文档库 最新最全的文档下载
当前位置:文档库 › 盘式制动器设计资料

盘式制动器设计资料

盘式制动器设计资料
盘式制动器设计资料

目录

绪论 (3)

一、设计任务书 (3)

二、盘式制动器结构形式简介 ................... 错误!未定义书签。

2.1、盘式制动器的分类...................... 错误!未定义书签。

2.2、盘式制动器的优缺点.................... 错误!未定义书签。

2.3、该车制动器结构的最终选择.............. 错误!未定义书签。

三、制动器的参数和设计 ....................... 错误!未定义书签。

3.1、制动盘直径 ........................... 错误!未定义书签。

3.2、制动盘厚度 ........................... 错误!未定义书签。

3.3、摩擦衬块的内半径和外半径.............. 错误!未定义书签。

3.4、摩擦衬块面积 ......................... 错误!未定义书签。

3.5、制动轮缸压强 ......................... 错误!未定义书签。

3.6、摩擦力的计算和摩擦系数的验算.......... 错误!未定义书签。

3.7、制动力矩的计算和验算.................. 错误!未定义书签。

3.8、驻车制动计算 ......................... 错误!未定义书签。

四、制动器的主要零部件的结构设计 ............. 错误!未定义书签。

4.1、制动盘 ............................... 错误!未定义书签。

4.2、制动钳 ............................... 错误!未定义书签。

4.3、制动块 ............................... 错误!未定义书签。

4.4、摩擦材料 ............................. 错误!未定义书签。

4.5、制动轮缸 ............................. 错误!未定义书签。

4.6、制动器间隙的调整方法及相应机构........ 错误!未定义书签。

五、设计总结 (16)

六、致谢 (17)

参考文献 (18)

绪论

1.1 制动系统的基本概念:

使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已停驶的汽车保持不动,这些作用统称为制动;汽车上装设的一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界(主要是路面)在汽车某些部分(主要是车轮)施加一定的力,对汽车进行一定程度的制动,这种可控制的对汽车进行制动的外力称为制动力;这样的一系列专门装置即称为制动系。

这种用以使行驶中的汽车减速甚至停车的制动系称为行车制动系;用以使已停驶的汽车驻留原地不动的装置,称为驻车制动系。这两个制动系是每辆汽车必须具备的。

图1 汽车制动系组成

1-制动助力器; 2-制动灯开关; 3-驻车制动与行车制动警示灯; 4-驻车制动接触装置;

5-后轮制动器; 6-制动灯; 7-驻车制动踏板; 8-制动踏板;

9制动主缸;10-制动钳;11-发动机进气管; 12-低压管; 13-制动盘

任何制动系都具有以下四个基本组成部分(如图1.1所示):

供能装置:包括供给、调节制动所需能量以及改善传能介质状态的各种部件。

控制装置:包括产生制动动作和控制制动效果的各种部件。

传动装置:包括将制动能量传输到制动器的各个部件

制动器:产生阻碍车辆的运动或运动趋势的力(制动力)的部件,其中包括辅助制动系

中的缓速装置。

按制动能源来分类,行车制动系可分为,以驾驶员的肌体作为唯一制动能源的制动系称为人力制动系;完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的则是动力制动系,其制动源可以是发动机驱动的空气压缩机或油泵;兼用人力和发动机动力进行制动的制动系称为伺服制动系。

驻车制动系可以是人力式或动力式。专门用于挂车的还有惯性制动系和重力制动系。按

照制动能量的传输方式,制动系可分为机械式、液压式、气压式和电磁式等。同时采用两种

以上传能方式的制动系可称为组合式制动系。

制动系统是评价汽车安全性的一个重要因素,也是汽车的重要组成部分之一。当今汽车

行业已经非常发达,人类对汽车的性能要求也越来越高。一款安全、轻便、环保、经济的制

动系统可以大大提高汽车的性能。这也是汽车设计人员不断追求的目标。

一、设计任务书

车辆工程方向课程设计任务书

设计者

姓名:王海蛟

学号:201210115105设计

题目

某型汽车制动器的设计

工作条件及设计原始参

数奥迪A3 2015

整车空载质量:1320 kg(空载时轴荷分配:前轴60%,后轴40%);整车满载质量:1695kg(满载时轴荷分配:前轴55%,后轴45%);质心高度; 0.7m(空) 0.8m(满);

轴距: 2.63m;

轮胎规格: 205/55 R16;

同步附着系数选择:0.65;

设计内容及完成要求

要求:满载下,30km/h初速,制动距离:自己查国标。

1、根据给定的设计参数,选择设计方案,计算并确定零部件各参数,绘出装

配图及典型零件图。

2、装配图A0图纸。

3、零件图大小不限。

4、按规定要求撰写设计说明书。

设计期限自 2015年 6 月 29 日

至 2015 年 7 月 10 日

答辩日期 2015 年 7 月 10 日

指导教师祁传琦学生签名王海蛟

机械工程学院车辆工程系

2015年06月

二、盘式制动器结构形式简介

2.1 盘式制动器的分类

盘式制动器按摩擦副中定位原件的结构不同可分为钳盘式和全盘式两大类。

(1)钳盘式

钳盘式制动器按制动钳的结构型式又可分为定钳盘式制动器、浮钳盘式制动器等。

①定钳盘式制动器:这种制动器中的制动钳固定不动,制动盘与车轮相联并在制动钳体开口槽中旋转。具有下列优点:除活塞和制动块外无其他滑动件,易于保证制动钳的刚度;结构及制造工艺与一般鼓式制动器相差不多,容易实现从鼓式制动器到盘式制动器的改革;能很好地适应多回路制动系的要求。

②浮动盘式制动器:浮动钳式盘式制动器的制动钳体是浮动的。其浮动方式有两种,一种是制动钳体可作平行滑动;另一种是制动钳体可绕一支承销摆动。故有滑动和摆动之分,其中滑动应用的较多。它们的制动油缸均为单侧的,且与油缸同侧的制动块总成是活动的,而另一侧的制动块总成则固定在钳体上。制动时在油液压力作用下,活塞推动活动制动块总成压靠到制动盘,而反作用力则推动制动钳体连同固定制动块总成压向制动盘的另一侧,直到两制动块总成受力均等为止。对摆动钳式盘式制动器来说,钳体不是滑动而是在与制动盘垂直的平面内摆动。这样就要求制动摩擦衬块应预先做成楔形的(摩擦表面对背面的倾斜角为6°左右)。在使用过程中,摩擦衬块逐渐磨损到各处残存厚度均匀(一般约为l mm)后即应更换。这种制动器具有以下优点:仅在盘的内侧有液压缸,故轴向尺寸小,制动器能进一步靠近轮毂;没有跨越制动盘的油道或油管加之液压缸冷却条件好,所以制动液汽化的可能性小。

(2)全盘式

在全盘式制动器中,摩擦副的旋转元件及固定元件均为圆形盘,制动时各盘摩擦表面全部接触,其作用原理与摩擦式离合器相同。由于这种制动器散热条件较差,其应用远没有浮钳盘式制动器广泛。

2.2 盘式制动器的优缺点

盘式制动器比鼓式制动器的优点:

(1)热稳定好,原因是一般无自行増力作用,衬块摩擦表现压力分布较鼓式中的衬片更为

均匀,此外,制动鼓在受热膨胀后,工作半径增大,使其只能与蹄的中部接触,从而降低了制动效能,这称为机械衰退,制动盘的轴向膨胀极小,径向膨胀根本与性能无关,故无机械衰退问题,因此,前轮采用盘式制动器。汽车制动时不易跑偏。

(2)水稳定性好,制动块对盘的单位压力高,易于将水挤出,因而浸水后效能降低不多,又由于离心力作用及衬块对盘的擦拭作用,出水后只需经一,二次制动即能恢复正常。

鼓式制动器则需经十余次制动方能恢复。

(3)制动力矩与汽车运动方向无关。

(4)易于构成双回路制动系,使系统有较高的可靠性和安全性。

(5)尺寸小,质量小,散热良好。

(6)压力在制动衬块上的分布比较均匀,故衬块磨损也均匀。

(7)更换衬块简单容易。

(8)衬块与制动盘之间的间隙小(0.05-0.15mm),从而缩短了制动协调时间。

(9)易于实现间隙自动调整。

(10)能方便地实现制动器磨损报警,以便及时更换摩擦衬块。

盘式制动器的主要缺点:

