文档库 最新最全的文档下载
当前位置:文档库 › 002-理论力学第01讲2007年09月05日

002-理论力学第01讲2007年09月05日

002-理论力学第01讲2007年09月05日
002-理论力学第01讲2007年09月05日

2007年9月5日星期三;年9月7日星期五

【理论力学】第01讲工程力学B

(Ⅰ) 静力学

一、桁架类

节点法,截面法(力矩式—矩心式的选择)

二、具有中间饺链的组合结构类

(1)研究对象的选择;先整后零或先零后整或相互配合。

(2)中间铰的特性;

(3)二力杆的特性;

(4)力矩式建立时要注意矩心的选择。

提示:要分析中间铰链的约束力,参阅理论力学,哈工大编,上册(第五版)P25 1、如图所示结构, 已知q=20N∕㎝,Q=100N,P=200N,其他尺寸如图所示. 求A.D处的约束反力.(1997.北农工.R AX=2350N←,R AY=3400N↑,R DX=2350N→,R DY=2500N↓)

2、图示构架由AB.BC.CD.EF和CFG等五根杆铰接而成,受均布载荷q作用, 其他尺寸如图所示. 杆件的重量不计. 试求A端处的约束反力(2000.南航,15分.X A=2qa→,Y A=qa ↑,M A=qa2)

题1图题2图

3、图示构架,由直杆BC,CD及直角弯杆AB组成,各杆自重不计,载荷分布及尺寸如图。销钉B穿透AB及BC两构件,在销钉B上作用一集中载荷P。已知q ,a ,M,且M=qa2。求固定端A的约束反力及销钉B对BC杆,AB杆的作用力。【摘自理论力学,第五版,哈工大编,上册P138,题3-51】

题3图

4、图示结构由直角弯杆DAB与直杆BC.CD铰接而成,并在A处与B处用固定铰支座和可动铰支座固定。杆DC受均布载荷q的作用,杆BC受矩为M=qa2的力偶作用。不计各杆件的自重。求铰链D受的力。【摘自理论力学,第五版,哈工大编,上册P138,题3-49】

(a)(b)(c)(d)

题4图

5、结构由AC、DE杆及BC滑槽组成,各构件自重及各处摩擦不计,已知:载荷及尺寸如图所示,求A、B两处的约束反力. (2001年.大连理工大学. 20分)

6、如图所示,一横梁桁架结构,由横梁AC、BC及五根支撑杆组成,所受载荷及尺寸如图,求1、2、3杆的内力。(五根支撑杆不计重量)(2002年.大连理工大学15分)

题5图题6图

7、(25分)梁AB、BC及曲杆CD自重不计,B、C、D处为光滑铰链,已知:P=20KN,M=10N·m,q=10N/m,a=0.5m,求铰支座D及固定端A的约束反力。(南昌大学2003年)

8、(20分)如图所示,平面机构由杆AB、DE及弯杆DB组成。已知P=10KN,M=20KN·m,L=r=1m,各杆及轮的自重不计。求固定铰链支座A和滚动支座D的约束反力及杆BD的B端所受的力。(武汉理工大学2003年)

题7图题8图

9、(16分)如图所示系统,各构件均用光滑圆柱铰链连接,杆AE和杆BG铅垂,杆CD 水平。已知BG杆上作用有一力偶M,AC=CE=CD=BD=a,BG=3a。不计构件自重,求杆CD和杆EG的内力F CD和F EG(拉为正)。(2006北航)

10、(15分)(2006西南交大)如图所示结构中自重不计,已知l=2m,q=10kN/m。求支座A、E处的约束以力以及1、2杆的内力。

题9图题10图

理论力学习题解答第九章

9-1在图示系统中,均质杆OA 、AB 与均质轮的质量均为m ,OA 杆的长度为1l ,AB 杆的长度为2l ,轮的半径为R ,轮沿水平面作纯滚动。在图示瞬时,OA 杆的角速度为ω,求整个系统的动量。 ω12 5 ml ,方向水平向左 题9-1图 题9-2图 9-2 如图所示,均质圆盘半径为R ,质量为m ,不计质量的细杆长l ,绕轴O 转动,角速度为ω,求下列三种情况下圆盘对固定轴的动量矩: (a )圆盘固结于杆; (b )圆盘绕A 轴转动,相对于杆OA 的角速度为ω-; (c )圆盘绕A 轴转动,相对于杆OA 的角速度为ω。 (a )ω)l R (m L O 22 2 +=;(b )ω2ml L O =;(c )ω)l R (m L O 22+= 9-3水平圆盘可绕铅直轴z 转动,如图所示,其对z 轴的转动惯量为z J 。一质量为m 的质点,在圆盘上作匀速圆周运动,质点的速度为0v ,圆的半径为r ,圆心到盘中心的距离为l 。开始运动时,质点在位置0M ,圆盘角速度为零。求圆盘角速度ω与角?间的关系,轴承摩擦不计。

9-4如图所示,质量为m 的滑块A ,可以在水平光滑槽中运动,具有刚性系数为k 的弹簧一端与滑块相连接,另一端固定。杆AB 长度为l ,质量忽略不计,A 端与滑块A 铰接,B 端装有质量1m ,在铅直平面内可绕点A 旋转。设在力偶M 作用下转动角速度ω为常数。求滑块A 的运动微分方程。 t l m m m x m m k x ωωsin 21 11+=++

