文档库 最新最全的文档下载
当前位置:文档库 › 小半径曲线梁桥设计体会

小半径曲线梁桥设计体会

小半径曲线梁桥设计体会
小半径曲线梁桥设计体会

小半径曲线梁桥设计体会

但由于它是曲线梁桥,其结构受力的特点不同,在构造处理上也相应有其较多特点。

1、由于曲线梁桥比直线梁桥的受力复杂,对结构的抗弯、抗扭性能要求高于同跨径的直线梁桥,故采用整体性好、抗扭刚度大就地浇注的连续箱形梁桥比较好。

2、小半径曲线梁桥的梁高大于跨径的1/18时,是比较经济的。在特殊情况下也不应小于跨径的1/22。

3、由于混凝土的收缩、徐变涉及的因素较多,个工程中混凝土的材料、级配不尽相同,要很精确的计算出混凝土收缩、徐变对小半径曲线梁桥的作用较难。故在设计小半径曲线梁桥,最好采用普通钢筋混凝土结构。对于预应力混凝土曲线梁桥,纵向预应力筋采用高强度低松弛钢绞线,但钢束一般不大于12-7ф5,压应力应小于12MPa,拉应力小于1MPa,为预应力A类构件即可。

4、与一般的直线桥相比,曲线箱梁桥顶板、底板和腹板中的纵向受力钢筋、横向钢筋、箍筋、水平分布钢筋都要考虑到全桥计算和构造上的需要,并适当加强。

5、在预应力混凝土曲线梁桥中设置防崩钢筋。

6、在支承形式上,小半径曲线梁桥通常三种布置形式:①全部采用抗扭支承。②两端设置抗扭支承,中间设单支点铰支承。③两端设置抗扭支承,中间既有单支点铰支承,又有抗扭支承的混合式支承,下部墩柱

当与之相匹配。

对于多跨小半径曲线连续梁桥,全部为抗扭支承与中间为点铰支承的,两者在荷载作用下的弯矩和剪力值差别甚小,而且曲率的变化对弯矩值的影响也只有1%~2%;,但对扭矩的影响,则随曲率的增大而加大。当各跨圆心角大于30度时,中间设单支点铰支承的扭矩控制值比全部为抗扭支承的扭矩控制值要大15%左右。在中间设独柱式单支点曲线连续梁内,上部结构的扭矩不能通过中间单支点支承传至基础,而只能由曲线桥两端设置的抗扭支承来传递。在此情况下连续梁的全长成为受扭跨度,这也是我们常常所说的扭矩的传递作用。必然造成曲线桥两端抗扭支承处产生过大的扭矩,造成曲线梁端部内侧支座脱空,所以在必要时,须对多跨桥梁中间墩设置两支点的抗扭支承。

如果在中间墩点支承向曲线外侧方向预设一定偏心值,就可以调整曲线梁桥的梁体恒载扭矩分布,有效地降低两端抗扭支承的恒载扭矩值。但这一措施对减少活载扭矩的影响较小,这是由于活载引起的扭矩中车辆偏载占了很大一部分。

7、必要时可在墩顶设置限挡块或采用墩梁固接的办法来限制曲线梁桥的梁体径向移。

预应力混凝土连续梁桥

一预应力混凝土连续梁桥 1.力学特点及适用范围 连续梁桥在结构重力和汽车荷载等恒、活载作用下,主梁受弯,跨中截面承受正弯矩,中间支点截面承受负弯矩,通常支点截面负弯矩比跨中截面正弯矩大。作为超静定结构,温度变化、混凝土收缩徐变、基础变位以及预加力等会使桥梁结构产生次内力。 由于预应力结构可以有效地避免混凝土开裂,能充分发挥高强材料的特性,促使结构轻型化,预应力混凝土连续梁桥具有比钢筋混凝土连续梁桥较大的跨越能力,加之它具有变形和缓、伸缩缝少、刚度大、行车平稳、超载能力大、养护简便等优点,所以在近代桥梁建筑中已得到越来越多的应用。 预应力混凝土连续梁桥适宜于修建跨径从30m到100多m的中等跨径和大跨径的桥梁。 2.立面布置 预应力混凝土连续梁桥的立面布置包括体系安排、桥跨布置、梁高选择等问题,可以设计成等跨或不等跨、等截面或变截面的结构形式(图1)。结构形式的选择要考虑结构受力合理性,同时还与施工方法密切相关。 a b a.不等跨不等截面连续梁 b. 等跨等截面连续梁 图1 连续梁立面布置 1.桥跨布置 根据连续梁的受力特点,大、中跨径的连续梁桥一般宜采用不等跨布置,但多于三跨的连续梁桥其中间跨一般采用等跨布置。当采用三跨或多跨的连续梁桥时,为使边跨与中跨的最大正弯矩接近相等,达到经济的目的,边跨取中跨的0.8倍为宜,当综合考虑施工和其他因素时,边跨一般取中跨的0.5~0.8倍。对于预应力混凝土连续梁桥宜取偏小值,以增加边跨刚度,减小活载弯矩的变化幅度,减少预应力筋的数量。若采用过小的边跨,会在边跨支座上产生拉力,需在桥台上设置拉力支座或压重。当受到桥址处地形、河床断面形式、通航(车)净空及地质条件等因素的限制,并且同时总长度受到制约时,可采用多孔小边跨与较大的中间跨相配合,跨径从中间向外递减,以使各跨内力峰值相差不大。 桥跨布置还与施工方法密切相关。长桥、选用顶推法施工或者简支—连续施工的桥梁,多采用等跨布置,这样做结构简单,统一模式。等跨布置的跨径大小

浅谈曲线桥的设计

浅谈曲线桥的设计 摘要本文主要介绍了曲线桥的设计类型、特点及方法,以及梁的类型、结构特点、适用条件等,为曲线桥设计方案的选择提供参考。 关键词 曲线桥 设计 几何线形 主梁 影响因素 0 引言 公路为了适应地形, 线形美观, 行驶舒适, 在路线设计中会采 用曲线。根据《公路桥涵设计通用规范》(JTG D60-2004)总则1.0.4的要求:“公路桥涵及其引道的线形应与路线的总体布设相协调” ,修建曲线桥梁在所难免。特别是近几年,随着我国经济建设和交通事业的飞速发展,高等级公路的建设正处于空前绝后的好时机,在高等级公路立交工程特别是互通区桥梁建设中,曲线梁桥所占的比例很大,各种形式的弯梁桥(包括弯斜梁桥)得到广泛的应用。 1 曲线桥墩台布置形式 曲线桥按墩台轴线的平面关系可分为如下两种形式: (1)平行墩式曲线桥 (如图1所示) ,是指各墩、台的轴线在平

