文档库 最新最全的文档下载
当前位置:文档库 › 波的衍射练习 (有答案)

波的衍射练习 (有答案)

波的衍射练习 (有答案)
波的衍射练习 (有答案)

5、波的衍射练习 (有答案)

1.障碍物的大小为10cm.则下列各种波长中的波能出现最明显的衍射现象的

波长是 (D ).

A 、5 cm

B 、10cm

C 、15cm

D 、20cm

2.一列水波穿过小孔产生衍射,衍射后可能发生的变化是(D )

A .水波的波长增长

B .水波的周期增大

C .水波的波速减小

D .水波的振幅减小

3.如图所示是波遇到小孔或障碍物后的图像,图中每两条实线间的距离表示一个波长,其中正确的图像是(B ).

4、在水波槽的衍射实验中,若打击水面的振子振动频率为5Hz ,水波在水槽中的传播速度为0.05m/s ,为观察到明显的衍射现象,小孔直径d 应为 ( D )

A 、10cm

B 、5cm

C 、d >1cm

D 、d <1cm

5、水波通过小孔,发生一定程度的衍射,为使衍射现象更明显,可 (D )

A 、增大小孔尺寸,同时增大水波的频率

B 、增大小孔尺寸,同时减小水波的频率

C 、缩小小孔尺寸,同时增大水波的频率

D 、缩小小孔尺寸,同时减小水波的频率

6、如图所示,S 为波源,M ,N 是两块档板,其中N 是固定的, M 可向上或向下移动一小段距离,当S 振动时,在A 处感受不到 波的现象,为了使A 处能有波出现,可采用( BD )

A 、增大波的频率

B 、减小波的频率

C 、将M 板向上移

D 、将M 板向下移

7、如图所示是观察水面波衍射的实验装置,AC 和BD 是两块挡板,AB 是一个孔,O 是波

源,图中已画出波源所在区域波的传播情况,每两条相邻波纹(图中曲线)之间的距离表

示一个波长,则波经过孔之后的传播情况,下列描述正确的是 (

A 、此时能明显观察到波的衍射现象

B 、挡板前后波纹间的距离相等

C 、如果将孔AB 扩大,有可能观察不到明显的衍射现象

D 、如果孔的大小不变,使波源频率增大,能更明显地观察 到衍射现象

8、关于波的衍射现象,下列说法正确的是 ( BC )

A 、当孔的尺寸比波长大时,一定不会发生衍射现象

B 、只有孔的尺寸与波长相差不多,或比波长还小时才会观察到明显的衍射现象

C 、只有波才有衍射现象

S

N M A D

D 、以上说法均不正确

9、下列说法中正确的是 ( CD )

A 、只有横波会发生衍射现象,纵波不会发生衍射现象

B 、波长比障碍物或孔的宽度大得多时,衍射现象不明显

C 、波长比障碍物或孔的宽度小得多时,衍射现象不明显

D 、一切波在任何情况下都有衍射现象

10、下列现象中,发生了明显衍射现象的是 (AC )

A 、在水波前进方向上遇到突出水面的小树桩,小树桩对水波的传播没有影响

B 、在水波前进方向上遇到一个障碍物,障碍物后面的水并没有发生振动

C 、水波前进方向上有一个带孔的屏,孔后的区域传播着圆形的波浪

D 、水波前进方向上有一个带缺口的屏,水波沿缺口直线传播,屏后“阴影区”的水面没有明显的振动

11、下列波在传播过程中遇到宽度为10cm 的障碍物时,能发生明显衍射现象的是 (AC )

A 、波长为20m 的水波

B 、波长为5.0×10—7m 的光波

C 、频率低于20Hz 的次声波

D 、频率为5.0×106Hz 的超声波

12、衍射是 波 特有的现象。“闻其声而不见其人”是声波的 衍射 造成的。

13、在做水波的衍射实验时,保持水波的波长不变,改变窄缝宽度,当缝宽 与波长差不多或比波长小时,可以看到明显的衍射现象。

14、思考为什么要用超声波定位而不用普通的声波?

答:因为超声波频率大波长小,不易衍射,当超声波遇到器官组织分界面时,大部分会反射回来,而普通的声波波长大,易衍射,反射回来少,不利于信号处理。

15、已知空气中的声速为340m/s ,现有周期为s 20

1和频率为1×104Hz 的两种声波,当它们传播时遇到宽度约为13m 的障碍物,哪种声波发生的衍射现象较明显?答:第一种

16、生活中,一般的障碍物(尺寸为1.7cm~17m)都“挡”不住声音,据此你是否能估算一下一般声音的频率范围 ?答:20HZ -20000HZ

17、利用超声波可以探测鱼群的位置,在一只装有超声波发射和接受装置的渔船上,当它向选定方向发射出频率为5.8×104Hz 的超声波后,经过0.64s 收到从鱼群反射回来的反射波,已知5.8×104Hz 的超声波在水中的波长为2.5cm ,则这群鱼跟渔船的距离为 464 m 。

18、声波在空气中的传播速度为340m/s ,一木匠在屋顶每秒敲钉2下,一观察者恰好在看到木匠把锤举到最高时,听见敲钉的声音,如果木匠上举和下击锤的时间相等,则观察者和木匠之间的最短距离是 85 m ,如果观察者是在远处借助仪器看到木匠的动作,若用n 表示听到响声前看到的木匠把锤举到最高处的次数,则它们之间可能的距离表达式为 85(2n-1) m 。

19、甲、乙二人在铁轨旁,相距1100m ,甲用铁锤敲击一下铁轨,乙听到第一个声音后按下计时秒表,3s 后又听到一个声音。已知声波在空气中传播速度为340m/s ,则声波在铁轨中传播速度是多少?如果发出的声波频率为500Hz ,这种声波在铁轨中的波长是多大? 答:v =4675m/s,λ=9.35m

20、已知三个水波槽中分别放有甲、乙、丙三个档板,档板上的窄缝宽度均为L ,三个水波槽中三种水波的波长分别为L L ,L ,10

7105103===丙乙甲λλλ。 ⑴大致画出以上三种情况下,波通过挡板后所能到达的区域的示意图。(图应是缝后衍

射区域越来越大)

