文档库 最新最全的文档下载
当前位置:文档库 › Pump Intensity Dependence of Two-Beam Coupling in Doped Lithium Niobate Crystals

Pump Intensity Dependence of Two-Beam Coupling in Doped Lithium Niobate Crystals

Pump Intensity Dependence of Two-Beam Coupling in Doped Lithium Niobate Crystals
Pump Intensity Dependence of Two-Beam Coupling in Doped Lithium Niobate Crystals

信息论基础论文

信息论基础发展史 信息论(information theory)是运用概率论与数理统计的方法研究信息、信息熵、通信系统、数据传输、密码学、数据压缩等问题的应用数学学科。是专门研究信息的有效处理和可靠传输的一般规律的科学,是研究通讯和控制系统中普遍存在着信息传递的共同规律以及研究最佳解决信息的获限、度量、变换、储存和传递等问题的基础理论。信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法。信息传输和信息压缩是信息论研究中的两大领域。这两个方面又由信息传输定理、信源-信道隔离定理相互联系。 信息论从诞生到今天,已有五十多年历史,是在20世纪40年代后期从长期通讯实践中总结出来的,现已成为一门独立的理论科学,回顾它的发展历史,我们可以知道理论是如何从实践中经过抽象、概括、提高而逐步形成的。它是在长期的通信工程实践和理论研究的基础上发展起来的。 通信系统是人类社会的神经系统,即使在原始社会也存在着最简单的通信工具和通信系统,这方面的社会实践是悠久漫长的。电的通信系统(电信系统)已有100多年的历史了。在一百余年的发展过程中,一个很有意义的历史事实是:当物理学中的电磁理论以及后来的电子学理论一旦有某些进展,很快就会促进电信系统的创造发明或改进。 当法拉第(M.Faraday)于1820年--1830年期间发现电磁感应的基本规律后,不久莫尔斯(F.B.Morse)就建立起电报系统(1832—1835)。1876年,贝尔(A.G.BELL)又发明了电话系统。1864年麦克斯韦(Maxell)预言了电磁波的存在,1888年赫兹(H.Hertz)用实验证明了这一预言。接着1895年英国的马可尼(G.Marconi)和俄国的波波夫(A.C.ΠoΠoB)就发明了无线电通信。本世纪初(1907年),根据电子运动的规律,福雷斯特(1,Forest)发明了能把电磁波

蚁群算法简述及实现

蚁群算法简述及实现 1 蚁群算法的原理分析 蚁群算法是受自然界中真实蚁群算法的集体觅食行为的启发而发展起来的一种基于群体的模拟进化算法,属于随机搜索算法,所以它更恰当的名字应该叫“人工蚁群算法”,我们一般简称为蚁群算法。M.Dorigo等人充分的利用了蚁群搜索食物的过程与著名的TSP问题的相似性,通过人工模拟蚁群搜索食物的行为来求解TSP问题。 蚂蚁这种社会性动物,虽然个体行为及其简单,但是由这些简单个体所组成的群体却表现出及其复杂的行为特征。这是因为蚂蚁在寻找食物时,能在其经过的路径上释放一种叫做信息素的物质,使得一定范围内的其他蚂蚁能够感觉到这种物质,且倾向于朝着该物质强度高的方向移动。蚁群的集体行为表现为一种正反馈现象,蚁群这种选择路径的行为过程称之为自催化行为。由于其原理是一种正反馈机制,因此也可以把蚁群的行为理解成所谓的增强型学习系统(Reinforcement Learning System)。 引用M.Dorigo所举的例子来说明蚁群发现最短路径的原理和机制,见图1所示。假设D 和H之间、B和H之间以及B和D之间(通过C)的距离为1,C位于D和B的中央(见图1(a))。现在我们考虑在等间隔等离散世界时间点(t=0,1,2……)的蚁群系统情况。假设每单位时间有30只蚂蚁从A到B,另三十只蚂蚁从E到D,其行走速度都为1(一个单位时间所走距离为1),在行走时,一只蚂蚁可在时刻t留下浓度为1的信息素。为简单起见,设信息素在时间区间(t+1,t+2)的中点(t+1.5)时刻瞬时完全挥发。在t=0时刻无任何信息素,但分别有30只蚂蚁在B、30只蚂蚁在D等待出发。它们选择走哪一条路径是完全随机的,因此在两个节点上蚁群可各自一分为二,走两个方向。但在t=1时刻,从A到B的30只蚂蚁在通向H的路径上(见图1(b))发现一条浓度为15的信息素,这是由15只从B走向H的先行蚂蚁留下来的;而在通向C的路径上它们可以发现一条浓度为30的信息素路径,这是由15只走向BC的路径的蚂蚁所留下的气息与15只从D经C到达B留下的气息之和(图1(c))。这时,选择路径的概率就有了偏差,向C走的蚂蚁数将是向H走的蚂蚁数的2倍。对于从E到D来的蚂蚁也是如此。 (a)(b)(c) 图1 蚁群路径搜索实例 这个过程一直会持续到所有的蚂蚁最终都选择了最短的路径为止。 这样,我们就可以理解蚁群算法的基本思想:如果在给定点,一只蚂蚁要在不同的路径中选择,那么,那些被先行蚂蚁大量选择的路径(也就是信息素留存较浓的路径)被选中的概率就更大,较多的信息素意味着较短的路径,也就意味着较好的问题回答。