图1 平行墩布置示意图 (2)辐射墩式曲线桥(如图2所示) ,是指墩、台轴线交于圆心(正交弯桥) 或相对于径向旋转一固定角度(弯斜桥)。其特点是,同一 曲线桥几何线形布置形式也是不拘一格,可以采用多种方法: (1)弯桥直做:将曲线桥梁上的主梁做成直线形,各墩台平行布置,计算出起终点弦线与弧线之间的最大差值, 一般是使桥梁在横向适当加宽,也可根据实际情况适当移动桥梁中心线,通过调整人行道与栏杆(或防撞墙)设计线形,使之满足路线平面线形的要求。此种方法适用于总长度较小的桥梁。 (2)弯桥折做:将曲线桥梁上的主梁做成折线形, 通过调整人行道与栏杆(或防撞墙)设计线形,使之满足路线平面线形的要求。该种方法适用于单跨较小但总长度较大的桥梁。采用此种做法,若桥梁总长度过大则墩台不宜平行布置,应采用辐射式布置方法,这时各主梁

简支T型梁桥课程设计

桥梁工程课程设计 土木工程专业本科(四年制)适用 指导教师: 李小山 班 级: 10土木一班 学生姓名: 董帅 设计时间: 浙江理工大学建筑工程学院土木系 土木工程专业 桥梁工程课程设计任务书 浙江理工大学建筑工程学院土木系 2013年4月 一、设计题目:钢筋混凝土简支T 型梁桥设计 二、设计资料: 1. 桥面宽度:净m m m 25.025.127?+?+ 2. 设计荷载:公路-I 级 3. 桥面铺装:4cm 厚沥青混凝土(3/23m KN ),6cm 厚水泥混凝土(3/24m KN ), 主梁混凝土为3/24m KN 4. 主梁跨径及全长:标准跨径:m l b 00.25=,计算跨径m l 96.24=,净跨m l 60.240= 5. 结构尺寸图,根据钢筋混凝土简支T 型梁桥的构造要求设计,也可参照下图选用: 桥梁横断面布置图

[1] JTGD60-2004 公路桥涵设计通用规范[S] [2] JTGD62-2004 公路钢筋混凝土及预应力混凝土桥涵设计规范[S] [3] 邵旭东.桥梁工程[M].第二版.北京:人民交通出版社,2007 四、设计内容: 主梁、横隔梁和行车道板的内力计算 五、设计成果要求: 设计计算书。 设计计算说明书制作成Word 文档或手写。整个说明书应满足计算过程完整、 计算步骤清楚、文字简明、符号规范的要求。 封面、任务书和计算说明书用A4纸张打印,按封面、任务书、计算说明书的顺序一起装订成册,交指导老师评阅。 六、提交时间: 第14周周五前提交,过期不候。 设计计算书 基本设计资料 1. 桥面宽度:净m m m 25.025.127?+?+ 2. 设计荷载:公路-I 级 3. 桥面铺装:4cm 厚沥青混凝土(3/k 23m N ),6cm 厚水泥混凝土(3/k 24m N ), 主梁混凝土为3k 24m N 4. 主梁跨径及全长:标准跨径:m l b 00.25=,计算跨径m l 96.24=,净跨 m l 60.240= 5. 主梁截面尺寸: 拟定采用的梁高为,腹板宽18cm 。 主梁间距:,主梁肋宽度:18cm 。 结构尺寸如图 行车道板计算 结构自重及其内力 每延米板上的结构自重

曲线桥梁计算

目前解决曲线桥梁计算方法有以下几种: 1、空间梁元模型法 2、空间薄壁箱梁元模型法 3、空间梁格模型法 4、实体、板壳元模型法 第一种方法,是不能考虑桥梁的横向效应的,使用时要求桥梁的宽跨比不易太大。第二种方法,是第一种方法的改进,主要区别是采用了不同的单元模型,考虑了横向作用如翘曲和畸变。 第四种方法,是解决问题最有效的方法,能够考虑各种结构受力问题。 第三种方法,是目前设计及科研中常采用的方法,其特点是容易掌握,且对设计能保证足够的精度,其中采用比较多的方法是剪力-柔性梁格法,能充分考虑弯桥横向的受力特性。 剪力-柔性梁格法的原理 是当梁格节点与结构重合的点承受相同挠度和转角时,由梁格产生的内力局部静力等效与结构的内力。其实质是将传统的一维杆单元计算模式推进到二维计算模型,用一个二维的空间网格来模拟结构的受力特性。 对于梁格法的讨论这里也有不少帖子进行了讨论,实际与梁格之间的等效关系,主要表现在梁格各个构件的刚度计算上,理论上,原型和等效梁格承受相等的外荷载时,必须具有恒等的挠曲和扭转,等效梁格中每一构件的内力也必须等于该构件所代表的原型截面的,事实上这种理想状况是达不到的,模拟也是近似的,但事实是按梁格计算能把握住结构的总体性能,对于设计来说应该是能满足精度的。梁格也是近似的模拟,只要计算者能够和好的模拟了横向纵向的特性,应该是可以作为设计依据的。你在这里说的横向的切分使得预应力产生的次内力问题我不太清楚你指的什么,但是只要横向的刚度业等效了原型,对于计算应该不会出现逆所说的结构内力失真,这条可以通过结果验证。 当然任何结构,只要不怕麻烦都可以用实体单元来分析,只要正确模拟,实体分析也是最精确的,但是对于这种模型要准确模拟可不是一件容易的事,并且预应力的损失计算,施加等等都非常麻烦,还有最后结果的查看也不方便,因此除了结构局部的分析,一般是没有拿实体来进行全桥的整体分析的,至于说单梁我也说了,有些时候精度是可以的,但是对于这种结构相对于梁格来说单梁的精度是不如梁格的。特别是在没有把握的前提下可以做一下梁格的分析,对结果进行对比,能放心一些,其实对于设计,能用单梁算的近量用单梁能用平面的尽量不用空间,这也应该是一个原则,前提是对简化做到心中有数。像这种结构来说如果开始计算就用梁格或者更麻烦的实体来配筋都不是一般的麻烦,配筋计算还是最好用简化的单梁,如果不放心然后用其他方式来验算,这样比较合适 在midas分析中应该注意的问题: 如果你要计算的是普通钢筋混凝土结构,主要看内力结果,可以在划分的时候简单一些,直接“一刀切”,也就是顶底板在同一位置切开,但是在计算其抗弯惯性矩的时候一定要注意纵向梁格的界面惯性矩是相对于整体截面的中性轴的,而不是划分以后的梁格截面本身的惯性矩,对于预应力混凝土的结构你就得注意梁格的划分了,在划分的时候尽量使得划分以后的各个梁格截面要跟原截面的中性轴一致,只有这样计算出来的应力结果才能比较准确,当然,如果是等截面的梁只要划分一个截面就可以了,算起来也不是很费时费力,但是如果是变截