⑵由⑴能得出什么结论?当缝宽度与波长差不多或比波长小时,可以看到明显的衍射现象。

《波的干涉和衍射》高中物理优秀教案

《波的干涉和衍射》高中物理优秀教案 1、知识与技能 (1)知道波的叠加原理,知道什么是波的干涉条件、干涉现象和干涉图样; (1)知道什么是波的衍射现象,知道波发生明显衍射现象的条件; (2)知道干涉现象、波的衍射现象都是波所特有的现象。 2、过程与方法: 3、情感、态度与价值观: 大家都熟悉“闻其声不见其人”的物理现象,这是什么原因呢?通过这节课的学习,我们就会知道,原来波遇到狭缝、小孔或较小的障碍物时会产生一种特有得现象,这就是波的衍射。 波在向前传播遇到障碍物时,会发生波线弯曲,偏离原来的直线方向而绕到障碍物的背后继续转播,这种现象就叫做波的衍射。

(1)波的衍射:波可以绕过障碍物继续传播,这种现象叫做波的衍射。 哪些现象是波的衍射现象?(在水塘里,微风激起的水波遇到露出水面的小石头、芦苇的细小的障碍物,会绕过它们继续传播。) 实验:下面我们用水波槽和小挡板来做,请大家认真观察。 现象:水波绕过小挡板继续传播。将小挡板换成长挡板, 重新做实验: 现象:水波不能绕到长挡板的背后传播。这个现象说明发生衍生的条件与障碍物的大小有关。 (2)衍射现象的条件 演示:在水波槽里放两快小挡板,当中留一狭缝,观察波源发出的水波通过窄缝后怎样传播。 第一、保持水波的波长不变,该变窄缝的宽度(由窄到宽),观察波的传播情况有什么变化。观察到的现象:在窄缝的宽度跟波长

相差不多的情况下,发生明显的衍射现象。水波绕到挡板后面继续传播。(参见课本图10-26甲) 在窄缝的宽度比波长大得多的情况下,波在挡板后面的传播就如同光线沿直线传播一样,在挡板后面留下了“阴影区”。(参见课本图10-26乙) 第二、保持窄缝的宽度不变,改变水波的波长(由小到大),将实验现象用投影仪投影在大屏幕上。可以看到:在窄缝不变的情况下,波长越长,衍射现象越明显。 将课本图10-27中的甲、乙、丙一起投影在屏幕上,它们是做衍射实验时拍下的照片。甲中波长是窄缝宽度的3/10,乙中波长是窄缝宽度的5/10,丙中波长是窄缝宽度的7/10。 通过对比可以看出:窄缝宽度跟波长相差不多时,有明显的衍射现象。 窄缝宽度比波长大得多时,衍射现象越不明显。窄缝宽度与波长相比非常大时,水波将直线传播,观察不到衍射现象。

x光衍射实验报告doc

x光衍射实验报告 篇一:X射线衍射实验方法和数据分析 X射线衍射实验报告 摘要: 本实验通过了解到X射线的产生、特点和应用;理解X 射线管产生连续X射线谱和特征X射线谱的基本原理,了解D8xX射线衍射仪的基本原理和使用方法,通过分析软件对测量样品进行定性的物相分析。 关键字:布拉格公式晶体结构,X射线衍射仪,物相分析 引言: X射线最早由德国科学家W.C. Roentgen在1895年在研究阴极射线发现,具有很强的穿透性,又因x射线是不带电的粒子流,所以在电磁场中不偏转。1912年劳厄等人发现了X射线在晶体中的衍射现象,证实了X射线本质上是一种波长很短的电磁辐射,其波长约为10nm到10–2nm之间,与晶体中原子间的距离为同一数量级,是研究晶体结构的有力工具。物相分析中的衍射方法包括X射线衍射,电子衍射和中子衍射三种,其中X射线衍射方法使用最广,它包括德拜照相法,聚集照相法,和衍射仪法。 实验目的:1. 了解X射线衍射仪的结构及工作原理 2. 熟悉X射线衍射仪的操作

3. 掌握运用X射线衍射分析软件进行物相分析的方法 实验原理: (1) X射线的产生和X射线的光谱 实验中通常使用X光管来产生X射线。在抽成真空的X 光管内,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。这种辐射叫做轫致辐射;(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。 对于特征X光谱分为 (1)K系谱线:外层电子填K层空穴产生的特征X射线Kα、Kβ… (2)L系谱线:外层电子填L层空穴产生的特征X射线Lα、Lβ…如下图1图1 特征X射线 X射线与物质的作用 X射线与物质相互作用产生各种复杂过程。就其能量转换而言,一束X射线通过物质分为三部分:散射,吸收,透过物质沿原来的方向传播,如下图2,其中相干散射是产生衍射花样原因。 图2X射线与物质的作用

6.2 光波的衍射--修改3

第七章 光信息处理的数值模拟与仿真 7.2 光波的衍射 衍射是光波在空间传播过程中的一种基本属性。实际中的衍射现象可以分为两种类型:菲涅尔衍射与夫琅禾费衍射。菲涅尔衍射与夫琅禾费衍射的衍射图样具有不同的性质,为了简化这两类衍射图样的数学计算,通常都要对衍射理论所给出的结果作出某种近似,而对菲涅尔衍射和夫琅禾费衍射所采用的近似的程度是不同的。一般将满足远场近似条件的衍射称为夫琅禾费衍射,满足近场近似条件的衍射称为菲涅耳衍射。夫琅禾费衍射实际上是菲涅耳衍射的一种特殊情况,两者的差异仅在于一个二次相位因子。 根据标量衍射理论,衍射过程可以用菲涅耳-基尔霍夫衍射积分描述[1]。然而,近场近似条件下的菲涅耳衍射积分式相当复杂,特别是对于具有复杂结构的衍射屏,几乎不可能获取其解析解。同时,由于实验条件和其它因素的限制,实验上也往往难以方便地观察。计算机仿真以其良好的可控性、无破坏、易观察及低成本等优点,为数字化模拟现代光学实验提供了一种极好的手段[2] 。一般在设计一个光学系统时,总希望明确知道某一个光学元件能起到何种作用。用计算机仿真菲涅耳衍射,可以给出衍射光场复振幅及强度在任意平面上的详细分布,而用传统的半波带理论及振幅矢量叠加法只能给出某些特定平面上光场的近似分布;计算机仿真也可以直接模拟光学成像过程,给出指定光学元件的衍射特性或成像特性,因此对于优化光学系统设计具有一定的指导作用。本节首先介绍光波衍射的基本理论,然后分别对菲涅耳衍射及夫琅禾费衍射两种情况下的各种衍射现象进行Matlab 仿真模拟。 本节首先讨论菲涅尔衍射,上图为讨论菲涅尔衍射的几何图形,根据菲涅耳-基尔霍夫衍射积分,观察平 面上复振幅分布为 ) ;,(),();,(),(),,(0 z y x G y x y d x d z y y x x G y x z y x p p p *=' ''-'-''= ??ψ ψ ψ (7.2-1) 其中,G (x , y ; z )为系统的空间脉冲响应,表达式为 ()[ ]()()[] y x y x y x dk dk y jk x jk z k k k k jk z y x G --?---= ?? exp 1exp 41;,2 0220202 π (7.2-2) 在极坐标系下,x =rcos θ,y =rsin θ,k x = ρcos φ, k y = ρsin φ,G (x , y ; z )可表示为 ( ) ???? ??+++++-= ==220 222 2 2 20 01 12exp ) ;(~ );sin ,cos ();,(z r jk z r z z r z r jk jk z r G z r r G z y x G π θθ (7.2-3) 下面,对式(7.2-3)作下列近似: (1) 当z >>λ0=2π/k 0时,[1+1/jk 0(r 2+z 2)1/2]≈1,因此该项可忽略。 y 0 图1 讨论菲涅尔衍射的几何图形