9-5质量为m,半径为R的均质圆盘,置于质量为M的平板上,沿平板加一常力F。设平板与地面间摩擦系数为f,平板与圆盘间的接触是足够粗糙的,求圆盘中心A点的加速度。

理论力学第二章

第2章 力系的等效与简化 2-1试求图示中力F 对O 点的矩。 解:(a )l F F M F M F M M y O y O x O O ?==+=αsin )()()()(F (b )l F M O ?=αsin )(F (c ))(sin cos )()()(312l l Fl F F M F M M y O x O O +--=+=ααF (d )2 22 1sin )()()()(l l F F M F M F M M y O y O x O O +==+=αF 2-2 图示正方体的边长a =0.5m ,其上作用的力F =100N ,求力F 对O 点的矩及对x 轴的力矩。 解:)(2 )()(j i k i F r F M +-? +=?=F a A O m kN )(36.35) (2 ?+--=+--= k j i k j i Fa m kN 36.35)(?-=F x M 2-3 曲拐手柄如图所示,已知作用于手柄上的力F =100N ,AB =100mm ,BC =400mm ,CD =200mm , α = 30°。试求力F 对x 、y 、z 轴之矩。 解: )cos cos sin (sin )4.03.0()(2k j i k j F r F M αααα--?-=?=F D A k j i αααα22sin 30sin 40)sin 4.03.0(cos 100--+-= 力F 对x 、y 、z 轴之矩为: m N 3.43)2.03.0(350)sin 4.03.0(cos 100)(?-=+-=+-=ααF x M m N 10sin 40)(2?-=-=αF y M m N 5.7sin 30)(2?-=-=αF z M 2—4 正三棱柱的底面为等腰三角形,已知OA=OB =a ,在平面ABED 内沿对角线AE 有一个力F , 图中θ =30°,试求此力对各坐标轴之矩。 习题2-1图 A r A 习题2-2图 (a ) 习题2-3图

理论力学课后习题答案 第9章 动量矩定理及其应用)

O ω R r A B θ 习题9-2图 习题20-3图 Ox F Oy F g m D d α 习题20-3解图 第9章 动量矩定理及其应用 9-1 计算下列情形下系统的动量矩。 1. 圆盘以ω的角速度绕O 轴转动,质量为m 的小球M 可沿圆盘的径向凹槽运动,图示瞬时小球以相对于圆盘的速度v r 运动到OM = s 处(图a );求小球对O 点的动量矩。 2. 图示质量为m 的偏心轮在水平面上作平面运动。轮心为A ,质心为C ,且AC = e ;轮子半径为R ,对轮心A 的转动惯量为J A ;C 、A 、B 三点在同一铅垂线上(图b )。(1)当轮子只滚不滑时,若v A 已知,求轮子的动量和对B 点的动量矩;(2)当轮子又滚又滑时,若v A 、ω已知,求轮子的动量和对B 点的动量矩。 解:1、2 s m L O ω=(逆) 2、(1) )1()(R e mv e v m mv p A A C +=+==ω(逆) R v me J R e R mv J e R mv L A A A C C B )()()(22 -++=++=ω (2))(e v m mv p A C ω+== ωωωω)()()())(()(2meR J v e R m me J e R e v m J e R mv L A A A A C C B +++=-+++=++= 9-2 图示系统中,已知鼓轮以ω的角速度绕O 轴转动,其大、小半径分别为R 、r ,对O 轴的转动惯量为J O ;物块A 、B 的质量分别为m A 和m B ;试求系统对O 轴的动量矩。 解: ω)(22r m R m J L B A O O ++= 9-3 图示匀质细杆OA 和EC 的质量分别为50kg 和100kg ,并在点A 焊成一体。若此结构在图示位置由静止状态释放,计算刚释放时,杆的角加速度及铰链O 处的约束力。不计铰链摩擦。 解:令m = m OA = 50 kg ,则m EC = 2m 质心D 位置:(设l = 1 m) m 6 5 65== =l OD d 刚体作定轴转动,初瞬时ω=0 l mg l mg J O ?+?=22α 222232)2(212 1 31ml ml l m ml J O =+??+= 即mgl ml 2 532=α 2rad/s 17.865==g l α g l a D 36 256 5t =?=α 由质心运动定理: Oy D F mg a m -=?33t 4491211 362533==-=mg g m mg F Oy N (↑) 0=ω,0n =D a , 0=Ox F (a) O M v ω ω A B C R v A (b) 习题9-1图

11理论力学

13.1 半径为R 的均质圆轮质量为m ,图a ,b 所示为圆轮绕固定轴O 转动,角速度为ω,图c 所示为圆轮在水平面上作纯滚动,质心速度为v 。试分别计算它们的动能。 解: (a )圆轮绕固定轴O 转动,动能为 22223 ,21 mR mR J J J T C O O = +== ω 导得 243mR T = (b )圆轮绕固定轴O 转动,动能为 2221 ,21 mR J J T O O = = ω 导得 241 mR T = (c )圆轮在水平面上作纯滚动,由K?nig 定理,动能为 22221 ,,21 21mR J R v J mv T C C = =+= ωω 导得 243mR T = 13.2 图示均质杆长l ,质量m ,绕点O 转动的角速度为ω,均质圆盘半径为R ,质量m 与 杆相同,求下列三种情况下系统的动能: (a )圆盘固结于杆; (b )圆盘绕轴A 转动,相对于杆的角速度为ω-; (c )圆盘绕轴A 转动,相对于杆的角速度为ω。 解: (a )圆盘固结于杆,则圆盘的运动为绕点O 转动,角速度为ω,则系统动能为 222221222121 ,12 1 ,2 1 21ml mR ml J J ml J J J T A += +== += ωω 导得 2 2212132121ωm l R T ??? ??+= (b )圆盘绕轴A 转动,相对于杆的角速度为ω-,则圆盘的绝对角速度等于零,则系统动