数据通信基本知识

数据通信基本知识 -------------------------------------------------------------------------- 所有计算机之间之间通过计算机网络的通信都涉及由传输介质传输某种形式的数据编码信号。传输介质在计算机、计算机网络设备间起互连和通信作用,为数据信号提供从一个节点传送到另一个节点的物理通路。计算机与计算机网络中采用的传输介质可分为有线和无线传输介质两大类。 一、有线传输介质(Wired Transmission Media) 有线传输介质在数据传输中只作为传输介质,而非信号载体。计算机网络中流行使用的有线传输介质(Wired Transmission Media)为:铜线和玻璃纤维。 1. 铜线 铜线(Copper Wire)由于具有较低的电阻率、价廉和容易安装等优点因而成为最早用于计算机网络中的传输介质,它以介质中传输的电流作为数据信号的载体。为了尽可能减小铜线所传输信号之间的相互干涉(Interference),我们使用两种基本的铜线类型:双绞线和同轴电缆。 (1)双绞线 双绞线(Twisted Pair)是把两条互相绝缘的铜导线纽绞起来组成一条通信线路,它既可减小流过电流所辐射的能量,也可防止来自其他通信线路上信号的干涉。双绞线分屏蔽和无屏蔽两种,其形状结构如图1.1所示。双绞线的线路损耗较大,传输速率低,但价格便宜,容易安装,常用于对通信速率要求不高的网络连接中。 (2)同轴电缆 同轴电缆(Coaxial Cable)由一对同轴导线组成。同轴电缆频带宽,损耗小,具有比双绞线更强的抗干扰能力和更好的传输性能。按特性阻抗值不同,同轴电缆可分为基带(用于传输单路信号)和宽带(用于同时传输多路信号)两种。同轴电缆是目前LAN局域网与有线电视网中普遍采用的比较理想的传输介质。 2.玻璃纤维 目前,在计算机网络中十分流行使用易弯曲的石英玻璃纤维来作为传输介质,它以介质中传输的光波(光脉冲信号)作为信息载体,因此我们又将之称为光导纤维,简称光纤(Optical Fiber)或光缆(Optical Cable)。 光缆由能传导光波的石英玻璃纤维(纤芯),外加包层(硅橡胶)和保护层构成。在光缆一头的发射器使用LED光发射二极管(Light Emitting Diode)或激光(Laser)来发射光脉冲,在光缆另一头的接收器使用光敏半导体管探测光脉冲。 模拟数据通信与数字数据通信 一、通信信道与信道容量(Communication Channel & Channel Capacity) 通信信道(Communication Channel)是数据传输的通路,在计算机网络中信道分为物理信道和逻辑信道。物理信道指用于传输数据信号的物理通路,它由传输介质与有关通信设备组成;逻辑信道指在物理信道的基础上,发送与接收数据信号的双方通过中间结点所实现的逻?quot;联系",由此为传输数据信号形成的逻辑通路。逻辑信道可以是有连接的,也可以是无连接的。物理信道还可根据传输介质的不同而分为有线信道和

通信原理基础知识整理

通信常识:波特率、数据传输速率与带宽的相互关系 【带宽W】 带宽,又叫频宽,是数据的传输能力,指单位时间能够传输的比特数。高带宽意味着高能力。数字设备中带宽用bps(b/s)表示,即每秒最高可以传输的位数。模拟设备中带宽用Hz表示,即每秒传送的信号周期数。通常描述带宽时省略单位,如10M实质是10M b/s。带宽计算公式为:带宽=时钟频率*总线位数/8。电子学上的带宽则指电路可以保持稳定工作的频率围。 【数据传输速率Rb】 数据传输速率,又称比特率,指每秒钟实际传输的比特数,是信息传输速率(传信率)的度量。单位为“比特每秒(bps)”。其计算公式为S=1/T。T为传输1比特数据所花的时间。 【波特率RB】 波特率,又称调制速率、传符号率(符号又称单位码元),指单位时间载波参数变化的次数,可以以波形每秒的振荡数来衡量,是信号传输速率的度量。单位为“波特每秒(Bps)”,不同的调制方法可以在一个码元上负载多个比特信息,所以它与比特率是不同的概念。 【码元速率和信息速率的关系】 码元速率和信息速率的关系式为:Rb=RB*log2 N。其中,N为进制数。对于二进制的信号,码元速率和信息速率在数值上是相等的。 【奈奎斯特定律】 奈奎斯特定律描述了无噪声信道的极限速率与信道带宽的关系。 1924年,奈奎斯特(Nyquist)推导出理想低通信道下的最高码元传输速率公式:理想低通信道下的最高RB = 2W Baud。其中,W为理想低通信道的带宽,单位是赫兹(Hz),即每赫兹带宽的理想低通信道的最高码元传输速率是每秒2个码元。对于理想带通信道的最高码元传输速率则是:理想带通信道的最高RB= W Baud,即每赫兹带宽的理想带通信道的最高码元传输速率是每秒1个码元。 符号率与信道带宽的确切关系为: RB=W(1+α)。 其中,1/1+α为频道利用率,α为低通滤波器的滚降系数,α取值为0时,频带利用率最高,但此时因波形“拖尾”而易造成码间干扰。它的取值一般不小于0.15,以调解频带利用率和波形“拖尾”之间的矛盾。 奈奎斯特定律描述的是无噪声信道的最大数据传输速率(或码元速率)与信道带宽之间的关系。 【香农定理】 香农定理是在研究信号经过一段距离后如何衰减以及一个给定信号能加载多少数据后得到了一个著名的公式,它描述有限带宽、有随机热噪声信道的最大数据传输速率(或码元速率)与信道带宽、信噪比(信号噪声功率比)之间的关系,以比特每秒(bps)的形式给出一个链路速度的上限。