(1)难以完全防止尘污和锈蚀(封闭的多片全盘式制动器除外)。

(2)兼作驻车制动器时,所需附加的手驱动机构比较复杂。

(3)在制动驱动机构中必须装有助力器。

(4)因为衬块工作表面小,所以磨损快,使用寿命低,需用高材质的衬块。

2.3该车制动器结构的最终选择

汽车制动简单来讲,就是利用摩擦将动能转换成热能,使汽车失去动能而停止下来。因此,散热对制动系统是十分重要的。如果制动系统经常处于高温状态,就会阻碍能量的转换过程,造成制动性能下降。越是跑得快的汽车,制动起来所产生的热量越大,对制动性能的影响也越大。解决好散热问题,对提高汽车的制动性能也就起了事倍功半的作用。所以,现代轿车的车轮除了使用铝合金车圈来降低运行温度外,还倾向于采用散热性能较好的盘式制动器。

当然,盘式制动器也有自己的缺陷。例如对制动器和制动管路的制造要求较高,摩擦片的耗损量较大,成本贵,而且由于摩擦片的面积小,相对摩擦的工作面也较小,需要的制动

液压高,必须要有助力装置的车辆才能使用。而鼓式制动器成本相对低廉,比较经济。四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,因此前轮制动力要比后轮大。轿车生产厂家为了节省成本,就采用前轮盘式制动,后轮鼓式制动的方式。但随着轿车车速的不断提高,近年来采用盘式制动器的轿车日益增多,尤其是中高级轿车,一般都采用了盘式制动器。

纵观现代商务车市场,随着人类对汽车安全性能重视的加剧,为了保持制动力系数的稳定性以及考虑到盘式制动器的优点,在商务车领域盘式制动器已基本取代鼓式制动器,特别是浮动钳盘式。根据制动盘的不同,盘式制动器还可分为普通盘式和通风盘式。普通盘式我们比较容易理解,就是实心的。通风盘式就是空心的,顾名思义具有通风功效,指的是汽车在行使当中产生的离心力能使空气对流,达到散热的目的,这是由盘式碟片的特殊构造决定的。从外表看,它在圆周上有许多通向圆心的洞空,这些洞空是经一种特殊工艺(slotteded drilled)制造而成,因此比普通盘式散热效果要好许多。由于制造工艺与成本的关系,一般中高级轿车中普遍采用前通风盘、后普通盘的制动片。如Passat,Vento Golf2.0,Corrado等车,部分高级轿车采用前后通风盘。值得一提的是,在前轮使用通风盘正在逐步取代使用实心盘。ABS把大部分的制动力分配到前轮,防止甩尾,对前刹的散热要求很高,所以一般前轮都会采用通风盘。

综上所述,本次车设计,前后轮均采用浮动钳盘式制动器。其中前轮制动盘选择通风盘,后轮选择普通盘。

三、制动器的参数和设计

盘式制动器设计的一般流程为:根据设计要求,所给数据,依据国家标准确定出整车总布置参数。在有关的整车总布置参数及制动器结构型式确定之后,根据已给参数并参考已有的同等级汽车的同类型制动器,初选制动器的主要参数,并据以进行制动器结构的初步设计;然后进行制动力矩和磨损性能的验算,并与所要求的数据比较,直到达到设计要求。

之后再根据各项演算和比较的结果,对初选的参数进行必要的修改,直到基本性能参数能满足使用要求为止;最后进行详细的结构设计和分析。

在这里先给出该车的整车参数:

整车空载质量:1320 kg(空载时轴荷分配:前轴60%,后轴40%);

整车满载质量:1695kg (满载时轴荷分配:前轴55%,后轴45%); 质心高度; 0.7m(空) 0.8m (满); 轴距: 2.63m; 轮胎规格: 205/55 R16; 同步附着系数选择:0.65;

3.1制动盘直径D

制动盘直径D 应尽可能取大些,这是制动盘的有效半径得到增大,可以减小制动钳的夹紧力,降低衬块的单位压力和工作温度,受轮辋直径的限制,制动盘的直径通常选择为70%~79%。本设计中:

轮辋直径为: 16×25.4≈406mm 。

制动盘直径为: D=406×74%≈300mm ,R=150mm 。 3.2制动盘厚度h

制动盘厚度h 直接影响着制动盘质量和工作时的温升。为使质量不致太大,制动盘厚度又不宜过小。制动盘可以制成实心的,而为了通风散热,又可在制动盘的两工作面之间铸出通风孔道。通常,实心制动盘厚度可取10mm-20mm ;具有通风孔道的制动盘的两工作面之间的尺寸,即制动盘的厚度取为20mm-50mm,但多采用20mm-30mm 。

在本设计中:前制动器采用通风盘,取厚度h=25mm ;后制动盘采用实心盘,取厚度h=12mm 3.3摩擦衬块内半径1R 与外半径2R

推荐摩擦衬块外半径2R 与内半径1R 的比值不大于1.5.若此比值偏大,工作时衬块的外缘与内侧圆周速度相差较多,磨损不均匀,接触面积减小,最终将导致制动力矩变化大。在本设计中:取1R =115mm, 2R =148mm , 则外内半径比:

5.128.11

2

<=R R ,符合要求。 平均半径: mm R R R m 5.1312

2

1==

+。 有效半径: mm R R R R R e 2.132)

(3)

(22

1223

13

2=--=(有效半径即衬块作用力点到制动盘中心的距离)

且满足 4

124.074.174.0)1(,178.02221<==+<==

m m R R m 的要求。 3.4摩擦衬块面积

根据制动衬块单位面积占有汽车质量,推荐在1.6~3.5kg/cm 2范围内选取。本题取2/2.3cm kg

283.722

.322

%551695cm A =?÷?=

由此可以得到摩擦衬块的圆心角θ。由

()

A R R =-2122360

θπ

,解得:

()()

2.965

.118.1414.383.723603602

22122≈-??=-=

R R A πθ 表 3.1 一些国产汽车前盘式的制动器的主要参数

车牌

车型

制动盘外径/mm

工作半径/mm 制动盘厚度

/mm 摩擦衬块厚度

/mm 摩擦面积/cm 2

云雀 GHK7060 212 86 10 9 65.4 奥拓 SC7080 215 91 10 15.5 60 桑塔纳 2000 256 106 20 14 76 奥迪

100

256

104

22

14

96

3.5制动轮缸压强p :

制动轮缸压强p 选取,制动管路压力越高,驱动机构越紧凑,但对密封要求也更严格。一般不超过10~12MPa ,盘式可更高。本题选P=11MPa 。 3.6摩擦力的计算和摩擦系数的验算: 1)计算单个前车轮受到地面的摩擦力大小 车速为V=30km/h=8.3m/s

汽车前轮在刹车过程做功FS W 2=,F 为单个前车轮受到的摩擦力,S 为刹车距离

前轮动能消耗2%552

1

mv W ?=

,m 为车重,v 为初速度 由于能量守恒,所以2%552

1

2mv FS ?=

解得单个前轮受到的摩擦力

N S mv F u 6.21126

.743.81695%554%552

2=???=?=

2)计算单个制动衬块对制动盘的正压力大小

对车轮进行受力分析,受到地面对车轮的摩擦力矩和衬块对制动盘的摩擦力矩。两个力矩相平衡。

地面对车轮的摩擦力矩等于单个前轮受到的摩擦力与车轮的滚动半径的乘积。滚动半径大小查下表得。本题滚动半径mm 316=滚R 。

单个前轮的受力为:N R R F F u e 8.50492

.132316

6.2112e =?==

滚 因为(148-115)/2=16.5mm. 所以取液压缸的半径:R 3=17mm 。其压强取P=11MPa 得:N=3.14R 32P=9982.1N 由F e =2fN

26.01

.998228

.50492≈?=?=

N F f e 符合0.25≤f ≤0.55的要求。 3.7制动力矩的计算和验算:

假设衬块的摩擦表面与制动盘接触良好,且各处的单位压力分布均匀,则盘式制动器的制动力矩为

fNR T f 2=

f ——摩擦系数取f ; A W ——活塞端面积

N ——单侧制动块对制动盘的压紧力 D w ——活塞直径 R ——有效半径 2

4

D A w W ?=

π

W A P N ?=0 MP P 110= 222

9084

344

mm D A W W =?

