文档库 最新最全的文档下载
当前位置:文档库 › AATCC 135-2010 缩水率 尺寸变化率

AATCC 135-2010 缩水率 尺寸变化率

AATCC 135-2010 缩水率 尺寸变化率
AATCC 135-2010 缩水率 尺寸变化率

缩水率_AATCC135

自动家庭水洗尺寸稳定性 AATCC 135测试方法 1. 测试仪器及材料 1.1自动洗衣机 1.2 滚筒式干衣机 1.3平衡箱或烘干架 1.4 滴水晾干装置 1.5 AATCC 标准洗涤剂 1.6 尺寸为92 x 92厘米(36 x 36英寸)缝边漂白布(陪衬布类型1)或涤棉漂白布(50/50)和丝光府绸(陪衬布类型2),或50/50涤棉漂白丝光平纹布(陪衬布类型3) 1.7 标记笔,标记尺,或标记模板 1.8 起码精确到毫米,十分之一英寸的比率尺 1.9 量程至少为 5Kg 的天平 2.测试样品 2.1样品的准备 2.1.1每块试样上取三块样品求平均 2.1.2 如若可能,样品经向与纬向的纱支数各不相同。 2.1.3 若样品在未经洗涤之前,已发生扭曲、变形,其结果可能不准确,因此不推荐用这种样品。 2.1.4 在做标记之前,将测试样品分开放在样品架上作前处理。样品在大气中至少放置4小时,温度为21+1C(70+2F),湿度为65+2%。 2.2 作标记 在38 x38cm 的测试样品上做3组与经向平行25 cm 的标记。 每一个标记与各边缘的距离至少为5cm。同方向的标记至少相距12cm, 若使用50cm或18in 长的标记,通常是在要求更精确的测试中。 缝纫线作标记时用一组标记。 3.测试过程 3.1 具体程序设置见表I,II,III. 3.2 洗涤 3.2.1 设定好规定的水位,洗涤温度及漂洗温度,其漂洗温度不应超过29C. 3.2.2 加入66+1g的AATCC标准洗涤剂,在软水中,可适量少放以避免过多的泡沫. 3.2.3 加入测试样品及足够的陪衬布,使总重量达到1.8+0.1Kg或3.6+0.1Kg. 设定洗涤程序及洗涤时间. 3.2.4 样品通过A,B,D过程进行晾干时,允许经过洗涤程序中最后的脱水甩干程序。脱水过后,迅速将样品拿出,尽量将其展开,不要使其变形,扭曲过度,然后按照A,B,D方法进行晾干。

模板计算书

400x1600梁模板支架计算书一、梁侧模板计算 (一)参数信息 1、梁侧模板及构造参数 梁截面宽度 B(m):;梁截面高度 D(m):; 混凝土板厚度(mm):; 采用的钢管类型为Φ48×3; 次楞间距(mm):300;主楞竖向道数:4; 穿梁螺栓直径(mm):M12; 穿梁螺栓水平间距(mm):600; 主楞材料:圆钢管; 直径(mm):;壁厚(mm):; 主楞合并根数:2; 次楞材料:木方; 宽度(mm):;高度(mm):; 2、荷载参数

新浇混凝土侧压力标准值(kN/m2):; 倾倒混凝土侧压力(kN/m2):; 3、材料参数 木材弹性模量E(N/mm2):; 木材抗弯强度设计值fm(N/mm2):;木材抗剪强度设计值fv(N/mm2):; 面板类型:胶合面板;面板弹性模量E(N/mm2):; 面板抗弯强度设计值fm(N/mm2):; (二)梁侧模板荷载标准值计算 =m2; 新浇混凝土侧压力标准值F 1 (三)梁侧模板面板的计算 面板为受弯结构,需要验算其抗弯强度和刚度。强度验算要考虑新浇混凝土侧压力和倾倒混凝土时产生的荷载;挠度验算只考虑新浇混凝土侧压力。 面板计算简图(单位:mm) 1、强度计算 面板抗弯强度验算公式如下: σ = M/W < f 其中,W -- 面板的净截面抵抗矩,W = 150××6=81cm3; M -- 面板的最大弯矩(N·mm); σ -- 面板的弯曲应力计算值(N/mm2) [f] -- 面板的抗弯强度设计值(N/mm2); 按照均布活荷载最不利布置下的三跨连续梁计算:

M = 1l+ 2 l 其中,q -- 作用在模板上的侧压力,包括: 新浇混凝土侧压力设计值: q 1 = ×××= kN/m; 倾倒混凝土侧压力设计值: q 2 = ××4×=m; 计算跨度(次楞间距): l = 300mm; 面板的最大弯矩 M= ××3002+××3002= ×105N·mm; 面板的最大支座反力为: N= 1l+ 2 l=××+××=; 经计算得到,面板的受弯应力计算值: σ = ×105/ ×104=mm2; 面板的抗弯强度设计值: [f] = 15N/mm2; 面板的受弯应力计算值σ =mm2小于面板的抗弯强度设计值 [f]=15N/mm2,满足要求! 2、抗剪验算 Q=××300+××300)/1000=; τ=3Q/2bh=3××1000/(2×1500×18)=mm2; 面板抗剪强度设计值:[fv]=mm2; 面板的抗剪强度计算值τ=mm2小于面板的抗剪强度设计值 [f]=mm2,满足要求! 3、挠度验算 ν=(100EI)≤[ν]=l/150 q--作用在模板上的侧压力线荷载标准值: q=×; l--计算跨度: l = 300mm; E--面板材质的弹性模量: E = 6000N/mm2; I--面板的截面惯性矩: I = 150×××12=72.9cm4; 面板的最大挠度计算值: ν = ××3004/(100×6000××105) = 0.722 mm; 面板的最大容许挠度值:[v] = min(l/150,10) =min(300/150,10) = 2mm; 面板的最大挠度计算值ν =0.722mm 小于面板的最大容许挠度值 [v]=2mm,满