412-惠更斯-菲涅耳原理

412—惠更斯—菲涅耳原理 1. 选择题 1,根据惠更斯-菲涅耳原理,给定波阵面S上,每一面元dS发出的子波在观察点引起的光振动的振幅与以下哪些物理量相关: (A) 面元的面积dS。(B) 面元到观察点的距离。 (C) 面元dS对观察点的倾角。(D) 以上皆是。 [ ] 2,根据惠更斯-菲涅耳原理,给定波阵面S上,每一面元dS发出的子波在观察点引起的光振动的相位与以下哪些物理量相关: (A) 面元的面积dS。(B) 面元到观察点的距离。 (C) 面元dS对观察点的倾角。(D) 以上皆是。 [ ] 3,在研究衍射时,可按光源和所研究的点到障碍物的距离,将衍射分为菲涅耳衍射和夫琅和费衍射两类,其中夫琅和费衍射为: (A)光源到障碍物有限远,所考查点到障碍物无限远。(B) 光源到障碍物无限远,所考查点到障碍物有限远。 (C) 光源和所考察点的到障碍物的距离为无限远。(D) 光源和所考察的点到障碍物为有限远。 [ ] 4,在研究衍射时,可按光源和所研究的点到障碍物的距离,将衍射分为菲涅耳衍射和夫琅和费衍射两类,其中不是菲涅耳衍射为: (A) 光源和所考察的点到障碍物为有限远。(B) 光源和所考察点的到障碍物的距离为无限远。 (C)光源到障碍物有限远,所考查点到障碍物无限远。(D) 光源到障碍物无限远,所考查点到障碍物有限远。 [ ] 2. 判断题 1,在研究衍射时,是惠更斯首先引入子波的概念提出了惠更斯原理。 2,菲涅耳用子波相干叠加的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理。 3,根据惠更斯-菲涅耳原理,衍射现象在本质上也是一种干涉现象。 4,惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P的相干叠加,决定了P点的合振动及光强.

高中物理选修3-4知识点整理

选 修3—4 一、知识网络 周期:g L T π2= 机械振动 简谐运动 物理量:振幅、周期、频率 运动规律 简谐运动图象 阻尼振动 受力特点 回复力:F= - kx 弹簧振子:F= - kx 单摆:x L mg F -= 受迫振动 共振 波的叠加 干涉 衍射 多普勒效应 特性 实例 声波,超声波及其应用 机械波 形成和传播特点 类型 横波 纵波 描述方法 波的图象 波的公式:vT =λ x=vt 电磁波 电磁波的发现:麦克斯韦电磁场理论:变化的磁场产生电场,变化的电场产生磁场→预言电磁波的存在 赫兹证实电磁波的存在 电磁振荡:周期性变化的电场能与磁场能周期性变化,周期和频率 电磁波的发射和接收 电磁波与信息化社会:电视、雷达等 电磁波谱:无线电波、红外线、可见光、紫外线、x 射线、ν射线

二、考点解析 考点80 简谐运动 简谐运动的表达式和图象 要求:I 1)如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。 简谐运动的回复力:即F = – kx 注意:其中x 都是相对平衡位置的位移。 区分:某一位置的位移(相对平衡位置)和某一过程的位移(相对起点) ⑴回复力始终指向平衡位置,始终与位移方向相反 ⑵―k ‖对一般的简谐运动,k 只是一个比例系数,而不能理解为劲度系数 ⑶F 回=-kx 是证明物体是否做简谐运动的依据 2)简谐运动的表达式: ―x = A sin (ωt +φ)‖ 3)简谐运动的图象:描述振子离开平衡位置的位移随时间遵从正弦(余弦)函数的规律变化的,要求能将图象与恰当的模型对应分析。可根据简谐运动的图象的斜率判别速度的方向,注意在振幅处速度无方向。 A 、简谐运动(关于平衡位置)对称、相等 ①同一位置:速度大小相等、方向可同可不同,位移、回复力、加速度大小相等、方向相同. ②对称点:速度大小相等、方向可同可不同,位移、回复力、加速度大小相等、方向相反. 相对论简介 相对论的诞生:伽利略相对性原理 狭义相对论的两个基本假设:狭义相对性原理;光速不变原理 时间和空间的相对性:“同时”的相对性 长度的相对性: 20)(1c v l l -= 时间间隔的相对性:2 )(1c v t -?=?τ 相对论的时空观 狭义相对论的其他结论:相对论速度变换公式:21c v u v u u '+'= 相对论质量: 2 )(1c v m m -= 质能方程2mc E = 广义相对论简介:广义相对性原理;等效原理 广义相对论的几个结论:物质的引力使光线弯曲 引力场的存在使得空间不同位置的时间进程出现差别

X射线衍射实验报告

X射线衍射实验报告 一、实验目的 (1)掌握X射线衍射仪的工作原理、操作方法; (2)掌握X射线衍射实验的样品制备方法; (3)掌握运用X射线衍射分析软件进行物相分析的原理和实验方法; (4)熟悉PDF卡片的查找方法和物相检索方法。 二、实验仪器 X射线衍射仪,PDF卡。 X射线衍射仪,主要由X射线发生器、X射线测角仪、辐射探测器、辐射探测电路、计算机系统等组成。 (1)X射线发生器 X射线管工作时阴极接负高压,阳极接地。灯丝附近装有控制栅,使灯丝发出的热电子在电场的作用下聚焦轰击到靶面上。阳极靶面上受电子束轰击的焦点便成为X射线源,向四周发射X射线。在阳极一端的金属管壁上一般开有四个射线出射窗口。转靶X射线管采用机械泵+分子泵二级真空泵系统保持管内真空度,阳极以极快的速度转动,使电子轰击面不断改变,即不断改变发热点,从而达到提高功率的目的,如下图1。 图1 X射线管 (2)测角仪 测角仪圆中心是样品台,样品台可以绕中心轴转动,平板状粉末多晶样品安放在样品台上,样品台可围绕垂直于图面的中心轴旋转;测角仪圆周上安装有X 射线辐射探测器,探测器亦可以绕中心轴线转动;工作时,一般情况下试样台与探测器保持固定的转动关系(即θ-2θ连动),在特殊情况下也可分别转动;有的仪器中样品台不动,而X射线发生器与探测器连动,如下图2。 图2 测角仪 (3)PDF卡的组成如下3图所示