=?=

π

π

则 m 6.686m 102.1321190826.023?=??????=-N N T f )(

制动力矩的验算:

按照设计要求,制动器需要的制动力矩为

)(m N jr g

G

M k ?=

式中:G —车重(N )

g —重力加速度(2

/10s m ) j —制动减速度 )/()6

.3(2122

0s m v s j =

,0v —制动初速度(km/h ) k r —车轮滚动半径(m )

2220/)6

.330(6.721)6.3(21s m v s j ??==

m N M ?=????÷??=

9.6383.0)6

.330

(6.721102101695%552

因为制动器所能提供的制动力矩f

T >车辆制动所需要的制动力矩M ,

所以上述设计符合设计要求。 3.8驻车制动计算

汽车在上坡路上停驻时的受力简图如图4.3所示。由该图可得出汽车上坡停驻的后周车轮的附着力为:

)sin cos (12αα?

?g a h L L

g m Z +=

同样可求出汽车下坡停驻时的后轴车轮的附着力为:

)sin cos (12αα??g a h L L

g m Z -='

图 2 汽车在上坡路上停驻时的受力简图

根据后轴车轮附着力与制动力相等的条件可求得汽车在上坡路和下坡路上停驻时的坡度极限倾角α,α',即由

ααα?

sin )sin cos (1g m h L L

g m a g a =+ 求得汽车在上坡时可能停驻的极限上坡路倾角为:

g

h L L ??α-=1

arctan

在本设计中: 24800

65.026305

.144665.0arctan arctan

1≈?-?=-=g h L L ??α

汽车在下坡时可能停驻的极限下坡路倾角为:

'1

arctan

g

L L h ?α?=+

在本设计中: ?=?+?=+='62.16800

65.026305

.144665.0arctan arctan

1g h L L ??α

一般要求各类汽车的最大驻坡度不小于16%20%(9.111.3??),满足要求。

四、制动器主要零部件的结构设计

4.1制动盘

制动盘一般用珠光体铸铁制成,或用添加,

N C等的合金铸铁制成。其结构形状有平板

i r

形和礼貌形。制动盘在工作时不仅承受着制动块作用的法向力和切向力,而且承受着热负荷。为了改善冷却效果,钳盘式制动器的制动盘有的铸成中间有径向通风槽的双层盘,这样可大大地增加散热面积,降低温升约20%-30%,但盘的整体厚度较厚。

制动盘的工作表面应光洁平整,制造时应严格控制表面的跳动量,两侧表面的平行度(厚度差)及制动盘的不平衡量。参考表4.1

表4.1 一些轿车制动盘的表面跳动量、两侧表面的平行度及不平衡量车型表面跳动量/mm 两侧表面的不平行度/mm 静不平衡量/N.cm 奥迪、红旗≤0.03 ≤0.01 ≤0.5 云雀≤0.05 ≤0.03 ≤1.5

奥拓≤0.06≤0.03≤1.0 根据有关文献规定:制动盘两侧表面不平行度不应大于0.008mm,盘的表面摆差不应大于0.1mm;制动盘表面粗糙度不应大于0.06mm。

本次设计采用的材料为合金铸铁,结构形状为礼帽形,前通风盘,后实心盘。

图3 礼帽形制动盘

4.2制动钳

制动钳由可锻铸铁KTH370-12或球墨铸铁QT400-18制造,也有用轻合金制造的。例如用铝合金压铸。可做成整体的,也可做成两半并由螺栓连接。其外缘留有开口,以便不必拆下制动钳便可检查或更换制动块。制动钳体应有高的强度和刚度。在钳体中加工出制动油缸。为了减少传给制动液的热量,将活塞的开口端顶靠制动块的背板。活塞由铸铝合金制造,为了提高耐磨损性能,活塞的工作表面进行镀铬处理。为了解决因制动钳体由铝合金制造而减少传给制动液的热量的问题,减小了活塞与制动块背板的接触面积。

制动钳在汽车上的安装位置可在车轴的前方或后方。制动钳位于车轴前可避免轮胎甩出来的泥,水进入制动钳,位于车轴后则可减小制动时轮毂轴承的合成载荷。

因此本次设计采用可锻铸铁,整体式、镀铬处理,前制动钳位于车轴后,后制动钳位于车轴前。

4.3制动块

制动块由背板和摩擦衬块构成,两者直接牢固地压嵌或铆接或粘接在一起。衬块多为扇形,也有矩形,正方形或圆形的。活塞应能压住尽量多的制动块面积,以免衬块发生卷角而引起尖叫声。制动块背板由钢板制成。为了避免制动时产生的热量传给制动钳而引起制动液汽化和减小制动噪声,可在摩擦衬块与背板之间或在背板后粘(或喷涂)一层隔热减震垫(胶)。由于单位压力大和工作温度高等原因,摩擦衬块的磨损较快,因此其厚度较大。许多盘式制动器装有衬块磨损达极限时的警报装置,以便及时更换摩擦衬片。本次设计取衬块厚度14mm,有隔热减震垫,有报警装置。

4.4摩擦材料

制动摩擦材料应具有高而稳定的摩擦系数,抗热衰退性能好,不能在温度升到某一数值后摩擦系数突然急剧下降;材料的耐磨性好,吸水率低,有较高的耐挤压和耐冲击性能;制动时不产生噪声和不良气味,应尽量采用少污染和对人体无害的摩擦材料。

以往车轮制动器采用广泛应用的模压材料,它是以石棉纤维为主并与树脂粘结剂、调整摩擦性能的填充剂(由无机粉粒及橡胶、聚合树脂等配成)与噪声消除剂(主要成分为石墨)等混合后,在高温下模压成型的。模压材料的挠性较差,故应按衬片或衬块规格模压,其优点是可以选用各种不同的聚合树脂配料,使衬片或衬块具有不同的摩擦性能和其他性能。

表4.2 摩擦材料性能对比

材料

有机类无机类性能

制法编制物石棉模压半金属模压金属烧结金属陶瓷烧结

硬度软硬硬极硬极硬

密度小小中大大承受负荷轻中中-重中-重重

摩擦系数中-高低-高低-高低-中低-高

摩擦系数稳定性差良良良-优优

常温下的耐磨性良良良中中

高温下的耐磨性差良良良-优优机械强度中-高低-中低-中高高

热传导率低-中低中高高

抗振鸣优良中-良差差

抗颤振- 中-良中- -

对偶性优良中-良差差

价格中-高低-中中-良高高

带式中央制动器采用编织材料,它是先用长纤维石棉与铜丝或锌丝的合丝编织成布,再浸以树脂粘合剂经干燥后辊压制成。其挠性好,剪切后可以直接铆到任何半径的制动蹄或制动带上。在100℃~120℃温度下,它具有较高的摩擦系数(f=0.4以上),冲击强度比模压材料高4~5倍。但耐热性差,在200℃~250℃以上即不能承受较高的单位压力,磨损加快。表5-2为不同摩擦材料性能对比。

此次设计综合考虑各种材料,采用性能更好、环保效果更好的半金属材料。摩擦系数为f=0.4

4.5制动轮缸

制动轮缸的缸体由灰铸铁HT250制成。其缸筒为通孔,需镗磨。

4.6制动器间隙的调整方法及相应机构

制动盘与摩擦衬块之间在未制动的状态下应有工作间隙,以保证制动盘能自由转动。一

般来说盘式制动器的制动间隙为0.1mm-0.3mm(单侧0.05mm-0.15mm)。此间隙的存在会导致踏板或手柄的行程损失,因而间隙应尽量的小。考虑到制动过程中摩擦副可能产生热变形和机械变形,因此制动器在冷态下的间隙应有试验确定。本设计制动间隙取为0.1mm。