小半径曲线梁桥的设计选型与结构分析

小半径曲线梁桥的设计选型与结构分析 随着社会经济的发展和人们对景观的要求不断提升,城市中大量涌现出具有景观要求的桥梁。但在受到城市交通功能和地形条件的限制时,时常会出现小半径的曲线桥梁。这种小半径的曲线桥梁具有斜、弯、异形等特点,给桥梁设计和构造处理造成很大困难。文章结合中山小榄镇某小区内车辆专用桥的设计,对小半径曲线梁桥的设计选型及结构分析进行探讨。 标签:Midas/Civil;小半径曲线梁桥;设计选型;结构分析 1 工程概述 本工程位于中山市小榄镇一新建小区内,供小区车辆进出车库专用,沿线跨越三条河涌。由于前期建设方已委托进行景观专业设计,按照景观设计要求,进行桥梁结构设计。同时根据现场地形条件、施工技术拟定桥梁方案。桥梁全长219m,跨径多处于20m左右,全桥4联(21.088+18.521)+(17.994+17.225)+(环岛:16.062+7.172+9.671+9.335+12.379)+(20.387+19.980)m。共桥梁全宽8.5m,其中环岛处最小曲线半径R=15.7m。桥梁上部结构采用现浇钢筋混凝土,下部采用桩柱式桥墩、埋置式桥台、钻孔灌注桩基础。全桥平面图如下所示。 上部结构箱梁横断面采用单箱双室,梁高140cm,箱梁顶宽830cm,两端悬臂各设10cm后浇段同护栏一起浇筑,底宽730cm,翼缘板悬臂长度100cm。顶板等厚20cm。底板厚度为40cm~20cm,腹板厚度60~40cm,横断面如下图所示: 2 计算参数 2.1 设计标准 设计荷载:城-B级; 温度荷载:结构体系温差±25度,梯度温度按照规范沥青铺装指标加载。 桥面净宽:7.5m。 设计车速:40km/h 2.2 主要材料及计算参数 3 结构选型与计算分析 运用Midas/Civil软件,对结构各联均建立模型进行分析,尤其是第3联环岛,最小半径仅有17.5m,常规做法很难满足抗扭承载力要求,必须通过计算通

探讨曲线梁桥设计

探讨曲线梁桥设计 [摘要]:本文着重论述了连续桥设计中的几个技术问题,如:中横梁刚度对荷载分配的影响、支座偏心距对扭矩分配的影响、剪力滞后对翼缘板有效宽度影响等,并结合工程实践提出了解决问题的相应办法。 关键词:曲线梁桥;支座偏心距;有效宽度 [abstract] : this paper focuses on the continuous bridge design of several technical problems, such as: the bar to the influence of the distribution stiffness load eccentricity, problems of torque distribution, effects of shear lag of flange plate effective width influence to wait, and combined with engineering practice, this paper proposes the corresponding measures to solve the problems. keywords: curve beam bridge; bearing eccentricity; effective width 中图分类号: u448 文献标识码: a 文章编号: 1前言 曲线梁桥是现代交通工程中一种重要桥型。在公路及城市道路的立体交叉工程中,曲线梁桥是实现各方面交通联结的必要手段。早期修建的曲线梁桥,由于受设计方法和施工工艺的限制,多建成钢筋混凝土简支梁,其上部结构略显笨重,且易开裂,给后期养护带来较大困难。随着道路交通的迅猛发展,以及人们对审美观念的

简支T形桥梁工程课程设计报告

桥梁工程课程设计(本科) 专业道路桥梁与渡河工程班级15春 姓名炜灵 学号9

理工大学网络教育学院 2016年12月 一、课程设计目的 本课程的任务和目的:学生通过本课程的设计练习,使学生掌握钢筋混凝土简支T梁设计计算的步骤和法,学会对T梁进行结构自重力计算、汽车荷载和人群荷载力计算、作用效应组合;在汽车和人群荷载力计算时,学会用偏心受压法和杆杠原理法求解荷载横向分布系数。 二、课程设计题目 装配式钢筋混凝土简支T形梁桥设计 三、课程设计任务与指导书(附后) 四、课程设计成果要求 设计文本要求文图整洁,设计图表装订成册,所有图表格式应符合一般工程设计文件的格式要求。 五、课程设计成绩评定 课程设计文本质量及平时成绩,采用五级制评定:优、良、中、及、不及。

装配式钢筋混凝土简支T形梁桥 课程设计任务与指导书 一、设计容 根据结构图所示的一标准跨径为L b=25m的T形梁的截面尺寸,要求对作用效应组合后的最不利的主梁(一根)进行下列设计与计算: 1、行车道板的力计算; 2、主梁力计算; 二、设计资料 1、桥面净宽:净-7(车行道)+2×1.0(人行道)+2×0.25(栏杆)。 2、设计荷载:公路-II级,人群3.5kN/m2。 4、结构尺寸图: 主梁:标准跨径Lb=25m(墩中心距离)。 计算跨径L=24.50m(支座中心距离)。 预制长度L’=24.95m(主梁预制长度)。 横隔梁5根,肋宽15cm。

桥梁纵向布置图(单位:cm) 桥梁横断面图(单位:cm) T型梁尺寸图(单位:cm) 三、知识点(计算容提示) 1、行车道板计算 1)采用铰接板计算恒载、活载在T梁悬臂根部每延米最大力(M和Q)。 2)确定行车道板正截面设计控制力。 2、主梁肋设计计算 1)结构重力引起力计算(跨中弯矩和支点剪力),剪力按直线变化,弯矩按二次抛物线变化。

浅谈对梁格的几点认识

浅谈对梁格的几点认识 上海浦东建筑设计研究院有限公司杭州分公司黄声涛 【摘要】: 梁格分析法是用计算机分析桥梁上部结构比较实用有效的空间分析方法,它具有基本概念清晰、易于理解和使用等特点,因此在桥梁结构分析中得到了广泛的采用。但是对于抗扭等需要做整体截面来考虑时,单梁模型则较真实得反应了结构整体受力性能。【关键词】梁格法箱梁截面特性空间单梁 一、梁格法基本原理 梁格法的基本思想是用等效梁格代替桥梁上部结构,将分散在板式或箱梁每一区段内的弯曲刚度和抗扭刚度集中于最邻近的等效梁格内,实际结构的纵向刚度集中于纵向梁格构件内,横向刚度集中于横向梁格构件内。理想的刚度等效原则应该满足:当原型实际结构和对应的等效梁格承受相同荷载时,两者的挠曲将是恒等的,并且每一梁格内的弯矩、剪力和扭矩等于该梁格所代表的实际结构部分的内力。 二、适用范围 梁格法主要针对的是宽跨比较大的直线桥以及圆心角较大的曲线梁桥。之所以需要用梁格体系来分析结构,就是因为原本当作杆系构件的梁因为承受了不能忽视的扭矩以及横向弯曲作用。如对于直线宽桥,活载的偏心布置所产生的扭矩不能简单的用偏载系数这一概念简化。而对于曲线梁桥更是如此,首先恒载的不对称就会产生一部分扭矩,这种效应更使结构不能再用一根杆来进行分析计算。要么在杆件上添加扭矩,要么就得使用梁格法以增加横向杆件数量了,或者干脆采用实体模型分析。虽然梁格法对原结构进行了面目全非的简化,大量几何参数要预先准备,人为偏差较难避免,但是相对于单梁和实体单元模型,梁格模型既能考虑桥梁横截面的畸变,又能直接输出各主梁的内力,便于利用规范进行强度验算,整体精度满足设计要求。正是由于这个优点使得梁格法成为计算曲线梁桥、宽梁桥的最佳方法。 三、梁格划分 对于有腹板的箱型、T型梁桥,其梁格模型中纵向主梁的个数,应当是腹板的个数。对于实心板梁,纵向主梁的个数可按计算者意愿决定。全桥顺桥向划分M个梁段,共有M+1 个横截面,每个横截面位置,就是横向梁单元的位置。支点应当位于某个横截面下面,也就是在某个横向梁单元下面。每一道横梁都被纵向主梁和支点分割成数目不等的单元。纵、横梁单元用同一种最普通的12自由度空间梁单元,能考虑剪切变形影响即可。对于箱梁而言,一般来说,横向梁格划分一个腹板一个梁格。且假若能尽量满足划分梁格后的各个梁格质心与原箱梁腹板的中心重合将对预应力效应模拟的准确性很有帮助。而纵向梁格每跨8到10 个梁格可以基本满足精度要求。下面结合箱梁实例来谈一谈如何进行梁格截面划分。

