文档库 最新最全的文档下载
当前位置:文档库 › 三角函数应用

三角函数应用

三角函数应用
三角函数应用

三角函数应用

一.填空题(共5小题)

1.(2013?厦门)如图,在平面直角坐标系中,点O是原点,点B(0,),点A在第一象限且AB⊥BO,点E

是线段AO的中点,点M在线段AB上.若点B和点E关于直线OM对称,则点M的坐标是(_________,_________).

2.(2013?攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,则tan∠DBE的值是_________.

3.(2012?山西)如图,在平面直角坐标系中,矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,OC=2,则点B的坐标是_________.

4.(2012?铁岭)如图,在东西方向的海岸线上有A、B两个港口,甲货船从A港沿北偏东60°的方向以4海里/小时的速度出发,同时乙货船从B港沿西北方向出发,2小时后相遇在点P处,问乙货船每小时航行_________海里.

5.(2011?衢州)在一自助夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么,由此可知,B、C两地相距_________m.

二.解答题(共6小题)

6.(2013?遵义)我市某中学在创建“特色校园”的活动中,将本校的办学理念做成宣传牌(AB),放置在教学楼的顶部(如图所示).小明在操场上的点D处,用1米高的测角仪CD,从点C测得宣传牌的底部B的仰角为37°,然后向教学楼正方向走了4米到达点F处,又从点E测得宣传牌的顶部A的仰角为45°.已知教学楼高BM=17米,且点A,B,M在同一直线上,求宣传牌AB的高度(结果精确到0.1米,参考数据:≈1.73,sin37°≈0.60,cos37°≈0.81,tan37°≈0.75).

7.(2013?珠海)一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A 的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值:)

8.(2013?张家界)国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:=1.732,=1.414)

9.(2013?安徽)如图,防洪大堤的横截面是梯形ABCD,其中AD∥BC,α=60°,汛期来临前对其进行了加固,改造后的背水面坡角β=45°.若原坡长AB=20m,求改造后的坡长AE.(结果保留根号)

10.(2013?湛江)如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛A在渔政船的北偏西30°的方向上,随后渔政船以80海里/小时的速度向北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在渔政船的北偏西60°的方向上,求此时渔政船距钓鱼岛A的距离AB.(结果保留小数点后一位,其中=1.732)

11.(2013?烟台)如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°方向的C地,有一艘渔船遇险,要求马上前去救援.此时C地位于北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里.求A、C两地之间的距离(参考数据:≈1.41,≈1.73,≈2.45,结果精确到0.1)

2013年10月陈永的初中数学组卷

参考答案与试题解析

一.填空题(共5小题)

1.(2013?厦门)如图,在平面直角坐标系中,点O是原点,点B(0,),点A在第一象限且AB⊥BO,点E

是线段AO的中点,点M在线段AB上.若点B和点E关于直线OM对称,则点M的坐标是(1,).

考点:轴对称的性质;坐标与图形性质;解直角三角形.

专题:压轴题.

分析:根据点B的坐标求出OB的长,再连接ME,根据轴对称的性质可得OB=OE,再求出AO的长度,然后利用勾股定理列式求出AB的长,利用∠A的余弦值列式求出AM的长度,再求出BM

的长,然后写出点M的坐标即可.

解答:解:∵点B(0,),

∴OB=,

连接ME,

∵点B和点E关于直线OM对称,

∴OB=OE=,

∵点E是线段AO的中点,

∴AO=2OE=2,

根据勾股定理,AB===3,

tan∠A==,

即=,

解得AM=2,

∴BM=AB﹣AM=3﹣2=1,

∴点M的坐标是(1,).

故答案为:(1,).

点评:本题考查了轴对称的性质,坐标与图形性质,解直角三角形,熟练掌握轴对称的性质并作出辅助线构造出直角三角形是解题的关键.

2.(2013?攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,则tan∠DBE的值是2.

考点:菱形的性质;解直角三角形.

分析:求出AD=AB,设AD=AB=5x,AE=3x,则5x﹣3x=4,求出x,得出AD=10,AE=6,在Rt△ADE中,由勾股定理求出DE=8,在Rt△BDE中得出tan∠DBE=,代入求出即可,

解答:解:∵四边形ABCD是菱形,

∴AD=AB,

∵cosA=,BE=4,DE⊥AB,

∴设AD=AB=5x,AE=3x,

则5x﹣3x=4,

x=2,

即AD=10,AE=6,

在Rt△ADE中,由勾股定理得:DE==8,

在Rt△BDE中,tan∠DBE===2,

故答案为:2.

点评:本题考查了菱形的性质,勾股定理,解直角三角形的应用,关键是求出DE的长.

3.(2012?山西)如图,在平面直角坐标系中,矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,OC=2,则点B的坐标是(2,).

考点:矩形的性质;坐标与图形性质;解直角三角形.

专题:压轴题.

分析:过点B作DE⊥OE于E,有OC=2,边OA与x轴正半轴的夹角为30°,可求出AC的长,根据矩形的性质可得OB的长,进而求出BE,OE的长,从而求出点B的坐标.

解答:解:过点B作BE⊥OE于E,

∵矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,

∴∠CAO=30°,

∴AC=4,

∴OB=AC=4,

∴OE=2,

∴BE=2,

∴则点B的坐标是(2,),

故答案为:(2,).