图4 制动间隙的自调装置

1-制动钳体;2-活塞;3-活塞密封圈

另外,制动器在工作过程中会由于摩擦衬块的磨损而使间隙加大,因此制动器必须设有间隙调整机构。当前,盘式制动器的调整机构已自动化。一般都采用一次调准式间隙自调装置。最简单且常用的结构是在缸体和活塞之间装一个兼起复位和间隙自调作用的带有斜角的橡胶密封圈,制动时密封圈的刃边是在活塞给予的摩擦力的作用下产生弹性变形,与极限摩擦力对应的密封圈变形量即等于设定的制动间隙。当衬块磨损而导致所需的活塞行程增大时,在密封圈达到极限变形之后,活塞可在液压作用下克服密封圈的摩擦力,继续前移到实现完全制动为止。活塞与密封圈之间的相对位移便补偿了这一过量间隙。解除制动后活塞在弹力作用下退回,直到密封圈的变形完全消失为止,这时摩擦块与制动盘之间回复到设定间隙。

结论

本次毕业设计是以轿车奥迪A3的制动系统为研究对象,通过对汽车制动系统的结构和形式进行分析后,对制动系统的前、后制动器,制动管路布置,制动主缸进行了设计及计算,并绘制出了前制动器装配图、三维图、及一些零件图。

为了提高汽车的安全性、稳定性以及舒适性,该款轿车车制动器设计经过理论和实际分析,前后车轮均采用了浮动钳盘式制动器;主缸选用了串联双腔的液压主缸;制动管路采用X型双管路制动系统。由计算可知人力无法满足制动力的要求,所以加装了真空助力器。采用的驻车制动满足国家对汽车驻车坡度的要求,其他相关评价指标也完全符合。总体来看,该商务车制动系统经理论验证基本达到了设计的预期目标。

此次课程设计可以说在某种程度上是一种尝试,通过查阅大量的有关汽车制动系统资料后,使我学到了很多有关制动系统的相关知识,了解了时下一些汽车的制动器类型及原理,在现代各种中高档轿车、商务车领域,盘式制动器有逐渐取代鼓式制动器的趋势,尤其是浮动钳盘式,比如:广本奥德赛、别克陆尊、一汽奔腾等,这也是该设计前后轮均选择浮钳盘式制动器的原因,毕竟盘式制动器相对于鼓式制动器更优越。另外本次设计的轿车属于前驱,前驱和后驱对于制动器如何装配有所不同。总的来说,此次设计对我三年的学习进行了一次复习与检验,为我以后从事汽车行业起到了一定的铺垫作用。

致谢

转眼间,近一学期的课程设计就要结束了,课程设计是专业教学计划中的最后一个教学环节,也是理论联系实际,实践性很强的一个教学环节。通过这样的一个教学环节,一方面培养学生能够独立运用所学的知识与技能解决本专业范围内一项有实际意义的设计制造、科研实验、生产管理等课题;另一方面也是培养学生综合分析问题的能力,独立解决问题的能力,为毕业后参加工作打下良好的基础。

在设计期间遇到了很多具体问题,通过老师和同学们的帮助,这些问题得以即时的解决。特别要感谢祁老师对我的指导,让我学到了知识,掌握了设计的方法,也获得了实践锻炼的机会。在我遇到困难的时候祁老师总是能耐心的帮我解答,并且带我去参观实物,拆装制动器,了解其结构及工作原理,为我能顺利完成毕业设计提供了非常必要的帮助。在此对祁老师的帮助表示最诚挚的谢意。另外感谢在这三年中我的其他任课老师,是你们让我在三年的时间里上升了一个层次。最后感谢我的学校成都大学,是成都大学给了我这个优越的学习环境。

进行了课程设计后,离毕业的日子也就不远了,能够圆满完成毕业设计是我们所有毕业生的心愿,这必将成为大学时代美好的回忆,同时更能带给我们成就感,使自己面对今后的工作时更加有信心。离开校园之际,希望在大学期间帮助过我的每位老师、同学、朋友都能有个美好的明天。

参考文献

【1】王望舒主编. 汽车设计(第四版)北京:机械工业出版社,2000

【2】侯洪生主编. 机械工程图学. 北京:科学出版社,2001

【3】甘永立主编. 几何量公差与检测(第八版). 上海:上海科学技术出版社,2008 【4】数字化手册编委会编. 机械设计手册(软件版)V3.0

【5】陈家瑞主编. 汽车构造(下册). 北京:人民交通出版社,2006

【6】刘惟信编著. 汽车制动系的结构分析与设计计算. 北京:清华大学出版社,2004 【7】余志生主编. 汽车理论(第三版)北京:机械工业出版社,2000

盘式制动器课程设计方案

中北大学 课程设计说明书 学生姓名:学号: 学院(系):机电工程学院 专业:车辆工程 题目:夏利汽车盘式制动器方案设计 综合成绩: 职称: 年月日

目录 一、夏利汽车主要性能参数---------------------4 二、制动器的形式-----------------------------5 三、盘式制动器主要参数的确定-----------------7 四、盘式制动器制动力矩的设计计算-------------9 五、盘式制动器制器的校核计算----------------10 1.前轮制动器制动力矩的校核计算 2.摩擦衬片的磨损特性计算 六、经过计算最终确定后轮制动器的参数--------13 七、设计小结--------------------------------13 八、设计参考资料----------------------------13

轿车前轮制动器设计说明书前言汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。本次课程设计根据任务要求只对夏利汽车盘式制动器方案设计。

一、汽车主要性能参数 主要尺寸和参数: (1)、轴距:L=2405mm (2)、总质量:M=900kg (3)、质心高度:0.65m (4)、车轮半径:165mm (5)、轮辋内径:120mm (6)、附着系数:0.8 (7)、制动力分配比:后制动力/总制动力=0.19 (8)、前轴负荷率:60%;即质心到前后轴距离分别为 L1=L?(1?60%)=962mm L2=L?60%=1443mm (9)、轮胎参数:165/70R13; 轮胎有效半径r e为: 轮胎有效半径=轮辋半径+(名义断面宽度×高宽比) 所以轮胎有效半径r e=(240 2 +165×70%)=235.5mm (10)、制动性能要求:初速度为50KM/h时,制动距离为15m。则 满足制动性能要求的制动减速度由:S=1 3.6(τ2‘+τ2“ 2 )μ0+μ02 25.92 a bmax 计算最大减速度 a bmax,其中μ0=U =50Km/h;S=15m;τ2‘= 0.05s;τ2“=0.2s。经计算得 最大减速度 a bmax≈7.47m s2 ?

盘式制动器说明书

第二章可控自冷盘式制动器 K P Z— / ?? ?? 制动器副数?规格 ?? ?制动盘直径 ?? ?制动 ?? ?盘式 ?? ?可控 ?? ?KPZ型号含义 1.可控盘闸系统的选用型号含义 2. 结构特征与工作原理 2.1 机械系统结构及工作原理 ?? ?1 电动机;2 联轴器;3 牵引体;4 传动轮;5 联轴器;6 垂直轴减速器;7 制动盘;8 弹簧;9 活塞;10 闸瓦; 11 油管 图1 制动装置布置图 自冷盘式可控制动装置主要由制动盘,液压制动器(含活塞、闸瓦、弹簧等),底座,液压站等组成,图1是制动装置在系统中的布置示意图。它主要由制动盘7和液压制动器(8,9,10)等组成。盘式制动装置的制动力是由闸瓦10与制动盘7摩擦而产生的。因此调节闸瓦对制动盘的正压力即可改变制动力。而制动器的正压力N 的大小决定于油压P与弹簧8的作用结果。当机电设备正常工作时,油压P达最大值,此时正压力N为0,并且闸瓦与制动盘间留有1-1.5mm的间隙,即制动器处于松闸状态。当机电设备需要制动时,根据工况和指令情况,电液控制系统将按预定的程序自动减小油压以达到制动要求。 2. 盘式制动器的安装说明: 2.1 盘式制动器主机的安装: 盘式制动装置安装前要准确测定位置及距离。通常制动盘与减速器的某一低速轴相连,也可以直接与驱动轮连接实现各种工作制动。 安装制动器时制动闸座与底座安装必须对中安装。制动盘安装后要求盘面的旋转跳动量≤0.1mm,闸盘与闸瓦的平行度≤0.2mm。盘式制动器在松闸状态下,闸瓦与制动盘的间隙为1~1.5mm;制动时,闸瓦与制动盘工作面的接触面积不应小于80%。

