文档库 最新最全的文档下载
当前位置:文档库 › 指数函数及其性质题型及解析

指数函数及其性质题型及解析

指数函数及其性质题型及解析
指数函数及其性质题型及解析

指数函数及其性质题型及解析

1.下列函数中,是指数函数的是()

①y=(-2)x②y=()x③y=x2 ④y=x-1⑤y=5x+1⑥y=x4⑦y=3x⑧y=﹣2?3x ⑨y=πx⑩y=(-3)x

分析:根据指数函数y=a x(a>0且a≠1)的定义进行判断即可.

解:根据指数函数y=a x(a>0且a≠1)的定义,得;

①中y=(﹣2)x底数﹣2<0,不是指数函数,②中y=是指数函数,③,④都是幂函数,不是指数函数;

⑤y=5x+1不是指数函数;⑥y=x4是幂函数,不是指数函数;⑦y=3x是指数函数;⑧y=﹣2?3x不是指数函数.

⑨满足指数函数的定义,故正确;⑩﹣3<0,不是指数函数,故错误.

2.为了得到函数y=2x﹣3﹣1的图象,只需把函数y=2x上所有点()

A.向右平移3个单位长度,再向下平移1个单位长度 B.向左平移3个单位长度,再向下平移1个单位长度C.向右平移3个单位长度,再向上平移1个单位长度 D.向左平移3个单位长度,再向上平移1个单位长度分析:函数图象的平移问题:在x上的变化符合“左加右减”,而在y上的变化符合“上加下减”.

解:函数图象的平移问题:在x上的变化符合“左加右减”,而在y上的变化符合“上加下减”.把函数y=2x 的图象向右平移3个单位长度得到函数y=2x﹣3的图象,再将所得图象再向下平移1个单位长度,得到函数y=2x﹣3﹣1的图象,故选A

3.若指数函数的图象经过点(2/3,4),求该函数的解析式及f(﹣1/2)的值

分析:设出指数函数的解析式,利用函数图象经过点的坐标求出函数解析式,再计算f(﹣1/2)的值

解:设指数函数y=f(x)=a x(a>0且a≠1),且函数的图象经过点(2/3,4),∴=4,解得a=8;

∴该函数的解析式为y=f(x)=8x,∴f(﹣)===

4.①若函数y=(3a﹣1)x为指数函数,求a的取值范围

分析:由函数y=(3a﹣1)x为指数函数,知,由此能求出a的取值范围;根据指数函数的定义可得

求解即可

解:∵函数y=(3a﹣1)x为指数函数,∴,解得a>,且a,∴a的取值范围为(,)∪(,+∞).

②函数y=(2a2﹣3a+2)a x是指数函数,求a的取值

解:若函数y=(2a2﹣3a+2)a x是指数函数,则解得:a=

5.已知x>0,指数函数y=(a2﹣8)x的值恒大于1,求实数a的取值范围

分析:利用指数函数的性质,可知其底数a2﹣8>1,解之即得实数a的取值范围

解:因为x>0,指数函数y=(a2﹣8)x的值大于1恒成立,∴a2﹣8>1,即a2>9,解得a>3或a<﹣3.

∴实数a的取值范围是(﹣∞,﹣3)∪(3,+∞)

6.已知指数函数f(x)=(a﹣1)x.(1)若f(x)在R上是增函数,求a的取值范围(2)若f(x)是R上的减函数,求a的取值范围

分析:根据指数函数的图象和性质,即可得到答案.欲使得指数函数f(x)=(a﹣1)x是R上的增函数,只须其底数大于1即可,从而求得a的取值范围.欲使得指数函数f(x)=(a﹣1)x是R上的减函数,只须其底数小于1即可,从而求得a的取值范围

解:(1)指数函数f(x)=(a﹣1)x在R上是增函数,∴a﹣1>1,即a>2,故a的取值范围是(2,+∞)(2)指数函数f(x)=(a﹣1)x在R上是减函数,∴0<a﹣1<1,即1<a<2,故a的取值范围是(1,2)7.在同一坐标系作出下列函数的图象,并指出它们与指数函数y=2x的图象的关系

(1)y=2x+1与y=2x+2;(2)y=2x﹣1与y=2x﹣2;(3)y=2x﹣1与y=2x+1.