桥梁工程中小半径曲线梁桥设计要点

桥梁工程中小半径曲线梁桥的设计要点摘要:随着我国城市交通压力的不断增加,大量的高架桥和立交桥被兴建,但是由于城市交通功能的要求和地形环境的诸多限制,这些桥梁多采用的是曲线型构造。曲线型结构的桥梁受力比较复杂,其中以小半径梁桥最为特别,除了一般的受力外,还要承受扭矩和翘曲双力矩的共同作用,所以小半径曲线梁桥出现的问题较多。本文就小半径曲线梁桥出现的问题做了相应的说明,并就这些问题进行了深入的探讨并着重说明了设计中要注意的要点。 关键词:桥梁工程;小半径曲线梁桥;设计要点 中图分类号:[tu997]文献标识码:a 文章编号: abstract: along with the urban traffic increase of pressure, a lot of viaduct and flyovers be built, but because the city traffic function requirements and terrain environment many of the limitations of the bridges take the form of a curve type structure. the structure of the bridge type curve stress is more complex, among them with small radius of the most special bridge, in addition to the stress of the general, but also bear torque and warp the joint action of double moment, so small radius of the problem of the curved girder bridges is more. this paper is small radius of the problem of the curved girder bridges related instructions, and these problems thoroughly discussed and the focus on the design to

弯梁桥设计体会总结

1.1.2混凝土箱梁温度作用效应 由于混凝土箱梁的温度作用产生的应力称为混凝土箱梁的温度应力。因混凝土箱梁的内、外约 束而产生的温度应力又分别称为温度内约束应力和温度外约束应力。温度内约束应力是指由于温度 在混凝土箱梁结构的非线性分布而使构件各部分因温度的收缩不均匀而产生的约束应力,由于这种 应力在箱梁截面上是自平衡的,也称为温度自约束应力,简称温度自应力。对于属于超静定结构的 桥梁而言,赘余约束会阻止结构由于温度而产生的变形,由此产生的应力称为温度外约束应力,也 称为温度次应力,相应的内力称为温度次内力。 事实上,对悬拼或悬浇的方法施工的混凝土连续梁的一个节段而言,若其任意时刻t的温度场 可表达联)t,则任意时刻t的实际竖向温差分布应表示为D双)t一双0)t,其中命为该节段施工完毕的 时刻,D联)t表示t时刻的竖向温差分布。但对于绝大多数的桥梁而言D 双0)t都是未知的,因此在无 法忽略D双0)t的条件下是不可能准确求出温度应力的。然而随着时间的推移,徐变的发展可以基本 消除D联肠)引起的初始温度应力,运营阶段的t时刻的温度应力只要通过D双)t就可以计算#[]。因此

本文中所指的竖向温差分布如无特别注明,均指D双)t,而不是D联)t一联0)t。 (一)外形:由顶板、底板、肋板及梗腋组成 1、顶板: 除承受结构正负弯矩外,还承受车辆荷载的直接作用。在以负弯矩为主的悬壁梁及T形刚构桥中,顶板中布置了数量众多的预应力钢束,要求顶板面积心须满足布置钢束的需要,厚度一般取18—25cm。 2、底板 主要承受正负弯矩。当采用悬臂施工法时,梁下缘承受很大的压应力,特别是靠近桥墩的截面,要求提供的承压面积更大;同时在施工时还承受挂篮底模板的吊点反力。在T形刚构桥和连续梁桥中,底板厚度随梁的负弯矩塔大而逐渐加厚。底板最小厚度15cm。 3、肋板 承受截面剪应力及主位应力,并承受局部荷载产生的横向弯矩,其厚度还须满足布置预应力筋及浇筑混凝土的要求,以及锚固锚头的需要,一般厚度为20-35cm,大跨径桥梁可采用变厚度。 4、梗腋 顶板与肋板交接处设使梗液,其作用是;(1)提高截面抗扭刚度,减少畸变应力;(2)使桥面板支点加厚,减少桥面板跨中弯矩;(3)使力线过渡平缓,避免应力集中;(4)提供布置纵向预应力钢束的面积。 底板与助板交接处的梗腋,其作用不如上梗腋显著,尺寸可较小,有的国外桥梁甚至不设。 尺寸:以提高截面的抗扭刚度为目的设置,其斜度可按1:1,也可1:2或2:1设计。 注意:在大跨径箱形梁桥中,结构自重占总荷载的比例较大(可达80%以上),为减轻自重,宜采用宽箱薄壁截面。

梁格法截面特性计算

梁格法截面特性计算 读书报告

目录 第一章梁格法简介 (1) 1.1梁格法基本思想 (1) 1.2梁格网格的划分 (1) 1.2.1纵梁的划分 (2) 1.2.2 虚拟横梁的设置间距 (2) 第二章梁格分析板式上部结构 (3) 2.1 结构类型 (3) 2.2 梁格网格 (3) 2.3 截面特性计算 (4) 2.3.1 惯性矩 (4) 2.3.2 扭转 (4) 第三章梁格法分析梁板式上部结构 (5) 3.1 结构类型 (5) 3.2 梁格网格 (5) 3.3 截面特性计算 (6) 3.3.1 纵向梁格截面特性 (6) 3.3.2 横向梁格截面特性 (7) 第四章梁格法分析分格式上部结构 (8) 4.1 结构形式 (8) 4.2 梁格网格 (8) 4.3 截面特性计算 (9) 4.3.1 纵向梁格截面特性 (9) 4.3.2 横向梁格截面特性 (12) 第五章箱型截面截面特性计算算例 (15)