图3 PDF卡 三、实验原理 1、X射线的产生 实验中通常使用X光管来产生X射线。在抽成真空的X光管内,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。这种辐射叫做轫致辐射;(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。 对于特征X光谱分为:(1)K系谱线:外层电子填K层空穴产生的特征X射线K α、Kβ… (2)L系谱线:外层电子填L层空穴产生的特征X射线Lα、Lβ…如下图4。 图4 特征X射线 2、X射线与物质的相互作用 X射线与物质相互作用产生各种复杂过程。就其能量转换而言,一束X射线通过物质分为三部分:散射,吸收,透过物质沿原来的方向传播,如下图5,其中相干散射是产生衍射花样原因。 图5 X射线与物质的相互作用 3、晶体点阵结构 晶体结构可以用三维点阵来表示。每个点阵点代表晶体中的一个基本单元,

X射线衍射实验报告

X射线衍射实验报告 摘要: 本实验通过了解到X射线的产生、特点和应用;理解X射线管产生连续X射线谱和特征X射线谱的基本原理,了解D8xX射线衍射仪的基本原理和使用方法,通过分析软件对测量样品进行定性的物相分析。 关键字:布拉格公式晶体结构,X射线衍射仪,物相分析 引言: .C. Roentgen在1895年在研究阴极射线发现,具有 X射线最早由德国科学家W 很强的穿透性,又因x射线是不带电的粒子流,所以在电磁场中不偏转。1912年劳厄等人发现了X射线在晶体中的衍射现象,证实了X射线本质上是一种波长很短的电磁辐射,其波长约为10nm到10–2nm之间,与晶体中原子间的距离为同一数量级,是研究晶体结构的有力工具。物相分析中的衍射方法包括X射线衍射,电子衍射和中子衍射三种,其中X射线衍射方法使用最广,它包括德拜照相法,聚集照相法,和衍射仪法。 实验目的:1. 了解X射线衍射仪的结构及工作原理 2. 熟悉X射线衍射仪的操作 3. 掌握运用X射线衍射分析软件进行物相分析的方法 实验原理: (1) X射线的产生和X射线的光谱 实验中通常使用X光管来产生X射线。在抽成真空的X光管内,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限

度时,发射的是连续光谱的辐射。这种辐射叫做轫致辐射;(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。 对于特征X光谱分为 1)K系谱线:外层电子填K层空穴产生的特征X射线Kα、Kβ… ( (2)L系谱线:外层电子填L层空穴产生的特征X射线Lα、Lβ…如下图1 图1 特征X射线 X射线与物质的作用 X射线与物质相互作用产生各种复杂过程。就其能量转换而言,一束X射线通过物质分为三部分:散射,吸收,透过物质沿原来的方向传播,如下图2,其中相干散射是产生衍射花样原因。 图2 X射线与物质的作用 晶体结构与晶体X射线衍射 晶体结构可以用三维点阵来表示。每个点阵点代表晶体中的一个基本单元,如离子、原子或分子等。 空间点阵可以从各个方向予以划分,而成为许多组平行的平面点阵。因此,晶体可以看成是由一系列具有相同晶面指数的平面按一定的距离分布而形成的。各种晶体具有不同的基本单元、晶胞大小、对称性,因此,每一种晶体都必然存在着一系列特定的d值,可以用于表征不同的晶体。 X射线波长与晶面间距相近,可以产生衍射。晶面间距d和X射线的波长的关系可以用布拉格方程来表示 2dsinθ,nλ

单缝衍射实验报告

单缝衍射实验报告 篇一:北邮单逢衍射实验报告 电磁场与电磁波测量实验 实验报告 学院:电子工程学院班级:20XX211204指导老师:李莉 20XX年3月 实验二单缝衍射实验 一、实验目的 掌握电磁波的单缝衍射时衍射角对衍射波强度的影响 二、预习内容 电磁波单缝衍射现象 三、实验设备 s426型分光仪 四、实验原理 图1单缝衍射原理 当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。在缝后面出现的衍射波强度并不是均匀的,中央最强,同时也最宽。在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时衍射角为??sin -1

? 其中?是波长,?? 是狭缝宽度。两者取同一长度单位,然后,随着衍射角增大,衍射波强度又逐渐增大,直至出现一级极大值,角度为:??sin? -1 ?3?? ??(如图所示)2??? 图2单缝衍射实验仪器的布置 仪器连接时,预先接需要调整单缝衍射板的缝宽,当该板放到支座上时,应使狭缝平面与支座下面的小圆盘上的某一对刻线一致,此刻线应与工作平台上的90刻度的一对线一致。转动小平台使固定臂的指针在小平台的180处,此时小平台的0就是狭缝平面的法线方向。这时调整信号电平使表头指示接近满度。然后从衍射角0开始,在单缝的两侧使衍射角每改变10,读取一次表头读数,并记录下来,这时就可画出单缝衍射强度与衍射角的关系曲线,并根据微波波长和缝宽算出一级极小和一级极大的衍射角,并与实验曲线上求得的一级极小和极大的衍射角进行比较。 五、实验报告 记录实验测得数据,画出单缝衍射强度与衍射角的关系曲线,根据微波波长和缝宽算出一级极小和一级极大的衍射角,与实验曲线上求得的一级极小和极大的衍射角进行比较。 (a)整理以上数据表格,标注一级极大、一级极小对应的角度值;

全息专题实验报告解读

全息实验报告 【背景】 全息术是利用干涉和衍射原理记录并再现物体光波波前的一种技术。Dennis Gabor是全息照相技术的发明者,由此获得了诺贝尔物理学奖。自此,全息技术逐渐发展起来,近五十年来全息术的研究日趋广泛深入,逐渐开辟了全息应用的新领域,成为近代光学一个重要分支。现如今全息术已渗透到社会生活的各个领域,并被广泛地应用于近代科学研究和工业生产中,例如利用全息技术进行艺术品展示、防伪商标、3D全息显示屏等,在未来,全息技术还可能被用于全息电视。 【实验目的】 1.复习且巩固全息照相的基本原理与相片制作的处理方法。 2.掌握调节光路的方法。 3.掌握像面全息图的记录和再现原理,学会制作像面全息图; 4.观察像面全息图的再现像,比较其与普通三维全息图的不同之处;【实验仪器】 全息实验台,激光器,分束镜,反射镜,扩束镜,载物台,底片夹,被摄物体,全息干板,显影及定影器材,凸透镜 全息照相 【实验原理】