照片常见标准尺寸大全

照片常见标准尺寸大全 小一寸 2.6×3.2cm 一寸2.5×3.5(厘米); 大一寸3.3×4.8(厘米) 二寸3.5×4.9(厘米); 小二寸3.5×4.5(厘米); 大二寸 3.5×5.3(厘米) 身份证大头照 3.3*2.2390*260 2寸 3.5*5.3cm626*413 小2寸(护照)4.8*3.3cm567*390 5寸5x3.512.7*8.91200x840以上100万像素6寸6x415.2*10.21440x960以上130万像素7寸7x517.8*12.71680x1200以上200万像素8寸8x620.3*15.21920x1440以上300万像素10寸10x825.4*20.32400x1920以上400万像素 12寸12x1030.5*20.32500x2000以上500万像素 15寸15x1038.1*25.43000x2000600万像素常见证件照对应尺寸 1英寸25mm×35mm 2英寸35mm×49mm 3英寸35mm×52mm

港澳通行证33mm×48mm 赴美签证50mm×50mm 日本签证45mm×45mm 大二寸35mm×45mm 护照33mm×48mm 毕业生照33mm×48mm 身份证22mm×32mm 驾照21mm×26mm 车照60mm×91mm 照片尺寸与打印尺寸之对照 (分辨率:300dpi) 照片尺寸(英寸)打印尺寸(厘米)10x1525.4x38.1 10x1225.4x30.5 8x1020.3x25.4 6x815.2x20.3 5x812.7x20.3 5x712.7x17.7 4x610.1x15.2

地质学中一公式

地学中常用公式 一、平均品位的计算公式: 1、算术平均:(X1+X2-……+Xn)/n X1、X 2、X n为样品品位 2、加权平均:(X l×L l+X2×L2+……+ X n×Ln)/(L l+L2+……+L n) X1、X2……X n。为样品品位,L l+L2+……+Ln为样品长度 3、几何平均为Xn 2 ?Λ 1 X1、X2、Xn为样品品位 K X ? n? X 注:品位为正态分布时,处理特高品位时,可用此公式。 二、矿体厚度(Vm)、品位(Vc)变化系数: — X=(X1+X2+……+Xn)/n 计算矿体厚度、品位的平均值 ∑- σ计算均方差 X (2n Xi /( - =)1 ) 厚度、品位变化系数: Vm或Vc=? σ100% ÷X 三、地质剖面岩石厚度计算公式: y=sinα·cosβ·cosγ±cosα·sinβ α--导线坡度角 β--地层倾角 γ --导线方向与地层倾角的夹角 地层倾向与坡向相反取正号,地层倾向与坡向相同取负号; 真厚度=L×y 四、钻孔矿体厚度的确定 矿体的厚度是根据矿体露头上、坑道中和从钻孔中所获得的资料进行的。 (一)坑道中矿体厚度的测定 当坑道所揭露的矿体与围岩的接触界线清楚时,取样和编录时可在矿体上用钢尺直接捌量出来。

厚度测量的次数决定于坑道的布置情况,如矿体是用穿脉坑道圈定的,则测量次数与穿脉坑道的数量相符。如果矿体是用沿脉坑道圈定的,则厚度的测定按一定间隔在取样的位置进行测量。如果矿体与围岩的界线不清时,矿体厚度的测定必须根据取样结果来确定。 (二)钻孔中矿体厚度的测定 因为钻孔中所截穿的矿体均在地下深处、只能间接地去测定矿体的厚度。当钻孔是垂直矿层钻进时,且岩心采取率为100%,可直接丈量岩心,取得厚度的数据。若岩心采取率不高,除用钢尺丈量岩心长度外,还要按下式进行换算: m n L (11-9) 式中: m ——矿体的厚度(米); L ——实测矿心长度(米)I n ——矿心采取率(%)。 当直孔钻进,且与矿层成角度截穿时,其厚度按下式计算: m=L×cosβ (11-12) 式中:m ——矿体的真厚度(米); L ——钻孔截穿矿体的厚度(米)I β——矿体的倾角。 若斜孔钻进,且与矿层斜交时(图11—25),其厚度计算公式如下: m=L×COS(β-α) (11一11) m ——矿体真厚度(米); L ——钻孔中矿体的视厚度(米); β——矿体的倾角; α——钻孔截穿矿体时的天顶角。 图11—25钻孔垂直矿体走向、斜孔钻进时矿体厚度的计算 当钻孔截穿矿体处,钻孔倾斜方向不垂直盘矿体走向时(图11—26), 矿体厚度按下式计算: 矿体真厚度m=n L ×(sinαsin βcos γ±cosaαcos β) (11-12)