第一章梁格法简介 1.1梁格法基本思想 梁格法主要思路是将上部结构用一个等效梁格来模拟,如图1.1示,将分散在板式或箱梁每一段内弯曲刚度和抗扭刚度集中于最邻近的等效梁格内,实际结构的纵向刚度集中于纵向梁格内,而横向刚度则集中于横向梁格构件内。从理论上讲,梁格必须满足一个等效原则:当原型实际结构和对应的等效梁格承受相同荷载时,两者的挠曲应是恒等的,而且在任一梁格内的弯矩、剪力和扭矩应等于该梁格所代表的实际结构的部分内力。 图1.1 (a)原型上部结构(b)等效梁格 1.2梁格网格的划分 采用梁格法对桥梁结构进行分析时,首先考虑的是如何对梁格单元的合理划分。网格划分的枢密程度是保证比拟梁格与实际结构受力等效的必

小半径曲线梁桥设计体会

小半径曲线梁桥设计体会 但由于它是曲线梁桥,其结构受力的特点不同,在构造处理上也相应有其较多特点。 1、由于曲线梁桥比直线梁桥的受力复杂,对结构的抗弯、抗扭性能要求高于同跨径的直线梁桥,故采用整体性好、抗扭刚度大就地浇注的连续箱形梁桥比较好。 2、小半径曲线梁桥的梁高大于跨径的1/18时,是比较经济的。在特殊情况下也不应小于跨径的1/22。 3、由于混凝土的收缩、徐变涉及的因素较多,个工程中混凝土的材料、级配不尽相同,要很精确的计算出混凝土收缩、徐变对小半径曲线梁桥的作用较难。故在设计小半径曲线梁桥,最好采用普通钢筋混凝土结构。对于预应力混凝土曲线梁桥,纵向预应力筋采用高强度低松弛钢绞线,但钢束一般不大于12-7ф5,压应力应小于12MPa,拉应力小于1MPa,为预应力A类构件即可。 4、与一般的直线桥相比,曲线箱梁桥顶板、底板和腹板中的纵向受力钢筋、横向钢筋、箍筋、水平分布钢筋都要考虑到全桥计算和构造上的需要,并适当加强。 5、在预应力混凝土曲线梁桥中设置防崩钢筋。 6、在支承形式上,小半径曲线梁桥通常三种布置形式:①全部采用抗扭支承。②两端设置抗扭支承,中间设单支点铰支承。③两端设置抗扭支承,中间既有单支点铰支承,又有抗扭支承的混合式支承,下部墩柱

当与之相匹配。 对于多跨小半径曲线连续梁桥,全部为抗扭支承与中间为点铰支承的,两者在荷载作用下的弯矩和剪力值差别甚小,而且曲率的变化对弯矩值的影响也只有1%~2%;,但对扭矩的影响,则随曲率的增大而加大。当各跨圆心角大于30度时,中间设单支点铰支承的扭矩控制值比全部为抗扭支承的扭矩控制值要大15%左右。在中间设独柱式单支点曲线连续梁内,上部结构的扭矩不能通过中间单支点支承传至基础,而只能由曲线桥两端设置的抗扭支承来传递。在此情况下连续梁的全长成为受扭跨度,这也是我们常常所说的扭矩的传递作用。必然造成曲线桥两端抗扭支承处产生过大的扭矩,造成曲线梁端部内侧支座脱空,所以在必要时,须对多跨桥梁中间墩设置两支点的抗扭支承。 如果在中间墩点支承向曲线外侧方向预设一定偏心值,就可以调整曲线梁桥的梁体恒载扭矩分布,有效地降低两端抗扭支承的恒载扭矩值。但这一措施对减少活载扭矩的影响较小,这是由于活载引起的扭矩中车辆偏载占了很大一部分。 7、必要时可在墩顶设置限挡块或采用墩梁固接的办法来限制曲线梁桥的梁体径向移。

曲线梁桥的受力施工特点及设计方法分析_百度文库

曲线梁桥的受力施工特点及设计方法分析 中华硕博网核心提示:摘要:介绍了曲线梁桥的力学特性,结构分析及应注意的几点问题,施工特性及设计方法。:曲线梁桥,结构,施工近年来,随着公路建设事业 摘要:介绍了曲线梁桥的力学特性,结构分析及应注意的几点问题,施工特性及设计方法。 :曲线梁桥,结构,施工 近年来,随着公路建设事业的快速发展,涉及到曲线梁的桥梁设计已经越来越多了,以往设计者希望通过调整路线方案,尽量避开这种结构形式,或由于曲线半径较大,采用以“直”代“曲”的形式,在桥梁上部(如翼缘、护栏等进行曲线调整,以期达到与路线线形一致。这些严格意义上说都不是曲线桥。由于受原有地物或地形的限制,一些城市的立交桥梁和交叉工程的桥梁曲线半径比较小,桥墩基本上要设在指定位置,这种情况下只能考虑设计曲线梁桥。 1、曲线梁桥的力学特性 1。1曲线梁的受力情况 曲线梁桥能很好地克服地形、地物的限制,可以让设计者较自由地发挥自己的想象,通过平顺、流畅的线条给人以美的享受。但是曲线梁桥的受力比较复杂。与直线梁相比,曲线梁的受力性能有如下特点: (1轴向变形与平面内弯曲的耦合; (2竖向挠曲与扭转的耦合; (3它们与截面畸变的耦合。其中最主要的是挠曲变形和扭转变形的耦合。曲梁在竖向荷载和扭距作用下,都会同时产生弯距和扭距,并相互影响。同时弯道内外侧支座反力不等,内外侧反力差引起较大的扭距,使梁截面处于“弯-扭”耦合作用状态,其截面主拉应力比相应的直梁桥大得多。故在曲线梁桥中,应选用抗扭刚度较大的

箱型截面形式。在曲梁中,由于存在较大的扭矩,通常会出现“外梁超载,内梁卸载”的现象,这种现象在小半径的宽桥中特别明显。另外,由于曲梁内外侧支座反力有时相差很大,当活载偏置时,内侧支座甚至会出现负反力,如果支座不能承受拉力,就会出现梁体与支座发生脱离的现象,通常称为“支座脱空”。 1。2下部桥梁墩台的受力情况 由于内外侧支座反力不相等,使各墩柱所受垂直力出现较大差距。当扭矩很大时,如果设置了拉压支座,有些墩柱甚至会出现拉力。曲线梁桥下部结构墩顶水平力,除了与直桥一样,有制动力、温度力、地震力等以外,还因为弯梁曲率的存在,多了离心力和预应力张拉时产 生的径向力。墩顶水平力的分配非常复杂。在求温度零点时,曲线梁桥不能象直桥一样,只考虑一个方向力的平衡,而必须考虑两个方向的平衡;各墩顶处支座的类型和位置不一致,部分支座可能已处于临界滑移状态,其余支座还未达到临界状态;各支座的约束方向以及各墩柱不在同一平面内,使得水平力求解非常困难。 2、曲线梁桥的结构分析 2。1上部结构分析 2。1。1结构力学方法 这种方法沿用杆系系统的结构力学方法。首先将弯梁视为一根曲杆,把抗扭支座以赘余扭矩代替,然后根据变形协调条件求解未知力。这种方法较简单,比较适用于分析简支弯梁和等截面且跨内为圆弧的窄桥。 2。1。2梁格法 梁格法是目前最常用的分析弯梁桥的方法。梁格法实质是用一个等效的梁格来代替桥梁上部结构,是一种以梁为基本单元的有限元法。这种方法概念明确,容易理解和使用,也比较容易操作,计算速度也比较快。现有的计算曲线梁梁桥软件,如同济大学开发的“桥梁博士”和广州阿安毕公司开发的“3DBSA”,都采用了梁格法。