全息照相是借助于相干的参考光束和物光束相互干涉来记录物光振幅和相位的全部信息。这样的照相把物光束的振幅和相位两种信息全部记录下来。从光的干涉原理可知:当两束相干光波相遇,发生干涉叠加时,其合强度不仅依赖于每一束光各自的强度,同时也依赖于这两束光波之间的相位差。在全息照相中就是引进了一束与物光相干的参考光,使这两束光在感光底片处发生干涉叠加,感光底片将与物光有关的振幅和位相分别以干涉条纹的反差和条纹的间隔形式记录下来,经过适当的处理,便得到一张全息照片。 全息照相过程:一.把物体光波的全部信息记录在感光材料上(记录过程)。二.照明已被记录下来的全部信息的感光材料,使其再现原始物体的光波(再现过程)。 实验光路图 【实验内容与步骤】 1.全息照相光路调整 按上图所示光路安排各光学元件,并作如下调整: (a)使各元件中心点对应的法线平行于桌面并且基本等高;

电磁场与电磁波单缝衍射实验报告

电磁场与电磁波单缝衍射实验报告单缝衍射实验报告 学院: 电子工程学院 班级: 组员: 撰写人: 一、【实验目的】 掌握电磁波的单缝衍射时衍射角对衍射波强度的影响 二、【预习内容】 电磁波单缝衍射现象 三、【实验设备与仪器】 S426型分光仪

四、【实验原理】 当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。在缝后面出现的衍射波强度并不是均匀的,中央最强,同时也最宽。在中央的两侧衍射波强度迅速减小, ,,1φ,Sinmin,直至出现衍射波强度的最小值,即一级极小,此时衍射角为,其中λ是波长,a是狭缝宽度。两者取同一长度单位,然后,随着衍射角增大,衍射波强度又逐渐增 3,,,,1φ,,Sinmax,,2,,,大,直至出现一级极大值,角度为: 实验仪器布置如图2,仪器连接时,预先接需要调整单缝衍射板的缝宽,当该板放到支座上时,应使狭缝平面与支座下面的小圆盘上的某一对刻线一致,此刻线应与工作平台上的900刻度的一对线一致。转动小平台使固定臂的指针在小平台的1800处,此时小平台的00就是狭缝平面的法线方向。这时调整信号电平使表头指示接近满度。然后从衍射角00开始,在单缝的两侧使衍射角每改变20 读取一次表头读数,并记录下来,这时就可画出单缝衍射强度与衍射角的关系曲线,并根据微波波长和缝宽算出一级极小和一级极大的衍射角,并与实验曲线上求得的一级极小和极大的衍射角进行比较。此实验曲线的中央较平,甚至还有稍许的凹陷,这可能是由于衍射板还不够大之故。 五、【实验步骤】

仪器连接时,预先接需要调整单缝衍射板的缝宽,当该板放到支座上时,应使狭缝平面与支座下面的小圆盘上的某一对刻线一致,此刻线应与工作平台上的900刻度的一对线一致。转动小平台使固定臂的指针在小 平台的1800处,此时小平台的00 就是狭缝平面的法线方向。这时调整信号电平使表头指示接近满度。然后从衍射角00开始,在单缝的两侧使衍射角每改变20读取一次表头读数,并记录下来,这时就可画出单缝衍射强度与衍射角的关系曲线。 根据微波波长和缝宽算出一级极小和一级极大的衍射角,并与实验曲线上求得的一级极小和极大的衍射角进行比较。 六、【实验结果及分析】 记录实验测得数据,画出单缝衍射强度与衍射角的关系曲线,根据微博波长和缝宽算出一级极小和一级极大的衍射角,与实验曲线上求得的一级极小和极大的衍射角进行比较。 (1)单缝衍射实验α=70mm,50mm,20mm;λ=32mm;

惠更斯-菲涅耳原理

HUYGENS-FRESNEL PRINCIPLE 惠更斯-菲涅耳原理 目录 The One---The Origin of the Huygens-Fresnel principle The Two ---The Essence of the Huygens-Fresnel principle The Three---The Conclusion of the Huygens-Fresnel principle 一、惠更斯-菲涅耳原理的起源 二、惠更斯-菲涅耳原理的本质 三、惠更斯-菲涅耳原理的结论 The One---The Origin of the Huygens-Fresnel principle 一、惠更斯-菲涅耳原理的起源 The penetration of light waves into the region of a geometrical shadow can be explained with the aid of Huygens'principle.This principle,however,gives no information on the amplitude and ,consequently,on the intensity of waves propagating in different directions. The French physicist Augustin Fresnel (1788~1827) supplemented Huygens'principle with the concept of the interference of secondary waves.Taking into account the amplitudes and phases of the secondary waves makes it possible to find the amplitude of the resultant wave for any point of space .Huygens'principle developed in this way was named the Huygens-Fresnel principle 光波进入几何阴影区的渗透可以用惠更斯原理.这个原理虽然没有给出振幅信息.因此,对在不同方向上传播的波的强度。法国物理学家奥古斯丁-菲涅耳(1788 ~ 1827)补充了惠更斯原理的次波的干涉的概念。考虑到振幅和二次波的相位使得有可能找到任何点的空间所得到的波的振幅。惠更斯原理以这种方式发展被命名为惠更斯-菲涅耳原理。 The Two ---The Essence of the Huygens-Fresnel principle 二、惠更斯-菲涅耳原理的本质 According to the Huygens-Fresnel principle .Every element of wave surface S (Fig.1.1) is the source of a secondary spherical wave whose amplitude is proportional to the size of element dS.The amplitude of a spherical wave diminishes with the distance r from its source according to the law 1/r.Consequently,the oscillation rives from each section dS of a wave surface at point in front of this surface . Is the the phase of the oscillation where wave surface S is ,k is the wave number ,r isthe distance from surface element dS topoint Parrives from each section dS of a wave surface at point P in front of this surface . The factor is determined by theamplitude on the light oscillation at the location of dS .The coeffcient ()00cos a kr wt r d a K dE s +-=0a ?