分析:(1)y=2x+1的图象由函数y=2x的图象向左平移1单位得到;y=2x+2的图象由函数y=2x的图象向左平移2单位得到;(2)y=2x﹣1的图象由函数y=2x的图象向右平移1个单位得到;y=2x﹣2的图象由函数y=2x的图象向右平移

2个单位得到;(3)y=2x﹣1的图象由函数y=2x的图象向下平移1个单位得到;y=2x+1的图象由函数y=2x的图象向上平移1个单位得到.

解:y=2x+1与y=2x+2的图象如图,y=2x﹣1与y=2x﹣2的图象如图,y=2x﹣1与y=2x+1的图象如图

(1)y=2x+1的图象由函数y=2x的图象向左平移1单位得到;y=2x+2的图象由函数y=2x的图象向左平移2单位得到;(2)y=2x﹣1的图象由函数y=2x的图象向右平移1个单位得到;y=2x﹣2的图象由函数y=2x的图象向右平移2个单位得到;

(3)y=2x﹣1的图象由函数y=2x的图象向下平移1个单位得到;y=2x+1的图象由函数y=2x的图象向上平移1个单位得到.

8.指数函数y=a x y=b x y=c x y=d x在同一坐标系中图象如图,求a、b、c、d大小关系

分析:比较指数函数的底数的大小,根据函数图象的单调性可知c>1,d>1,0<a<1,0<b<1,然后再比较c,d的大小,a,b的大小.

解:由函数的图象可知,c>d>1>a>b>0

9.比较大小①0.70.8,0.80.7②30.8与30.7 ③0.70.1与0.7﹣0.1

分析:先分析底数与1的关系,进而确定对应函数的单调性,再比较两个式子指数的大小,由指数函数y=0.7x 为单调递减函数可得,0.70.8<0.70.7,由幂函数y=x0.7为增函数可得,0.70.7<0.80.7,,从而可得

解:①由指数函数y=0.7x为单调递减函数可得,0.70.8<0.70.7,由幂函数y=x0.7为增函数可得,0.70.7<0.80.7,所以,0,70.8<0.70.7<0.80.7②∵3>1,∴y=3x为增函数,又∵0.8>0.7,∴30.8>30.7③∵0<0.7<1,∴y=0.7x为减函数,又∵0.1>﹣0.1.∴0.70.1<0.7﹣0.1.

10.解关于x的不等式(1)>34(2)a2x+1≥a x﹣5

分析:(1)直接由指数函数的单调性化指数不等式为一元二次不等式求解;(2)对a分类讨论,然后由指数函数的单调性化指数不等式为一元一次不等式求解.

解:(1)由>34,得x2﹣3x>4,解得:x<﹣1或x>4.∴不等式>34的解集为(﹣∞,﹣1)

∪(4,+∞);

(2)当0<a<1时,由a2x+1≥a x﹣5,得2x+1≤x﹣5,解得x≤﹣6;当a>1时,由a2x+1≥a x﹣5,得2x+1≥x﹣5,解得x≥﹣6.∴当0<a<1时,原不等式的解集为(﹣∞,﹣6];当a>1时,原不等式的解集为[6,+∞)11.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.按照上述材料中的1%的增长率,从2000年起,x年后我国的人口将达到2000

年的多少?x年后的人口是2000年人口的多少倍?

解:设经过x年我国人口将达到y亿人,则y=13(1+1%)x(亿人),y÷13=(1+1%)x(倍)

高一数学指数函数知识点及练习题

2.1.1指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次 当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数 时,0a ≥. n a =;当n a =;当n (0)|| (0) a a a a a ≥?==?-∈且1)n >.0的正分数指数幂等于0.② 正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0 的负分数指 数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ 2.1.2指数函数及其性质 指数函数练习

1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .31243)3(-=- C .4 343 3)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)(+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.函数2 2)2 1(++-=x x y 得单调递增区间是 ( ) A .]2 1,1[- B .]1,(--∞ C .),2[+∞ D .]2,2 1 [ 10.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数

指数函数经典例题和课后习题

指数函数及其基本性质 指数函数的定义 一般地,函数()10≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R . 问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如2 1 ,2= -=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,x a 无意义) (3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定0>a 且 1≠a . 指数函数的图像及性质 函数值的分布情况如下:

指数函数平移问题(引导学生作图理解) 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系(作图略), ⑴y =1 2+x 与y =2 2+x . ⑵y =12 -x 与y =2 2 -x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象; 向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象; 向下平移a 个单位得到f (x )-a 的图象.

