有21.29%的金由于矿石中的碳等因素的影响未能浸出。由此看来,该矿石的常规氰化浸出率难于超过58%。 (五)毒砂、辉锑矿及碳对金浸出的影响 毒砂能被氧化生成Fe 2(SO 4 ) 3 、As(OH) 3 、As 2 O 3 等,而As 2 O 3 能与氰化物作用生成HCN从 而消耗了氰化物。 As 2O 3 +6NaCN+3H 2 0==2Na 3 AsO 3 +6HCN↑ 此外,砷、锑的硫化物能很好地溶于碱,生成亚砷酸盐、硫代亚砷酸盐、亚锑酸盐及硫代亚锑酸盐,如: Sb 2S3+6NaOH==Na 3 SbS 3 +Na 3 SbO 3 +3H 2 2Na 3SbS 3 +3NaCN+3H 2 0+1.5O 2 ==Sb 2 S 3 +3NaCNS+6NaOH 这些反应产物都会在金矿物表面上生成薄膜,从而严重地阻碍了金与O 2 和CN-离子之间的相互作用,使金氰化反应难于进行。 三、矿石的全泥氰化浸出试验 对品位为2.02g/t、细度-200目质量分数为95%的原矿样,经不同的预处理后,进行了全泥氰化浸出试验。试验的条件及结果见表2。 表2 原矿全泥氰化试验条件及结果

年产300吨含量40%甲基肼水溶液可行性研究报告

1总论 1.1项目建设的意义 近年来随着新生抗生素的广泛应用,头孢类抗生素的品种日益增多,需求也以每年20%的速度增长,目前仅临床应用的头孢类抗生素就有30多种,而头孢曲松用量列头孢类抗生素第一位。头孢曲松属第三代抗生素,它具有疗效高、抗菌谱广、抗菌性强、副作用小的优越疗效而被广泛应用于临床。该品种已被列为国家基本药物和基本保险用药。 生产头孢曲松的重要原料为三嗪酸,甲基肼是一种重要的医药中间体,广泛用于新生抗生素头孢曲松原料三嗪酸的合成。国内三嗪酸生产厂家均从青海购运低含量甲基肼合成甲基氨基硫脲来生产三嗪酸,由于运费较高,致使三嗪酸的生产成本居高不下。因此,石家庄市美斯特化工有限责任公司决定在赞皇县建设年产300吨甲基肼生产项目,来支持我国抗生素的发展,从而为头孢曲松的生产降低成本打下基础。 随着城乡医疗应用普及,头孢曲松的市场需求越来越大。随着头孢曲松药物生产的发展,甲基肼作为头孢曲松药物生产的源头原料也将出现旺盛市场。根据市场调查,国内外三嗪酸生产厂家均大量需求甲基肼,并且石家庄市美斯特化工有限责任公司已经和抚顺美强化工有限公司、河北金通医药化工有限责任公司两大三嗪酸生产厂达成协议,为这两家公司提供甲基肼。因此,该项目建成后,产品市场前景非常看好。 1.2编制依据 (1)《中华人民共和国环境影响评价法》,2003.9.1; (2) 《中华人民共和国水污染防治法》,1984.5.11; (3)《中华人民共和国大气污染防治法》,2000.4.29; (4)《中华人民共和国环境噪声污染防治法》,1996.10.29; (5)《中华人民共和国固体废物污染环境防治法》,1995.10.30; (6)《中华人民共和国清洁生产促进法》, 2002.6.9; (7)中华人民共和国国务院令第253号《建设项目环境保护管理条例》,1998.11.29; (8)河北省第八届人民代表大会常务委员会公告第80号《河北省建设项目环境保护管理条例》,1996.12.17; (9)中华人民共和国国务院国发(1996)31号《国务院关于环境保护若干问题的决

立窑车间安全操作规程示范文本

立窑车间安全操作规程示 范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

立窑车间安全操作规程示范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 目的 为防止水泥机立窑发生安全生产事故,保护公司财产 和保障职工的人身安全,制定本规程。 适用范围 本规程适用于佳木斯市松江水泥有限公司立窑车间安 全生产工作。 管理职责 3.1 生产厂长是公司安全生产第一责任人,安全环保 科是公司安全生产管理的归口部门,立窑车间主任是本车 间兼职安全员,在生产厂长的领导下对立窑安全生产工作 具体负责;立窑车间各班班长是本班兼职安全员,负责本 班的安全生产管理工作。公司安全管理体系由厂部、车