基本蚁群算法

蚁群算法浅析 摘要:介绍了什么是蚁群算法,蚁群算法的种类,对四种不同的蚁群算法进行了分析对比。详细阐述了蚁群算法的基本原理,将其应用于旅行商问题,有效地解决了问题。通过对旅行商问题C++模拟仿真程序的详细分析,更加深刻地理解与掌握了蚁群算法。 关键词:蚁群算法;旅行商问题;信息素;轮盘选择 一、引言 蚁群算法(Ant Colony Optimization, ACO),是一种用来在图中寻找优化路径的算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。 蚁群算法成功解决了旅行商问题(Traveling Salesman Problem, TSP):一个商人要到若干城市推销物品,从一个城市出发要到达其他各城市一次而且最多一次最后又回到第一个城市。寻找一条最短路径,使他从起点的城市到达所有城市一遍,最后回到起点的总路程最短。若把每个城市看成是图上的节点,那么旅行商问题就是在N个节点的完全图上寻找一条花费最少的回路。 最基本的蚁群算法见第二节。目前典型的蚁群算法有随机蚁群算法、排序蚁群算法和最大最小蚁群算法,其中后两种蚁群算法是对前一种的优化。本文将终点介绍随机蚁群算法。 二、基本蚁群算法 (一)算法思想 各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种信息素,信息素多的地方显然经过这里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。假设有两条路从窝通向食物,开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无关紧要)。当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来,从而洒下更多的信息素。因此,越来越多地蚂蚁聚集到较短的路径上来,最短的路径就找到了。 蚁群算法的基本思想如下图表示:

第三章 信息论基础知识(Part2)

信息论基础知识
主要内容:
信源的数学模型 信源编码定理 信源编码算法 信道容量 通信的容限
第 1 页 2011-2-21

引言
一、信息论的研究范畴 信息论是研究信息的基本性质及度量方法,研究信息的
获取、传输、存储和处理的一般规律的科学。 狭义信息论:通信的数学理论,主要研究信息的度量方 法,各种信源、信道的描述和信源、信道的编码定理。 实用信息论:信息传输和处理问题,也就是狭义信息 论方法在调制解调、编码译码以及检测理论等领域的应用。 广义信息论,包括信息论在自然和社会中的新的应用, 如模式识别、机器翻译、自学习自组织系统、心理学、生物 学、经济学、社会学等一切与信息问题有关的领域。
第 2 页 2011-2-21

二、信息论回答的问题
通信信道中,信息能够可靠传 输的最高速率是多少?
噪声信道编码定理 噪声信道编码定理
信息进行压缩后,依然可以从已压 缩信息中以无差错或低差错恢复的 最低速率是多少?
香农信源编码理论 香农信源编码理论
最佳系统的复杂度是多少?
第 3 页
2011-2-21

三、香农的贡献
香农(Claude Elwood Shannon,1916~2001年), 美国数学家,信息论的创始人。
创造性的采用概率论的方法来研究通信中的问题,并且对 信息给予了科学的定量描述,第一次提出了信息熵的概念。 1948年,《通信的数学理论》(A mathematical theory of communication ) 以及1949年,《噪声下的通信》标志了信息论的创立。 1949年,《保密通信的信息理论》,用信息论的观点对信息保密问题做了 全面的论述,奠定了密码学的基础。 1959年,《保真度准则下的离散信源编码定理》,它是数据压缩的数学基 础,为信源编码的研究奠定了基础。 1961年发表“双路通信信道”,开拓了多用户信息理论(网络信息论)的研 究;
第 4 页 2011-2-21

计算智能大作业--蚁群算法解决TSP问题

(计算智能大作业) 应用蚁群算法求解TSP问题

目录 蚁群算法求解TSP问题 (3) 摘要: (3) 关键词: (3) 一、引言 (3) 二、蚁群算法原理 (4) 三、蚁群算法解决TSP问题 (7) 四、解决n个城市的TSP问题的算法步骤 (9) 五、程序实现 (11) 六、蚁群算法优缺点分析及展望 (18) 七、总结 (18)

采用蚁群算法解决TSP问题 摘要:蚁群算法是通过蚂蚁觅食而发展出的一种新的启发算法,该算法已经成功的解决了诸如TSP问题。本文简要学习探讨了蚂蚁算法和TSP问题的基本内容,尝试通过matlab 仿真解决一个实例问题。 关键词:蚁群算法;TSP问题;matlab。 一、引言 TSP(Travelling Salesman Problem)又称货郎担或巡回售货员问题。TSP问题可以描述为:有N个城市,一售货员从起始城市出发,访问所有的城市一次,最后回到起始城市,求最短路径。TSP问题除了具有明显的实际意义外,有许多问题都可以归结为TSP问题。目前针对这一问题已有许多解法,如穷举搜索法(Exhaustive Search Method), 贪心法(Greedy Method), 动态规划法(Dynamic Programming Method)分支界定法(Branch-And-Bound),遗传算法(Genetic Agorithm)模拟退火法(simulated annealing),禁忌搜索。本文介绍了一种求解TSP问题的算法—蚁群算法,并通过matlab仿真求解50个城市之间的最短距离,经过仿真试验,证明是一种解决TSP问题有效的方法。