指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12-=x y ; (2)|| 2()3 x y =; (3)1241++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练

指数函数练习题

$ 指数与指数函数练习题 姓名 学号 (一)指数 1、化简[32)5(-]4 3的结果为 ( ) A .5 B .5 C .-5 D .-5 2、将322-化为分数指数幂的形式为 ( ) A .212- B .3 12- C .2 12- - D .6 52- 3.333 4)2 1 ()21() 2()2(---+-+----的值 ( ) ) A 4 3 7 B 8 C -24 D -8 4(a, b 为正数)的结果是_________. 5、3 21 41()6437 ---+-=__________. 6、)3 1 ()3)((65 613 1212132b a b a b a ÷-=__________。 (二)指数函数 一.选择题: 1. 函数x y 24-= 的定义域为 ( ) "

A ),2(+∞ B (]2,∞- C (]2,0 D [)+∞,1 2. 下列函数中,在),(+∞-∞上单调递增的是 ( ) A ||x y = B 2 y x = C 3x y = D x y 5.0= 3.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个)。经过3个小时,这种细菌由1个可繁殖成( ) 511.A 个 512.B 个 1023.C 个 1024.D 个 4.在统一平面直角坐标系中,函数ax x f =)(与x a x g =)(的图像可能是 ( ) 5.设d c b a ,,,都是不等于1的正数,x x x x d y c y b y a y ====,,,在同一坐标系中的图像如图所示,则 d c b a ,,,的大小顺序是 ( ) d c b a A <<<. c d b a B <<<. c d a b C <<<. d c a b D <<<. | 6.函数0.(12 >+=-a a y x 且)1≠a 的图像必经过点 )1,0.(A )1,1.(B )0,2.(C )2,2.(D 7 .若01<<-x ,那么下列各不等式成立的是 ( ) x x x A 2.022.<<- x x x B -<<22.02. x x x C 222.0.<<- x x x D 2.022.<<- 8. 函数x a x f )1()(2 -=在R 上是减函数,则a 的取值范围是 ( ) 1.>a A 2.

指数函数典型例题详细解析汇报

实用标准 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围)

【例2】(基础题)指数函数y=a x,y=b x,y=c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b 解选(c),在x轴上任取一点(x,0),则得b<a<1<d<c.

【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6 解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859=====

《 指数函数及其性质》测试题大全

《指数函数及其性质》测试题大全 一、选择题 1.(2012广东文改编)函数的定义域为( ). A. B. C. D. 考查目的:考查函数的定义域和指数函数的性质. 答案:B. 解析:要使函数有意义,必须且,解得函数的定义域为. 2.函数的值域是( ). A. B. C. D. 考查目的:考查函数的值域和指数函数的性质. 答案:D. 解析:要使函数有意义,必须,即.又∵,∴,∴的值域为. 3.(2012北京文改编)函数与函数图像的交点个数为( ). A.0 B.1 C. 2 D.3 考查目的:考查指数函数、一次函数的图像和性质. 答案:B. 解析:在同一个直角坐标系中,分别画出函数与函数的图像,观察这两个函数的图像可得,它们的交点个数只有1个. 二、填空题 4.当且时,函数的图象一定经过点 .

考查目的:指数函数的图像及平移后过定点的性质. 答案:(1,4). 解析:∵指数函数经过点(0,1),函数的图像由的图像向右平移1个单位所得,∴函数的图像经过点(1,1),再把函数的图像向上平移3个单位得到函数的图像,∴函数的图像一定经过点(1,4). 5.已知集合,,则 . 考查目的:指数函数的单调性及集合的基本运算. 答案:. 解析:∵,∴,∴,∴. 6.设在R上为减函数,则实数的取值范围是 . 考查目的:考查指数函数、分段函数的单调性和数形结合思想. 答案: 解析:在时为减函数,则,在时为减函数,则,此时显然恒成立.综上所述,实数的取值范围为. 三、解答题 7.已知指数函数(且)的图象经过点(3,),求,,的值. 考查目的:考查指数函数的定义与性质. 答案:. 解析:由函数(且)的图象经过点(3,)得,即,∴.再把0,1,3分别代入得,.