间、班组三级人员组成。 3.2 公司实行机安全生产大检查制度,厂部每周要检查一次,车间每天要检查一次,班组要经常检查,对检查出的事故隐患必须整改。 3.3 公司建立窑长统一指挥下的看火操作责任制,实行“三班保一窑”的煅烧管理措施和单窑考核产量、质量的办法,以利于稳定机立窑热工制度。 程序 4.1 开窑操作 4.1.1 填窑及烘窑 A. 在填窑前必须对卸料篦子进行细致检查,严禁金属物等其它硬性异物遗留而造成卸料故障。 B. 填窑前必须进行全系统机电设备负荷运转20-30分钟,确认运转正常,仪表、信号等可靠,才能进行填窑和开窑生产。

有些金矿为什么难浸出

有些金矿为什么难浸出 2016-05-18 13:26来源:内江洛伯尔材料科技有限公司作者:研发部 澳大利亚金矿山含金矿石提金方法是由矿石类型及矿石性质决定的。一般地,根据矿石对氰化 浸出法的适应性,可将其分为易浸金矿石和难浸金矿石两大类。难浸金矿石,一般 是指那些经细磨后采用常规氰化法不能有效浸出的金矿石。有些作者把难浸金矿石 定义为经细磨后金的氰化浸出率小于80%的金矿石。英文中的refractorygold ores,中文译法有难选金矿石、难浸金矿石、难处理金矿石、顽固金矿石等多种,但从其 定义来看,难浸金矿石一词最为确切。 金矿石难浸的原因多种多样,有物理、化学和矿物学方面的原因。概括起来,金矿石难浸的原因有以下5种情况: 1、物理性包裹 矿石中佥呈细粒或次显微粒状被包裹或浸染于硫化物矿物(如黄铁矿、砷黄铁矿、磁黄铁矿)、硅酸盐矿物(如石英)中;或存在于硫化物矿物的晶格结构中。这种 被包裹的金用细磨方法也很难解离,导致金不能与氰化物接触。 2、耗氧耗氰矿物的副作用 矿石中常存在砷、铜、锑、铁、锰、铅、锌、镍、钴等金属硫化物和氧化物,它们在碱性氰化物溶液中有较高的溶解度,大量消耗溶液中的氰化物和溶解的氧,并 形成各种氰络合物和SCN-,从而影响了金的氧化与浸出。矿石中最重要的耗氧矿物是磁黄铁矿、白铁矿、砷黄铁矿;最重要的耗氰化物矿物是砷黄铁矿、黄铜矿、斑 铜矿、辉锑矿和方铅矿。 3、金粒表面被钝化 在矿石氰化过程中,金粒表面与氰化矿浆接触,金粒表面可能生成如硫化物膜、过氧化物膜(如过氧化钙膜)、氧化物膜、不溶性氰化物膜等,使金表面钝化,显 著降低金粒表面的氧化和浸出速度。当金矿石中有硫化物存在时,金的溶解就会受 到不同形式的影响。一种解释认为是由于矿物溶解产生可溶性硫化物(S2-或HS-)

干燥车间安全生产操作规程

干燥车间安全生产操作规程 一.开窑生产 1. , . , : : 开窑前必须检查所有配套的设备是否正常,如有问题马上联系相关人员处理,在没有任何问题后:首 先确保人员安全的情况下按以下顺序开机。 1. 通知配料站。 2. 7# 7#皮带点动开启。 3. 6# 6#皮带点动开启。 4. 破碎机开启。 5. 振动筛调好频率开启。 6. 5# 5#皮带点动开启。 7. 4# 4#皮带点动开启,同时开启除铁器。 8. 2-3 , 开启后运行2—3分钟没有问题后准备干燥窑主机。 2. , , , , ( ), . , 5-10 . , 200 , , (50 ) 600, 5 , 2#,3# , 1# , , , . 开启干燥窑主机前必须检查稀油站、档油站及拖轮的油、水、电确保没有问题后开启稀油站,稀油站运 行正常必须等润滑油回到稀油站邮箱后方可开启主机。(开机前5—10分钟要先开启稀油站工作)。新设 备的操作,主电机必须在200窑速的基础上开启,开启主机后等窑速上升到200后必须按窑速50为单位 逐步提速至600窑速,运行5分钟没有问题后,准备开启2#·3#进料皮带通知湿矿下料,开启1#皮带, 板式给料机,先少后多的原则下料,及时调整流量,炉体及筒体温度升高后按正常生产能力下料。 3. ( ) ( ), , 1525 ( ) 热风炉点煤粉前必须确认电除尘系统是否正常工作,在点火前必须要求尾排在1525之间方可点火。(具 体点火按照点火规程操作) 4. 700-800oC, , 800 oC ( 5 ). 点火完成后温度逐步升高后,到700—800摄氏度通知回转窑恢复负压。在尾排负压恢复后,燃烧室温度 稳定在800摄氏度左右的情况下启动二次风机(风机关闭的情况下先开启风机阀门按给定5赫兹为基数 启动二次风机。 5.正常操作; 1. , , . 各部位运行正常情况下,中控密切关注下料量与窑体运行电流指示,加强与巡检,出料皮带岗位工的联 系,根据出料干湿程度通知湿矿下料工增减料量。 2. , , . 关注皮带入仓或入库情况,根据煤粉存量联系立磨车间送煤,并做好记录。