能为 l v ml J mv J T A A ωω== += ,121 ,212121221 导得 2 22413ωml T = (c )圆盘绕轴A 转动,相对于杆的角速度为ω,则圆盘的绝对角速度等于2ω,则系统动 能为 ()l v mR J ml J J mv J T A A ωωω== = ++= ,21 ,12 1 ,22 12121222122221 导得 2222121321ωm R l T ??? ??+= 13.3 输送器A 以10m/s 的速度沿轨道运动如图示,其上用轻杆吊一重450N 、半径为0.3m 的均质圆盘。若圆盘以5rad/s 的角速度转动,试计算圆盘在此瞬时的动能。 解:均质圆盘作平面运动。 C (基点A ):i v v v )(A CA A C l v ω+=+= 圆盘动能: m N 5.62762121)(212121222A 2C 2C ?=++=+= ωωωr g W l v g W J mv T 13.4 均质杆CD 和EA 分别重50N 和80N ,铰接于点B 。若杆EA 以2rad/s =ω绕A 转动, 试计算图示位置两杆的动能。 解:B (基点D ):BD D B v v v += m/s)(34.13B D ==v v m/s)(8.22B BD ==v v , rad/s)(314 CD = ω

理论力学课后习题第二章思考题答案

理论力学课后习题第二章思考题解答 2.1.答:因均匀物体质量密度处处相等,规则形体的几何中心即为质心,故先找出各规则形体的质心把它们看作质点组,然后求质点组的质心即为整个物体的质心。对被割去的部分,先假定它存在,后以其负质量代入质心公式即可。 2.2.答:物体具有三个对称面已足以确定该物体的规则性,该三平面的交点即为该物体的几何对称中心,又该物体是均匀的,故此点即为质心的位置。 2.3.答:对几个质点组成的质点组,理论上可以求每一质点的运动情况,但由于每一质点受到周围其它各质点的相互作用力都是相互关联的,往往其作用力难以 n3 预先知道;再者,每一质点可列出三个二阶运动微分方程,各个质点组有个相互关联的三个二阶微分方程组,难以解算。但对于二质点组成的质点组,每一质点的运动还是可以解算的。 若质点组不受外力作用,由于每一质点都受到组内其它各质点的作用力,每一质点的合内力不一定等于零,故不能保持静止或匀速直线运动状态。这表明,内力不改变质点组整体的运动,但可改变组内质点间的运动。 2.4.答:把碰撞的二球看作质点组,由于碰撞内力远大于外力,故可以认为外力为零,碰撞前后系统的动量守恒。如果只考虑任一球,碰撞过程中受到另一球的碰撞冲力的作用,动量发生改变。 2.5.答:不矛盾。因人和船组成的系统在人行走前后受到的合外力为零(忽略水对船的阻力),且开船时系统质心的初速度也为零,故人行走前后系统质心相对地面的位置不变。当人向船尾移动时,系统的质量分布改变,质心位置后移,为抵消这种改变,船将向前移动,这是符合质心运动定理的。 2.6.答:碰撞过程中不计外力,碰撞内力不改变系统的总动量,但碰撞内力很大,

理论力学第七版答案

8-5 杆OA 长l ,由推杆推动而在图面内绕点O 转动,如图所示。假定推杆的速度为υ,其弯头高为a 。试求杆端A 的速度的大小(表示为由推杆至点O 的距离x 的函数)。 题8-5图 【知识要点】 点得速度合成定理和刚体的定轴转动。 【解题分析】 动点:曲杆上B ,动系:杆OA 绝对运动:直线运动 相对运动:直线运动 牵连运动:定轴转动 【解答】 取OA 杆为动系,曲杆上的点B 为动点 v a = v e +v r 大小: √ ? ? 方向: √ √ √ v a = v 2 22222cos :a x va a x v a x va v v v e e e a +=+=+==ωθη 8-10 平底顶杆凸轮机构如图所示,顶杆AB 可沿导轨上下移动,偏心圆盘绕轴O 转动,轴O 位于顶杆轴线上。工作时顶杆的平底始终接触凸轮表面。该凸轮半径为R ,偏心距OC =e ,凸轮绕轴O 转动的角速度为ω,OC 与水平线成夹角?。求当?=0°时,顶杆的速度。 【知识要点】 点的速度合成定理 【解题分析】 动点:点C ,动系:顶杆AB 绝对运动:圆周运动 相对运动:直线运动 牵连运动:平行移动

题8-10图 【解答】 取轮心C 为动点,由速度合成定理有 v a = v e +v r 大小: √ ? ? 方向: √ √ √ 解得: v a = v e , v r =0, v e =v a =ωe 8-17 图示铰接四边形机构中,O 1A =O 2B =100mm ,又O 1 O 2=AB ,杆O 1A 以等角速度ω =2rad/s 绕O 1轴转动。杆AB 上有一套筒C ,此筒与杆CD 相铰接。机构的各部件都在同一铅直面内。求当?=60°时,杆CD 的速度和加速度。 题8-17图 【知识要点】 点的运动速度和加速度合成定理 【解题分析】 动点:套筒C,动系:杆AB 绝对运动:直线运动 相对运动:直线运动 牵连运动:平行移动 【解答】 取C 点为动点,杆AB 为动系 (1)速度 v a =v e + v r , v e = v A = A O 1?ω s m v v e a /1.060cos 0=?= (2) 加速度 a a = a e +a r ,A O a a n A n e 12?==ω 20/35.030cos s m a a n e a =?=