《信息论基础》教学大纲

《信息论基础》教学大纲 课程编号:CE6006 课程名称:信息论基础英文名称:Foundation of Information Theory 学分/学时:2/32 课程性质:选修课 适用专业:信息安全,网络工程建议开设学期:6 先修课程:概率论与数理统计开课单位:网络与信息安全学院 一、课程的教学目标与任务 本课程是信息安全,网络工程专业选修的一门专业基础课。通过课程学习,使学生能够 较深刻地理解信息的表征、存储和传输的基本理论,初步掌握提高信息传输系统可靠性、有 效性、保密性和认证性的一般方法,为后续专业课学习打下坚实的理论基础。 本课程的教学目标: 本课程对学生达到如下毕业要求有贡献: 1.能够将数学、自然科学、工程基础和专业知识用于解决复杂工程问题。 2.能够应用数学、自然科学和工程科学的基本原理,识别、表达,并通过文献研究分 析复杂工程问题,以获得有效结论。 完成课程后,学生将具备以下能力: 1.能够针对一个复杂系统或者过程选择一种数学模型,并达到适当的精度。 2.能够应用数学、自然科学和工程科学的基本原理分析、识别、表达、处理及扩展信 息安全、网络工程专业的复杂问题。 本课程的性质: 本课程是一门理论性较强的专业基础课程,在实施过程中以理论为主,共32学时。 二、课程具体内容及基本要求 (一)绪论(2学时) 1.基本要求 (1)掌握消息、信息和信号;噪声和干扰的基本概念 (2)掌握通信系统模型 (3)明确Shannon信息论要解决的中心问题 2.重点与难点 (1)重点:掌握通信系统模型的构成及其相应功能 (2)难点:理解Shannon信息论要解决的中心问题

数据通信基本知识03794

数据通信基本知识 所有计算机之间之间通过计算机网络的通信都涉及由传输介质传输某种形式的数据编码信号。传输介质在计算机、计算机网络设备间起互连和通信作用,为数据信号提供从一个节点传送到另一个节点的物理通路。计算机与计算机网络中采用的传输介质可分为有线和无线传输介质两大类。 一、有线传输介质(Wired Transmission Media) 有线传输介质在数据传输中只作为传输介质,而非信号载体。计算机网络中流行使用的有线传输介质(Wired Transmission Media) 为:铜线和玻璃纤维。 1. 铜线 铜线(Copper Wire)由于具有较低的电阻率、价廉和容易安装等优点因而成为最早用于计算机网络中的传输介质,它以介质中传输的电流作为数据信号的载体。为了尽可能减小铜线所传输信号之间的相互干涉(Interference) ,我们使用两种基本的铜线类型:双绞线和同轴电缆。 (1) 双绞线 双绞线(Twisted Pair) 是把两条互相绝缘的铜导线纽绞起来组成一条通信线路,它既可减小流过电流所辐射的能量,也可防止来自其他通信线路上信号的干涉。双绞线分屏蔽和无屏蔽两种,其形状结构如图 1.1 所示。双绞线的线路损耗较大,传输速率低,但价格便宜,容易安装,常用于对通信速率要求不高的网络连接中。 (2) 同轴电缆 同轴电缆(Coaxial Cable) 由一对同轴导线组成。同轴电缆频带宽,损耗小,具有比双绞线更强的抗干扰能力和更好的传输性能。按特性阻抗值不同,同轴电缆可分为基带(用于传输单路信号)和宽带(用于同时传输多路信号)两种。同轴电缆是目前LAN局域网与有线电视网中普遍采用的比较理想的传输介质。 2. 玻璃纤维目前,在计算机网络中十分流行使用易弯曲的石英玻璃纤维来作为传输介质,它以介质中传输的光波(光脉冲信号)作为信息载体,因此我们又将之称为光导纤维, 简称光纤(Optical Fiber) 或光缆(Optical Cable) 。 光缆由能传导光波的石英玻璃纤维(纤芯),外加包层(硅橡胶)和保护层构成。在光缆一头的发射器使用LED光发射二极管(Light Emitting Diode) 或激光(Laser)来发射光脉冲,在光缆另一头的接收器使用光敏半导体管探测光脉冲。 模拟数据通信与数字数据通信 一、通信信道与信道容量(Communication Channel & Channel Capacity) 通信信道(Communication Channel) 是数据传输的通路,在计算机网络中信道分为物理信道和逻辑信道。物理信道指用于传输数据信号的物理通路,它由传输介质与有关通信设备组成;逻辑信道指在物理信道的基础上,发送与接收数据信号的双方通过中间结点所实现的逻?quot; 联系",由此为传输数据信号形成的逻辑通路。逻辑信道可以是有连接的,也可以是无连接的。物理信道还可根据传输介质的不同而分为有线信道和 无线信道,也可按传输数据类型的不同分为数字信道和模拟信道。信道容量(Channel