热处理变形

热处理变形: 一:钢的内应力及应力变形: 1.热应力:冷却初期表面为拉应力,心部为压应力.冷却最终则是表面为压应力,心部为拉应力. 组织应力:冷却初期表面为压应力,心部为拉应力.冷却最终则是表面为拉应力,心部为压应力. 附加应力:因表面和心部组织结构的不均匀性及钢件内部的弹塑性变形不一致形成的内应力. 局部淬火或表面淬火:表层呈现压应力,中心呈现拉应力. 渗碳件淬火:冷却初期表面为拉应力,心部为压应力.冷却最终则是表面为压应力,心部为拉应力.(最大的压应力不在渗碳层的最外层,而存在于渗碳层表面以里约50-60%的深度处,此处碳浓度低于0.5%). 2.影响钢的内应力的因素: 1)钢的化学成分的影响: 在全淬透的情况下,试样表层和中心显现压应力,中间层显现拉应力,故表层的应力分布以热应力为主,而内部则以组织应力主.随着含碳量的增加,热应力减弱,组织应力逐渐增强,因此表层的压应力减小,中间层的拉应力略有下降,心部的压应力则增大,且中间层的拉应力最大值随含碳量的增加而移向表层.因切向应力较大,故对高碳钢极易产生纵向裂纹. 在未淬透的情况下,钢件表层为压应力,心部为拉应力.淬透性愈小,表层压应力愈大. Ms点温度较高的钢,热应力作用较强烈,残余拉应力最大值移向中心,表层显现压应力. 2)淬火工艺的影响: 淬火加热温度愈高,产生的淬火应力愈大,但径向应力变化较小,切向和轴向应力变化较大.加热温度高,还易于造成钢的过热,即组织粗大化而导致脆性增大,易引起开裂. a:水淬钢全部淬透时,其应力分布为表面和心部呈压应力,中间区域呈拉应力,即属于热应力和组织应力重叠型的分布规律.当中心未淬透时,表面被淬火部分受压应力,中心受拉应力作用. b:油中全淬透时,表层具有拉应力,心部为压应力,即属于单一的组织应力分布规律.未淬透时,表层具有压应力,心间为拉应力,但应力变化较缓和. c:在穿透淬火时,水淬钢的最大拉应力值显现在钢件表面附近,油淬钢的拉应力显现在钢的表面.这种表面附近的拉应力是形成淬火裂纹的主要危险.这时切向应力大于轴向应力,易形成纵向裂纹. 3)钢件尺寸大小和形状的影响: 内孔直径很小的圆套筒的淬火应力是内孔的表面和外表面具有压应力,中间层为拉应力.内孔直径稍大时,随壁厚的减小热应力的影响急剧减小,从而其残余应力的分布是内表面和外表面具有拉应力,中间层具有压应力.在淬火效果差时,内表面产生的拉应力将很大,故内径小的高碳钢套筒内壁易产生淬火裂纹.内径进一步增大,壁厚进一步减小时,组织应力的影响增强,热应力分布减弱,则总的淬火应力趋于降低. 4)钢件表面脱碳的影响:脱碳使得钢伯的脱碳层具有拉应力. 脱碳层浓度不同,其应力分布也有差别:随脱碳层浓度的增加,表面的切向应力由压应力转变为拉应力.轴向应力则随脱碳层浓度的增加,开始为拉应力而后转为压应力.

变化率和导数(三个课时教案)

第一章导数及其应用 第一课时:变化率问题 教学目标: 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.

二.新课讲授 (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么343)(π V V r = 分析: 3 43)(π V V r =, ⑴当V 从0增加到1时,气球半径增加了 )(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵当V 从1增加到2时,气球半径增加了 )(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.01 2)1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 1 212) ()(V V V r V r --

变化系数

矿体变化系数 矿体变化系数(variation coefficient of orebody)是用以表示各个变量值之间差异程度的一种指标。在矿床勘探工作中,通常用它来定量地反映矿体各种标志的变化程度,例如用厚度变化系数(thickness coefficient of variation)表示矿体形态的变化程度;用品位变化系数(grade coefficient of variation)表示有用组分在矿体中分布的均匀程度。一般变化系数越大,表示某一标志的变化程度越大。通过对不同矿体或同一矿体不同部分的品位、厚度等变化系数的分析与比较,可以了解矿床勘探的难易程度,为合理布置勘探工作及研究勘探方法提供依据。变化系数的计算式为 Vx=σxX×100%,式中:Vx为变化系数;σx为变量(如厚度、品位等)的均方差;X 为变量的算术平均值(如算术平均厚度、算术平均品位等)。其中均方差为σx=Σ(X1 X)2n,式中:当n<25时,则采用n 1;X1为单个变量(如单个品位或厚度的测量值);n为变量数目(如样品数目、厚度测量次数等)。[1] __________________________________________________________________ __________________ 书中查到的公式与上面的不符,特补充更改。 1、厚度变化系数: _ Vm=σm / M 式中:Vm为厚度变化系数; σm为厚度均方差; _ M为矿体厚度算数平均值 _______________ / _ 2 σm = / ∑ ( Mi - M ) / ———————— √ n 式中:Mi 为矿体某观测点的厚度; n 为参加计算厚度的观测点数。 2、品位变化系数: _ Vc=σc / C 式中:Vc 为品位变化系数; σc 为品位均方差; _ C 为矿体品位算数平均值

1.1.1变化率问题教案

§1.1.1变化率问题 教学目标 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。 导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么3 43)(π V V r = 分析: 3 43)(π V V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为 )/(16.0) 1()2(L dm r r ≈-