点评:本题考查了矩形的性质,直角三角形的性质以及勾股定理的运用和解直角三角形的有关知识,解题的关键是作高线得到点的坐标的绝对值的长度,

4.(2012?铁岭)如图,在东西方向的海岸线上有A、B两个港口,甲货船从A港沿北偏东60°的方向以4海里/小时的速度出发,同时乙货船从B港沿西北方向出发,2小时后相遇在点P处,问乙货船每小时航行2海里.

考点:解直角三角形的应用-方向角问题.

分析:作PC⊥AB于点C,首先在直角三角形APC中求得PC,然后在直角三角形中求得PB的长,最后除以时间即可得到乙货轮航行的速度.

解答:解:作PC⊥AB于点C,

∵甲货船从A港沿北偏东60°的方向以4海里/小时的速度出发,

∴∠PAC=30°,AP=4×2=8,

∴PC=AP×sin30°=8×=4.

∵乙货船从B港沿西北方向出发,

∴∠PBC=45°,

∴PB=PC÷=4,

∴乙货船每小时航行4÷2=2海里/小时,

故答案为2.

点评:本题考查了解直角三角形的应用,解题的关键是从纷杂的实际问题中整理出直角三角形并利用解直角三角形的知识求解.

5.(2011?衢州)在一自助夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么,由此可知,B、C两地相距200m.

考点:解直角三角形的应用-方向角问题.

专题:压轴题.

分析:首先把实际问题转化为直角三角形问题来解决,由已知可推出∠ABC=90°+30°=120°,

∠BAC=90°﹣60°=30°,再由三角形内角和定理得∠ACB=30°,从而求出B、C两地的距离.

解答:解:由已知得:

∠ABC=90°+30°=120°,

∠BAC=90°﹣60°=30°,

∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣120°﹣30°=30°,

∴∠ACB=∠BAC,

∴BC=AB=200.

故答案为:200.

点评:此题考查的知识点是解直角三角形的应用﹣方向角问题,关键是实际问题转化为直角三角形问题,此题还运用了三角形内角和定理.

二.解答题(共6小题)

6.(2013?遵义)我市某中学在创建“特色校园”的活动中,将本校的办学理念做成宣传牌(AB),放置在教学楼的顶部(如图所示).小明在操场上的点D处,用1米高的测角仪CD,从点C测得宣传牌的底部B的仰角为37°,然后向教学楼正方向走了4米到达点F处,又从点E测得宣传牌的顶部A的仰角为45°.已知教学楼高BM=17米,且点A,B,M在同一直线上,求宣传牌AB的高度(结果精确到0.1米,参考数据:≈1.73,sin37°≈0.60,cos37°≈0.81,tan37°≈0.75).

考点:解直角三角形的应用-仰角俯角问题.

分析:首先过点C作CN⊥AM于点N,则点C,E,N在同一直线上,设AB=x米,则AN=x+(17﹣1)=x+16(米),则在Rt△AEN中,∠AEN=45°,可得EN=AN=x+16,在Rt△BCN中,

∠BCN=37°,BM=17,可得tan∠BCN==0.75,则可得方程:,解此方程即可求

得答案.

解答:解:过点C作CN⊥AM于点N,则点C,E,N在同一直线上,

设AB=x米,则AN=x+(17﹣1)=x+16(米),

在Rt△AEN中,∠AEN=45°,

∴EN=AN=x+16,

在Rt△BCN中,∠BCN=37°,BM=17,

∴tan∠BCN==0.75,

∴,

解得:x=1≈1.3.

经检验:x=1是原分式方程的解.

答:宣传牌AB的高度约为1.3m.

点评:此题考查了仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.

7.(2013?珠海)一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A 的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值:)

考点:解直角三角形的应用-仰角俯角问题.

分析:首先利用三角形的外角的性质求得∠BAD的度数,得到AD的长度,然后在直角△ADC中,利用三角函数即可求解.

解答:解:∵∠ADC=∠B+∠BAD,

∴∠BAD=∠ADC﹣∠B=60°﹣30°=30°,

∴∠B=∠BAD,

∴AD=BD=62(米).

在直角△ACD中,AC=AD?sin∠ADC=62×=31≈31×1.7=52.7≈53(米).

答:小岛的高度约为53米.

点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.

8.(2013?张家界)国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:=1.732,=1.414)

考点:解直角三角形的应用-仰角俯角问题.

分析:设CF=x,在Rt△ACF和Rt△BCF中,分别用CF表示AC、BC的长度,然后根

据AC﹣BC=1200,求得x的值,用h﹣x即可求得最高海拔.

解答:解:设CF=x,

在Rt△ACF和Rt△BCF中,

∵∠BAF=30°,∠CBF=45°,

∴BC=CF=x,

=tan30°,

即AC=x,

∵AC﹣BC=1200,

∴x﹣x=1200,

解得:x=600(+1),

则DF=h﹣x=2001﹣600(+1)≈362(米).

答:钓鱼岛的最高海拔高度约362米.

点评:本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形求

出AC、BC的长度,难度一般.

9.(2013?安徽)如图,防洪大堤的横截面是梯形ABCD,其中AD∥BC,α=60°,汛期来临前对其进行了加固,改造后的背水面坡角β=45°.若原坡长AB=20m,求改造后的坡长AE.(结果保留根号)

考点:解直角三角形的应用-坡度坡角问题.

专题:压轴题.