桥梁工程课程设计(完整版)

桥梁工程课程设计报告书 一、设计资料 1 桥面净宽净-7 +2×1.5m人行道 2 主梁跨径及全长 标准跨径 l=21.70m(墩中心距离) 计算跨径l=21.20m(支座中心距离) 主梁全长l =21.66m(主梁预制长度) 全 3 设计荷载 公路—I级;人群荷载3.02 kN/ m 4 设计安全等级 二级 5 桥面铺装 沥青表面处厚5cm(重力密度为233 kN/),混凝土垫层厚6cm(重力密度为 m 243 m m kN/ kN/),T梁的重力密度为253 6 T梁简图如下图

主梁横截面图 二、 设计步骤与方法 Ⅰ. 行车道板的力计算和组合 (一)恒载及其力(以纵向 1m 宽的板条进行计算) 1)每延米板上的恒载 g 沥青表面 1g : 0.05×1.0×23 1.15kN m / 混凝土垫层 2g : 0.06×1.0 ×24 1.44kN m / T 梁翼板自重3g :30.080.14g 1.025 2.752+= ??=kN m / 合计:g=g 5.34i =∑kN m / 2)每米宽板条的恒载力 悬臂板长 ()0160180.712l m -= = 弯矩 2211 5.34(0.71) 1.3522 Ag M gl =-=-??=-·kN m 剪力 0 5.340.71 3.79Ag Q gl ==?=kN (二)汽车车辆荷载产生的力

60 50 1)将车辆荷载后轮作用于铰缝轴线上,后轴作用力为 140kN ,轮压分布宽度如图 5 所示,车辆荷载后轮着地长度为 a 2 0.20m ,宽度 b 2 0.60m , 则得: a 1 a 2 2H 0.2 2×0.11 0.42m b 1 b 2 2H 0.6 2× 0.11 0.82m 荷载对于悬臂梁根部的有效分布宽度: 12l 0.421.420.71 3.24m o a a d =++=++?= 2)计算冲击系数μ 结构跨中截面的惯矩c I : 翼板的换算平均高度:()1814112 h =?+=cm 主梁截面重心位置:()()11130 1601811130182241.18160181113018 a -??+??==-?+?cm 则得主梁抗弯惯矩: ()()22 326411111301601811160181141.2181813041.2 6.6310122122c I m ????=?-?+-??-+??130+??-=? ? ????? 结构跨中处单位长度质量c m : 3 315.4510 1.577109.8 c G m g ?===? 22/Ns m 混凝土弹性模量E :

如何用梁格法计算曲线梁桥桥梁分析

如何用梁格法计算曲线梁桥桥梁分析 一、梁格法既有相当精度又较易实行 对曲线梁桥, 可以把它简化为单根曲梁、 平面梁格计算, 也可以几乎不加简化地用块体 单元、板壳单元计算。 单根曲梁模型的优点是简单, 缺点是: 几乎所有类型的梁单元都有刚性截面假定, 因而 不能考虑桥梁横截面的畸变,总体精度较低。 块体单元、板壳单元模型,优点是:与实际模型最接近,不需要计算横截面的形心、剪 力中心、翼板 有效宽度,截面的畸变、翘曲自动考虑;缺点:输出的是梁横截面上若干点的 应力, 不能直接用于强度计算。 对于位置固定的静力荷载, 当然可以把若干点的应力换算成 横截面上的内力。 对于位置不固定的车辆荷载, 理论上必须采用影响面方法求最大、 最小内 力。板壳单元输出的只能是各点的应力影响面。 把各点的应力影响面重新合成为横截面的内 力影响面,要另外附加大量工作。这个缺点使得它几乎不可能在设计中应用。 梁格法的优点是: 可以直接输出各主梁的内力, 便于利用规范进行强度验算, 整体精度 能满足设计要求。 由于这个优点, 使得该法成为计算曲线梁桥和其它平面形状特殊的梁式桥 的唯一实用方法。 它的缺点在于, 它对原结构进行了面目全非的简化, 大量几何参数要预先 计算准备,如果由计算者手工准备,不仅工作量大,而且人为偏差较难避免。 二、如何建立梁格力学模型 1. 纵梁个数、横梁道数、支点与梁单元 对于有腹板的箱型、 于 实心板梁,纵向主梁的个数可按计算者意愿决定。全桥顺桥向划分 M 个梁段, 个横截面, 每个横截面位置,就是横向梁单元的位置。支点应当位于某个横截面下面, 是在某个横向梁单元下面。 每一道横梁都被纵向主梁和支 点分割成数目不等的单元。 梁单元用同一种最普通的 12 自由度空间梁单元,能考虑剪切变形影响 即可。 2. 纵向主梁的划分、几何常数计算 对于箱型梁桥,从什么地方划开,使其成为若干个纵向主梁?汉勃利提出了一个原则: 应当使划分以 后的各工型的形心大致在同一高度上。 笔者曾经用有限条法进行过考核, 依据这一原则, 依各主梁弯矩、 剪力计算出的正应力、 剪应力, 与有限条的吻合性确实较好。 试算的具体划分步骤如下: T 型梁桥,其梁格模型中纵向主梁的个数,应当是腹板的个数。对 共有 M+1 也就 纵、横 发现