热处理变形基础知识

热处理变形 工件的热处理变形—主要是由于热处理应力造成的。工件的结构形状、原材料质量、热处理前的加工状态、工件的自重以及工件在炉中加热和和冷却时的支承或夹持不当等因素也能引起变形。 凡是牵涉到加热和冷却的热处理过程,都可能造成工件变形。但是,淬火变形对热处理质量的影响最大。严重的淬火变形往往很难通过最后的精加工加以修正,即使对淬火变形的工件能够进行校正和机加工修整,也会因而增加生产成本。工件热处理后的不稳定组织和不稳定的应力状态,在常温和零下温度,长时间放置或使用过程中,逐渐发生转变而趋于稳定,也会伴随引起工件的变形,这种变形称为时效变形。时效变形虽然不大,但是对于精密零件和标准量具也是不允许的。 工件的热处理变形分为尺寸变化(体积变形)和形状畸变两种形式。尺寸变形归因可相变前后比体积差引起工件的体积改变,形状畸变则是由于热处理过程中,在各种复杂应力综合作用下,不均匀的塑性变形造成的。这两种形式的变形很少单独存在,但是对具体工件和热处理工艺,可能以一种形式的变形为主。 1>工件热处理的尺寸变化 不同的组织具有不同的体积。常见组织的比体积表如下; 组织wc(%) 室温下的比体积/ (cm3/g) 奥氏体0—2 0.1212+0.0033(C%) 马氏体0---2 0.1271+0.0025(C%) 铁素体0---0.02 0.1271 渗碳体 6.7+-0.2 0.130+-0.001 ∈-碳化物8.5+-0.7 0.140+-0.002 石墨100 0.451 铁素体+渗碳体0---2 0.1271+0.0005(C%) 低碳马氏体+∈-碳化物0---2 0.1277+0.0015(C%-0.25) 铁素体+∈-碳化物0---2 0.1271+0.0015(C%) 工件在热处理加热和冷却过程中,由于相变引起的体积差造成的体积变形。 碳钢组织转变引起的尺寸变化 组织转变体积变化(%) 尺寸变化(%) 球状珠光体->奥氏体- 4.64+2.21(wc) - 0.015+0.0074(wc) 奥氏体->马氏体 4.64 – 0.53 (wc) - 0.0155+0.0018(wc) 球状珠光体->马氏体 1.68 (wc) 0.0056(wc%) 奥氏体->下贝氏体 4.64 – 1.43 (wc) 0.0156 – 0.0048(wc) 球状珠光体->下贝氏体0.78 (wc) 0.0026(wc) 奥氏体->铁素体->渗碳体 4.64 – 2.21(wc) 0.0155 – 0.0074(wc) 球状珠光体->铁素体->渗碳体0 0

洗照片常用尺寸

日常洗照片常用尺寸 1、常用尺寸 尺寸名厘米数英寸数 一寸 2.5 x 3.6 cm 1x1.4寸 二寸 3.4 x 5.2 cm 1.5x2寸 三寸 5.5 x 8.4 cm 2.25x3.25寸 五寸 8.3 x 12.7cm 3.25x5寸 六寸 10.1 x 15.2cm 4x6寸 七寸 12.7 x 17.8cm 5x7寸 八寸 15.2 x 20.3cm 6x8寸 十寸 20.3 x 25.4cm 8x10寸 十二寸 25.4 x 30.5cm 10x12寸 十四寸 28.0 x 35.6cm 11x14寸 十六寸 30.5 x 40.6cm 12x16寸 十八寸 35.6 x 45.8cm 14x18寸 十八寸以内按英寸数为准,二十寸以上按厘米数为准。备注:1英寸=2.54厘米二十寸 40 x 50 cm 二十四寸 50 x 60 cm 三十寸 60 x 75 cm 三十二寸 60 x 80 cm 三十六寸 60 x 90 cm 四十寸 70 x 100 cm 四十八寸 90 x 120 cm 五十八寸 100 x 115 cm 六十八寸 112 x 170 cm

注意事项: 我们拍摄好的数码照片一般都不是标准的照片尺寸,用数码相机所拍出的图像一般是按计算机屏幕的分辨率来设定的,所以基本上都是4∶3的比例,而标准照片尺寸的比例不同,如5寸照片的比例为10∶7,6寸照片的尺寸为3∶2,如不裁剪,在冲印的过程中,往往会在照片旁留下白边或者照片不完全。因此我们必须用软件对照片进行裁剪加工。 表一:常见的标准照片规格表二:数码照片冲印质量对照表胶卷质量:能保持原照片的最佳效果。优秀:细看能看出像素不够对照片的轻微影响,但并不影响照片质量,可得到比较理想的打印效果。好:像素对照片的影响较明显,但冲印效果仍较满意。一般:像素不足对照片的影响明显,但照片仍可使用。1英寸=2.54厘米,我们说照片尺寸通常是讲英寸的,照片尺寸的常规标准在10寸内的规格是相差2,比如5寸照片就是5X3,7寸=7X5 8寸=8X6。如果照片尺寸大于10寸的就相差4,12寸=12X8 14寸=14X10 18寸=18X14照片的尺寸。 2、常见证件照对应尺寸 1英寸25mm×35mm 2英寸35mm×49mm 3英寸35mm×52mm 港澳通行证33mm×48mm 赴美签证50mm×50mm 日本签证45mm×45mm 大二寸35mm×45mm 护照33mm×48mm 毕业生照33mm×48mm 身份证22mm×32mm 驾照21mm×26mm 车照60mm×91mm 3、数码相机和可冲印照片最大尺寸对照表 500万像素有效4915200,像素2560X1920。可冲洗照片尺寸17X13,对角线21英寸 400万像素有效3871488,像素2272X1704。可冲洗照片尺寸15X11,对角线19英寸 300万像素有效3145728,像素2048X1536。可冲洗照片尺寸14X10,对角线17英寸 200万像素有效1920000,像素1600X1200。可冲洗照片尺寸11X8,对角线13英寸 130万像素有效1228800,像素1280X960。可冲洗照片尺寸9X6,对角线11英寸 80万像素有效786432,像素1024X768。可冲洗照片尺寸7X5,对角线9英寸 50万像素有效480000,像素800X600。可冲洗照片尺寸5X4,对角线7英寸 30万像素有效307200,像素640X480。可冲洗照片尺寸4X3,对角线5英寸 所以: 5寸照片(3X5),采用800X600分辨率就可以了 6寸照片(4X6),采用1024X768分辨率 7寸照片(5X7),采用1024X768分辨率 8寸照片(6X8),采用1280X960分辨率