安装于减速机倒数二轴上安装于滚筒轴上 电动机; 2-联轴器; 3-牵引体; 4-传动轮; 5-联轴器; 6-减速器; 7-制动盘; 8, 9, 10-液压制动器; 11-油管 图2 制动装置安装布置示意图 其中制动盘安装分两种情况,1、胀套联接2、键连接 2.2 盘式制动装置的连接方式 胀套联接 KZP自冷盘式可控制动装置胀套联接 胀套示意图 表3 安装尺寸表 和无损伤。在清洗后的胀套结合面上均匀涂一层薄润滑油(不含二硫化钼等极压添加剂),预装到滚筒轴上。把制动盘推移到滚筒轴上,使达到设计规定的位置,然后按胀套拧紧力矩的要求将胀套螺钉拧紧。 拧紧胀套螺钉的方法: (1) 使用扭矩扳手,按对角、交叉的原则均匀的拧紧。 (2) 拧紧螺钉时按以下步骤拧紧: a. 以1/3MAX值拧紧 b. 以2/3MAX值拧紧 c. 以MAX值拧紧 d. 以MAX值检查全部螺钉 安装完毕后,在胀套外漏端面及螺钉头部涂上一层防锈油脂,并进行整体二次灌浆。

毕业设计盘式制动器设计说明书

汽车盘式制动器设计 摘要:本文主要是介绍盘式制动器的分类以及各种盘式制动器的优缺点,对所选车型制动器的选用方案进行了选择,针对盘式制动器做了主要的设计计算,同时分析了汽车在各种附着系数道路上的制动过程,对前后制动力分配系数和同步附着系数、利用附着系数、制动效率等做了计算。在满足制动法规要求及设计原则要求的前提下,提高了汽车的制动性能。 关键词:盘式制动器;制动力分配系数;同步附着系数;利用附着系数;制动效率

Automobile disc brake design Abstract:This paper is mainly the disc brake of the classification and various kinds of disc brake of the advantages and disadvantages are introduced, the selection scheme of the chosen vehicle brake was selected and for disc brake do the main design calculation and analysis of the car in a variety of attachment coefficient road on the braking process of, of braking force distribution coefficient and the synchronous adhesion coefficient, utilization coefficient of adhesion, braking efficiency calculated. Under the premise of meeting the requirements of the braking regulation requirement and design principle and improve the braking performance of automobile. Key words: Disc brake,Braking force distribution,coefficient,Synchronization coefficient,Synchronous adhesion coefficient,The use of adhesion coefficient,Braking efficiency

制动器设计说明书

制动器设计说明书

摘要 制动器可以分两大类,工业制动器和汽车制动器,汽车制动器又分为行车制动器(脚刹)和驻车制动器。在行车过程中,一般都采用行车制动(脚刹),便于在前进的过程中减速停车,不单是使汽车保持不动。若行车制动失灵时才采用驻车制动。当车停稳后,就要使用驻车制动(手刹),防止车辆前滑和后溜。停车后一般除使用驻车制动外,上坡要将档位挂在一档(防止后溜),下坡要将档位挂在倒档(防止前滑)。 使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。制动力矩是设计、选用制动器的依据,其大小由机械的型式和工作要求决定。制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。摩擦材料分金属和非金属两类。前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、橡胶、木材和石棉等。 臂架式盘式制动器是一种新型的主要适用于起重运输机械的制动装置。本论文着重介绍了其特点、关键零部件的选择或设计计算方法、主要性能参数及一些台架试验结果。除此之外还着重介绍了制动臂、松闸器等关键部件的设计参数及注意事项,同时细节方面对于制动器的静力矩也做了详细的计算设计。 Abstract Brakes can be divided into two categories, industrial brakes and automotive bra kes, automotive brake is divided into brake (foot brake) and the parking brake. In the driving process, generally used brake (foot brake), to facilitate the p rocess of deceleration in the forward stop, not just the car to remain intact. If the traffic Zhidongshiling when using the parking brake. When the car comple tely stopped, it has to use the parking brake (hand brake), to prevent the vehi cle front and rear slip slide. After stopping the general addition to the parki ng brake, the uphill hanging in a stall to stall (after the slide to prevent), downhill to hang in the reverse gear (to prevent forward slip.) Mechanical moving parts to stop or slow down the resistance of the moment must be applied as the brake torque. Braking torque is the design, selection based o n the brake, the size of the pattern and work by the mechanical requirements of the decision. Friction material used on brake (brake parts) directly affects t he performance of the braking process, and the main factors affecting the perfo rmance of the working temperature and the temperature rise speed. Friction mate rial should have high and stable friction coefficient and good wear resistance. Metallic and nonmetallic friction materials sub-categories. The former are com monly used cast iron, steel, bronze, and powder metallurgy friction materials, which have leather, rubber, wood and asbestos. Disc brake arm frame is a new major for the braking device handling equipment. This paper focuses on its characteristics, key components of the selection or d esign methods, the main performance parameters and some bench test results. Hig hlights in addition to the brake arm, loose brake components, etc. The key desi gn parameters and considerations, while the details of the static torque for th e brake has also done a detailed calculation of design.

盘式制动器设计

目录 绪论 (3) 一、设计任务书 (3) 二、盘式制动器结构形式简介 ................... 错误!未定义书签。 2.1、盘式制动器的分类...................... 错误!未定义书签。 2.2、盘式制动器的优缺点.................... 错误!未定义书签。 2.3、该车制动器结构的最终选择.............. 错误!未定义书签。 三、制动器的参数和设计 ....................... 错误!未定义书签。 3.1、制动盘直径 ........................... 错误!未定义书签。 3.2、制动盘厚度 ........................... 错误!未定义书签。 3.3、摩擦衬块的内半径和外半径.............. 错误!未定义书签。 3.4、摩擦衬块面积 ......................... 错误!未定义书签。 3.5、制动轮缸压强 ......................... 错误!未定义书签。 3.6、摩擦力的计算和摩擦系数的验算.......... 错误!未定义书签。 3.7、制动力矩的计算和验算.................. 错误!未定义书签。 3.8、驻车制动计算 ......................... 错误!未定义书签。 四、制动器的主要零部件的结构设计 ............. 错误!未定义书签。 4.1、制动盘 ............................... 错误!未定义书签。 4.2、制动钳 ............................... 错误!未定义书签。 4.3、制动块 ............................... 错误!未定义书签。 4.4、摩擦材料 ............................. 错误!未定义书签。