信息论基础试卷(期末A卷

重庆邮电大学2007/2008学年2学期 《信息论基础》试卷(期末)(A卷)(半开卷) 一、填空题(本大题共10小空,每小空1分,共20分) 1.按信源发出符号所对应的随机变量之间的无统计依赖关系,可将离散信源分为有记忆信源和无记忆信源两大类。 2.一个八进制信源的最大熵为3bit/符号 3.有一信源X,其概率分布为 123 x x x X 111 P 244 ?? ?? ? = ?? ? ?? ?? ,其信源剩余度为94.64%;若对该信源进行十次扩展, 则每十个符号的平均信息量是15bit。 4.若一连续消息通过放大器,该放大器输出的最大瞬间电压为b,最小瞬时电压为a。若消息从放大器中输出,则该信源的绝对熵是∞;其能在每个自由度熵的最大熵是log(b-a)bit/自由度;若放大器的最高频率为F,则单位时间内输出的最大信息量是2Flog(b-a)bit/s. 5. 若某一信源X,其平均功率受限为16w,其概率密度函数是高斯分布时,差熵的最大值为1 log32e 2 π;与 其熵相等的非高斯分布信源的功率为16w ≥ 6、信源编码的主要目的是提高有效性,信道编码的主要目的是提高可靠性。 7、无失真信源编码的平均码长最小理论极限制为信源熵(或H(S)/logr= H r(S))。 8、当R=C或(信道剩余度为0)时,信源与信道达到匹配。 9、根据是否允许失真,信源编码可分为无失真信源编码和限失真信源编码。 10、在下面空格中选择填入数学符号“,,, =≥≤?”或“?” (1)当X和Y相互独立时,H(XY)=H(X)+H(X/Y)。 (2)假设信道输入用X表示,信道输出用Y表示。在无噪有损信道中,H(X/Y)> 0, H(Y/X)=0,I(X;Y)

蚁群算法综述

智能控制之蚁群算法 1引言 进入21世纪以来,随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。随着计算机技术的飞速发展,智能计算方法的应用领域也越来越广泛。 智能控制技术的主要方法有模糊控制、基于知识的专家控制、神经网络控制和集成智能控制等,以及常用优化算法有:遗传算法、蚁群算法、免疫算法等。 蚁群算法是近些年来迅速发展起来的,并得到广泛应用的一种新型模拟进化优化算法。研究表明该算法具有并行性,鲁棒性等优良性质。它广泛应用于求解组合优化问题,所以本文着重介绍了这种智能计算方法,即蚁群算法,阐述了其工作原理和特点,同时对蚁群算法的前景进行了展望。 2 蚁群算法概述 1、起源 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型技术。它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。 Deneubourg及其同事(Deneubourg et al.,1990; Goss et al.,1989)在可监控实验条件下研究了蚂蚁的觅食行为,实验结果显示这些蚂蚁可以通过使用一种称为信息素的化学物质来标记走过的路径,从而找出从蚁穴到食物源之间的最短路径。 在蚂蚁寻找食物的实验中发现,信息素的蒸发速度相对于蚁群收敛到最短路径所需的时间来说过于缓慢,因此在模型构建时,可以忽略信息素的蒸发。然而当考虑的对象是人工蚂蚁时,情况就不同了。实验结果显示,对于双桥模型和扩展双桥模型这些简单的连接图来说,同样不需要考虑信息素的蒸发。相反,在更复杂的连接图上,对于最小成本路径问题来说,信息素的蒸发可以提高算法找到好解的性能。 2、基于蚁群算法的机制原理 模拟蚂蚁群体觅食行为的蚁群算法是作为一种新的计算智能模式引入的,该算法基于如下假设: (1)蚂蚁之间通过信息素和环境进行通信。每只蚂蚁仅根据其周围的环境作出反应,也只对其周围的局部环境产生影响。 (2)蚂蚁对环境的反应由其内部模式决定。因为蚂蚁是基因生物,蚂蚁的行为实际上是其基因的自适应表现,即蚂蚁是反应型适应性主体。 (3)在个体水平上,每只蚂蚁仅根据环境作出独立选择;在群体水平上,单

蚁群算法原理及在TSP中的应用(附程序)

蚁群算法原理及在TSP 中的应用 1 蚁群算法(ACA )原理 1.1 基本蚁群算法的数学模型 以求解平面上一个n 阶旅行商问题(Traveling Salesman Problem ,TSP)为例来说明蚁群算法ACA (Ant Colony Algorithm )的基本原理。对于其他问题,可以对此模型稍作修改便可应用。TSP 问题就是给定一组城市,求一条遍历所有城市的最短回路问题。 设()i b t 表示t 时刻位于元素i 的蚂蚁数目,()ij t τ为t 时刻路径(,)i j 上的信息量,n 表示TSP 规模,m 为蚁群的总数目,则1()n i i m b t ==∑;{(),}ij i i t c c C τΓ=?是t 时刻集合C 中元素(城市)两两连接ij t 上残留信息量的集合。在初始时刻各条路径上信息量相等,并设 (0)ij const τ=,基本蚁群算法的寻优是通过有向图 (,,)g C L =Γ实现的。 蚂蚁(1,2,...,)k k m =在运动过程中,根据各条路径上的信息量决定其转移方向。这里用禁忌表(1,2,...,)k tabu k m =来记录蚂蚁k 当前所走过的城市,集合随着 k tabu 进化过程作动态调整。在搜索过程中,蚂蚁根据各条路径上的信息量及路 径的启发信息来计算状态转移概率。()k ij p t 表示在t 时刻蚂蚁k 由元素(城市)i 转移 到元素(城市)j 的状态转移概率。 ()*()()*()()0k ij ij k k ij ij ij s allowed t t j allowed t t p t αβ αβτητη??????????? ∈?????=????? ??? ∑若否则 (1) 式中,{}k k allowed C tabuk =-表示蚂蚁k 下一步允许选择的城市;α为信息启发式因子,表示轨迹的相对重要性,反映了蚂蚁在运动过程中所积累的信息在蚂蚁运动时所起作用,其值越大,则该蚂蚁越倾向于选择其他蚂蚁经过的路径,蚂蚁之间协作性越强;β为期望启发式因子,表示能见度的相对重要性,反映了蚂蚁在运动过程中启发信息在蚂蚁选择路径中的重视程度,其值越大,则该状态转移概率越接近于贪心规则;()ij t η为启发函数,其表达式如下: 1 ()ij ij t d η= (2)