分析:过点A作AF⊥BC于点F,在Rt△ABF中求出AF,然后在Rt△AEF中求出AE即可.

解答:解:过点A作AF⊥BC于点F,

在Rt△ABF中,∠ABF=∠α=60°,

则AF=ABsin60°=10m,

在Rt△AEF中,∠E=∠β=45°,

则AE==10m.

答:改造后的坡长AE为10m.

点评:本题考查了坡度坡角的知识,解答本题的关键是构造直角三角形,利用三角函数值求相关线段的长度,难度一般.

10.(2013?湛江)如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛A在渔政船的北偏西30°的方向上,随后渔政船以80海里/小时的速度向北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在渔政船的北偏西60°的方向上,求此时渔政船距钓鱼岛A的距离AB.(结果保留小数点后一位,其中=1.732)

考点:解直角三角形的应用-方向角问题.

分析:此题可先由速度和时间求出BC的距离,再由各方向角关系确定△ABC为直角三角形,解此直角三角形即可求得结果.

解答:

解:由题意得,BC=80×=40(海里),

由图示可知,∠ACB=60°,

根据平行线的性质得,∠CBF=30°,

则∠ABC=180°﹣60°﹣30°=90°,

∴=tan60°,

则AB=?BC=40≈69.3(海里).

答:此时渔政船距钓鱼岛A的距离AB约为69.3海里.

点评:本题主要考查了解直角三角形的应用,涉及了方向角、三角形的内角和定理,含30度角的直角三角形等知识点,关键是构造直角三角形解直角三角形.

11.(2013?烟台)如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°方向的C地,有一艘渔船遇险,要求马上前去救援.此时C地位于北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里.求A、C两地之间的距离(参考数据:≈1.41,≈1.73,≈2.45,结果精确到0.1)

考点:解直角三角形的应用-方向角问题.

分析:过点B作BD⊥CA交CA延长线于点D,根据题意可得∠ACB和∠ABC的度数,然后根据三角形外角定理求出∠DAB的度数,已知AB=12海里,可求出BD、AD的长度,在

Rt△CBD中,解直角三角形求出CD的长度,继而可求出A、C之间的距离.

解答:解:过点B作BD⊥CA交CA延长线于点D,

由题意得,∠ACB=60°﹣30°=30°,

∠ABC=75°﹣60°=15°,

∴∠DAB=∠DBA=45°,

在Rt△ABD中,AB=12,∠DAB=45°,

∴BD=AD=ABcos45°=6,

在Rt△CBD中,CD==6,

∴AC=6﹣6≈6.2(海里).

答:A、C两地之间的距离约为6.2海里.

点评:本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度,难度一般.

三角函数公式大全81739

三角函数公式大全三角函数定义 函数关系 倒数关系: 商数关系: 平方关系: . 诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系:

公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系: 记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数

名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限: 其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变 根据教的范围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限 记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终 边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数 值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得 到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终 边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的 三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负 值.这样,就得到了诱导公式四. 诱导公式的应用:运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角 的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项 数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

知识讲解 三角函数的性质及其应用 提高

三角函数的性质及其编稿:李霞审稿:孙永钊 【考纲要求】 1、了解函数sin()yAx????的物理意义;能画出sin()yAx????的图象,了解参数 A,?,?对函数图象变化的影响. 2、了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【知识络】 【考点梳理】 考点一、函数sin()yAx????(0A?,0??)的图象的作法 1.五点作图法: 作sin()yAx????的简图时,常常用五点法,五点的取法是设tx????,由t取0、 2?、?、32?、2?来求相应的x值及对应的y值,再描点作图。 2.图象变换法: (1)振幅变换:把sinyx?的图象上各点的纵坐标伸长(A>1)或缩短(00)或向右(?<0)平行移动|?|个单位,得到sin()yAx???的图象; (3)周期变换:把sin()yAx???的图象上各点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的?1倍(纵坐标不变),可得到sin()yAx????的图象. (4)若要作sin()yAxb????,可将sin()yAx???的图象向上(0)b?或向下(0)b? 平移b个单位,可得到sin()yAxb????的图象.记忆方法仍为“左加右减,上正下负,纵伸(A>1)横缩(ω>1)”。 要点诠释: 由sinyx?的图象利用图象变换作函数sin()yAx????的图象时要特别注意:当周期

变换和相位 sin()yAx???? sin 图象的作法三角函的质其 图象的性 变换的先后顺序不同时,原图象沿x轴的伸缩量有区别. 考点二、sin()yAx????的解析式 1.sin()yAx????的解析式 sin()yAx????(0A?, 0??),[0,)x???表示一个振动量时,A叫做振幅,2T??? 叫做周期,12fT????叫做频率,x???叫做相位,0x?时的相位?称为初相. 2.根据图象求sin()yAx????的解析式 求法为待定系数法,突破口是找准五点法中的第一零点(,0)???. 求解步骤是先由图象求出A与T,再由2T???算出?,然后将第一零点代入0x????求出?. 要点诠释:若图象未标明第一零点,就只能找特殊点用待定系数法计算. 考点三、函数 sin()yAx????(0A?,0??)的性质 1. 定义域: xR?,值域:y∈[-A,A]. 2.周期性: 2T??? 3. 奇偶性:2k?????时为偶函数;k???时为奇函数,kZ?. 4.单调性:单调增区间 :[????????????22,22kk] , kZ? 单调减区间:[????????????232,22kk] , kZ? 5. 对称性:对称中心(????k,0),kZ?;对称轴