§3—2惠更斯-菲涅耳原理

§3—2惠更斯-菲涅耳原理
一、惠更斯-菲涅耳原理
1、惠更斯原理
惠更斯原理的表述:在波动传播过程中的任一时刻,波面上的每一点都可以 看作是一个新的波源,各自发射球面子波。所有子波的 包络面,形成下一时刻的新波面。两个波面的空间间隔 等于波的传播速度与传播时间间隔的乘积。
光的直线传播定律的解释:
平面波的直线传播
球面波的直线传播
惠更斯原理与波动的直线传播

衍射现象的定性解释:
光波的衍射

2、惠更斯-菲涅耳原理
(1) 惠更斯原理的局限性
没有涉及波动的时空周期特性,即波长、振幅、相位等。虽然可以用 于确定光的传播方向,但无助于确定沿不同方向传播的光波的振幅和相位 大小。
(2) 惠更斯-菲涅耳原理
菲涅耳对惠更斯原理的贡献:将不同子波的干涉叠加引入惠更斯原
理,并赋予其以相应的相位和振幅表达式。
ev
ΔS θ r P
*
S:t时刻波阵面 ΔS:波阵面上面元
S
(子波波源)

Σ

θ0 n
θ
S
RQ
r
惠更斯-菲涅耳原理
S:光源
Σ :光源S发出的光波的任一波面
dΣ :波面Σ上位于Q点的面元
P
n:面元d Σ 的法线方向单位矢量
θ0:光源S到点Q连线与面元法线夹角
θ:Q点到场点P的连线与面元法线夹角
惠更斯-菲涅耳原理的表述:
波面Σ 上的每个面元dΣ 都可以看作是新的波源,它们均发射球面子
波,在与波面相距为r处的P点的光振动ê0(P),等于所有球面子波在该点的 光振动ê0(P)的相干叠加:
E~(P) = ∫∫ d E~(P) Σ

光的衍射及其应用

光的衍射及其应用 摘要:光在传播的过程中能绕过障碍物边缘,偏离直线传播,而进入几何阴影,并出现光强分布不均匀的现象称为光的衍射。光波的波长比声波的波长短很多,这也是为什么人们最先意识到声波的衍射而往往把光波的衍射当成直线的传播,直到1814年,法国物理学家费涅尔注意到光在传播过程中,遇到障碍物,并且障碍物的线度和光的波长可以比拟时,就会出现偏离原来直线传播的路径,在障碍物背后本该出现阴影的地方出现亮纹,而在本该亮的地方出现暗纹的现象,才有了今天的光的衍射并加以研究。 关键词:费涅尔,惠更斯原理,惠更斯—费涅尔原理,柏松亮点,夫琅和费单缝衍射。 一、常见衍射实验的分析。 最常见的光的衍射实验就是单缝衍射和圆孔衍射两种。 单缝衍射即是用一束平行光射到单缝上,在紧贴单缝后放一面凸透镜,注意单缝要很窄,因为要保证光波的波长与狭缝的宽度可比拟,然后在透镜的焦点出放一白板,则可以看到明暗相间的的条纹。这就是光的衍射。 圆孔衍射就是将单缝换成圆孔,当然一样要保证圆孔的直径大小与光的波长可比拟,则可以在物板上看到中间是亮斑而周围是亮环的图形。 上面两个实验我们在高中的就接触过,但没有在单缝或是圆孔后面加一个透镜,而现在,将圆孔后的透镜移走,则可以看到明暗相间的同心圆。 而如果把圆孔换成圆板,当圆板的大小远远大于光的波长时,只能看见物屏上的圆形阴影,而渐渐减小圆环的大小,则可以在圆板大小与光波波长可比拟时看到“柏松亮点”,即在圆形阴影中心的亮点,而圆形的阴影周围是明暗相间的同心圆。 总结以上实验可知:光波在哪个方向受限制,就往哪个方向衍射;当障碍物的大小与光波的波长可比拟时,光的衍射现象最明显;光具有波动性(类比声波)。 如果说上述的实验是光的衍射实验的入门,那么夫琅和费单缝衍射则是光的衍射实验中最常见的仪器。它与之前用的仪器最大的不同就是光源和衍射场到物屏的距离都是无限远,听起来向无法实现似的,但这实质上只是想把入射的光线看成是平行光且在无限远处相干叠加兵形成衍射。其实验装置是一束平行光射在小圆孔s上,再经凸透镜变成,垂直于单缝的光线,光线射到单缝上,根据惠更斯—费涅尔原理,单缝上每一个点都是子波波源,发出衍射波,它们相干叠加形成明暗相间的衍射图样,也

衍射实验报告

单缝衍射光强分布研究 教学目的 1、观察单缝衍射现象,加深对衍射理论的理解; 2、学会使用衍射光强实验系统,并能用其测定单缝衍射的光强分 布; 3、形成实事求是的科学态度和严谨、细致的工作作风。 重点: sgs-3型衍射光强实验系统的调整和使用 难点:1)激光光线与光电仪接收管共轴调节;2)光传感器增益度 的正确调整 讲授、讨论、实验演示相结合 3学时 一、实验简介 光的衍射现象是光的波动性的一种表现。衍射现象的存在,深刻说 明了光子的运动 是受测不准关系制约的。因此研究光的衍射,不仅有 助于加深对光的本性的理解,也是 近代光学技术(如光谱分析,晶体 分析,全息分析,光学信息处理等)的实验基础。 衍射导致光强在空间的重新分布,利用光电传感元件探测光强的相 对变化,是近 代技术中常用的光强测量方法之一。 二、实验目的 1、学会sgs-3型衍射光强实验系统的调整和使用方法; 2、观察单缝衍射现象,研究其光强分布,加深对衍射理论的理 解; 3、学会用光电元件测量单缝衍射的相对光强分布,掌握其分布规 律; 4、学会用衍射法测量狭缝的宽度。 三、实验原理 1、单缝衍射的光强分布 当光在传播过程中经过障碍物时,如不透明物体的边缘、小孔、细 线、狭缝等, 一部分光会传播到几何阴影中去,产生衍射现象。如果 障碍物的尺寸与波长相近,那么 这样的衍射现象就比较容易观察到。 单缝衍射[single-slit diffraction]有两种:一种是菲涅耳衍射 [fresnel diffraction],单 缝距离光源和接收屏[receiving screen] 均为有限远[near field],或者说入射波和衍射波都 是球面波;另一 种是夫琅禾费衍射[fraunhofer diffraction],单缝距离光源和接收屏 均为 无限远[far field]或相当于无限远,即入射波和衍射波都可看作 是平面波。 在用散射角[scattering angle]极小的激 光器(<0.002rad)产 生激光束[laser beam], 通过一条很细的狭缝(0.1~0.3mm宽),在狭缝后大于0.5m的地方 放上观察屏,禾费衍射条纹,如图1所示。 当激光照射在单缝上时,根据惠更斯—菲涅耳原理[huygens- fresnel principle],单 缝上每一点都可看成是向各个方向发射球面 子波的新波源。由于子波迭加的结果,在屏 上可以得到一组平行于单 缝的明暗相间的条纹。