蚁群算法的基本原理

2.1 蚁群算法的基本原理 蚁群优化算法是模拟蚂蚁觅食的原理,设计出的一种群集智能算法。蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,并指导自己行动方向,它们总是朝着该物质强度高的方向移动,因此大量蚂蚁组成的集体觅食就表现为一种对信息素的正反馈现象。某一条路径越短,路径上经过的蚂蚁越多,其信息素遗留的也就越多,信息素的浓度也就越高,蚂蚁选择这条路径的几率也就越高,由此构成的正反馈过程,从而逐渐的逼近最优路径,找到最优路径。 蚂蚁在觅食过程时,是以信息素作为媒介而间接进行信息交流,当蚂蚁从食物源走到蚁穴,或者从蚁穴走到食物源时,都会在经过的路径上释放信息素,从而形成了一条含有信息素的路径,蚂蚁可以感觉出路径上信息素浓度的大小,并且以较高的概率选择信息素浓度较高的路径。 (a) 蚁穴 1 2 食物源 A B (b) 人工蚂蚁的搜索主要包括三种智能行为: (1)蚂蚁的记忆行为。一只蚂蚁搜索过的路径在下次搜索时就不再被该蚂蚁选择,因此在蚁群算法中建立禁忌表进行模拟。 (2)蚂蚁利用信息素进行相互通信。蚂蚁在所选择的路径上会释放一种信息素的物质,当其他蚂蚁进行路径选择时,会根据路径上的信息素浓度进行选择,这样信息素就成为蚂蚁之间进行通信的媒介。 (3)蚂蚁的集群活动。通过一只蚂蚁的运动很难达到事物源,但整个蚁群进行搜索就完全不同。当某些路径上通过的蚂蚁越来越多时,路径上留下的信息素数量也就越多,导致信息素强度增大,蚂蚁选择该路径的概率随之增加,从而进一步增加该路径的信息素强度,而通过的蚂蚁比较少的路径上的信息素会随着时间的推移而挥发,从而变得越来越少。3.3.1蚂蚁系统 蚂蚁系统是最早的蚁群算法。其搜索过程大致如下: 在初始时刻,m 只蚂蚁随机放置于城市中, 各条路径上的信息素初始值相等,设为:0(0)ij ττ=为信息素初始值,可设0m m L τ=,m L 是由最近邻启发式方法构 造的路径长度。其次,蚂蚁(1,2,)k k m = ,按照随机比例规则选择下一步要转

南邮801通信原理基础知识99题及对应答案--平界

南邮801通信原理基础知识99题 1、数字通信系统的有效性主要性能指标是______或______;可靠性主要性能指标是______或______。 2、信源编码可提高通信系统的______;信道编码可提高通信系统的______。 3、一离散信源输出二进制符号,在______条件下,每个二进制符号携带的1比特信息量;在______条件下,每个二进制符号携带的信息量大于1比特。 4、消息所含的信息量与该信息的________有关,当错误概率任意小时,信道的_______称为信道容量。 5、香农公式标明______和______指标是一对矛盾。 6、在t 秒内传输M 个N 进制的码元,其信息传输速率为______;码元传输速率为______。 7、某随机信号)(t m 的平均功率为0P ,则信号)(2 t m A 的平均功率 ______。 8、使用香农公式时,要求信号的概率分布为______,信道噪声为______。 9、窄带平稳高斯随机过程的同相分量与正交分量统计特性______,且都属于 ______信号,它的同相分量和正交分量的分布是_______,均值为______,包络一维分布服从______分布,相位服从______分布,如果再加上正弦波后包络一维分布服从______莱斯分布______。 10、设某随机信号的自相关函数为)( R ,______为平均功率,______为直流功率,______为交流功率。 11、某信道带宽为3kHz ,输出信噪比为63,则相互独立且等概率的十六进制数据无误码传输的最高传码率为______。 12、随参信道的三个特点是:______、______和______。 13、由电缆、光纤、卫星中继等传输煤质构成的信道是______信道,由电离层反射、对流层散射等传输煤质构成的信道是______信道。 14、经过随参信道传输,单频正弦信号波形幅度发生______变化,单频正弦信号频谱发生______变化。 15、窄带信号通过随参信道多径传输后,其信号包络服从______分布,称之为______型衰落。