理论力学(盛冬发)课后习题答案ch11

第11章动量矩定理 、是非题(正确的在括号内打“√”、错误的打“X” ) 1. 质点系对某固定点(或固定轴)的动量矩,等于质点系的动量对该点(或轴)的矩。 2. 质点系所受外力对某点(或轴)之矩恒为零,则质点系对该点(或轴)的动量矩不变。 3. 质点系动量矩的变化与外力有关,与内力无关。 4. 质点系对某点动量矩守恒,则对过该点的任意轴也守恒。 5. 定轴转动刚体对转轴的动量矩,等于刚体对该轴的转动惯量与角加速度之积。 6. 在对所有平行于质心轴的转动惯量中, 以对质心轴的转动惯量为最大。 d i n 7. 质点系对某点的动量矩定理 L ='、M O (F i e )中的点O ”是固定点或质点系的质心。 dt i J 8. 如图11.23所示,固结在转盘上的均质杆 AB,对转轴的转动惯量为 1 2 2 ml mr ,式中m 为AB 杆的质量。 3 9. 当选质点系速度瞬心P 为矩心时,动量矩定理一定有-L P 八M P (F i e ) 不需附加任何条件。 10.平面运动刚体所受外力对质心的主矩等于零,则刚体只能做平动;若所受外力的主 矢等于零,刚体只能作绕质心的转动。 、填空题 1. 绕定轴转动刚体对转轴的动量矩等于刚体对转轴的转动惯量与 角速度的乘积。 2. 质量为 m ,绕Z 轴转动的回旋半径为 匚 则刚体对Z 轴的转动惯量为J Z m<2 。 3. 质点系的质量与质心速度的乘积称为 质点系的动量。 4. 质点系的动量对某点的矩随时间的变化规律只与系统所受的 外力对该点的矩有关, 而与系统的 内力无关。 5. 质点系对某点动量矩守恒的条件是 质点系所受的全部外力对该点之矩的矢量和等于 零,质点系的动量对 X 轴的动量矩守恒的条件是 质点系所受的全部外力对 X 轴之矩的代数 (× ) (√) (√) (√) (× ) (× ) (√) 2 J o=J A mr 的形式,而 l 图 11.23

理论力学第七版答案高等教育出版社出版

哈工大理论力学(I)第7版部分习题答案 1-2 两个老师都有布置的题目 2-3?2-6?2-14?2-?20?2-30?6-2?6-4?7-9??7-10?7-17?7-21?8-5?8-8?8-1 6?8-24?10-4? 10-6?11-5?11-15?10-3 以下题为老师布置必做题目 1-1(i,j), 1-2(e,k) 2-3, 2-6, 2-14,2-20, 2-30 6-2, 6-4 7-9, 7-10, 7-17, 7-21, 7-26 8-5, 8-8(瞬心后留), 8-16, 8-24 10-3, 10-4 10-6 11-5, 11-15 12-10, 12-15, 综4,15,16,18 13-11,13-15,13-16 6-2 图6-2示为把工件送入干燥炉内的机构,叉杆OA= m在铅垂面内转动,杆AB= m,A端为铰链,B端有放置工件的框架。在机构运动时,工件的速度恒为m/s,杆AB始终铅垂。 设运动开始时,角0=?。求运动过程中角?与时间的关系,以及点B的轨迹方程。 10-3 如图所示水平面上放1 均质三棱柱A,在其斜面上又放1 均质三棱柱B。两三棱柱的横截面均为直角三角形。三棱柱 A 的质量为mA三棱柱 B 质量mB的 3 倍,其尺寸如图所示。设各处摩擦不计,初始时系统静止。求当三棱柱 B 沿三棱柱 A 滑下接触到水平面时,三棱柱 A 移动的距离。 11-4 解取A、B 两三棱柱组成 1 质点系为研究对象,把坐标轴Ox 固连于水平面上,O 在 棱柱 A 左下角的初始位置。由于在水平方向无外力作用,且开始时系统处于静止,故系统 质心位置在水平方向守恒。设A、B 两棱柱质心初始位置(如图b 所示)在x 方向坐标 分别为 当棱柱 B 接触水平面时,如图c所示。两棱柱质心坐标分别为 系统初始时质心坐标 棱柱 B 接触水平面时系统质心坐标 因并注意到得 10-4 如图所示,均质杆AB,长l,直立在光滑的水平面上。 求它从铅直位无 初速地倒下时,端点A相对图b所示坐标系的轨迹。 解取均质杆AB 为研究对象,建立图11-6b 所示坐标系Oxy, 原点O与杆AB 运动初始时的点 B 重合,因为杆只受铅垂方向的

理论力学(盛冬发)课后习题答案ch11

·125· 第11章 动量矩定理 一、是非题(正确的在括号内打“√”、错误的打“×”) 1. 质点系对某固定点(或固定轴)的动量矩,等于质点系的动量对该点(或轴)的矩。 (×) 2. 质点系所受外力对某点(或轴)之矩恒为零,则质点系对该点(或轴)的动量矩不变。(√) 3. 质点系动量矩的变化与外力有关,与内力无关。 (√) 4. 质点系对某点动量矩守恒,则对过该点的任意轴也守恒。 (√) 5. 定轴转动刚体对转轴的动量矩,等于刚体对该轴的转动惯量与角加速度之积。 (×) 6. 在对所有平行于质心轴的转动惯量中,以对质心轴的转动惯量为最大。 (×) 7. 质点系对某点的动量矩定理e 1d ()d n O O i i t ==∑L M F 中的点“O ”是固定点或质点系的质心。 (√) 8. 如图11.23所示,固结在转盘上的均质杆AB ,对转轴的转动惯量为20A J J mr =+ 221 3 ml mr =+,式中m 为AB 杆的质量。 (×) 9. 当选质点系速度瞬心P 为矩心时,动量矩定理一定有e 1d ()d n P P i i t ==∑L M F 的形式,而 不需附加任何条件。 (×) 10. 平面运动刚体所受外力对质心的主矩等于零,则刚体只能做平动;若所受外力的主矢等于零,刚体只能作绕质心的转动。 (×) A B l O ω r 图11.23 二、填空题 1. 绕定轴转动刚体对转轴的动量矩等于刚体对转轴的转动惯量与角速度的乘积。 2. 质量为m ,绕z 轴转动的回旋半径为ρ,则刚体对z 轴的转动惯量为2ρm J z =。 3. 质点系的质量与质心速度的乘积称为质点系的动量。 4. 质点系的动量对某点的矩随时间的变化规律只与系统所受的外力对该点的矩有关,而与系统的内力无关。 5. 质点系对某点动量矩守恒的条件是质点系所受的全部外力对该点之矩的矢量和等于零,质点系的动量对x 轴的动量矩守恒的条件是质点系所受的全部外力对x 轴之矩的代数