三角函数在实际生活中的应用

三角函数在实际生活中的应用 目录 摘要:1 关键词:3 1引言3 1.1三角函数起源3 2三角函数的基础知识4 2.1下列是关于三角函数的诱导公式5 2.2两角和、差的正弦、余弦、正切公式7 2.3二倍角的正弦、余弦、正切公式7 3.三角函数与生活7 3.1火箭飞升问题7 3.2电缆铺设问题8 3.3救生员营救问题9 3.4足球射门问题10 3.5食品包装问题10 3.6营救区域规划问题11 3.7住宅问题12 3.8最值问题13 4 总结14 Abstract

Trigonometric function in the course of historical development of continuous improvement, has formula, rich thoughts, flexible, permeability is strong and so on。The characteristic is not only an important part of scientific research, or in mathematics learning to key and difficult. In a word it in teaching and other fields has important role. In this paper, we will make a brief discussion about the application of trigonometric functions in solving practical problems. Keywords:mathematics trigonometric function Application of trigonometric function 摘要: 三角函数在历史的发展过程中不断完善,具有公式多、思想丰富、变化灵活、渗透性强等特点,不仅是科学研究的重要组成部分,还是数学学习中得重点难点,

最全高中数学三角函数公式

定义式 ) ct 函数关系 倒数关系:;; 商数关系:;. 平方关系:;;.诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作 锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四. 诱导公式的应用: 运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

三角函数公式知识点及应用

三角函数公式 ? 三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。 三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。 基本信息 ?中文名称 三角函数 ?外文名称

相关概念

余切:cotangent(简写cot)['k?u't?nd??nt] 正割:secant(简写sec)['si:k?nt] 余割:cosecant(简写csc)['kau'si:k?nt] 正矢:versine(简写versin)['v?:sain] 余矢:versed cosine(简写vercos)['v?:s?:d][k?usain] 直角三角函数 直角三角函数(∠α是锐角) 三角关系 倒数关系:cotα*tanα=1 商的关系:sinα/cosα=tanα 平方关系:sin2α+cos2α=1 三角规律 三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。 三角函数本质: 根据三角函数定义推导公式根据下图,有sinθ=y/ r;cosθ=x/r; tanθ=y/x; cotθ=x/y 深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来, 比如以推导 sin(A+B) = sinAcosB+cosAsinB 为例: 推导: 首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A'OD。

三角函数在实际中的应用

专题3 锐角三角函数在实际中的应用 解题技巧: 1.如果图形不是直角三角形,一定要考虑添加适当的辅助线(作平行线或作垂线),构造直角三角形,然后选择恰当的三角函数(正弦、余弦或正切); 2.在求线段长度的时候,如果不能直接求出长度,可以考虑列方程求值。 一仰角、俯角问题 1.某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上). (1)求小敏到旗杆的距离DF.(结果保留根号) (2)求旗杆EF的高度.(结果保留整数,参考数据:≈1.4,≈1.7) 2.如图所示,某古代文物被探明埋于地下的A处,由于点A上方有一些管道,考古人员不能垂直向下挖掘,他们被允许从B处或C处挖掘,从B处挖掘时,最短路线BA与地面所成的锐角是56°,从C处挖掘时,最短路线CA与地面所成的锐角是30°,且BC=20m,若考古人员最终从B处挖掘,求挖掘的最短距离.(参考数据:sin56°=0.83,tan56°≈1.48, ≈1.73,结果保留整数)

3.(2014潍坊)如图,某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是45°,然后沿平行于AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是60°,求两海岛间的距离AB. 4.一电线杆PQ立在山坡上,从地面的点A看,测得杆顶端点A的仰角为45°,向前走6m 到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°, (1)求∠BPQ的度数; (2)求该电线杆PQ的高度.(结果精确到1m) 5.如图,为了开发利用海洋资源,某勘测飞机测量一岛屿两端A、B的距离,飞机以距海平面垂直同一高度飞行,在点C处测得端点A的俯角为60°,然后沿着平行于AB的方向水平飞行了500米,在点D测得端点B的俯角为45°,已知岛屿两端A、B的距离541.91 米,求飞机飞行的高度.(结果精确到1米,参考数据:≈1.73,≈1.41)

三角函数定义及其三角函数公式大全

三角函数定义及其三角函数公式汇总 1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。 2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ A 90 B 90 ∠ - ? = ∠ ? = ∠ + ∠ 得 由B A 邻边 A C A 90 B 90 ∠ - ? = ∠ ? = ∠ + ∠ 得 由B A

6、正弦、余弦的增减性: 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、余切的增减性: 当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。依据: ①边的关系:2 22c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注 意:尽量避免使用中间数据和除法) 2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做坡度( 坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。 sin (α+β)=sinαcosβ+cosαsinβ sin (α-β)=sinαcosβ-cosαsinβ cos (α+β)=cosαcosβ-s inαsinβ cos (α-β)=cosαcosβ+sinαsinβ 三角函数公式汇总1 :i h l =h l α

三角函数公式大全

三角函数公式大全 三角函数定义 锐角三角函数任意角三角函数 图形 直 任 角三角形 意角三角函数 正弦(sin) 余弦(cos) 正切(tan 或tg) 余切(cot 或ctg) 正割(sec) 余割(csc) 函数关系 倒数关系: 商数关系: 平方关系: . 诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等:

公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限: 其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变 根据教的围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限 记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终 边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数 值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得 到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终 边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的 三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负 值.这样,就得到了诱导公式四. 诱导公式的应用:运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角 的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要项数要 最少,次数要最低,函数名最少,分母能最简,易求值最好。

三角函数应用专题

1 B C l D 三角函数应用专题 例1:某人在D 处测得大厦BC 的仰角∠BDC 为30°,沿DA 方向行20米至A 处,测得仰角∠BAC 为45°,求此大厦的高度BC 。 变式训练1:如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路. 现新修一条路AC 到公路l . 小明测量出∠ACD =30o,∠ABD =45o,BC =50m . 请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1m ;参考数据:414.12≈,732.13≈). 变式训练2:如图所示,小明家住在32米高的A 楼里,小丽家住在B 楼里,B 楼坐落在A 楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30o . (1)如果A B ,两楼相距3A 楼落在B 楼上的影子有多长? (2)如果A 楼的影子刚好不落.在B 楼上,那么两楼的距离应是多少米? (结果保留根号) 例2:图为平地上一幢建筑物与铁塔图,右图为其示意图.建筑物AB 与铁塔CD 都垂直于底面,BD=30m ,在A 点测得D 点的俯角为45°,测得C 点的仰角为60°.求铁塔CD 的高度 A 楼 B 楼 C E G F H D 30°

2 330 m A B C D E α ︶ 30° A B F E P 45° 变式训练1:小明想测量塔BC 的高度.他在楼底A 处测得塔顶B 的仰角为60o ;爬到楼顶D 处测得大楼AD 的高度为18米,同时测得塔顶B 的仰角为30o ,求塔BC 的高度. 变式训练2:某高为5.48 m 的建筑物CD 与一铁塔AB 的水平距离BC 为330 m ,一测绘员在建筑物顶点D 测得塔顶A 的仰角a 为30°. 求铁塔AB 高.(精确到0.1 m ). 变式训练3、如图,热气球的探测器显示,从热气球A 看一栋大楼顶部B 的俯角为30°,看这栋大楼底部C 的俯角为60°,热气球A 的高度为240米,求这栋大楼的高度. 例3:一个半径为20海里的暗礁群中央P 处建有一个灯塔,一艘货轮由东向西航行,第一次在A 处观测此灯塔在北偏西60°方向,航行了20海里后到B ,灯塔在北偏西30°方向,如图. 问货轮沿原方向航行有无危险? 变式训练1:如图所示,A 、B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向 上,已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内, 请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:

三角函数公式应用及原理解说

三角函数是数学中常见的一类关于 角度的函数。三角函数将 直角三角形 的内角和它的两个边 的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三 角形和圆等几何形状的性质时有重要作用,也是研究 周期性现象的基础数学工具 ⑴。在数学 分析中,三角函数也被定义为 无穷级数 或特定微分方程的解,允许它们的取值扩展到任意实 数值,甚至是复数值。 常见的三角函数包括正弦函数(sin )、余弦函数(cos )和正切函数(tan 或者tg )。在航 海学、测绘学、工程学等其他学科中,还会用到如 余切函数、正割函数、余割函数、正矢 函数、半正矢函数 等其他的三角函数。 不同的三角函数之间的关系可以通过几何直观或者计 算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方 面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数, 叫做双曲函数[2] 。 常见的双曲函数也被称为双曲 正弦函数、双曲余弦函数等等。 直角三角形中的定义 右直供二闻张中仅苕期 伙水左画90至力间的录)二角藝的宦义[叩?络匡F 锐甬机可 以滋出一牛直集二角形,庚再其申的一个内芻是和设連个三甬殛孔9旳对匹需也和得世长度 g afliSE 是更迎弓痔辺的毗面冋百?: &抽余弦是澤边与斜辺的乂道;| ft H 制正切灵对迥与糾盅柏"■宜 伽 e ¥ b &的余切是嘟边2舛边的比■包co tfi = - q &闌正甥足斜辺弓押辺的比朗 ; &的余割是斜边与对边的比值!宀诃二2 a 标系中的奩义【姗< iftH 吟F 】是平面直角H 标菇咕的一牛知声是欖轴正向程时计疑術I 励 方向驱aeiJS, F = C +扌A 礎序 順点涮柜离?刚砒林三 JB 曲隸定 义 为【口 12#可?帅7血划腹圧駆定三三角血也雪主意知:也LL 却宦汩頤左定>朮 自盍買的时僕成立-比如逋当■ = &的时僂.世和二自漲由盍乩 遞说朗对丹幢 正花;B 口 0—1.正切; -■耀h

初中三角函数应用

(2)如图 ,坡面的铅垂高度(h )和水平宽度(l )的比叫做坡面的坡度(或坡比),记作i ,即h i l = .坡度通常写成1∶m 的形式,如i =1∶6.坡面与水平面的夹角叫做坡角,记作,有h i l ==tan .显然,坡度越大,坡角α就越大,坡面就越陡. 方位角:指南或指北的方向线与目标方向线所成的小于90°角的为方位角. 考点一:锐角三角函数的概念 例1 如图,点A (t ,3)在第一象限,OA 与x 轴所夹的锐角为α,tan α= 3 2 ,则t 的值是( ) A .1 B . 1.5 C .2 D .3 2、将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△A ′B ′C ′,使点B ′与C 重合,连结A ′B ,则tan ∠A ′BC ′的值为 铅垂线 视线 视线 水平线 仰角 俯角 α i =h :l h l