(完整word版)指数函数题型归纳

指数函数及其性质应用 1.指数函数概念 叫做指数函数,其中是自变量,函数的定义域为. 一般地,函数 2. 函数 名称 指数函数 定义函数且叫做指数函数 图象 定义域 值域 过定点图象过定点,即当时,. 奇偶性非奇非偶 单调性在上是增函数在上是减函数 函数值的 变化情况 变化对图 象的影响 在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针 方向看图象,逐渐减小.

指数函数题型训练 题型一 比较两个值的大小 1、“同底不同指”型 (1)21 51- ? ?? ?? 3 251?? ? ?? (2) 2.51.7 3 1.7 (3)0.8 14?? ? ?? 1.8 12?? ??? (4) 0.5 a ()0.6 0,1a a a >≠ 归纳: 2、“同指不同底”型 (1)5 6 311?? ? ?? 5 6 833?? ? ?? (2)9 2 4 归纳: 3、“不同底不同指”型 (1)0.3 1.7 3.1 0.9 (2) 2.5 1.7 30.7 (3)0.1 0.8 - 0.2 9 - (4)b a (01)a b a b <<< (5) 1 23-?? ? ?? 13 3 归纳: 综合类:(1)已知232()3 a =,132()3 b =,232 ()5c =则a 、b 、c 的大小关系为 (2)如果0m <,则2m a =,1 ()2 m b =,0.2m c =则a 、b 、c 的大小关系为 题型二 过定点问题 1、函数33x y a -=+恒过定点 2、函数()150,1x y a a a +=->≠图像必过定点,这个定点是 3、已知对不同的a 值,函数()()120,1x f x a a a -=+>≠的图像恒过定点P ,则P 点的坐标 是 归纳: 题型三 解指数函数不等式 1、2212 2≤?? ? ??-x 2、 8 21()33 x x --< 3、0.225x < 4、221(2)(2)x x a a a a -++>++

指数函数经典例题(标准答案)

指数函数 1.指数函数的定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数的图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 的图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且的图象和性质。 a>10

()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中 间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x 的取值范围是14 ??+ ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.

指数函数及其性质(一)练习题

2.2.1指数函数及其性质(一) 一、选择题 1.函数f (x )=)1(log 2 1-x 的定义域是( ) A .(1,+∞) B .(2,+∞) C .(-∞,2) D .]21(, 解析:要保证真数大于0,还要保证偶次根式下的式子大于等于0, 所以??? ??≥0)1(log 0 12 1 ->-x x 解得1<x ≤2. 答案:D 2.函数y =2 1log (x 2-3x +2)的单调递减区间是( ) A .(-∞,1) B .(2,+∞) C .(-∞, 23 ) D .( 2 3 ,+∞) 解析:先求函数定义域为(-o ,1)∪(2,+∞),令t (x )=x 2+3x +2,函数t (x )在(-∞,1)上单调递减,在(2,+∞)上单调递增,根据复合函数同增异减的原则,函数y =2 1log (x 2-3x +2)在(2,+∞)上单调递减. 答案:B 3.若2lg (x -2y )=lg x +lg y ,则x y 的值为( ) A .4 B .1或41 C .1或4 D .4 1 错解:由2lg (x -2y )=lg x +lg y ,得(x -2y )2=xy ,解得x =4y 或x =y ,则有 x y = 4 1 或y x =1. 答案:选B 正解:上述解法忽略了真数大于0这个条件,即x -2y >0,所以x >2y .所以x =y 舍掉.只有x =4y .

答案:D 4.若定义在区间(-1,0)内的函数f (x )=a 2log (x +1)满足f (x )>0,则a 的取值范围为( ) A .(0,2 1 ) B .(0, 2 1 ) C .( 2 1 ,+∞) D .(0,+∞) 解析:因为x ∈(-1,0),所以x +1∈(0,1).当f (x )>0时,根据图象只有0<2a <l ,解得0<a <2 1 (根据本节思维过程中第四条提到的性质). 答案:A 5.函数y =lg (x -12 -1)的图象关于( ) A .y 轴对称 B .x 轴对称 C .原点对称 D .直线y =x 对称 解析:y =lg ( x -12-1)=x x -+11lg ,所以为奇函数.形如y =x x -+11lg 或y =x x -+11lg 的函数都为奇函数. 答案:C 二、填空题 已知y =a log (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是__________. 解析:a >0且a ≠1?μ(x )=2-ax 是减函数,要使y =a log (2-ax )是减函数,则a >1,又2-ax >0?a <3 2 (0<x <1)?a <2,所以a ∈(1,2). 答案:a ∈(1,2) 7.函数f (x )的图象与g (x )=(3 1)x 的图象关于直线y =x 对称,则f (2x -x 2)的单调递减区间为______. 解析:因为f (x )与g (x )互为反函数,所以f (x )=3 1log x 则f (2x -x 2)=3 1log (2x -x 2),令μ(x )=2x -x 2>0,解得0<x <2. μ(x )=2x -x 2在(0,1)上单调递增,则f [μ(x ) ]在(0,1)上单调递减; μ(x )=2x -x 2在(1,2)上单调递减,则f [μ(x ) ]在[1,2)上单调递增.