理论力学第七版答案 第九章

9-10 在瓦特行星传动机构中,平衡杆O 1A 绕O 1轴转动,并借连杆AB 带动曲柄OB ;而曲柄OB 活动地装置在O 轴上,如图所示。在O 轴上装有齿轮Ⅰ,齿轮Ⅱ与连杆AB 固连于一体。已知:r 1=r 2=0.33m ,O 1A =0.75m ,AB =1.5m ;又平衡杆的角速度ωO 1=6rad/s 。求当γ=60°且β=90°时,曲柄OB 和齿轮Ⅰ的角速度。 题9-10图 【知识要点】 Ⅰ、Ⅱ两轮运动相关性。 【解题分析】 本题已知平衡杆的角速度,利用两轮边缘切向线速度相等,找出ωAB ,ωOB 之间的关系,从而得到Ⅰ轮运动的相关参数。 【解答】 A 、B 、M 三点的速度分析如图所示,点C 为AB 杆的瞬心,故有 AB A O CA v A A B ??== 21ωω ωω?= ?=A O CD v AB B 12 3 所以 s rad r r v B OB /75.32 1=+= ω s rad r v CM v M AB M /6,1 == ?=I ωω 9-12 图示小型精压机的传动机构,OA =O 1B =r =0.1m ,EB =BD =AD =l =0.4m 。在图示瞬时,OA ⊥AD ,O 1B ⊥ED ,O 1D 在水平位置,OD 和EF 在铅直位置。已知曲柄OA 的转速n =120r/min ,求此时压头F 的速度。

题9-12图 【知识要点】 速度投影定理。 【解题分析】 由速度投影定理找到A 、D 两点速度的关系。再由D 、E 、F 三者关系,求F 速度。 【解答】 速度分析如图,杆ED 与AD 均为平面运动,点P 为杆ED 的速度瞬心,故 v F = v E = v D 由速度投影定理,有A D v v =?θcos 可得 s l l r n r v v A F /30.1602cos 2 2m =+??== πθ 9-16 曲柄OA 以恒定的角速度=2rad/s 绕轴O 转动,并借助连杆AB 驱动半径为r 的轮 子在半径为R 的圆弧槽中作无滑动的滚动。设OA =AB =R =2r =1m ,求图示瞬时点B 和点C 的速度与加速度。 题9-16图 【知识要点】 基点法求速度和加速度。 【解题速度】 分别对A 、B 运动分析,列出关于B 点和C 点的基点法加速度合成方程,代入已知数据库联立求解。 【解答】 轮子速度瞬心为P, AB 杆为瞬时平动,有

理论力学答案第二章

《理论力学》第二章作业 习题2-5 解:(1)以D点为研究对象,其上所受力如上图(a)所示:即除了有一铅直向下的拉力F外,沿DB有一拉力7和沿DE有一拉力T E。列平衡方程 F Y 0 T E sin F 0 解之得 T Fctg 800/0.1 8000( N) (2)以B点为研究对象,其上所受力如上图(b)所示:除了有一沿DB拉力T夕卜,沿BA有一铅直向下的拉力T A,沿BC有一拉力T C,且拉力T与D点所受的拉力T大小相等方向相反,即T TT。列平衡方程 F X 0 T T C sin 0 F Y 0 T C COS T A 0 解之得 T A Tctg 8000/0.1 80000( N) 答:绳AB作用于桩上的力约为80000N 习题2-6 解:(1)取构件BC为研究对象,其受力情况如下图(a)所示:由于其主动力仅有一个力偶M,那末B、C处所受的约束力F B、F C必定形成一个阻力偶与之 F X 0 T T E COS 0 3) ,T A

平衡。列平衡方程 r M B (F) 0 M F C l 0 与BC 构件所受的约束力F C 互为作用力与反作用力关系,在D 处有一约束力F D 的 方向向上,在A 处有一约束力F A ,其方向可根据三力汇交定理确定,即与水平 方向成45度角。列平衡方程 F X 0 F A sin 45o F C 所以 F A 迈F C >/2F C V 2 -M - 答:支座A 的约束力为.2-,其方向如上图(b ) 所示 习题2-7 解: (1)取曲柄0A 为研究对象,其受力情况如下图(a )所示:由于其主动力 仅有一个力偶M ,那末O A 处所受的约束力F O 、F BA 必定形成一个阻力偶与之 平衡。列平衡方程 ⑵ 取构件ACD ^研究对象,其受力情况如上图(b )所示:C 处有一约束力F C F

理论力学第七版答案

3-4 在图示刚架中,已知q =3kN/m ,F 可=62kN ,M =10kN ?m ,不计刚架自重。求固 定端A 处的约束反力。 【知识要点】 平面的任意力系的平衡方程及应用,单个物体的平衡问题 【解题分析】 本题应注意固定端A 处的受力分析,初学者很容易丢掉约束力偶。 【解答】 以刚架为研究对象,受力如图。 题3-4图 ∑=-?+=045cos 42 1,00F q F F Ax x ∑=-=045sin ,00F F F Ay y ∑=?+?--??- =0445cos 345sin 3 4421,0)(00F F M q M F M A A 解得 F A x =0, F A y =6kN, M A =m kN ?12 3-8 如图所示,行动式起重机不计平衡锤的重为P =500kN ,其重心在离右轨1.5m 处。起 重机的起重量为P 1=250kN ,突臂伸出离右轨10m 。跑车本身重量略去不计,欲使跑车满载或空载时起重机均不致翻倒,求平衡锤的最小重量P 2以及平衡锤到左轨的最大距离x 。 题3-8图