A、1 4 B、 1 3 C、 1 2 D、1 考点二:特殊角的三角函数值 例2 在△ABC中,∠B=45°,cosA=1 2 ,则∠C的度数是__________ . 1、已知2cos(15)30 α+?-=,则锐角α为 A、15° B、30° C、45° D、60° 2、在Rt△ABC中,∠C=90°,BC=5,AC=15,则∠A= A、90° B、60° C、45° D、30° 考点三:化斜三角形为直角三角形 例3 在△ABC中,∠A=30°,∠B=45°,AC=23,则AB的长为 ______. . 1、如图,在△ABC中,已知AB=1,AC=2,∠B=45°,则BC的长为 A、3 B、 26 2 + C、 62 2 - D、6

高考冲刺 三角函数公式及应用(提高)

高考冲刺 三角函数公式及应用 编稿:孙永钊 审稿:张林娟 【高考展望】 高考对三角恒等式部分的考查仍会是中低档题,无论是小题还是大题中出现都是较容易的.主要有三种可能: (1)以小题形式直接考查:利用两角和与差以及二倍角公式求值、化简; (2)以小题形式与三角函数、向量、解三角形等知识相综合考查两角和与差以及二倍角等公式; (3)以解答题形式与三角函数、向量、解三角形、函数等知识相综合考查,对三角恒等变换的综合应用也可能与解三角形一起用于分析解决实际问题的应用问题,主要考查综合运用数学知识分析问题和解决问题的能力 复习时,要注重对问题中角、函数名及其整体结构的分析,提高公式选择的恰当性,还要重视相关的思想方法,如数形结合思想、特值法、构造法、等价转换法等的总结和应用,这有利于缩短运算程序,提高解题效率 【知识升华】 1.三角函数的化简与求值、证明的难点在于众多三角公式的灵活运用和解题突破口的合理选择,要认真分析所给式子的整体结构,分析各个三角函数及角的相互关系是灵活选用公式的基础,是恰当寻找解题思维起点的关键所在 (1)化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来; (2)求值,要注意象限角的范围、三角函数值的符号之间联系与影响,较难的问题需要根据上三角函数值进一步缩小角的范围 (3)证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等 2.对于三角变换公式务必要知道其推导思路,从而清晰地“看出”它们之间的联系,它们的变化形式.如 tan()(1tan tan )tan tan αβαβαβ+-=+, 2 21cos 1cos cos ,sin 2 222 α ααα +-= = 等.从而可做到:正用、逆用、变形用自如使用各公式;三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备。 3.三角函数恒等变形的基本策。 ①常值代换:特别是用“1”的代换,如1=cos 2 θ+sin 2 θ=tanx 2cotx=tan45°等。 ②项的分拆与角的配凑。如分拆项:222222sin 2cos (sin cos )cos 1cos x x x x x x +=++=+;

九年级三角函数的应用

九年级三角函数的应用 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

解直角三角形 (一)定义:叫解直角三角形 (一)解法分类:(1)已知一边和一个锐角解直角三角形; (2)已知两边解直角三角形. (1)如图,四边形ABCD中,∠A=600,AB⊥BC, AD⊥DC,AB=200,CD=100,求AD的 长。 A D B C (2)如图,四边形ABCD中,∠D=1200,BA⊥DA, AC⊥DC,AB=503,CD=303,求AD的 长。 C D B A (二)解直角三角形的应用:关键是把实际问题转化为数学问题来解决 例1. 一个小孩荡秋千,秋千的链子的长度为2米,当秋千两边摆动时,摆角恰好为60度,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差。 (结果精确到0.01米,参考数据:2≈,3≈,5≈) 例2:如图,水库大坝的截面是梯形ABCD,坝顶AD=6m,坡长CD=82m,坡底 BC=30m,∠ADC=135° (1)求∠ABC的大小; (2)如果坝长100m,那么建筑这个大坝要多少土石料 (参考数据:tan280≈,sin300=,cos600=) A D B C 例3:如图,小明用一块有一个锐角为30的直角三角板测量树高,已知小明离树的距 离为4米,DE为1.7米,那么这棵树大约有多高(精确到0.1米)

例4.某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C 测得教学楼AB 的顶点A 的仰角为30°,然后向教学楼前进60米到达点D ,又测得点A 的仰角为45°。请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值) 练习: 1.如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点、C 点的仰角 分别为52°和35°,则广告牌的高度BC 为多少米(精确到0.1米). (sin35°≈,cos35°≈,tan35°≈; sin52°≈,cos52°≈,tan52°≈ 2.在学习实践科学发展观的活动中,某单位在如图8所示的办公楼迎街的墙面上垂挂一长为30米的宣传条幅AE ,张明同学站在离办公楼的地面C 处测得条幅顶端A 的仰角为50°,测得条幅底端E 的仰角为30°. 问张明同学是在离该单位办公楼水平距离 多远的地方进行测量(精确到整数米) (参考数据:sin50°≈,cos50°≈, tan50°≈, sin30°=,cos30°≈,tan30°≈) 4.如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水 平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为多少米.(参考数据:2≈,3≈) 5.如图,在小山的西侧A 处有一热气球,以30米/分钟的速度沿着与垂直方向所成夹角为30°的方向升空,40分钟后到达C 处,这时热气球上的人发现,在A 处的A B C D 6米 52° 35°