AATCC 158-2000 干洗尺寸变化

AATCC 158-2000四氯乙烯干洗的尺寸变化:机洗 前言:干洗﹐是使用有机溶剂来清洗纺织品的一道工序。溶解一些在水洗过程或湿态下不能膨胀﹐相互交联的油类和脂肪类及一些分散微小的污垢。为了更好的去除油渍和污渍﹐在溶剂中加入少量的水和表面活性剂。一些对湿度敏感的产品﹐在溶剂中不需加入水但要加表面活性剂使污垢容易清除并防止面料泛灰。干洗可以使用多种的有机溶剂﹐但各国普遍使用的是四氯乙烯﹐因此本方法也采用四氯乙烯做溶剂。一般在做完干洗后都会做后处理﹐包括蒸汽处理和/或热压处理。干洗缩率在经过蒸汽处理和/或热压处理后会有改进。单一的处理只能有一点改善﹐多次处理后才有提高。通常情况下﹐经3-5次干洗及后整理后﹐织物的尺寸变化比较明显。 1.目的和范围 1.1 此方法规定了干洗的过程﹐使用商业用干洗机﹐测试面料或服装经过四氯乙烯干洗后的尺寸稳定性。此过程包括了普通材料和敏感材料的处理过程。 1.2 对于特别敏感的材料﹐需要特殊预处理的﹐不包括在此方法中。 1.3 此方法不仅可以测量一次干洗和后处理的尺寸稳定性﹐也可用来测量多次循环干洗后的尺寸稳性定。通常不超过5次。 2.原理 2.1 把调湿后的面料或成衣打印标记并测量长度﹐然后把样品进行干洗程序和后处理。然后再调湿测量样品的尺寸变化率。 3.试剂 3.1 四氯乙烯(CCl2=CCl2)干洗专用。 3.2 Sorbitan mono-oleate(一种化学试剂Span 80)。 4.设备和材料

4.1 干洗机。可使用四氯乙烯溶剂的封闭式商业转笼型干洗机。转笼径不小于600mm﹐不大于1080mm﹐深度不小于300mm﹐并装有3-4个提升片。转笼的回转速度在干洗时使系数g在0.5-0.8之间﹐脱液时使系数g在35-120之间。机器上应安装温度计﹐以便测量溶剂的温度。机器应备有适当装置﹐使乳液能够慢慢加入内﹑外笼之间的溶剂液面之下。干洗机可以是洗涤/干燥一体机﹐也可以另外配一台烘干机。不论什么类型的烘干机﹐都必须配备一个温度控制器﹐可以在烘干过程中控制进风口或出风口的温度。烘干机转笼的尺寸应该和干洗机的一致。 4.2 样品后处理所需的设备。 4.3 试验用标准试验环境。 4.4 在洗涤织物或成衣时使用的陪洗物﹐白色或浅色﹐成分为80%羊毛和20%棉或粘胶。 4.5 打印标记用的记号笔。 4.6 测量用直尺﹐最小刻度是毫米。 4.7 测试平台﹐能够使样品平摊在上面进行测量。 5.测试样品 5.1 成衣按照原样进行测试。 5.2 织物的剪样尺寸不小于500X500mm﹐四边用涤纶线包好边﹐防止脱边。 5.3 弹力圆筒型针织物应小心顺着纹路剪开﹐使之不被破坏。然后按照6进行标记和测量后﹐将剪开的边重新缝合﹐恢复成圆筒形。测试完成后﹐再沿缝线剪开﹐在打开的状态下进行测量标记间的距离。 6.样品准备

电磁感应-单棒(长度变化)

电磁感应“切割模型”中导体棒长度变化类试题 1.如图所示,在磁感应强度为B=2T ,方向垂直纸面向里的匀强磁场中,有 一个由两条曲线状的金属导线及两电阻(图中黑点表示)组成的固定导轨,两电阻的阻值分别为 R 1 =3Ω、R 2=6Ω,两电阻的体积大小可忽略不计,两条导线的电阻忽略不计且中间用绝缘材料隔开,导轨平面与磁场垂直(位于纸面内),导轨与磁场边界(图中虚线)相切,切点为A ,现有一根电阻不计、足够长的金属棒MN 与磁场边界重叠,在A 点对金属棒MN 施加一个方向与磁场垂直、位于导轨平面内的并与磁场边界垂直的拉力F ,将金属棒MN 以速度v=5m /s 匀速向右拉,金属棒MN 与导轨接触良好,以切点为坐标原点, 以F 的方向为正方向建立x 轴,两条导线的形状符合曲线方程 x y 4 sin 22π ±= m ,求: (1)推导出感应电动势e 的大小与金属棒的位移x 的关系式. (2)整个过程中力F 所做的功. (3)从A 到导轨中央的过程中通过R 1的电荷量. 2.如图所示,在xoy 平面内存在B=2T 的匀强磁场,OA 与OCA 为置于竖直平面内的光滑金属导轨,其 中OCA 满足曲线方程 ) (5 sin 5.0m y x π =,C 为导轨的最右端,导轨OA 与OCA 相交处的O 点和A 点分别接有体积可忽略的定值电阻R 1=6Ω和R 2=12Ω。现有 一长L=1m 、质量m=0.1kg 的金属棒在竖直向上的外力F 作用下,以v=2m/s 的速度向上匀速运动,设棒与两导轨接触良好,除电阻R 1、R 2外其余电阻不计,求: (1)金属棒在导轨上运动时R 2上消耗的最大功率 (2)外力F 的最大值 (3)金属棒滑过导轨OCA 过程中,整个回路产生的热量。 3.如图所示,在磁感应强度大小为B ,方向垂直纸面向里的匀强磁场中,有一个质量为m 、半径为r 、电阻为R 的均匀圆形导线圈,线圈平面跟磁场垂直(位于纸面内),线圈与磁场边缘(图中虚线)相切,切点为A ,现在A 点对线圈施加一个方向与磁场垂直,位于线圈平面内并跟磁场边界垂直的拉力F ,将线圈以速度v 匀速拉出磁场.以切点为坐标原点,以F 的方向为正方向建立x 轴,设拉出过程中某时刻线圈上的A 点的坐标为x. (1)写出力F 的大小与x 的关系式; (2)在F -x 图中定性画出F -x 关系图线,写出最大值F 0的表达式. 4.如图所示,MN 、PQ 是相互交叉成60°角的光滑金属导轨,O 是它们的交点且接触良好.两导轨处在同一水平面内,并置于有理想边界的匀强磁场中(图中经过O 点的虚线即为磁场的左边界).导体棒ab 与导轨始终保持良好接触,并在弹簧S 的作用下沿导轨以速度v 0向左匀速运动.已知在导体棒运动的过程中,弹簧始终处于弹性限度内.磁感应强度的大小为B ,方向如图.当导体棒运动到O 点时,弹簧恰好处于原长,导轨和导体棒单位长度的电阻均为r ,导体棒ab 的质量为m .求: (1)导体棒ab 第一次经过O 点前,通过它的电流大小; (2)弹簧的劲度系数k ; (3)从导体棒第一次经过O 点开始直到它静止的过程中,导体棒ab 中产生的热量.