【知识要点】 平面平行力系的平衡方程及应用,单个物体的平衡问题。 【解题分析】 本题仍为翻倒问题,存在两种临界状态。 【解答】 以起重机为研究对象,受力如图。 若满载不翻倒 0105.13)3(,0)(12=---+=∑P P F x P F M NA B 由 F NA ≥0,得P 2(x+3)≥3250 (1) 若空载不翻倒 05.43,0)(2∑=-+=P F x P F M NB A 由 F NB ≥0得22502≤x P (2) 由式(1)、(2)得kN P P 3.3331000322≥≥即 把kN P 3.3332=代入(2)得x ≤6.75m 3-11 如图所示,组合梁由AC 和DC 两段铰接构成,起重机放在梁上。已知起重机重P 1=50kN ,重心在铅直线EC 上,起重载荷P 2=10kN ,如不计梁重,求支座A 、B 和D 三处的约束反力。 【知识要点】 平面任意力系得平衡方程及应用,物体系得平衡问题。 【解题分析】 先研究起重机,再研究连续梁。连续梁一般先研究附梁最后研究主梁。 【解答】 以起重机为研究对象,受力如图。 题3-11图 0512,0)(21=?-?-?=∑P P F F M NG F 解得 F NG =50kN 以梁CD 为研究对象,受力如图。

理论力学课后习题答案第11章达朗贝尔原理及其应用

(a ) 第11章 达朗贝尔原理及其应用 11-1 均质圆盘作定轴转动,其中图(a ),图(c )的转动角速度为常数,而图(b ),图(d )的角速度不为常量。试对图示四种情形进行惯性力的简化。 r , 0 ,α I ( d ) I =F , αα2 I 2 1mr J M O O = = 11-2矩形均质平板尺寸如图,质量27kg ,由两个销子 A 、 B 悬挂。若突然撤去销子B ,求在撤 去的瞬时平板的角加 速度和销子A 的约束力。 解:如图(a ):设平板的质量为m ,长和宽分别为a 、b 。 αα375.3I =?=AC m F ααα5625.0])(12 1 [222I =?++==AC m b a m J M A A ∑=0)(F A M ;01.0I =-mg M A ;2rad/s 04.47=α ∑=0x F ;0sin I =-Ax F F θ;其中:6.05 3sin ==θ N 26.956.004.47375.3=??=Ax F ∑=0y F ;0cos I =-+mg F F Ay θ;8.05 4sin ==θ N 6.1378.004.47375.38.927=??-?=Ay F 11-3在均质直角构件ABC 中,AB 、BC 两部分的质量各为3.0kg ,用连杆AD 、DE 以及绳子AE 保持在图示位置。若突然剪断绳子,求此瞬时连杆AD 、BE 所受的力。连杆的质量忽略不计,已知l = 1.0m ,φ = 30o。 解:如图(a ):设AB 、BC 两部分的质量各为m 直角构件ABC 作平移,其加速度为a = a A ,质心在O 处。 ma F 2I = ∑=0)(F O M ; 04 sin )(43 cos 4cos =+--l F F l F l F B A A B ??? (1) ∑=0AD F ; 0cos 2=-+?mg F F B A (2) 联立式(1)和式(2),得:A B F mg F 3+= 习 题 ( (

理论力学题库第二章

理论力学题库一一第二章 填空题 对于一个有n 个质点构成的质点系,质量分别为 m 1, m>, m 3,...m i ,...m n ,位置矢量分别 卄彳 4 T 为r ∣,r 2, r 3,...r i ,...r n ,则质心 C 的位矢为 _________ 。 质点系动量守恒的条件是 _______________________________________ 。 质点系机械能守恒的条件是 __________________________________ 。 质点系动量矩守恒的条件是 _____________________________________________ 。 质点组 ______ 对 ________ 的微商等于作用在质点组上外力的矢量和,此即质点组的 定理。 质心运动定理的表达式是 ____________________________________ 。 平面汇交力系平衡的充分必要条件是合力为零。 各质点对质心角动量对时间的微商等于 外力对质心的力矩 之和。 质点组的角动量等于 质心角动量 与各质点对质心角动量之和。 n n n 质点组动能的微分的数学表达式为: dT =d C'? m i v 2)i" F i Wdr i X Ffdr i 2 iA i = I i =I 表述为质点组动能的微分等于 内力和夕卜力所作的元功之和。 质点组动能等于质心动能与各质点对 质心动能之和。 1 n T= mr c 2亠二m i r i 2 ,表述为质点组动能等于 质心 2 y 动能与各质点对 质心动能之和。 2-6.质点组质心动能的微分等于 内、夕卜 力在 质心系 系中的元功之和。 包含运动电荷的系统,作用力与反作用力 不一定 在同一条直线上。 太阳、行星绕质心作圆锥曲线的运动可看成质量为 折合质量 的行星受太阳(不动) 的引力的运动。 两粒子完全弹性碰撞,当 质量相等 时,一个粒子就有可能把所有能量转移给另一个 粒子。 设木块的质量为m,被悬挂在细绳的下端,构成一种测定子弹速率的冲击摆装置。如 果有一质量为 m 的子弹以速率 V 1沿水平方向射入木块,子弹与木块将一起摆至高度为 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 柯尼希定理的数学表达式为: 18. h 处,则此子弹射入木块前的速率为: 位力定理(亦称维里定理)可表述为: m ■旦(2gh)1/2 m 1 系统平均动能等于均位力积的负值 。(或