浅谈小半径曲线桥梁的设计要点

浅谈小半径曲线桥梁的设计要点 摘要:与直线桥不同的是,由于弯扭耦合作用,所以曲线桥在竖向荷载作用下 引起弯曲的同时会产生扭转变形,导致内外侧支座反力大小不同,甚至可能出现 负反力。本文首先分析了曲线梁桥的力学特性,然后详细阐述了小半径曲线桥梁 的设计方法,最后说明了小半径曲线桥梁设计中应注意的问题。 关键词:小半径;曲线桥梁;截面;支座;抗扭支承 一、曲线梁桥的力学特性 (一)梁内外侧受力不均由于扭矩的作用会造成外梁超载、内梁卸载等问题,致使弯梁桥外边缘弯曲应力大于内边缘,外边缘挠度大于内边缘,内梁和外梁受 力不均,反应到箱梁上则是内外腹板受力不均。当活载偏置时,内梁支点甚至可 能产生负反力,甚至会出现梁体与支座脱离的问题发生。 (二)挠曲变形曲线箱梁桥的挠曲变形一般要比相同跨径的直线桥大,弯桥 的挠曲变形是弯曲和扭转的迭加。 (三)横向水平力汽车在曲线梁桥上行驶时会对桥梁产生水平方向的离心力。预应力、混凝土收缩徐变及温度变化等不仅对桥梁会产生纵向水平力,也会产生 横向水平力。外荷载对桥梁产生的横向水平力会增大梁体截面扭矩和桥墩弯矩, 并有可能造成横向的位移或者是桥梁在平面的转动。 (四)翘曲与畸变对于弯箱桥梁,由于在弯扭耦合的作用下会出现综合截面 应力相对直线桥梁而言较大的问题,特别是在截面扭转以及畸变作用下,这一问 题更突出。但其数值往往只占基本弯曲应力和纯扭转剪应力的5%~10%,经过初 步的估算,在设计过程中可以采取增设横隔板的设计处理方式,尽可能的控制截 面畸变变形。 二、小半径曲线桥梁的设计要点 (一)箱梁的设计 1、箱梁跨径的选择弯梁桥的弯扭刚度比对结构的受力状态和变形状态有着 直接的关系:弯扭刚度比越大,由曲率因素而导致的扭转弯形越大,因此,对于 弯梁桥而言在满足竖向变形的前提下,应尽可能减小抗弯刚度、增大抗扭刚度。 所以在曲线梁桥中,宜选用低高度梁和抗扭惯矩较大的箱形截面。小半径曲线梁 桥的梁高大于跨径的1/18 时,是比较经济的。在特殊情况下也不应小于跨径的 1/22。 2、截面设计在曲线梁桥截面设计时,要在桥跨范围内设置一些横隔板,以 加强横桥向刚度并保持全桥稳定性。在截面发生较大变化的位置,要设渐变段过渡,减小应力集中效应。 3、配筋设计在进行配筋设计时要充分考虑扭矩效应,弯梁应在腹板侧面布 置较多受力钢筋,其截面上下缘钢筋也比同等跨径的直桥多,且应配置较多的抗 扭箍筋。在预应力混凝土曲线梁桥中,应设置防崩钢筋。 4、混凝土结构由于混凝土的收缩、徐变涉及的因素较多,每个工程中混凝 土的材料、级配不尽相同,要很精确的计算出混凝土收缩、徐变对小半径曲线梁 桥的作用较难。故在设计小半径曲线梁桥,最好采用普通钢筋混凝土结构。对于 预应力混凝土曲线梁桥,纵向预应力筋采用高强度低松弛钢绞线,但钢束一般不 大于12-7ф5,压应力应小于12MPa,拉应力小于1MPa,为预应力A 类构件即可。 (二)支承方式的选择在曲线桥中,不同的支承方式对上、下部结构内力影 响较大,一般支承分为两种类型:抗扭支承和点铰支承。

曲线连续梁桥的结构设计

曲线连续梁桥的结构设计 曲线梁桥是高速公路和城市立交中普遍应用的一种桥型。文章根据曲线梁桥的结构受力特点,论述了曲线梁桥在施工及成桥运营阶段出现病害的原因,论述了曲线梁桥在设计中应注意的问题,并提出了该类型桥梁设计中的一些经验做法和解决方案。 标签:曲线梁桥;结构设计;受力特点 1 概述 目前在高等级公路及城市立交中曲线梁桥的应用得到了普遍的认可,尤其在城市立交匝道设计中最为广泛。曲线梁桥的设计中常采用箱型截面,因其具有材料用量少、结构自重小、抗扭刚度大、整体稳定性好、截面应力分配合理等优点,而在曲线梁桥中应用非常普遍。 现阶段曲线梁桥的设计和理论研究已经取得了很多成果,但由于曲线梁桥结构受力复杂、施工过程中标高不能准确的控制,由于设计的原因导致在项目的施工或使用过程中已多次发生过事故。常见问题主要为:曲梁内侧支座脱空;主梁横向侧移量过大;横向刚度不足引起扭曲变形;固结墩墩身开裂;梁体的外移和翻转进一步导致支座、伸缩缝的剪切破坏和平曲线超高的丧失等。故在曲线梁桥的设计与施工过程中应充分考虑结构的弯、剪、扭受力特性,对结构内力进行准确分析及合理优化,消除设计带来的不安全隐患。 2 曲线梁桥受力特点 2.1 “弯-扭”耦合作用 曲梁由于自身及外荷载的作用下会同时产生弯矩和扭矩,并且相互作用。表现为曲梁内外侧尺寸不同、支座反力不等、外荷载偏心及预应力径向作用共同引起较大的扭矩,使梁截面处于“弯-扭”耦合作用的状态,其截面主拉应力比相应的直梁桥大得多,这是曲梁所独有的受力特点。 在变形方面,强大的扭矩作用致使曲线梁桥产生扭转变形;曲线外侧的竖向挠度要大于同等跨径的直桥;由于“弯-扭”耦合作用,在梁端可能出现“翘曲”;当梁端处横桥向约束较弱时,梁体有向曲线外侧“爬移”的趋势。 在受力方面,由于存在较大的扭矩,通常会使外梁超载、内梁卸载,尤其当活载偏置时,内侧支座甚至会出现负反力,如果支座不能承受拉力,就会出现梁体与支座发生脱离的现象,即“支座脱空”现象,这种现象在小半径的宽桥中特别明显。 2.2 下部墩台受力复杂

预应力混凝土连续梁桥及例子

4.1一般规定 4.1.1 预应力混凝土连续梁桥设计应根据桥长、柱高、地基条件等因素合理分联,每联的长度应以结构合理、方便施工、有利使用为原则,在有条件的情况下应考虑景观要求和桥梁整体布局的一致性。4.1.2主梁应尽量采用一次浇筑混凝土、两端张拉预应力钢筋的施工方式,主梁长度宜控制在120m左右,当确实需要设置长分联时,可以采用分段浇筑混凝土、使用联接器分段张拉预应力钢筋的施工方案,设计时允许在同一截面全部预应力钢筋使用联接器连接,但对主梁截面及配筋应做加强处理。 4.1.4桥梁截面形式可根据桥宽、跨径、施工条件、使用要求等确定为箱形(简称箱梁)或T形(简称T梁)。箱形截面可设计为单箱单室或单箱多室。箱梁翼板长度的确定应以桥面板正、负弯矩相互协调为原则,T梁悬臂长度宜为1.0~1.5m,箱梁悬臂长度宜为1.5~2.5m。当主、引桥结构形式不同时,悬臂板长度宜取得一致。 4.1.5箱梁腹板宽度应由主梁截面抗剪、抗扭、混凝土保护层、预应力钢筋孔道净距和满足混凝土浇筑等要求确定。预应力钢筋净保护层和净距除满足规范外,应考虑纵向普通钢筋和箍筋的占位以及混凝土浇筑的孔隙等因素。箱梁腹板宽度最小值应符合下列要求:

条件腹板宽度Bmin(cm) 腹板内无纵向或竖向后张预应力钢筋时20 腹板内有纵向或竖向后张预应力钢筋之一时30 腹板同时有纵向和竖向后张预应力钢筋时38 4.1.6 悬臂板厚度应视悬臂长度、桥上荷载及防撞护栏碰撞力验算结果而定。根部厚度宜取0.30~0.55m,悬臂板端部厚度一般不应小于0.12m(对有特殊防撞要求的结构,悬臂板端部厚度适当增加,如使用PL2型防撞护栏时悬臂板端部厚度不应小于0.2m)。当悬臂板长度较长时应适当加强悬臂板沿主梁方向钢筋的配置。 4.1.7主梁翼板和顶、底板厚度应根据梁距和箱宽计算确定。同时应满足箱梁顶板厚度不小于0.2m,底板厚度不小于0.18m;T梁顶板厚度不小于0.16m。 1m,端横梁宽度还应考虑伸缩缝预留槽等构造要求。 4.1.9主梁腹板与顶、底板相接处应设1︰5加腋,箱形截面与支点横梁相接处应设渐变段加厚。箱梁截面与跨间横梁相接处应设0.15m 抹角。 4.1.10箱梁底板必须设置排水孔,腹板必须设置通风孔,直径均宜取D=0.1m左右。配有体外预应力钢筋的箱梁应设置检查换索通道。 4.1.11连续梁桥必须设置端横梁及中支点横梁。直线连续箱梁桥跨径小于30m的桥孔可不设跨间横梁;跨径在30~40m之间的桥孔宜设一道跨间横梁;跨径大于40m时宜设三道跨间横梁。曲线连续箱梁桥应根据曲线半径、跨径大小确定跨间横梁个数。连续T梁桥跨径大于

曲线梁桥的预制梁布置方法及施工特点

351 浅析曲线梁桥的预制梁布置方法研究及 施工特点 赵康 陕西明泰工程建筑有限公司 摘 要:在公路工程的设计与施工中由于地形的限制,部分桥梁在路线线型的影响下处于曲线段,给桥梁的设 计和施工增加了相当大的难度。设计中通过研究并灵活应用多种曲线段预制梁的布置方法,较好地解决了曲线段预制梁桥的布置设计及施工,以供此类桥梁设计与施工中参考。 关键词:预制梁;曲线桥;布置方法;施工特点 随着我国高等级公路建设的不断发展,公路工程对路线平纵面线型的要求越来越高。不少桥梁由于地形限制及线形设计的需要处于曲线段,这给桥梁的设计和施工均增添了相当大的难度。本文对预制梁曲线段平面布置方法及施工特点进行了研究总结。 1 平面布设方法 预制梁平面曲线布置方法包括平分中矢法、径向布置法、等偏角法、平行布置法、曲线内侧割线布置法等。这些方法的特点各相不同,需根据具体工程情况灵活采用。1.1 平分中矢法 一般情况下,按以下的原则来取用布置方法: (1)多孔桥梁位于小半径平曲线或缓和曲线上时,矢距 ≤10cm 时,墩台一般采用平分中矢法。 (2)单孔桥梁位于平曲线或缓和曲线上时,一般采用平分中矢法。 平分中矢法弯桥直做,下部墩台平行布置,桥梁内外侧平面线形通过边梁悬臂和护栏作圆弧处理以拟合曲线边线。 桥梁中心线的确定:首先在路线中心线上确定桥台伸缩缝中心线的位置,然后把桥台伸缩缝中心线与路线中心线的交点连线,从桥梁中心点向交点连线上作垂线,把交点连线平移到垂线中点即得到桥梁中心线。 桥面高程点为路线中心线的偏移线与新伸缩缝中心线、新桥墩中心线的交叉点。1.2 径向布置法和等偏角法 多孔桥梁位于大半径平曲线上时,当矢距>10cm 时,墩台一般采用径向布置法。 简支桥梁,从盖梁宽度限制和支座到盖梁边缘的距离要求考虑,均要限制梁与梁之间的缝宽不能太大,G204和S333东台段(26m路基宽度)缝宽均控制在13cm 以内,一般情况下径向布置法适用的曲线最小半径见表1所示。 跨径/m 10 13 16 20 临界半径/m 1900 2400 3800 4000径向布置法的示意,路线中心按标准跨径逐跨布置切线,切点处曲线径向为桥墩横向中心线,墩顶2侧相邻跨预制梁端接缝宽度外侧为△1、内侧为△2、路线心线处为△0,曲线外侧跨径大于内侧。为了保证曲线内侧最小跨径处 预制梁的安装,内侧布置的切线最小跨径必须大于预制梁长,由此可以算得路线中心处梁端接缝宽△0最小值需大于0.5×桥宽W×两相邻跨偏角Φ 值。根据三角关系,外侧宽△1=中心线处宽△0+0.5×桥宽W×两相邻跨偏角Φ,内侧宽△2=中心线处宽△0-0.5×桥宽W×两相邻跨偏角Φ,结合预制梁的安装要求和最大缝宽△1确定盖梁宽度或设计变宽度盖梁。 当墩顶2侧相邻跨预制梁间非连续设置(即设置伸缩缝)且梁端之间接缝宽度较大时,盖梁采用凸形设计;当墩顶2侧预制梁间连续设置(即先简支后浇注连续横梁)时,预制梁端间接缝内现浇连续中横梁变厚度设计。采用该径向布置法时,各跨预制梁都采用正桥布置,而当桥梁各跨预制梁必须采用斜桥布置时,各墩台横向中心线与切线切点的径向线以相同的夹角偏转,就为等偏角布置法。1.3 平行布置法 曲线预制梁桥径向布置时,曲线段起点处墩的横向中心线与终点处墩的横向中心线的夹角为Φ,交点为O,当Φ 值较小时,各墩或台的横向中心线可采用平行布置。以某4跨桥为例,0#~4#墩横向中心线平行,各墩横向中心线与各墩在路线中心处曲线径向线的夹角分别为Φ1~Φ5,以0#~1#墩跨预制梁布置为例,其中θ为梁端斜角,由图可知0#墩和1#墩的径向线夹角α=Φ1-Φ2,由三角关系得θ=π/2-(Φ1÷α/2)=π/2-(Φ1+Φ2)/2,预制标准梁时则以与该θ值最接近的5倍数作为梁端斜角。 1.4 曲线内侧割线布置法 曲线预制梁桥采用径向布置时,曲线外侧跨径大于内侧跨径,曲线内侧跨径最小,且必须大于预制梁的长度以确保预制梁的安装,由内侧最小跨径可确定路线中心线处桥梁跨径的最小值。为了设计的方便,桥跨布置时直接采用标准跨径值作为曲线内侧跨径,逐跨割线布置,确定各割点为桥墩横向中心线内侧位置,此即为曲线内侧割线布置法。 2 施工特点 (1)测设放样 由于曲梁桥在平面和纵横断面上的变化较大,因而在施工放样、标高控制、中线控制等方面都会增加许多麻烦,应予反复检查、严格要求。另外,在进行预制底模控制时,如

相关文档