多目标蚁群算法及其实现

多目标蚁群算法及其实现 李首帅(2012101020019) 指导老师:张勇 【摘要】多目标优化问题对于现阶段来说,是十分热门的。本文将对多目标规划当中的旅行商问题,通过基于MATLAB的蚁群算法来解决,对多目标问题进行局部优化。 【关键词】旅行商问题;蚁群算法;MATLAB 一、背景介绍 旅行商问题是物流领域当中的典型问题,它的求解十分重要。蚁群算法是受自然界中真实蚁群的集体行为的启发而提出的一种基于群体的模拟进化算法,属于随机搜索算法。M. Dorigo等人充分利用了蚁群搜索食物的过程与旅行商问题(TSP)之间的相似性,通过人工模拟蚁群搜索食物的行为(即蚂蚁个体之间通过间接通讯与相互协作最终找到从蚁穴到食物源的最短路径)来求解TSP问题。为区别于真实蚁群,称算法中的蚂蚁为“人工蚂蚁”。人们经过大量研究发现,蚂蚁个体之间是通过一种称之为信息素(pheromone)的物质进行信息传递,从而能相互协作,完成复杂的任务。蚁群之所以表现出复杂有序的行为,个体之间的信息交流与相互协作起着重要的作用。蚂蚁在运动过程中,能够在它所经过的路径上留下该种物质,而且能够感知这种物质的存在及其强度,并以此指导自己的运动方向。蚂蚁倾向于朝着该物质强度高的方向移动。因此,由大量蚂蚁组成的蚁群的集体行为便表现出一种信息正反馈现象:某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。蚂蚁个体之间就是通过这种信息的交流达到搜索食物的目的。 二、蚁群算法原理介绍 1.蚁群在路径上释放信息素; 2.碰到还没走过的路口,就随机挑选一条路走。同时释放与路径长度有关的信息素; 3.信息素浓度与路长成反比; 4.最优路径上的信息浓度越来越大; 5.最终蚁群找到最优路径。 其实自然界中,蚁群这种寻找路径的过程表现是一种正反馈的过程,与人工蚁群的优化算法很相近。所以我们简单功能的工作单元视为蚂蚁,则上述的搜寻路径过程可以用来解释人工蚁群搜寻过程。 人工蚁群和自然界蚁群各具特点。人工蚁群具有一定的记忆能力。它能够记忆已经访问过的节点;另外,人工蚁群在选择下一条路径的时候并不是完全盲目的,而是按一定的算法规律有意识地寻找最短路径。而自然界蚁群不具有记忆的能力,它们的选路凭借外激素,或者

数字通信知识点

第一章 绪论 1. 数字通信系统模型 通信系统结构:信源-发送设备-传输媒质-接收设备-收信 数字通信系统模型:信源-信源编码-信道编码-调制-信道-解调-信道解码-信源解码-收信 其中干扰主要来至传输媒质或信道部分 信源编码的作用: 信道编码的作用: 2. 香农信道容量公式 对上式进行变形后讨论其含义:令 0b E S C N N W =,代入上式有 ()()021C W b E N C W =-,讨论当信 道容量C 固定时,0b E N 和W 的关系。注意,W 的单位是Hz ,S N 是瓦特比值! (1) 00b E N C W W ↑?↑?↓→,功率可以无限换取带宽 (2) 0 1.6b W C W E N dB ↑?↓?↓→-,带宽不能无限换取功率 (3) max 22log 1log 1P P R C I W I TW N N ????=?=+?=+ ? ???? ?,信噪比P N 一定时,传输 时间和带宽也可以互换 第三章 模拟线性调制 1. 调制分类 A. AM (双边带幅度调制) 载波 () ()0cos c c C t A t ωθ=+ 已调信号 产生方式:将调制信号() f t 加上一个直流分量0A 然后再乘以载波() cos c c t ωθ+

AM 调制信号信息包含在振幅中 其频谱为 实现频谱的搬移,注意直流分量的存在。 B. DSB-SC (抑制载波双边带调制) 产生方式:相对于AM 调制,仅是00A =,即不包含直流分量 DSB-SC 调制信号信息包含在振幅和相位中 已调信号 其频谱为 C. SSB (单边带调制) 产生方式:DSB 信号通过单边带滤波器......,滤除不要的边带 已调信号 实际物理信号频谱都是ω的偶函数,可去掉其中一个边带,节省带宽和功率 任何信号....() f t 可以表示为正弦函数的级数形式,仅讨论单频正弦信号的单边带调制不失一般性................................... ()()()cos cos DSB m m c c s t t t ωθωθ=++ 令0c θ=,0m θ=,式中“-”取上边带,“+”取下边带 ()()()()()cos cos sin sin SSB m c m c s t t t t t ωωωω= 通过移相相加或相减可以得到相应边带的调制信号。 D. VSB (残留边带调制) 产生方式:DSB 信号通过残留边带滤波器.......可得VSB 信号 已调信号 锐截止滤波器物理难实现,低频丰富的信号很难分力,故保留另一边带的一部分 滤波器在c ω处具有滚将特性,系统函数满足 ()()VSB c VSB c H H const ωωωω-++= 2. 模拟线性调制 信号生成模型