高一数学下指数函数典型例题解析

指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a < b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 【例4】解 比较大小与>且≠,>. 当<<,∵>,>, a a a a a n n n n n n n n n n n n -+-+-=-111 1 111 1(a 0a 1n 1)0a 1n 10() ()

(完整版)指数函数和对数函数单元测试题及答案

指数函数和对数函数单元测试题 一选择题 1 如果,那么a、b间的关系是【】 A B C D 2 已知,则函数的图象必定不经过【】 A第一象限 B第二象限 C第三象限D第四象限 3 与函数y=x有相同图象的一个函数是【】 A B,且 C D,且 4 已知函数的反函数为,则的解集是【】 A B C D 5已知函数在上是x的减函数,则a的取值范围是【】 A B C D 6 已知函数的值域是,则它的定义域是【】 A B C D 7已知函数在区间是减函数,则实数a的取值范围是【】 A B C D 8 已知,则方程的实数根的个数是【】 A1 B 2 C 3D 4 9 函数的定义域为E,函数的定义域为F,则【】 A B C D 10有下列命题:(1)若,则函数的图象关于y轴对称;(2)若,则函数的图象关于原点对称;(3)函数与的图 象关于x轴对称;(4)函数与函数的图象关于直线对称。其中真命题是【】 A(1)(2) B(1)(2)(3)C(1)(3)(4) D (1)(2)(3)(4)

二填空题 11函数的反函数是______ 。12 的定义域是______ 。 13 函数的单调减区间是________。 14 函数的值域为R,则实数a的取值范围是__________. 三解答题 1 求下列函数的定义域和值域 (1)(2) 2 求下列函数的单调区间 (1)(2) 3 已知函数 (1)求的定义域;(2)讨论的单调性;(3)解不等式。 4 已知函数 (1)证明:在上为增函数;(2)证明:方程=0没有负数根。

参考答案 一选择题BADBC BCBDD 二填空题11121314或 三解答题 1 求下列函数的定义域和值域 (1)(2) 定义域定义域 值域值域且 2 求下列函数的单调区间 (1)(2) 减区间,增区间减区间, 3 已知函数 (1)求的定义域;(2)讨论的单调性;(3)解不等式。解(1),又,所以,所以定义域。 (2)在上单调增。 (3),,即 ,所以,所以解集 2 已知函数 (1)证明:在上为增函数;(2)证明:方程=0没有负数根。

指数函数及其性质练习题[1]

2.1.2 指数函数及其性质 练习一 一、选择题 1、 若指数函数y a x =+()1在()-∞+∞,上是减函数,那么( ) A 、 01<≠()01且,与函数y a x =-()1的图象只能是( ) y y y y O x O x O x O x A B C D 1 1 1 1 5、函数f x x ()=-2 1,使f x ()≤0成立的的值的集合是( ) A 、 {}x x <0 B 、 {}x x <1 C 、 {}x x =0 D 、 {}x x =1 6、函数f x g x x x ()()==+22,,使f x g x ()()=成立的的值的集合( ) A 、 是φ B 、 有且只有一个元素 C 、 有两个元素 D 、 有无数个元素 7、若函数(1)x y a b =+-(0a >且1a ≠)的图象不经过第二象限,则有 ( ) A 、1a >且1b < B 、01a <<且1b ≤ C 、01a <<且0b > D 、1a >且0b ≤ 8、F(x)=(1+ )0)(()1 22≠?-x x f x 是偶函数,且f(x)不恒等于零,则f(x)( ) A 、是奇函数 B 、可能是奇函数,也可能是偶函数 C 、是偶函数 D 、不是奇函数,也不是偶函数 二、填空题 9、 函数y x =-322的定义域是_________。 10、 指数函数f x a x ()=的图象经过点()2116 , ,则底数的值是_________。