理论力学谢传锋第九章习题解答

第九章部分习题解答 9-2 解:取整个系统为研究对象,不考虑摩擦,该系统具有理想约束。作用在系统上的主动力为重力 g M g M 21,。如图(a )所示,假设重物2M 的加速度 2a 的方向竖直向下,则重物1M 的加速度1a 竖直向上,两个重物惯性力I2I1,F F 为 11I1a M F = 22I2a M F = (a ) 该系统有一个自由度,假设重物2M 有一向下的虚位移 2x δ,则重物1M 的虚位移1x δ竖直向上。由动力学普遍 方程有 (a ) 02I21I12211=--+-=x F x F x g M x g M W δδδδδ (b ) 根据运动学关系可知 212 1 x x δδ= 212 1a a = (c ) 将(a)式、(c)式代入(b)式可得,对于任意02≠x δ有 21 21 22m/s 8.2424=+-= g M M M M a (b ) 方向竖直向下。 取重物2M 为研究对象,受力如图(b )所示,由牛顿第二定律有 222a M T g M =- 解得绳子的拉力N 1.56=T 。本题也可以用动能定理,动静法,拉格朗日方程求解。 9-4 解:如图所示该系统为保守系统,有一个自由度,取θ为广义坐标。系统的动能为 2])[(2 1 θθ R l m T += 取圆柱轴线O 所在的水平面为零势面,图示瞬时系统的势能为 ]cos )(sin [θθθR l R mg V +-= M 1g M 2g F I2 F I1 δx 2 δx 1 M 2g T a 2

拉格朗日函数V T L -=,代入拉格朗日方程 0)(=??-??θ θL L dt d 整理得摆的运动微分方程为 0sin )(2=+++θθθ θg R R l 。 9-6 解:如图所示,该系统为保守系统,有一个自由度,取弧坐标s 为广义坐标。系统的动能为 22 1S m T = 取轨线最低点O 所在的水平面为零势面,图示瞬时系统的势能为 mgh V = 由题可知b s ds dh 4sin ==?,因此有b s d b s h S o 8s 42==?。则拉格朗日函数 2 2821s b mg s m V T L -=-= 代入拉格朗日方程 0)(=??-??s L s L dt d ,整理得摆的运动微分方程为04=+s b g s 。解得质点的运动规律为)21sin( 0?+=t b g A s ,其中0,?A 为积分常数。 9-13 解:1.求质点的运动微分方程 圆环(质量不计)以匀角速度ω绕铅垂轴AB 转动,该系统有一个自由度,取角度θ为广义坐标。系统的动能为 22)sin (2 1 )(21θωθr m r m T += 如图所示,取0=θ为零势位,图示瞬时系统的势能为 零势面 h

【精品】理论力学参考答案第11章 盛冬发

理论力学参考答案第11章盛冬发

__________________________________________________ 第11章 动量矩定理 一、是非题(正确的在括号内打“√”、错误的打“×”) 1. 质点系对某固定点(或固定轴)的动量矩,等于质点系的动量对该点(或轴)的矩。 (×) 2. 质点系所受外力对某点(或轴)之矩恒为零,则质点系对该点(或轴)的动量矩不变。(√) 3. 质点系动量矩的变化与外力有关,与内力无关。 (√) 4. 质点系对某点动量矩守恒,则对过该点的任意轴也守恒。 (√) 5. 定轴转动刚体对转轴的动量矩,等于刚体对该轴的转动惯量与角加速度之积。 (×) 6. 在对所有平行于质心轴的转动惯量中,以对质心轴的转动惯量为最大。 (×) 7. 质点系对某点的动量矩定理e 1 d ()d n O O i i t ==∑L M F 中的点“ O ”是 固定点或质点系的质心。 (√)

__________________________________________________ 8. 如图11.23所示,固结在转盘上的均质杆AB ,对转轴的转动惯量为20 A J J mr =+ 221 3 ml mr =+,式中m 为 AB 杆的质量。 (×) 9. 当选质点系速度瞬心P 为矩心时,动量矩定理一定有 e 1 d ()d n P P i i t ==∑L M F 的形式,而不需附加任何条件。 (×) 10. 平面运动刚体所受外力对质心的主矩等于零,则刚体只能做平动;若所受外力的主矢等于零,刚体只能作绕质心的转动。 (×) 图11.23 二、填空题 1. 绕定轴转动刚体对转轴的动量矩等于刚体对转轴的转动惯量与角速度的乘积。 2. 质量为m ,绕z 轴转动的回旋半径为ρ,则刚体对z 轴的转动惯量为2ρm J z =。 3. 质点系的质量与质心速度的乘积称为质点系的动量。

《理论力学》第十一章动量矩定理习题解

y 第十一章 动量矩定理 习题解 [习题11-1] 刚体作平面运动。已知运动方程为:2 3t x C =,24t y C =,3 2 1t = ?,其中长度以m 计,角度以rad 计,时间以s 计。设刚体质量为kg 10,对于通过质心C 且垂直于图平面的惯性半径m 5.0=ρ,求s t 2=时刚体对坐标原点的动量矩。 解: )(1223|22m x t C =?== )(1624|2 2m y t C =?== t t dt d dt dx v C Cx 6)3(2=== )/(1226|2s m v t Cx =?== t t dt d dt dy v C Cy 8)4(2=== )/(1628|2s m v t Cy =?== 2323)21(t t dt d dt d === ?ω )/(622 3 |22s rad t =?==ω → →→+=k v m M J L C Z Cz O )]([ω → → -+=k y mv x mv m L C Cx C Cy O ][2 ωρ → =→ ?-?+??=k L t O ]1612121665.0[10|2 2 → =→ =k L t O 15|2 )/(2 s m kg ?,→ k 是z 轴正向的单位向量。 [习题11-2] 半径为R ,重为W 的均质圆盘固结在长l ,重为P 的均质水平直杆AB 的B 端,绕铅垂轴Oz 以角速度ω旋转,求系统对转轴的动量矩。 解: g Pl l g P J AB z 3312 2,=??=