矿体厚度、品味变化系数

矿体变化系数(variation coefficient of orebody)是用以表示各个变量值之间差异程度的一种指标。在矿床勘探工作中,通常用它来定量地反映矿体各种标志的变化程度,例如用厚度变化系数(thickness coefficient of variation)表示矿体形态的变化程度;用品位变化系数(grade coefficient of variation)表示有用组分在矿体中分布的均匀程度。一般变化系数越大,表示某一标志的变化程度越大。通过对不同矿体或同一矿体不同部分的品位、厚度等变化系数的分析与比较,可以了解矿床勘探的难易程度,为合理布置勘探工作及研究勘探方法提供依据。变化系数的计算式为Vx=σxX×100%,式中:Vx为变化系数;σx为变量(如厚度、品位等)的均方差;X为变量的算术平均值(如算术平均厚度、算术平均品位等)。其中均方差为σx=Σ(X1 X)2n,式中:当n<25时,则采用n 1; X1为单个变量(如单个品位或厚度的测量值);n为变量数目(如样品数目、厚度测量次数等)。[1] ________________________________________________________________ ____________________ 书中查到的公式与上面的不符,特补充更改。 1、厚度变化系数: _ Vm=σm / M 式中:Vm为厚度变化系数; σm为厚度均方差; _ M为矿体厚度算数平均值 _______________ / _ 2 σm = / ∑ ( Mi - M ) / ———————— √ n 式中:Mi 为矿体某观测点的厚度; n 为参加计算厚度的观测点数。 2、品位变化系数: _ Vc=σc / C 式中:Vc 为品位变化系数; σ c 为品位均方差; _ C 为矿体品位算数平均值 _______________ / _ 2 σ c = / ∑ ( Ci - C )

热处理后组织分析

碳钢热处理后的组织(金相分析) 一、概述 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是非平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 铁碳相图能说明慢冷时合金的结晶过程和室温下的组织以及相的相对量,C曲线则能说明一定成分的钢在不同冷却条件下所得到的组织。C曲线适用于等温冷却条件;而CCT曲线(奥氏体连续冷却曲线)适用于连续冷却条件。在一定的程度上可用C曲线,也能够估计连续冷却时的组织变化。 1、共析钢等温冷却时的显微组织 共析钢过冷奥氏体在不同温度等温转变的组织及性能列于表1中。 2、共析钢连续冷却时的显微组织 为了简便起见,不用CCT曲线,而用C曲线(图1)来分析。例如共析钢奥氏体,在 慢冷时(相当于炉冷,见图1中的υ1)应得到100%的珠光体;当冷却速度增大到υ2时

(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到υ3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至υ4、υ5(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体,其中与C曲线鼻尖相切的冷却速度(υ4)称为淬火的临界冷却速度。 图1 图2 3、亚共析钢和过共析钢连续冷却时的显微组织 亚共析钢的C曲线与共析钢相比,只是在其上部多了一条铁素体先析出线,如图2所示。 当奥氏体缓慢冷却时(相当于炉冷,如图2中υ1),转变产物接近平衡组织,即珠光体和铁素体。随着冷却速度的增大,即υ3>υ2>υ1时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。 因此,v1的组织为铁素体+珠光体;v2的组织为铁素体+索氏体;v3的组织为铁素体+屈氏体。 当冷却速度为v4时,析出很少量的网状铁素体和屈氏体(有时可见到少量贝氏体),奥氏体则主要转变为马氏体和屈氏体(如图3);当冷却速度v5超过临界冷却速度时,钢全部转变为马氏体组织(如图6,图7)。 过共析钢的转变与亚共析钢相似,不同之处是后者先析出的是铁素体,而前者先析出的是渗碳体。 4、各组织的显微特征 (1)索氏体(s):是铁素体与渗碳体的机械混合物。其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨。 (2)托氏体(T)也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层(见图3);

常用照片纸张规格

1英寸25mm×35mm 2英寸35mm×49mm 3英寸35mm×52mm 港澳通行证33mm×48mm 赴美签证50mm×50mm 日本签证45mm×45mm 大二寸35mm×45mm 护照33mm×48mm 毕业生照33mm×48mm 身份证22mm×32mm 驾照21mm×26mm