《光学基础学习知识原理与应用》之双折射基础学习知识原理及其应用

双折射原理及应用 双折射(birefringence)是光束入射到各向异性的晶体,分解为两束光而沿不同方向折射的现象。它们为振动方向互相垂直的线偏振光。当光射入各向异性晶体(如方解石晶体)后,可以观察到有两束折射光,这种现象称为光的双折射现象。两束折射线中的一束始终遵守折射定律这一束折射光称为寻常光,通常用o表示,简称o光;另一束折射光不遵守普通的折射定律这束光通常称为非常光,用e表示,简称e光。晶体内存在着一个特殊方向,光沿这个方向传播时不产生双折射,即o光和e光重合,在该方向o光和e光的折射率相等,光的传播速度相等。这个特殊的方向称为晶体的光轴。光轴”不是指一条直线,而是强调其“方向”。晶体中某条光线与晶体的光轴所组成的平面称为该光线的主平面。o光的主平面,e光的光振动在e光的主平面内。 如何解释双折射呢?惠更斯有这样的解释。1.寻常光(o光)和非常光(e光)一束光线进入方解石晶体(碳酸钙的天然晶体)后,分裂成两束光能,它们沿不同方向折射,这现象称为双折射,这是由晶体的各向异性造成的。除立方系晶体(例如岩盐)外,光线进入一般晶体时,都将产生双折射现象。显然,晶体愈厚,射出的光束分得愈开。当改变入射角i时,o光恒遵守通常的折射定律,e光不符合折射定律。2.光轴及主平面。改变入射光的方向时,我们将发现,在方解石这类晶体内部有一确定的方向,光沿这个方向传播时,寻常光和非常光不再分开,不产生双折现象,这一方向称为晶体的光轴。

天然的方解石晶体,是六面棱体,有八个顶点,其中有两个特殊的顶点A和D,相交于A、D两点的棱边之间的夹角,各为102°的钝角.它的光轴方向可以这样来确定,从三个钝角相会合的任一顶点(A或D)引出一条直线,使它和晶体各邻边成等角,这一直线便是光轴方向。当然,在晶体内任何一条与上述光轴方向平行的直线都是光轴。晶体中仅具有一个光轴方向的,称为单轴晶体(例如方解石、石英等)。有些晶体具有两个光轴方向,称为双轴晶体(例如云母、硫磺等)。在晶体中,我们把包含光轴和任一已知光线所组成的平面称为晶体中该光线的主平面,就是o光的主平面;由e光和光轴所组成的平面,就是e光的主平面。 下面通过离子来说明。取一块冰洲石(方解石的一种,化学成分是CaCO3),放在一张有字的纸上,我们将看到双重的像。平常我们把一块厚玻璃砖在字纸上,我们只看到一个像,这个像好象比实际的物体浮起了一点,这是因为光的折射引起的,折射率越大,像浮起来的高度越大,我们可以看到,在冰洲石内的两个像浮起的高度是不同的,这表明,光在这种晶体内成了两束,它们的折射程度不同。这种现象叫做双折射。 下面我们通过一系列实验来说明双折射现象的特点和规律。 1、o光和e光: 如下图,让一束平等的自然光束正入射在冰洲石晶体的一个表面上,我们就会发现光束分解成两束。按照光的折射定律,正入射时光线不应偏折。而上述两束折射光中的一束确实在晶体中沿原方向传

电子衍射实验报告

电子衍射实验 本实验采用与当年汤姆生的电子衍射实验相似的方法,用电子束透过金属薄膜,在荧光屏上观察电子衍射图样,并通过衍射图测量电子波的波长。 一、 实验目的: 测量运动电子的波长,验证德布罗意公式。理解真空中高速电子穿过晶体薄膜时的衍射现象,进一步理解电子的波动性。掌握晶体对电子的衍射理论及对立方晶系的指标化方法;掌握测量立方晶系的晶格常数方法。 二、实验原理 在物理学的发展史上,关于光的“粒子性”和“波动性”的争论曾延续了很长一段时期。人们最终接受了光既具有粒子性又具有波动性,即光具有波粒二象性。受此启发,在1924年,德布罗意(deBeroglie )提出了一切微观粒子都具有波粒二象性的大胆假设。当时,人们已经掌握了X 射线的晶体衍射知识,这为从实验上证实德布罗意假设提供了有利因素。 1927年戴维逊和革末发表了他们用低速电子轰击镍单晶产生电子衍射的实验结果。两个月后(1928年),英国的汤姆逊和雷德发表了他们用高速电子穿透物质薄片直接获得的电子衍射花纹,他们从实验测得的电子波的波长,与按德布罗意公式计算出的波长相吻合,从而成为第一批证实德布罗意假设的实验。 薛定谔(Schrodinger )等人在此基础上创立了描述微观粒子运动的基本理论——量子力学,德布罗意、戴维逊和革末也因此而获得诺贝尔尔物理学奖。现在,电子衍射技术已成为分析各种固体薄膜和表面层晶体结构的先进方法。 1924 年德布罗意提出实物粒子也具有波粒二象性的假设,他认为粒子的特征波长λ与动量 p 的关系与光子相同,即 h p λ'= 式中h 为普朗克常数,p 为动量。 设电子初速度为零,在电位差为V 的电场中作加速运动。在电位差不太大时,即非相对论情况下,电子速度 c ν(光在真空中的速度),故0m=m m ≈其中0m 为电子的静止质量。 它所达到的速度v 可 由电场力所作的功来决定:2 21p eV=m 22m ν=(2) 将式(2)代入(1)中,得: λ'=(3) 式中 e 为电子的电荷, m 为电子质量。将34h 6.62610 JS -=?、310m 9.1110kg -=?、-19e=1.60210C ?,各值代入式(3),可得:A λ'(4) 其中加速电压V 的单位为伏特(V ),λ的单位为1010-米。由式(4)可计算与电子德布罗意平面单色波的波 长。而我们知道,当单色 X 射线在多晶体薄膜上产生衍射时,可根据晶格的结构参数和衍射环纹大小来计算 图 1的波长。所以,类比单色 X 射线,也可由电子在多晶体薄膜上产生衍射时测出电子的波长λ 。如λ'与λ在误差范围内相符,则说明德布罗意假设成立。下面简述测量λ的原理。 根据晶体学知识,晶体中的粒子是呈规则排列的,具有点阵结构, 因此可以把晶体看作三维光栅。这种光栅的光栅常数要比普通人工刻 制的光栅小好几个量级。当高速电子束穿过晶体薄膜时所发生的衍射 现象与X 射线穿过多晶体进所发生的衍射现象相类似。它们衍射的方 向均满足布拉格公式。 1晶体是由原子(或离子)有规则地排列而组成的,