制动器设计-计算说明书

三、课程设计过程 (一)设计制动器的要求: 1、具有良好的制动效能—其评价指标有:制动距离、制动减速度、制动力和制动时间。 2、操纵轻便—即操纵制动系统所需的力不应过大。对于人力液压制动系最大踏板力不大于(500N)(轿车)和700N (货车),踏板行程货车不大于150mm ,轿车不大于120mm 。 3、制动稳定性好—即制动时,前后车轮制动力分配合理,左右车轮上的制动力矩基本相等,汽车不跑偏、不甩尾;磨损后间隙应能调整! 4、制动平顺性好—制动力矩能迅速而平稳的增加,也能迅速而彻底的解除。 5、散热性好—即连续制动好,摩擦片的抗“热衰退”能力要高(指摩擦片抵抗因高温分解变质引起的摩擦系数降低);水湿后恢复能力快。 6、对挂车的制动系,还要求挂车的制动作用略早于主车;挂车自行脱钩时能自动进行应急制动。 (二)制动器设计的计算过程: 设计条件:车重2t,重量分配60%、40%,轮胎型175/75R14,时速70k m/h ,最大刹车距离11m 。 1. 汽车所需制动力矩的计算 根据已知条件,汽车所需制动力矩: M=G/g·j·r k (N ·m) 206 .321j )(v S ?= (m/s 2) 式中:rk — 轮胎最大半径 (m); S — 实际制动距离 (m); v 0 — 制动初速度 (km /h )。 2 17018211 3.6j ??=?= ???? (m/s 2) m=G/g=2000kg 查表可知,r k 取0.300m 。 M=G/g·j ·rk =2000·18·0.300=10800(N·m) 前轮子上的制动器所需提供的制动力矩: M ’=M/2?60%=3240(N·m) 为确保安全起见,取安全系数为1.20,则M ’’=1.20M’=3888(N·m) 2. 制动器主要参数的确定 (1)制动盘的直径D 制动盘直径D 希望尽量大些,这时制动盘的有效半径得以增大,就可以降低制动钳的夹紧力,降低摩擦衬块的单位压力和工作温度。但制动盘直径D 受轮辋直径的限制。通常,制动盘的直径D选择为轮辋直径的70%~79%,而总质量大于2t 的汽车应取其上限。 轮辋名义直径14in=355.6mm 根据布置尺寸需要,制动盘的直径D 取276m m。 验证,276/355.6=77.6%,符合要求。 制动盘材料选用珠光体灰铸铁,其结构形状为礼帽型。制动盘在工作时不仅承受着制动块

(完整版)毕业设计浮钳盘式制动器

原始数据: 整车质量:空载:1550kg ;满载:2000kg 质心位置:a=L 1=1.35m ;b=L 2=1.25m 质心高度:空载:hg=0.95m ;满载:hg=0.85m 轴 距:L=2.6m 轮 距: L 0=1.8m 最高车速:160km/h 车轮工作半径:370mm 轮毂直径:140mm 轮缸直径:54mm 轮 胎:195/60R14 85H 1.同步附着系数的分析 (1)当0φφ<时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力; (2)当0φφ>时:制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去方向稳定性; (3)当0φφ=时:制动时汽车前、后轮同时抱死,是一种稳定工况,但也丧失了转向能力。 分析表明,汽车在同步附着系数为0φ的路面上制动(前、后车轮同时抱死)时,其制动减速度为g qg dt du 0φ==,即0φ=q ,q 为制动强度。而在其他附着系数φ的路面上制动时,达到前轮或后轮即将抱死的制动强度φ

根据相关资料查出轿车≥0φ0.6,故取6.00=φ. 同步附着系数:=0φ0.6 2.确定前后轴制动力矩分配系数β 常用前制动器制动力与汽车总制动力之比来表明分配的比例,称为制动器制动 力分配系数,用β表示,即:u F F u 1 =β,21u u u F F F += 式中,1u F :前制动器制动力;2u F :后制动器制动力;u F :制动器总制动力。 由于已经确定同步附着系数,则分配系数可由下式得到: 根据公式:L h L g 02φβ+= 得:68.06 .285.06.025.1=?+=β 3.制动器制动力矩的确定 为了保证汽车有良好的制动效能,要求合理地确定前,后轮制动器的制动力矩。 根据汽车满载在沥青,混凝土路面上紧急制动到前轮抱死拖滑,计算出后轮制动器的最大制动力矩2M μ 由轮胎与路面附着系数所决定的前后轴最大附着力矩: e g r qh L L G M ?υ)(1max 2-= 式中:?:该车所能遇到的最大附着系数; q :制动强度; e r :车轮有效半径; max 2μM :后轴最大制动力矩;

盘式制动器设计说明书

错误!未找到引用源。盘式制动器设计说明书 一汽车制动系概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。 对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力,统称为制动力。这样的一系列专门装置即成为制动系。 1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。 2 制动系的组成 任何制动系都具有以下四个基本组成部分: (1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中,产生制动能量的部位称为制动能源。 (2)控制装置——包括产生制动动作和控制制动效果的各种部件。 (3)传动装置——包括将制动能量传输到制动器的各个部件。 (4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。 较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 3 制动系的类型 (1)按制动系的功用分类 1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。 2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。 3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系是汽车必须具备的。 4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。 (2)按制动系的制动能源分类 1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。 2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。 3)伺服制动系——兼用人力和发动机动力进行制动的制动系。 按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁等。同时采用两种以上传能方式的制动系,可称为组合式制动系。 4 设计制动系时应满足如下主要要求: 1)具有足够的制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两相指标来评定的;驻坡能力是以汽车在良好路面上能可靠的停驻

盘式制动器设计说明书

盘式制动器设计说明书 一汽车制动系概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。 对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力,统称为制动力。这样的一系列专门装置即成为制动系。 1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。 2 制动系的组成 任何制动系都具有以下四个基本组成部分: (1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中,产生制动能量的部位称为制动能源。 (2)控制装置——包括产生制动动作和控制制动效果的各种部件。 (3)传动装置——包括将制动能量传输到制动器的各个部件。 (4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。 较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 3 制动系的类型 (1)按制动系的功用分类 1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。 2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。 3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系是汽车必须具备的。 4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。 (2)按制动系的制动能源分类 1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。 2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。 3)伺服制动系——兼用人力和发动机动力进行制动的制动系。 按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁等。同时采用两种以上传能方式的制动系,可称为组合式制动系。 4 设计制动系时应满足如下主要要求: 1)具有足够的制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两相指标来评定的;驻坡能力是以汽车在良好路面上能可靠的停驻的最大坡度来评定的。详见GB/T7258-2004

汽车设计课程设计轿车后轮制动器设计

目录 第1章概述 (1) 1.1 鼓式制动器的简介 (1) 1.2鼓式制动器的组成固件 (1) 1.3鼓式制动器的工作原理 (1) 1.4鼓式制动器的产品特性 (2) 1.5设计基本要求和整车性能参数 (2) 第2章鼓式制动器的设计计算 (2) 2.1车辆前后轮制动力的分析 (2) 2.2前、后轮制动力分配系数β的确定 (5) 2.3制动器最大制动力矩 (6) 第3章制动器结构设计与计算 (6) 3.1制动鼓壁厚的确定 (6) 3.2制动鼓式厚度N (6) 3.3动蹄摩擦衬片的包角β和宽度b (7) 3.4P的作用线至制动器中心的距离α (7) 3.5制动蹄支销中心的坐标位置是k与c (8) 3.6摩擦片摩擦系数f (8) 第4章制动器主要零部件的结构设计 (8) 4.1制动鼓 (8) 4.2制动蹄 (8) 4.3制动底板 (9) 4.4制动蹄的支承 (9) 4.5制动轮缸 (9) 4.6制动器间隙 (9) 第5章校核 (10) 5.1制动器的热量和温升的核算 (10) 5.2制动器的摩擦衬片校核 (11) 5.3驻车制动计算 (11)