三角函数应用举例

课题: §1.2.1解三角形应用举例 民和高级中学刘永宏 [教学目标] 知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语 过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正 情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 [教学重点] 实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解结合实际测量工具,解决生活中的测量高度问题 [教学难点] 根据题意建立数学模型,画出示意图,能观察较复杂的图形,从中找到解决问题的关键条件

Ⅱ.讲授新课 (1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角, 通过建立数学模型来求解 例1、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=? 51,∠ACB=? 75。求A、B 两点的距离(精确到0.1m) 启发提问1:?ABC中,根据已知的边和对应角,运用哪个定理比较适当? 启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。 例2、如图,A、B 两点都在河的对岸(不可到达),设计分析:这是一道关于测量从一个可到达的 点到一个不可到达的点之间的距离的问 题,题目条件告诉了边AB的对角,AC为 已知边,再根据三角形的内角和定理很容 易根据两个已知角算出AC的对角,应用 正弦定理算出AB边。 解:根据正弦定理,得 ACB AB ∠ sin = ABC AC ∠ sin AB = ABC ACB AC ∠ ∠ sin sin= ABC ACB ∠ ∠ sin sin 55= ) 75 51 180 sin( 75 sin 55 ? -? -? ?= ? ? 54 sin 75 sin 55≈ 65.7(m) 答:A、B两点间的距离为65.7米 变式练习:两灯塔A、B与海洋观察站C 的距离都等于a km,灯塔A在观察站C的 北偏东30?,灯塔B在观察站C南偏东60?, 则A、B之间的距离为多少? 解略:2a km 解:测量者可以在河岸边选定两点C、D, 测得CD=a,并且在C、D两点分别测得 ∠BCA=α, 老师指导学生 画图,建立数学 模型。 学会构建 数学模型,要学 会审题及根据 题意画方位图, 要懂得从所给 的背景资料中 进行加工、抽取 主要因素,进行 适当的简化。 可见,在研究三 角形时,灵活根 据两个定理可 以寻找到多种 解决问题的方 案,但有些过程 较繁复,如何找 到最优的方法, 最主要的还是 分析两个定理

三角函数图象及应用

函数y=A sin(ωx+φ)的图象及应用1.y=A sin(ωx+φ)的有关概念 2. 如下表所示.

3.函数 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)作函数y =sin(x -π6)在一个周期内的图象时,确定的五点是(0,0),(π 2,1),(π,0),(3π2,- 1),(2π,0)这五个点.( × ) (2)将函数y =3sin 2x 的图象左移π4个单位长度后所得图象的解析式是y =3sin(2x +π 4).( × ) (3)函数y =sin(x -π4)的图象是由y =sin(x +π4)的图象向右移π 2个单位长度得到的.( √ ) (4)函数y =sin(-2x )的递减区间是(-3π4-k π,-π 4-k π),k ∈Z .( × ) (5)函数f (x )=sin 2 x 的最小正周期和最小值分别为π,0.( √ ) (6)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为 T 2 .( √ )

1.(2014·四川)为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点( ) A .向左平行移动1 2个单位长度 B .向右平行移动1 2个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 答案 A 解析 y =sin 2x 的图象向左平移12个单位长度得到函数y =sin 2(x +1 2)的图象,即函数y = sin(2x +1)的图象. 2.(2013·四川)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π 2)的部分图象如图 所示,则ω,φ的值分别是( ) A .2,-π 3 B .2,-π 6 C .4,-π 6 D .4,π 3 答案 A

三角函数应用同步练习(含答案)

三角函数的应用同步练习(含答案) 1、三角函数可以作为描述现实世界中__周期_______现象的一种数学模型. 2、|sin |y x =是以____π________为周期的波浪型曲线. 3、设()y f t =是某港口水的深度关于时间t (时)的函数,其中024t ≤≤,下表是该港口某一 经长期观察,函数()y f t =的图象可以近似地看成函数sin()y k A t ω?=++的图象. 根据上述数据,函数()y f t =的解析式为( A ) A .123sin ,[0,24]6t y t π=+∈ B .123sin( ),[0,24]6t y t ππ=++∈ C .123sin ,[0,24]12t y t π=+∈ D .123sin(),[0,24]122 t y t ππ =++∈ 4、从高出海面hm 的小岛A 处看正东方向有一只船B ,俯角为30看正南方向的一船C 的俯角为45,则此时两船间的距离为( A ). A .2hm B C D . 5、受日月引力,海水会发生涨落,这种现象叫做潮汐。在通常情况下,船在涨潮时驶进航 道,靠近船坞;卸货后落潮时返回海洋,某港口水的深度y (米)是时间,240(≤≤t t 单位:时)的函数,记作)(t f y =,下面是该港口在某季节每天水深的数据: ⑴根据以上数据,求出函数)(t f y =近似表达式。 ⑵一般情况下,船舶航行时,船底离海底的距离为5m 或5m 以上时认为是安全的(船舶停靠时,船底只需不碰海底即可),某船吃水深度(航底离水面的距离)为6.5米,如果该船想在同一天内安全进出港, 问它至多能在港内停留多长时间(忽略进出港所需的时间)? 解析:⑴由表中数据知:12)39(2=-?=T ∴6122ππω== ,即k t A x f +=6 sin )(π 又∵当t=0时,0)(=x f 及t=3时,13)(max =x f ∴?? ?=+=1310k A k ,∴? ??==310 A k 。 ∴所求函数表达式为).240(106 sin 3≤≤+=t t y π