平动 )(a O 转动 绕定轴C )( b 转动 绕定轴1 )(O c O 在圆弧上作纯滚动 )(d g l R W l g W g J l z 4)4(R W 412222,+=?+??=圆盘 ωω?+?=圆盘,,z AB z z J J L ω4) 4(3[222g l R W g Pl L z ++= ω)4443(2 22g WR g Wl g Pl L z ++= ω)4333(2 22g WR g Wl g Pl L z ++= ω)433( 2 2R g W l g W P L z ++= [习题11-3] 已知均质圆盘质量为m ,半径为R ,当它作图示四种运动时,对固定点1O 的动量矩分别为多大?图中l C O =1。 解:)(a 因为圆盘作平动,所以 ωω2 11ml J L z O O == 解:)(b → →→→?+=p r L L C C O 1 其中,质心C 的动量为0 ωω22 1 1mR J L Cz O = = 解:)(c ωω)2 1 (2211ml mR J L z O O +== 解:)(d 因为圆盘作平面运动,所以: )(11→ +=C Z O Cz O v m M J L ω

理论力学第二章思考题及习题答案

第二章思考题 2.1一均匀物体假如由几个有规则的物体并合(或剜去)而成,你觉得怎样去求它的质心? 2.2一均匀物体如果有三个对称面,并且此三对称面交于一点,则此质点即均匀物体的质心,何故? 2.3在质点动力学中,能否计算每一质点的运动情况?假如质点组不受外力作用,每一质点是否都将静止不动或作匀速直线运动? 2.4两球相碰撞时,如果把此两球当作质点组看待,作用的外力为何?其动量的变化如何?如仅考虑任意一球,则又如何? 2.5水面上浮着一只小船。船上一人如何向船尾走去,则船将向前移动。这是不是与质心运动定理相矛盾?试解释之。 2.6为什么在碰撞过程中,动量守恒而能量不一定守恒?所损失的能量到什么地方去了?又在什么情况下,能量才也守恒? 2.7选用质心坐标系,在动量定理中是否需要计入惯性力? 2.8轮船以速度V 行驶。一人在船上将一质量为m 的铁球以速度v 向船首抛去。有人认为:这时人作的功为 ()mvV mv mV v V m +=-+222 2 12121 你觉得这种看法对吗?如不正确,错在什么地方? 2.9秋千何以能越荡越高?这时能量的增长是从哪里来的? 2.10在火箭的燃料全部燃烧完后,§2.7(2)节中的诸公式是否还能应用?为什么? 2.11多级火箭和单级火箭比起来,有哪些优越的地方? 第二章思考题解答 2.1.答:因均匀物体质量密度处处相等,规则形体的几何中心即为质心,故先找出各规则形体的质心把它们看作质点组,然后求质点组的质心即为整个物体的质心。对被割去的部分,先假定它存在,后以其负质量代入质心公式即可。 2.2.答:物体具有三个对称面已足以确定该物体的规则性,该三平面的交点即为该物体的几何对称中心,又该物体是均匀的,故此点即为质心的位置。 2.3.答:对几个质点组成的质点组,理论上可以求每一质点的运动情况,但由于每一质点受到周围其它各质点的相互作用力都是相互关联的,往往其作用力难以预先知道;再者,每一质点可列出三个二阶运动微分方程,各个质点组有n 3个相互关联的三个二阶微分方程组,

理论力学课后习题答案 第9章 动量矩定理及其应用

O ω R r A B θ 习题9-2图 习题20-3图 Ox F Oy F g m D d α 习题20-3解图 第9章 动量矩定理及其应用 9-1 计算下列情形下系统的动量矩。 1. 圆盘以ω的角速度绕O轴转动,质量为m 的小球M可沿圆盘的径向凹槽运动,图示瞬时小球以相对于圆盘的速度v r 运动到OM = s 处(图a );求小球对O点的动量矩。 2. 图示质量为m的偏心轮在水平面上作平面运动。轮心为A ,质心为C ,且AC = e ;轮子半径为R ,对轮心A 的转动惯量为J A ;C 、A 、B 三点在同一铅垂线上(图b )。(1)当轮子只滚不滑时,若v A 已知,求轮子的动量和对B 点的动量矩;(2)当轮子又滚又滑时,若v A 、ω已知,求轮子的动量和对B 点的动量矩。 解:1、2 s m L O ω=(逆) 2、(1) )1()(R e mv e v m mv p A A C +=+==ω(逆) R v me J R e R mv J e R mv L A A A C C B )()()(22 -++=++=ω (2))(e v m mv p A C ω+== ωωωω)()()())(()(2meR J v e R m me J e R e v m J e R mv L A A A A C C B +++=-+++=++= 9-2 图示系统中,已知鼓轮以ω的角速度绕O 轴转动,其大、小半径分别为R 、r ,对O轴的转动惯量为JO;物块A 、B 的质量分别为m A 和mB ;试求系统对O 轴的动量矩。 解: ω)(22r m R m J L B A O O ++= 9-3 图示匀质细杆OA 和EC的质量分别为50kg 和100kg,并在点A焊成一体。若此结构在图示位置由静止状态释放,计算刚释放时,杆的角加速度及铰链O 处的约束力。不计铰链摩擦。 解:令m = m OA = 50 k g,则m EC = 2m 质心D 位置:(设l = 1 m) m 6 565== =l OD d 刚体作定轴转动,初瞬时ω=0 l mg l mg J O ?+?=22 α 222232)2(212 1 31 ml ml l m ml J O =+??+ = 即mgl ml 2 532=α 2rad/s 17.865==g l α g l a D 36 256 5t =?=α 由质心运动定理: Oy D F mg a m -=?33t 44912 11 362533==-=mg g m mg F Oy N(↑) 0=ω,0n =D a , 0=Ox F (a) O M v ω ω A B C R v A (b) 习题9-1图

相关文档
相关文档 最新文档