破碎车间安全操作规程示范文本

破碎车间安全操作规程示 范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

破碎车间安全操作规程示范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 一、开机前的检查 1、检查各个连接部位是否松动,壳体、地脚、机座是 否完好。 2、检查传动装置是否完好,有无异常现象。 3、检查润滑装置的密封状况有无漏油现象、有无灰尘 进入,油质是否良好,油量适当。 4、确认各仪表是否完好,信号是否正常。 5、及时清理各部位异物,保证畅通安全。 6、检查各处的密封状况,有无漏料、漏灰现象,检修 门、检查孔是否封严。 7、检查各种安全设施和照明设施情况,确保设备、人 身安全。

8、确保巡检路线畅通、安全。 9、确认电路开关位置是否处于备妥状态。 10、检查各阀板完好,阀门动作是否灵活。 11、检查破碎机轴承传动轴是否完好,确认运行良好。 12、检查注油泵是否工作正常,各油路是否畅通、完好,确认冷却水管理路畅通、阀门打开、水量充足。 13、检查板喂机各托辊是否运行正常,链板、轨道是否完好。 14、确认电机、减速机能正常运转。 15、确认破碎机内给料辊、锤头、板击板、篦条完好,排铁门工作正常。 16、确认收尘器的滤袋、反吹机构、卸灰机构工作正常。 17、检查风机轴承是否完好,轴是否弯曲,确认工作

生产车间车间岗位职责及安全操作规程

车间主任安全职责 1、为本车间安全生产第一负责人,对本车间的安全、生产、消防、环保等工作负全面责任,建立健全本车间安全生产责任制,把安全工作具体落实到生产的各个环节中去。 2、认真贯彻执行国家有关安全生产法令、法规、政策和公司各项安全生产规章制度和安全操作规程。 3、组织制订或修订本车间的安全生产各项规章制度和操作规程,并认真贯彻执行。 4、对所属员工进行经常性的安全生产教育,组织对新员工车间级安全教育。 5、积极参加公司各类安全生产会议、活动,并报告本车间安全生产工作,针对存在问题及时加以解决。组织开展本车间安全生产活动,总结交流安全生产经验。 6、经常检查本车间生产现场的安全情况,监督检查工艺纪律、安全操作规程、设备运行情况及各项规章制度的执行,及时发现和消除事故隐患,确保安全生产,对车间无力整改的事故隐患要采取临时安全措施,并及时向公司领导报告。 7、加强对本车间安全设施、生产设备设施特别是特种设备、电气设备和应急消防器材的管理,确保设备设施安全运转和应急防护器材、消防器材处于完好状态。 8、加强对本车间使用危险化学品的管理,严格危险化学品使用操作规程。 9、对本车间发生的事故要及时报告,负责查明原因,采取措施,做到事故处理“四不放过”,并对安全生产有功人员或事故责任者提出奖惩意见。

班组长安全职责 1、认真执行上级政府和公司有关安全生产的各项规定,模范遵守安全操作规程,对本班组员工在生产中的安全和职业健康负责。 2、对新调入的员工进行班组级安全教育,并在熟悉工作前指定专人负责其安全。 3、组织本班组人员学习安全生产规程,检查执行情况,教育员工在任何情况下不违章蛮干。发现违章作业,立即制止。 4、经常进行安全检查,发现问题及时解决。对班组不能解决的问题,要采取临时防范措施,并及时上报。 5、认真执行交接班制度,遇到不安全问题,未能在本班内予以排除的,交接班时应交待清楚,并做好交接班记录。 6、发生各类事故,要保护现场,立即上报,详细记录,并组织全班员工认真分析,吸取教训,提出防范措施。 7、参加本部门、车间组织的安全生产活动,认真履行安全职责。

相关文档
相关文档 最新文档