第1章概述 1.1鼓式制动器的简介 鼓式制动器也叫块式制动器,是靠制动块在制动轮上压紧来实现刹车的。鼓式制动是早期设计的制动系统,其刹车鼓的设计1902年就已经使用在马车上了,直到1920年左右才开始在汽车工业广泛应用。现在鼓式制动器的主流是内张式,它的制动块(刹车蹄)位于制动轮内侧,在刹车的时候制动块向外张开,摩擦制动轮的内侧,达到刹车的目的。近三十年中,鼓式制动器在轿车领域上已经逐步退出让位给盘式制动器。但由于成本比较低,仍然在一些经济类轿车中使用,主要用于制动负荷比较小的后轮和驻车制动。 1.2 鼓式制动器的组成固件 鼓式制动器的旋转元件是制动鼓,固定元件是制动蹄。制动时制动蹄鼓式制动器在促动装置作用下向外旋转,外表面的摩擦片压靠到制动鼓的内圆柱面上,对鼓产生制动摩擦力矩。 凡对蹄端加力使蹄转动的装置统称为制动蹄促动装置,制动蹄促动装置有轮缸、凸轮和楔。 以液压制动轮缸作为制动蹄促动装置的制动器称为轮缸式制动器;以凸轮作为促动装置的制动器称为凸轮式制动器;用楔作为促动装置的制动器称为楔式制动器。 鼓式制动器比较复杂的地方在于,许多鼓式制动器都是自作用的。当制动蹄与鼓发生接触时,会出现某种楔入动作,其效果是借助更大的制动力将制动蹄压入鼓中。楔入动作提供的额外制动力,可让鼓式制动器使用比盘式制动器所用的更小的活塞。但是,由于存在楔入动作,在松开制动器时,必须使制动蹄脱离鼓。这就是需要一些弹簧的原因。弹簧有助于将制动蹄固定到位,并在调节臂驱动之后使它返回。 1.3 鼓式制动器的工作原理 在轿车制动鼓上,一般只有一个轮缸,在制动时轮缸受到来自总泵液力后,轮缸两端活塞会同时顶向左右制动蹄的蹄端,作用力相等。但由于车轮是旋转的,制动鼓作用于制动蹄的压力左右不对称,造成自行增力或自行减力的作用。因此,业内将自行增力的一侧制动蹄称为领蹄,自行减力的一侧制动蹄称为从蹄,领蹄的摩擦力矩是从蹄的2~2.5倍,两制动蹄摩擦衬片的磨损程度也就不一样。 为了保持良好的制动效率,制动蹄与制动鼓之间要有一个最佳间隙值。随着摩擦衬片磨损,制动蹄与制动鼓之间的间隙增大,需要有一个调整间隙的机构。过去的鼓式制动器间隙需要人工调整,用塞尺调整间隙。现在轿车鼓式制动器都是采用自动调整方式,摩擦衬片磨损后会自动调整与制动鼓间隙。当间隙增大时,制动蹄推出量超过一定范围时,调整间隙机构会将调整杆(棘爪)拉到与调整齿下一个齿接合的位置,从而增加连杆的长度,

盘式制动器毕业设计说明书

盘式制动器毕业设计说明书 目录 摘要................................................................ I Abstract ............................................................. II 1 绪论. (1) 1.1 制动器的作用 (1) 1.2 制动器的种类 (1) 1.3 制动器的组成 (1) 1.4 对制动器的要求 (3) 1.5 制动器的新发展 (4) 2 制动器的结构形式及选择 (4) 2.1 制动器的种类 (4) 2.2 盘式制动器的结构型式及选择 (6) 3 汽车整车基本参数计算 (8) 4 制动系的主要参数及其选择 (9) 4.1 制动力与制动力分配系数 (9) 4.2 同步附着系数 (9) 4.3 制动强度和附着系数利用率 (10) 4.4 制动器最大制动力矩 (10) 4.5 制动器因数 (11) 5 盘式制动器的设计 (11) 5.1 盘式制动器的结构参数与摩擦系数的确定 (11) 5.2 制动衬块的设计计算 (12) 5.3 摩擦衬块磨损特性的计算 (13) 5.4 制动器主要零件的结构设计 (14) 6 制动驱动机构的结构型式选择与设计计算 (15) 6.1 制动驱动机构的结构型式选择 (15) 6.2制动管路的选择 (15) 6.3 液压制动驱动机构的设计计算 (16) 7 盘式制动器的优化设计 (18)

7.2 解决优化设计问题的一般步骤及几何解释 (18) 7.3 常用优化方法 (19) 7.4 制动系参数的优化 (19) 8 结论 (21) 致谢 (22) 参考文献 (23) 附录 (24)

汽车盘式制动器故障成因及维修工艺分析

课程设计(论文)任务书

成绩评定表

目录 一、盘式制动器的工作原理和构造 1.1 定钳盘式制动器-----------------------------------------------1 1.2 浮钳盘式制动器-----------------------------------------------1 1.3 全盘式制动器-------------------------------------------------2 二、关于盘式刹车优缺点 2.1盘式刹车优点-------------------------------------------------2 2.2盘式刹车缺点-------------------------------------------------3 2.3刹车故障的判断-----------------------------------------------3 三、盘式制动器的常见故障及排除 3.1油管故障-----------------------------------------------------4 3.2制动盘故障-制动力不足疲软----------------------------------5 3.3制动钳故障-制动后跑偏----------------------------------------6 3.4制动分泵故障-制动发卡----------------------------------------7 3.5分泵故障-加力泵喷出制动液------------------------------------8 四、分析 分析各个故障----------------------------------------------------9 五、参考文献

汽车液压盘式制动器设计研究

2009年第10期 科技经济市场 1汽车工业的发展 在人类历史发展的过程中,“衣”、“食”、“住”、“行”始终是人类生存的四大需要,是人类发展、进步的最重要的基本条件。而在“四大需要”中,“行”或“交通”的变化,在人类社会发展过程中 是最突出的,它对社会进步的影响也是最大的。 汽车是作为一种交通工具而产生的,但发展到今天已经不能把它理解为单纯的“行”的手段。因为“汽车化”改变了当代世界的面貌,它已经成为当代物质文明与进步象征及文明形态的一种代表。中国汽车工业的振兴也必然会使中国的面貌焕然一新,在繁荣经济,促进四个现代化的实现,提高中国人民的生活水平,推动社会与地球上近四分之一的人类进步方面,发挥巨大的作用。 2汽车零部件的工业现状及水平 在汽车行驶过程中,其零部件承受的载荷的大小和性质受着许多因素的影响。汽车的可靠性与在其使用期间作用在其零部件上的实际载荷有关。由于汽车的使用条件非常复杂,时间也不固定,有影响且变化的因素很多,致使在零件中的应力值会在很大的范围内变动,甚至应力性质也会改变。因此,确定汽车零部件所承受的实际载荷要比确定其他机械产品的载荷复杂很 多。而引起零件产生应力的力有些是恒定的(例如重力、 零件装配时产生的预紧力或过盈力),有些是不定的(例如汽车起步时和制动时产生的力,零件制造误差引起的力,发动机工作工况改变而引起转矩及力的改变,行驶阻力引起的力等等)。在设计中为了校核零件的静强度,首先就要确定其危险断面及其所承受的最大载荷;为了校核零件的疲劳强度,除了可按相关文献给出的计算方法进行疲劳强度的计算校核外,还常常以其实测的载荷谱为基础编制加载语并按加载谱的加载程序加载,在疲劳试验台上进行试验验证。可见,在设计中为了进行零部件的强度设计,首先要弄清其载荷工况、破坏机理,以便采取相应的强度计算方法进行有效的设计。 3汽车设计技术的发展 汽车设计技术在近百年中也经历了由经验设计发展到以科学实验和技术分析为基础的设计阶段,进而自60年代中期在设计中引入电子计算机后又形成了计算机辅助设计(CAD)等新方法,并使设计逐步实现半自动化和自动化。参阅相关权威资料了解到汽车设计的直接目的有以下三点: (1)提高汽车的技术水平,使其承载能力更强,使用性能更好,更安全,更可靠,更经济,更舒适,更机动,更方便,动力性更好,污染更少; (2)改善汽车的外观造型,特别对轿车来讲改善车身艺术效果,使其更美观、更科学、更新颖、更有时代感,往往是车型设计 的重要目的,也是提高市场竞争力的重要手段; (3)改善汽车的经济效果,调整汽车在产品系列中的档次,以便改善其市场竞争地位并获得更大的经济效益。 电子计算机的出现和在工程设计中的推广应用,使汽车设 计技术飞跃发展,设计过程完全改观。 汽车结构参数及性能参数等的优化选择与匹配、 零部件的强度核算与寿命预测、产品有关方面的模拟计算或仿真分析、车身的美工造型等等设计方案的选择及定型、设计图纸的绘制,均可在计算机上进行。 4盘式制动器设计、计算分析模块4.1概述 在轿车和中小型客车的设计中,一般其结构形式为前轮制动器采用浮钳式制动器,后轮制动器采用领从蹄自动定义浮销式鼓式制动器。而对总重大于20KN-40KN 的客车而言,前轮也有采用固定钳式盘式制动器,后轮采用自增力自动定义浮销式鼓式制动器。 在根据汽车的整车参数分析了汽车的制动力、制动力矩之后,就可以根据具体的制动器结构形式作相关设计、计算、分析等工作。 4.2基本原理(1)确定柱式制动器制动钳体主要结构参数的计算方法:在初步计算制动器制动钳体结构参数时,盘式制动器效能因数BF 的值可定为0.8。根据汽车前轮所需的最大理论制动力矩,初步选取制动钳体缸孔直径D 1可由下面的公式算出: M μ1=(P 1-P 10)Awc 1ηa .BF 1r 1……………1-1式中:Awc 1—盘式制动器制动钳体缸也的工作面积:(mm 2) BF 1—盘式制动器制动效能因数;P 10—前制动管路的开启压力;(M pa 或N/mm 2)ηa —主缸以后的机械效率;r l —制动盘有效半径;(m)P 1—前制动管压;(M pa 或N/mm 2)(2)确定盘式制动器计算用的最大制动力矩: 由于考虑到汽车实际制动时的最大输出制动力矩与理论值受很多因素影响而发生改变,如制动衬片与制动盘接触时不一定非常均匀使加制动力、制动衬片的摩擦系数受温度变化而发生改变等一些因素。这样用于计算的最大制动力矩应由下面公式算出: M 'u 1max=1.2M u 1max …………………1-2式中:M 'u 1max —用于计算的最大制动力矩(N.m ) M u 1max —单个前轮制动器理论最大制动力矩(N.m ) 作者简介:王亮,在读硕士,现工作在淮阴工学院,承担汽车服务工程专业的课程讲授工作。 汽车液压盘式制动器设计研究 王 亮关荣 (淮阴工学院,江苏淮安223001) 摘 要:本文主要是研究汽车液压盘式制动器设计计算程序, 通过运用V isual B asic 6.0软件和A ccess 数据库实现制动系的计算机辅助设计,基于制动器中的零部件数目较多,在掌握了汽车工业发展的历史和现状、 汽车设计技术理论知识构成以及汽车零部件的工业现状及水平的基础上,选取具有代表性的汽车液压盘式制动器设计、计算分析模块。从模块功能的概述、基本原理以及程序设计流程三个方面进行完整的模块设计说明。从而实现汽车液压盘式制动器设计的自动化,提升整车的安全性能。 关键词: 制动系;程序库;盘式制动器;模块技术平台 趤趽