车照60mm×91mm 数码相机和可冲印照片最大尺寸对照表 500万像素有效4915200,像素2560X1920。可冲洗照片尺寸17X13,对角线21英寸400万像素有效3871488,像素2272X1704。可冲洗照片尺寸15X11,对角线19英寸300万像素有效3145728,像素2048X1536。可冲洗照片尺寸14X10,对角线17英寸200万像素有效1920000,像素1600X1200。可冲洗照片尺寸11X8,对角线13英寸130万像素有效1228800,像素1280X960。可冲洗照片尺寸9X6,对角线11英寸080万像素有效786432,像素1024X768。可冲洗照片尺寸7X5,对角线9英寸 050万像素有效480000,像素800X600。可冲洗照片尺寸5X4,对角线7英寸 030万像素有效307200,像素640X480。可冲洗照片尺寸4X3,对角线5英寸

5寸照片(3X5),采用800X600分辨率就可以了 6寸照片(4X6),采用1024X768分辨率 7寸照片(5X7),采用1024X768分辨率 8寸照片(6X9),采用1280X960分辨率 按照目前的通行标准,照片尺寸大小是有较严格规定的 1英寸证明照的尺寸应为3.6厘米×2.7厘米; 2英寸证明照的尺寸应是3.5厘米×5.3厘米; 5英寸(最常见的照片大小)照片的尺寸应为12.7厘米×8.9厘米; 6英寸(国际上比较通用的照片大小)照片的尺寸是15.2厘米×10.2厘米;7英寸(放大)照片的尺寸是17.8厘米×12.7厘米; 12英寸照片的尺寸是30.5厘米×25.4厘米。

变化系数

变化系数——又称变异系数 用以表示各个变量值之间差异程度的一种指标。在矿产勘探工作中 通常用它来定量地反映矿体各种标志的变化程度 例如用厚度变化系数表示矿体形态的变化程度 用品位变化系数表示有用组分在矿体中分布的均匀程度。一般变化系数越大 表示某一标志的变化程度越大。通过对不同矿体或同一矿体不同部分的厚度、品位变化系数的分析与比较 可以了解矿床勘探的难易程度 为合理布置勘探工作及研究勘探方法提供依据。变化系数计算公式为 Vx=%100 Xx nxxix2)( 式中Vx为变化系数 x 为变量 如厚度、品位等 的均方差 x为变量的算术平均值 如算术平均厚度、算术平均品位等 。其中均方差式中 当n 25时 则采用n-1 Xi为单个变量 如单个厚度或品位的测量值 n为变量数目 如厚度测量次数、样品数目等 。变化系数的计算函数式为 =IF(COUNT(NUMBER1,NUMBER2…)>=25,ROUND(SQRT(V ARP(NUMBER1,NUMBER2…))/A VERAGE(NUMBER1,NUMBER2…)*100,2),ROUND(SQRT(V ARP(NUMBER1,NUMBER 2…)*COUNT(NUMBER1,NUMBER2…)/(COUNT(NUMBER1,NUMBER2…)-1))/A VERAGE( NUMBER1,NUMBER2…)*100,2)) 在excel中进行计算时 把NUMBER1,NUMBER2…替换成A1, A2, A3, A4,A5,A6,…,An或者A1:An(用于相邻的n个单元格)即可。V ARP为方差计算函数 计算公式 nxxi 2)(=222)(nxxn 其中ix为单个变量 x为变量的算术平均值 n为变量数目

AATCC 150 家庭洗涤后服装尺寸的变化 中文版

家庭洗涤后服装尺寸的变化 1、目的与范围 1.1、本试验方法是为了测试纺织品在经过消费者的家庭洗涤程序后的尺寸变化。目前,消费者使用的洗衣机一般包括以下可选择的程序:四个洗涤温度;三个搅拌速度;两个漂洗温度;以及四个干燥程序。 1.2、经过家庭洗涤程序后服装尺寸的变化,是通过测量服装上由台形记号标定的区域来得到的。服装尺寸变化的测量受到服装结构、张力、缝纫线或者除织物尺寸变化外的整理的影响。 1.3、作为一种可选择的程序,织物的尺寸变化可以通过台形记号在服装面积内的织物进行标记来测定,但是不能包括接缝或缝纫的线路。 1.4、本试验方法不适合用弹性织物做成的服装。 2、原理 2.1、在洗涤前在服装上做好一组组的基准线,按照一般的家庭洗涤之后,测量服装的尺寸变化。 3、术语 3.1、尺寸变化:在特定的条件下,织物试样在长度或宽度方向上的改变。尺寸变化,通常用试样的这部分的变化与原尺寸相比的百分率来表示。 3.2、服装:纺织织物或其他的柔软材料的成型物品,并能够遮盖人身体部分。 3.3、伸长:尺寸的变化导致试样在长度或宽度方向的增加。 3.4、洗涤:它是指利用水性清洁剂溶液进行处理(清洗),旨在清除污垢或污迹的过程,通常包括接着进行的冲洗、吸水和干燥的过程。 3.5、收缩:尺寸的变化导致试样在长度或宽度方向的减少。 4、安全预防 注:这些安全保护措施仅供参考。它是对试验程序的补充,并非包括所有的措施。采用试验方法中安全和正确地处理织物的工艺是用户的责任。有关材料的安全数据表,制造厂商的其他建议等详细的资料,必须向制造厂商咨询。也必须参考和遵守美国劳工部职业安全与健康署的所有标准和规定。 4.1、要切实遵守实验室操作规范。在实验室内的任何区域,必须戴好防护眼镜。 4.2、1993 AATCC标准洗涤剂会引发炎症。应该小心使用,以防止接触眼睛和皮肤。 4.3、在使用实验室试验装置时,应遵守制造厂商的安全建议。 5、仪器与原料 5.1、自动洗衣机(见12.1) 5.2、自动翻滚式烘干机(见12.2)。 5.3、调湿/干燥样品架:可拉式筛板或带孔的晾衣架(见12.3)。 5.4、滴干和悬挂晾干装置。 5.5、1993AATCC标准洗涤剂(见12.8、12.9)。 5.6、尺寸为920×920mm的漂白翻边棉质织物(第一款陪洗物),或50/50涤棉平纹漂白织物(第三款陪洗物)(见12.4、12.9)。 5.7、不褪色的墨水记号笔(见12.5),合适的直尺、卷尺、标记卡板或其他标记装置(见12.6)。做标记时使用的缝纫线。 5.8、测量装置 5.8.1、直尺或卷尺,有毫米刻度,十分之一或八分之一英寸的刻度。 5.8.2、直尺或卷尺,能直接读出尺寸的变化率至0.5%或者更小的刻度(见12.6)。 5.9、天平:最少能称量5.0kg。 6、试样 6.1、样品与准备 6.1.1、每件服装就是一件试样。用作试样的服装应该是很多服装中具有代表性的。如果可能,应该测量三个试样。如果没有足够的服装,一个或两个试样也是可以的。 6.1.2、由于不完善的织物整理、服装附件或包装,从而导致在未经洗涤状态下服装就有尺寸扭曲的现象,不管经过任何的洗涤程序后,其尺寸变化的结果都是不正确的。在这种情况下,建议不要使用这件服装作为试样,如果测试了,这个结果也只是象征性的。 6.1.3、在标记前,把试样放在ASTM D 1776(试验用纺织品的状态调节方法)环境中调湿。在温度21±1℃、相对湿度65±2%的大气中,把每件试样挂在一个合适的衣架上调湿4小时以上。如果服装不能正常挂在衣架上,如:T恤、拳击短装等,则把每件试样分开放在调湿架的筛板或带孔的晾衣架上。 6.2、标记 6.2.1、根据表1来选择服装试样的测试位置,在服装试样的测试位置上作台形记号。每一个服装试样至