(完整版)指数函数经典习题大全

指数函数习题 新泰一中闫辉 一、选择题 1.下列函数中指数函数的个数是 ( ). ①②③④ A.0个 B.1个 C.2个 D.3个 2.若,,则函数的图象一定在() A.第一、二、三象限 B.第一、三、四象限 C.第二、三、四象限 D.第一、二、四象限 3.已知,当其值域为时,的取值范围是()A. B. C. D. 4.若,,下列不等式成立的是() A. B. C. D. 5.已知且,,则是() A.奇函数 B.偶函数 C.非奇非偶函数 D.奇偶性与有关 6.函数()的图象是() 7.函数与的图象大致是( ).

8.当时,函数与的图象只可能是() 9.在下列图象中,二次函数与指数函数的图象只可能是() 10.计算机成本不断降低,若每隔3年计算机价格降低 ,现在价格为8100元的计算机,则9年后的价格为( ). A.2400元 B.900元 C.300元 D.3600元 二、填空题 1.比较大小: (1);(2) ______ 1;(3) ______ 2.若,则的取值范围为_________. 3.求函数的单调减区间为__________.

4.的反函数的定义域是__________. 5.函数的值域是__________ . 6.已知的定义域为 ,则的定义域为__________. 7.当时, ,则的取值范围是__________. 8.时,的图象过定点________ . 9.若 ,则函数的图象一定不在第_____象限. 10.已知函数的图象过点 ,又其反函数的图象过点(2,0),则函数的解析式为____________. 11.函数的最小值为____________. 12.函数的单调递增区间是____________. 13.已知关于的方程有两个实数解,则实数的取值范围是_________. 14.若函数(且)在区间上的最大值是14,那么等于 _________. 三、解答题 1.按从小到大排列下列各数: ,,,,,,, 2.设有两个函数与,要使(1);(2),求、的取值范围. 3.已知 ,试比较的大小. 4.若函数是奇函数,求的值. 5.已知,求函数的值域. 6.解方程:

指数函数练习题

指数函数练习题

指数与指数函数练习题 姓名 学号 (一)指数 1、化简[ 3 2 ) 5(-] 4 3的结果为 ( ) A .5 B .5 C .-5 D .-5 2、将 3 2 2-化为分数指数幂的形式为 ( ) A .2 12- B .3 12- C .2 1 2-- D . 6 52- 3. 3 334)2 1 ()21()2()2(---+-+----的值 ( ) A 4 3 7 B 8 C -24 D -8 4(a, b 为正数)的结果是_________. 5、 3 2 1 41()6437 ---+-=__________.

6、 ) 3 1 ()3)((65 613 1212132b a b a b a ÷-=__________。 (二)指数函数 一. 选择题: 1. 函数x y 24-=的定义域为 ( ) A ),2(+∞ B (]2,∞- C (]2,0 D [)+∞,1 2. 下列函数中,在),(+∞-∞上单调递增的是 ( ) A ||x y = B 2 y x = C 3x y = D x y 5.0= 3.某种细菌在培养过程中,每20分钟分裂一次(一个分 裂为两个)。经过3个小时,这种细菌由1个可繁殖成( ) 511 .A 个 512 .B 个 1023 .C 个 1024 .D 个 ax x f =)(x a x g =)(的图

增,则该厂到2010年的产值(单位:万元)是( ) n a A +1(.%13 ) n a B +1(.%12 ) n a C +1(.%11 ) n D -1(9 10 . %12 ) 二. 填空题: 1、已知)(x f 是指数函数,且25 5 )23(=-f ,则=)3(f 2、 已知指数函数图像经过点P(1,3)-,则(2)f = 3、 比较大小12 2- 1 3 2- , 0.32()3 0.22 ()3 , 0.31.8 1 4、 3 1 1 2 13,32,2-?? ? ??的大小顺序有小到大依 次 为 _________ 。 5、 设10<x x x x a a 成立的x 的集合是 6、 函数 y = 7、 函数 y = 8、若函数1 41 )(++=x a x f 是奇函数,则a =_________ 三、解答题:

指数函数及其性质

§2.1.2指数函数及其性质(2个课时) 班级 姓名 教学目标 :1、理解指数函数的概念、图象和性质。 2、利用图象来探索、掌握函数的性质,增强分析问题,解 决问题的能力。 教学重点: 指数函数的概念、图象和性质 教学难点:利用指数函数的图象概括出指数函数的性质。 学习过程 一、复习 1. 根式的概念;n = ; 当n = ; 当n = ={ 。 分数指数幂的意义:m n a = ,m n a - = 。 2.0的正分数指数幂 ,0的负分数指数幂 。 3.整数指数幂的运算性质对于有理数指数幂 。 二、新课导学 1:归纳:指数函数的定义 阅读教材48P 问题1,问题2,观察这两个函数解析式有何共同特征? 一般地,函数y = x a (a 0,且a 1)叫做指数函数, 其中x 是 .函数的定义域是 。 讨论: 下列函数中,哪些是指数函数? (1) (2) (3) (4) (5) (6) (7) (8) 2、探索:指数函数的图象 请同学们完成函数y=x 2 、y=x ? ? ? ??21的表格中空白处并用描点法画出图象: x y 4=4x y =x y 4-=x y )4(-=x y π =2 4x y =x x y =x a y )12(-= )12 1 (≠>a a 且

观察、思考:(1)这两个函数的图象有什么关系?能否由函数2x y=的图 象得到函数1 2x y ?? = ? ?? 的图象? (2)观察函数y=x2、y= x ? ? ? ? ? 2 1的图象,它们有哪些共同特征? 尝试:①图象都分布在象限,与轴相交,位于x轴 的; ②(底数2大于1)当1 a>时,第一象限的点的纵坐标都大于;第二象限的点的纵坐标都大于且小于;从左向右图象逐渐。 ③(底数1 2大于0又小于1)当01 a <<时,第一象限的点的纵坐标都大 于且小于; 第二象限的点的纵坐标都大于;从左向右图象逐渐。3、概括:指数函数y = x a(01) a a >≠ 且的性质 考察:指数函数y = x a(01) a a >≠ 且的奇偶性 4、学习课本 56 P例6 、57P例7 例8 三、练习:教材 58 P2、3

高一复习考试指数函数经典例题

指数函数 指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨. 1.比较大小 例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则3 21x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2 321(25) (25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2 2 25(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x > .∴x 的取值范围是14?? + ??? ,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数2 16x y -=-的定义域和值域. 解:由题意可得2 16 0x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令2 6 x t -=,则1y t =-, 又∵2x ≤,∴20x -≤. ∴2 061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数的值域是[)01, . 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.

指数函数基础练习

指数函数·基础练习 (一)选择题 1.函数y =a |x|(0<a <1)的图像是 [ ] 2a 0a 1f(x)g(x)f(x)[ 1a +1 2 ]x .若>,且≠,是奇函数,则=-1 [ ] A .是奇函数 B .不是奇函数也不是偶函数 C .是偶函数 D .不确定 3y .函数=的单调减区间是()12 2 32x x -+ [ ] A .(-∞,1] B .[1, 2] C [3 2 D 3 2 ].,+∞.-∞,) ( 4.c <0,下列不等式中正确的是 [ ]

A c 2 B c C 2 D 2c c c c c c .≥.>.<.>()()()1 2 1 2 1 2 5.x ∈(1,+∞)时,x α>x β,则α、β间的大小关系是 [ ] A .|α|>|β| B .α>β C .α≥0≥β D .β >0>α 6.下列各式中正确的是 [ ] A B C D .<<.<<.<<.<<()()()()()()()()()()()()121512 121215 151212 151212 23231 3 13232 3 23132 3 23231 3 7.函数y =2-x 的图像可以看成是由函数y =2-x+1+3的图像平移后得到的,平移过程是 [ ] A .向左平移1个单位,向上平移3个单位 B .向左平移1个单位,向下平移3个单位 C .向右平移1个单位,向上平移3个单位 D .向右平移1个单位,向下平移3个单位 8y .已知函数=,下列结论正确的是31 31 x x -+ [ ] A .是奇函数,且在R 上是增函数 B .是偶函数,且在R 上是增函数 C .是奇函数,且在R 上是减函数 D .是偶函数,且在R 上是减函数 9y =a y =a y y a 12x 2x 2+1 21.函数,,若恒有≤,那么底数的取值范 围是 [ ] A .a >1 B .0<a <1 C .0<a <1或a >1; D .无法确 定