x光衍射实验报告

竭诚为您提供优质文档/双击可除 x光衍射实验报告 篇一:x光衍射实验报告 实验3.材料的x射线衍射物相分析 一、实验原理 1912年英国物理学家布拉格父子通过实验,发现了单色x射线与晶体作用产生衍射的规律。利用这一规律发明了测定晶格常数d的方法,这一方法也可以用来测定x射线的波长。如下图所示,当x射线沿某方向入射某一晶体的时候,晶体中每个原子的核外电子产生的相干波彼此发生干涉。当每两个相邻波源在某一方向的光程差等于波长λ的整数倍时,它们的波峰与波峰将互相叠加而得到最大限度的加强,这种波的加强叫做衍射,相应的方向叫做衍射方向,在衍射方向前进的波叫做衍射波。光程差为0的衍射叫零级衍射,光程差为λ的衍射叫一级衍射,光程差为nλ的衍射叫n级衍射。n不同,衍射方向的也不同。 在晶体的点阵结构中,具有周期性排列的原子或电子散射的次生x射线间相互干涉的结果,决定了x射线在晶体中

衍射的方向,所以通过对衍射方向的测定,可以得到晶体的点阵结构、晶胞大小和形状等信息。 当光程差2dsinθ等于波长的整数倍nλ时,相邻原子面散射波干涉加强,即干涉加强条件为: 2dsinθ=nλ 二、实验仪器及参数的选择 1.实验仪器 本实验使用的仪器是shImAbZu-xRD-7000x射线衍射仪。x射线衍射仪主要由x射线发射器(x射线管)、测角仪、x 射线探测器、计算机控制处理系统等组成。衍射仪的结构如下图: x射线管主要分密闭式和可拆卸式两种。通常使用密闭式,由阴极灯丝、阳极、聚焦罩组成,功率大部分在1-2千瓦; 测角仪是粉末x射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成; 射线仪中常用的探测器是闪烁探测器,它是利用x射线能在某些固体物质(磷光体)中产生的波长在可见光范围内的荧光,这种荧光再转化为能够测量的电流。由于输出的电流和计数器吸 收的x光子能量成正比,因此可以用来测量衍射线的强

光的介绍

光的介绍 狭义来说,光学是关于光和视见的科学,optics(光学)这个词,早期只用于跟眼睛和视见相联系的事物。而今天,常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到X 射线的宽广波段范围内的,关于电磁辐射的发生、传播、接收和显示,以及跟物质相互作用的科学。 光学的发展简史 光学是一门有悠久历史的学科,它的发展史可追溯到2000多年前。 人类对光的研究,最初主要是试图回答“人怎么能看见周围的物体?”之类问题。约在公元前400多年(先秦的代),中国的《墨经》中记录了世界上最早的光学知识。它有八条关于光学的记载,叙述影的定义和生成,光的直线传播性和针孔成像,并且以严谨的文字讨论了在平面镜、凹球面镜和凸球面镜中物和像的关系。 自《墨经)开始,公元11世纪阿拉伯人伊本·海赛木发明透镜;公元1590年到17世纪初,詹森和李普希同时独立地发明显微镜;一直到17世纪上半叶,才由斯涅耳和笛卡儿将光的反射和折射的观察结果,归结为今天大家所惯用的反射定律和折射定律。 1665年,牛顿进行太阳光的实验,它把太阳光分解成简单的组成部分,这些成分形成一个颜色按一定顺序排列的光分布——光谱。它使人们第一次接触到光的客观的和定量的特征,各单色光在空间上的分离是由光的本性决定的。 牛顿还发现了把曲率半径很大的凸透镜放在光学平玻璃板上,当用白光照射时,则见透镜与玻璃平板接触处出现一组彩色的同心环状条纹;当用某一单色光照射时,则出现一组明暗相间的同心环条纹,后人把这种现象称牛顿环。借助这种现象可以用第一暗环的空气隙的厚度来定量地表征相应的单色光。 牛顿在发现这些重要现象的同时,根据光的直线传播性,认为光是一种微粒流。微粒从光源飞出来,在均匀媒质内遵从力学定律作等速直线运动。牛顿用这种观点对折射和反射现象作了解释。 惠更斯是光的微粒说的反对者,他创立了光的波动说。提出“光同声一样,是以球形波面传播的”。并且指出光振动所达到的每一点,都可视为次波的振动中心、次波的包络面为传播波的波阵面(波前)。在整个18世纪中,光的微粒流理论和光的波动理论都被粗略地提了出来,但都不很完整。 19世纪初,波动光学初步形成,其中托马斯·杨圆满地解释了“薄膜颜色”和双狭缝干涉现象。菲涅耳于1818年以杨氏干涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,用它可圆满地解释光的干涉和衍射现象,也能解释光的直线传播。 在进一步的研究中,观察到了光的偏振和偏振光的干涉。为了解释这些现象,菲涅耳假定光是一种在连续媒质(以太)中传播的横波。为说明光在各不同媒质中的不同速度,又必须假定以太的特性在不同的物质中是不同的;在各向异性媒质中还需要有更复杂的假设。此外,还必须给以太以更特殊的性质才能解释光不是纵波。如此性质的以太是难以想象的。 1846年,法拉第发现了光的振动面在磁场中发生旋转;1856年,韦伯发现光在真空中的速度等于电流强度的电磁单位与静电单位的比值。他们的发现表明光学现象与磁学、电学现象间有一定的内在关系。 1860年前后,麦克斯韦的指出,电场和磁场的改变,不能局限于空间的某一部分,而是以等于电流的电磁单位与静电单位的比值的速度传播着,光就是这样一种电磁现象。这个结论在1888年为赫兹的实验证实。 然而,这样的理论还不能说明能产生象光这样高的频率的电振子的性质,也不能解释光的色散现象。到了1896年洛伦兹创立电子论,才解释了发光和物质吸收光的现象,也解

相关文档
相关文档 最新文档