资源量估算

资源量估算 按照DZ/T0205-2002《岩金矿地质勘查规范》与DZ/T0214-2002《铜、铅、锌、银、镍、钼矿地质勘查规范》和2002年中国地质调查局颁发的《固体矿产推断的内蕴经济资源量和经工程验证的预测资源量估算技术要求》,本次工作对主要由钻探工程控制的下营子区Ⅲ-1、Ⅲ-2、Ⅲ-8银多金属矿体与Ⅳ-4、Ⅳ-7、Ⅳ-8、Ⅳ-9、Ⅳ-10、Ⅳ-12、Ⅳ-18、Ⅳ-19、Ⅳ-21、Ⅳ-25、Ⅳ-26、Ⅳ-32、Ⅳ-34、Ⅳ-41号钼矿体进行了资源量估算,对由坑道工程控制吕家区Ⅲ-1号金矿体进行了资源量估算,其它矿体未进行资源量估算。 第一节资源量估算的工业指标 一、金矿工业指标 根据DZ/T0205-2002《岩金矿地质勘查规范》推荐的岩金矿参考工业指标,结合邻区东韩家金矿的生产情况,确定本次资源量估算的金矿工业指标为: 边界品位(质量分数):1×10-6 最低工业品位(质量分数):3×10-6 矿床最低工业品位(质量分数):5×10-6 最小可采厚度:0.8m 夹石剔除厚度:2m 根据《岩金矿地质勘查规范》中岩金矿伴生组份评价参考指标,确定本次资源量估算的伴生矿工业指标为: Ag>2×10-6、Cu>0.1×10-2。 二、银矿工业指标 根据DZ/T0214-2002《铜、铅、锌、银、镍、钼矿地质勘查规范》附录G.2.5银矿床一般工业指标要求,确定本次资源量估算的银矿工业指标为: 边界品位(质量分数):40×10-6 最低工业品位(质量分数):80×10-6 矿床平均品位(质量分数):>150×10-6 最低可采厚度:0.8m

夹石剔除厚度:2m 银矿床伴生有用组分评价参考指标 (质量分数) Pb0.2×10-2、Zn0.4×10-2、Cu0.1×10-2, Pb、Zn、Cu为伴生元素参与储量计算。 三、钼矿工业指标 根据DZ/T0214-2002《铜、铅、锌、银、镍、钼矿地质勘查规范》附录G.2.4钼矿床一般工业指标要求,确定本次资源量估算的钼矿工业指标为: 边界品位(质量分数):0.03×10-2 最低工业品位(质量分数):0.06×10-2 最小可采厚度:1m 夹石剔除厚度:4m 工业米百分值:0.06% 钼矿床伴生有用组分评价参考指标 (质量分数)Cu0.1×10-2,Cu为伴生元素参与储量计算。 第二节资源量估算方法的选择及依据 随着地质科学理论的迅速发展和现代计算机技术的广泛应用,新的矿产资源储量估算方法日益增多,国外克里格法和国内SD(标准偏差)法已经开始在我国地质勘查行业全面推广施行,传统的几何法正在逐步被地质统计方法所取替。然而,由于受传统资源储量估算方法的约束,以及对新的资源储量估算方法掌握程度有限,为准确和把握起见,本次资源量估算仍采用传统的几何法。 一、方法选择及依据 (一)下营子区 1.方法选择:选择垂直纵投影地质块段法。将本次控制的矿体投影到纵剖面上,根据矿石不同工业类型、品级、储量级别等地质特征,将一个矿体划分为若干个不同厚度的理想板块体,即块段,然后在每个块段中用算术平均法(品位用加权平均法)的原则求出每个块段的储量。各部分储量的总和,即为整个矿体的储量。进行资源量估算。 2.选择依据:①根据不同阶段普查工作初步查明的矿体形态、规模、范围、勘探线间距及方位不一致,矿体在不同标高水平切面图上是以北山爆破角砾岩筒为中心呈环状分布,以及矿体在走向和倾斜方向上的工程控制网度不足的特点,勘探线以北山爆破角砾岩筒为中心呈放射状布

相关文档
相关文档 最新文档