指数函数及其性质练习题及答案

2.1.2指数函数及其性质练习题 一、选择题: 1、数3x y =-的图象( ) A 与3x y =的图象关于y 轴对称 B 与3x y =的图象关于坐标原点对称 C 与3 x y -=的图象关于y 轴对称 D 与3 x y -=的图象关于坐标原点对称 2、 下列函数能使等式()()()f a b f a f b +=?恒成立的是( ) A y kx b =+ B x y a = C 2 y ax bx c =++ D k y x = 3、 已知函数1x y a -=的图象恒过定点P ,则定点P 的坐标是( ) A (1,1) B (1,4) C (1,5) D (0,1) 4、函数x a y )2(-=在),(+∞-∞上是减函数,则a 的取值范围( )。 A.3a D.32<的,x 的取值范围( ) 。 A.(0,)(,0)+∞?-∞ B.{}0 C.()0,+∞ D. ,0-∞ 6. 某企业近几年的年产值如图,则年增长 率最高的是( ) A .03-04年 B. 04-05年 C. 05-06年 D. 06-07年 7.某计算机销售价为a 元,一月份提价10%,二月份比一月份降价10%,设二月份销售价 为b 元,则( ) A .b a = B. b a > C. b a < D. a 、b 的大小无法确定 二、填空题: 1、指数函数()y f x =的图象过点()1,3,则()1f f ????= 。 2、函数y = 的定义域为 。 3、函数21x y =-的图象一定不过 象限。 4、设c b a ,,分别是方程1)2 1(=-x x ,2)2 1(=-x x ,2)3 1(=-x x 的根,则c b a ,,的大小 1000 800 600

高中数学必修基本初等函数常考题型指数函数及其性质

指数函数及其性质 【知识梳理】 1.指数函数的定义 函数x y a =(0a >且1a ≠)叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数的图象和性质 【常考题型】 题型一、指数函数的概念 【例1】 (1)下列函数: ①23x y =?;②1 3x y +=;③3x y =;④3 y x =. 其中,指数函数的个数是( ) A .0 B .1 C .2 D .3 (2)函数()2 2x y a a =-是指数函数,则( ) A .1a =或3a = B .1a = C .3a = D .0a >且1a ≠ [解析] (1)①中,3x 的系数是2,故①不是指数函数; ②中,1 3 x y +=的指数是1x +,不是自变量x ,故②不是指数函数; ③中,3x y =的系数是1,幂的指数是自变量x ,且只有3x 一项,故③是指数函数; ④中,3 y x =中底数为自变量,指数为常数,故④不是指数函数.所以只有③是指数函数.

(2)由指数函数定义知()2 21 01 a a a ?-=??>≠??且,所以解得3a =. [答案] (1)B (2)C 【类题通法】 判断一个函数是否为指数函数的方法 判断一个函数是否是指数函数,其关键是分析该函数是否具备指数函数三大特征: (1)底数0a >,且1a ≠. (2)x a 的系数为1. (3)x y a =中“a 是常数”,x 为自变量,自变量在指数位置上. 【对点训练】 下列函数中是指数函数的是________(填序号). ①2x y =? ;②12x y -=;③2x y π?? = ??? ;④x y x =; ⑤1 3y x =-;⑥1 3y x =. 解析: ①中指数式 x 的系数不为1,故不是指数函数;②中1 12 22 x x y -==?,指数式2x 的系数不为1,故不是指数函数;④中底数为x ,不满足底数是唯一确定的值,故不是指数函数;⑤中指数不是x ,故不是指数函数;⑥中指数为常数且底数不是唯一确定的值,故不是指数函数.故填③. 答案:③ 题型二、指数函数的图象问题 【例2】 (1)如图是指数函数①x y a =,②x y b =,③x y c =,④x y d =的图象,则a , b , c , d 与1的大小关系为( ) A .1a b c d <<<< B .1b a d c <<<< C .1a b c d <<<< D .1a b d c <<<< (2)函数3 3x y a -=+(0a >,且1a ≠)的图象过定点________. [解析] (1)由图象可知③④的底数必大于1,①②的底数必小于1.

相关文档
相关文档 最新文档