三角函数公式应用大全

三角函数定义 把角度θ作为自变量,在直角坐标系里画个半径为1的圆(单位圆),然后角的一边与X轴重合,顶点放在圆心,另一边作为一个射线,肯定与单位圆相交于一点。这点的坐标为(x,y)。 sin(θ)=y; cos(θ)=x; tan(θ)=y/x; 三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A = 2tanA/(1-tan2 A) Sin2A=2SinA?CosA Cos2A = Cos2 A--Sin2 A=2Cos2A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)3;

cos3A = 4(cosA)3 -3cosA tan3a = tan a ? tan(π/3+a)? tan(π/3-a) 半角公式 sin(A/2) = √{(1--cosA)/2} cos(A/2) = √{(1+cosA)/2} tan(A/2) = √{(1--cosA)/(1+cosA)} cot(A/2) = √{(1+cosA)/(1-cosA)} ? tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA) 和差化积 sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB 积化和差 sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sin(a) cos(-a) = cos(a) sin(π/2-a) = cos(a) cos(π/2-a) = sin(a) sin(π/2+a) = cos(a) cos(π/2+a) = -sin(a) sin(π-a) = sin(a) cos(π-a) = -cos(a) sin(π+a) = -sin(a) cos(π+a) = -cos(a) tgA=tanA = sinA/cosA

45三角函数模型的应用

§4.5 三角函数模型的应用 1.如果某种变化着的现象具有周期性,那么它就可以借助____________来描述. 2.三角函数作为描述现实世界中________现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥着十分重要的作用.具体的,我们可以利用搜集到的数据,作出相应的“散点图”,通过观察散点图并进行____________而获得具体的函数模型,最后利用这个函数模型来解决相应的实际问题. 3.y =||sin x 是以______为周期的波浪形曲线. 4.太阳高度角θ、楼高h 0与此时楼房在地面的投影长h 之间有如下关系:________________. 自查自纠: 1.三角函数 2.周期 函数拟合 3.π 4.h 0=h tan θ 已知某人的血压满足函数解析式f (t )=24sin160πt +110.其中f (t ) 为血压(mmHg),t 为时间(min),则此人每分钟心跳的次数为( ) A .60 B .70 C .80 D .90

解:由题意可得f =1T =160π 2π =80.所以此人每分钟心跳的次数为80.故选C. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α 的四个等腰三角形及其底边构成的正方形所组成,该八边形的面积为( ) A .2sin α-2cos α+2 B .sin α-3cos α+3 C .3sin α-3cos α+1 D .2sin α-cos α+1 解:四个等腰三角形的面积之和为4×1 2×1×1×sin α=2sin α.再由余弦定理可得正方形的边长为 12 +12 -2×1×1×cos α=2-2cos α,故正方形的面积为2-2cos α,所以所求八边形的面积为2sin α-2cos α+2.故选A.

三角函数的二倍角公式及应用

三角函数的二倍角公式及应用 一. 考点要求 1、 熟记二倍角的正弦、余弦、正切公式,并能灵活应用; 2、 领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美 3、 公式应用的方法与技巧。 二、公式再现; 1、二倍角公式; sin2a= 2sinacosa 。 cos2a =22cos sin αα- = 2 2cos 1 α-= 21sin α- tan2a= 2 2tan 1tan αα - 2、降幂公式; 2 2cos 1sin , 22cos 1cos 2 2 α αα α-= += 三;闯关训练 A 、类型一 公式逆用 逆用公式,换个角度豁然开朗,逆过来看茅塞顿开,这种在原有基础上的变通是创新意识的体现; 1、求下列各式的值 ();??cos15sin15 1 ()8 s i n 8 c o s 22 2 π π - () ? -?5.22tan 15.22tan 32 ; ()15.22cos 242 -? B 、、类型二----公式正用 从题设条件出发,顺着问题的线索,正用三角公式,通过对信息的感

知、加工、转换,运用已知条件和推算手段逐步达到目的。 2、已知(),5 3sin - =-απ求α 2cos 的值。 3、已知? ? ? ??∈-=ππααα,2,sin 2sin ,求αtan 的值。 C 、、类型三----化简 ()()()2 4 4 41sin cos ;2cos sin a a θθ +-、 四.能力提升; 1, 已知,128,5 48cos παπα <<- =求4 tan ,4 cos ,4 sin α α α 的值 2、已知,2 4,1352sin π απα<<= 求ααα4tan ,4cos ,4sin 的值。 3、化简 ()() 111sin cos cos 2;2; 1tan 1tan x x x θ θ - -+ 4. x x - 5. 求值:(1)0000sin13cos17cos13sin 17+ (2) 00 1tan 751tan 75 +- (3)2 2 cos sin 8 8 π π - 6.已知a ,β都是锐角,cosa=17 ,cos ()αβ+=1114 -,求cos β的值。 7、 已知tan()3,tan()5αβαβ+=-=求tan2a 及tan 2β的值。 8、求值000 tan 70tan 1070tan 10 -- 9、.已知函数2cos cos x x x +,求函数f(x)的最小正周期及单调 递增区间。 五;高考链接

相关文档