乘用车盘式制动器设计(课程设计必备)

提供全套毕业论文,各专业都有 盘式制动器设计

目录 摘要................................................. 错误!未定义书签。 1 绪论.............................................. 错误!未定义书签。 1.1研究意义...................................... 错误!未定义书签。 1.2国内外发展现状................................ 错误!未定义书签。 1.3制动系统应具有的功能和应满足的要求 (3) 1.4课题任务 (3) 2 制动器方案的选择.................................. 错误!未定义书签。 2.1方案选择的依据................................ 错误!未定义书签。 2.2方案的选定.................................... 错误!未定义书签。 2.2.1制动器选择.............................. 错误!未定义书签。 2.2.2前、后制动器的选择 (4) 2.3行车制动器的标准和法规 (6) 3 制动器的主要参数及其选择 (7) 3.1 制动力与制动力分配系数 (7) 3.2 同步附着系数计算 (11) 3.3 制动器最大制动力矩 (14) 3.4 利用附着系数和制动效率 (15) 3.4.1利用附着系数 (16) 3.4.2制动效率E f、E r (17) 3.5制动器制动性能核算 (18) 4 制动器主要零件的设计计算 (18) 4.1制动盘主要参数的确定 (18) 4.1.1制动盘 (18) 4.1.2制动盘直径D (19) 4.1.3制动盘厚度h (19) 4.2摩擦衬块主要参数的确定 (20) 4.2.1 摩擦衬块内半径R1和外半径R2 (20) 4.2.2 摩擦衬块有效半径 (20) 4.2.3 摩擦衬块的面积和磨损特性计算 (21) 4.2.4 摩擦衬块参数设计核算 (23) 4.3液压制动驱动机构的设计计算 (24) 4.3.1制动轮缸直径d与工作容积V (24) 4.3.2制动主缸直径与工作容积 (25) 4.3.3制动踏板力 (26) 4.3.4踏板工作行程S (26) P 5 制动器主要零件的结构设计 (26) 5.1制动钳 (26)

盘式制动器设计开题报告(参考资料)

山东建筑大学毕业论文开题报告 班级:车辆122 姓名:张传治 论文题目车用盘式制动器设计 一、选题背景和意义: 在汽车的整体结构中,制动系统是保证行车安全极其重要的一个组成部分,因为制动系统既可以使行驶中的汽车减速,又要保证驻车时汽车在原地停留不得移动。由此可见,汽车的制动系统对于汽车的行驶安全、驻车安全和运输经济效益有十分重要的作用。 随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,汽车制动系的工作可靠性日益重要。因此,许多制动法规对制动系提出了许多详细而具体的要求。所以本设计具有一定的实际应用意义。 在国内外的盘式制动器研究中,早期侧重于试验研究其摩擦特性,随着用户对其制动性能和使用寿命要求的不断提高,有关其基础理论与应用方面的研究也在深入进行,如摩擦机理的研究、制动噪声的分析,这些都为盘式制动器结构的改进和优化提供了理论依据,另外现代汽车盘式制动器的研究和开发应注重的问题主要是,提高制动器的制动效能、防止尘污和锈蚀,减轻重量、简化结构、降低成本,电子报警和智能化系统的发展,实用性更强与寿命更长。 目前,在中高级轿车上前后轮都已经采用了盘式制动器。不过,时下还有不少经济型轿车采用的还不完全是盘式制动器,而是前盘后鼓式混合制动器(即前轮采用盘式制动器、后轮采用鼓式制动器),这主要是出于成本上的考虑,同时也是因为轿车在紧急制动时,负荷前移,对前轮制动的要求比较高,一般来说前轮用盘式制动器就够了。在货车上,盘式制动器也有被采用,但离完全取代鼓式制动器还有相当长的一段距离,比如说大部分轿车、微型车、轻卡、SUV 及皮卡等采用前盘后鼓式混合制动器。但随着高速公路等级的提高,乘车档次的上升,特别是国家安全法规的强制实施, 前后轮都用盘式制动器将是一种趋势。 此次设计是针对轿车前轮盘式制动器进行研究,根据查询的车型制动器相关资料、规范和技术标准,对制动器进行结构分析、设计计算等,最后利用AutoCAD 制图软件、UG三维设计软件完成图形的制作。通过所选车型的参数、结合实验

汽车盘式制动器设计

汽车盘式制动器设计 第一章绪论 1.1制动系统设计的意义 汽车是现代交通工具中用的最多最普遍也是最方便的交通运输工具。汽车制动系是汽车底盘上的一个重要系统。它是制约汽车运动的装置。而制动器又是制动系统中直接作用制约汽车运动的一个关键装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的发展和车流密度的日益增大人们对安全性、可靠性要求越来越高为保证人身和车辆安全、必须为汽车配备十分可靠的制动系统。 通过查阅相关的资料运用专业基础理论和专业知识进行部件的设计计算和结构设计使其达到以下要求:具有足够的制动效能以保证汽车的安全性;同时在材料的选择上应尽量采用对人体无害的材料[1]。 1.2 制动器的发展历程 制动器分车轮制动器和中央制动器两种,后者制动传动轴或变速器输出轴。由于中央制动器在应急制动时容易造成传动轴超载,所以现在大多数重型车辆在后轮制动器上附加手动机械式驱动机构使之兼起驻车制动和应急制动时用[2]。 从耗散能量的方式分制动器有摩擦式液力式电磁式和涡流式。 迄今为止人们已经把全息照相、激光多普勒分析、有限元分析以及试验模态技术等引入到制动器的振动和噪声研究中并取得了大量的成果。全息照相技术向人们展示了制动过程中振动的真实形态;有限元及模态分析的统一使得建立与实际相符合的振动的数学模型成为了可能这些都对制动系统的设计和分析提供了便利。 在对系统进行分析、综合和预测时需要给出系统的动态特性。此时实际系统可能尚未完成或者处十经济性、安全性等因素的考虑无法通过试验进行验证往往需要借助于系统仿真来实现这一要求。所谓系统仿真是指利用计算机来运行仿真

相关文档