蚁群算法综述

《智能计算—蚁群算法基本综述》 班级:研1102班 专业:计算数学 姓名:刘鑫 学号: 1107010036 2012年

蚁群算法基本综述 刘鑫 (西安理工大学理学院,研1102班,西安市,710054) 摘要:蚁群算法( ACA)是一种广泛应用于优化领域的仿生进化算法。ACA发展背景着手,分析比较国内外ACA研究团队与发展情况立足于基本原理,分析其数学模型,介绍了六种经典的改进模型,对其优缺点进行分析,简要总结其应用领域并对其今后的发展、应用做出展望。 关键词:蚁群;算法;优化;改进;应用 0引言 专家发现单个蚂蚁只具有一些简单的行为能力。但整个蚁群却能完成一系列复杂的任务。这种现象是通过高度组织协调完成的1991年。意大利学者M.Dorigo 首次提出一种新型仿生算法ACA。研究了蚂蚁的行为。提出其基本原理及数学模型。并将之应用于寻求旅行商问题(TSP)的解。 通过实验及相关理论证明,ACA有着有着优化的选择机制的本质。而这种适应和协作机制使之具有良好的发现能力及其它算法所没有的优点。如较强的鲁棒性、分布式计算、易与其他方法结合等;但同时也不应忽略其不足。如搜索时间较长,若每步进行信息素更新,计算仿真时所占用CPU时间过长:若当前最优路径不是全局最优路径,但其信息素浓度过高时。靠公式对信息素浓度的调整不能缓解这种现象。会陷人局部收敛无法寻找到全局最优解:转移概率过大时,虽有较快的收敛速度,但会导致早熟收敛。所以正反馈原理所引起的自催化现象意在强化性能好的解,却容易出现停滞现象。笔者综述性地介绍了ACA对一些已有的提出自己的想法,并对其应用及发展前景提出了展望。 1 蚁群算法概述 ACA源自于蚁群的觅食行为。S.Goss的“双桥”实验说明蚂蚁总会选择距食物源较短的分支蚂蚁之间通过信息素进行信息的传递,捷径上的信息素越多,吸引的蚂蚁越多。形成正反馈机制,达到一种协调化的高组织状态该行为称集体自催化目前研究的多为大规模征兵,即仅靠化学追踪的征兵。 1 .1 蚁群算法的基本原理

数字对讲机入门知识

=== 数字对讲机入门知识 ===

目录 第一章概述 (3) 第二章对讲机分类 (4) 1. 手持对讲机 (5) 2. 车(船、机)载式无线对讲机 (5) 3. 中转台(或者基地台) (6) 第三章数字对讲机介绍以及与模拟对讲机的对比 (8) 1. 模拟对讲机的通信原理 (8) 2. 数字对讲机原理 (9) 3. 数字对讲机和模拟对讲机的区别和优势 (11)

第一章概述 从整个移动通信的应用来划分,通信网络可分为公众移动通信和专业移动通信两大类,其中公众移动通信就是社会上广大消费者正在使用的2G、3G、4G移动手机,它是为广大公众提供移动通信服务的,任何人都有权购买并享受其服务,它已经从第一代的模拟通信发展到现在的第4代数字移动通信;而专业移动通信主要是为各行业、企业、团体提供内部专业通信服务的,其不承担公众普遍服务职能。在专业移动通信中,按其网络容量从小到大,按网络功能从少到多,可分为公众对讲机、专业对讲机、无中心自集群系统、集群系统等四类,这四类专业移动通信中,前三类都属于对讲机的范畴,可见对讲机通信在专业移动通信中扮演着重要的角色,目前正在使用的对讲机数量占专业移动通信终端总数80%以上。 从采用的技术来划分,对讲机可分为模拟对讲机和数字对讲机两大类,数字对讲机是模拟对讲机的换代产品。由于模拟对讲机技术落后,且较为浪费宝贵的无线电频率资源,因此,从技术而言,模拟对讲机被数字对讲机淘汰只是时间问题。现在我国在使用的对讲机总数中有95%的是模拟对讲机,目前能批量成熟的提供数字对讲机的国内厂家只有海能达(好易通)、广州维德、科立讯、杭州优能、北峰、深圳翌科等厂家,大部分是依靠进口摩托罗拉、建伍等公司。

信息论的基本思路

?信息论的基本思路 通信是人类活动中最为普遍的现象之一,信息的传递与交换是时时处处都发生着的事情。在信息的传递与交换中,人们当然希望能够又多、又快、又好、又经济地传递信息。那么很自然地会出现这样一个问题:什么是信息传递的多快好省呢?怎样来衡量这种多快好省呢?怎样来判断某种通信方法的优劣呢?这就需要建立一种合理的定量描述信息传输过程的方法,首先是定量描述和度量信息的方法。 1948年,美国一位数学家克劳特·香农(C.E.Shannon)发表了一篇著名的论文《通信的数学理论》。差不多与此同时,美国另一位数学家诺伯特·维纳也发表了题为《时间序列的内插、外推和平滑化》的论文以及题为《控制论》的专著。在这些著作中,他们分别解决了按“通信的消息”来理解的信息(狭义信息)的度量问题,并得到了相同的结果。香农的论文还给出了信息传输问题的一系列重要结果,建立了比较完整而系统的信息理论,这就是香农信息论,也叫狭义信息论(简称“信息论”)。 香农信息理论具有崭新的风貌,是通信科学发展史上的一个转折点,它使通信问题的研究从经验转变为科学。因此,它一出现就在科学界引起了巨大的轰动,许多不同领域的科学工作者对它怀有浓厚的兴趣,并试图争相应用这一理论来解决各自领域的问题.从此,信息问题的研究,进入了一个新的纪元。 香农信息理论的基本思路,大致可归结为以下三个基本观点: ?一、非决定论观点 我们知道,在科学史上,直到20世纪初,拉普拉斯的决定论的观点始终处于统治的地位。这种观点认为,世界上一切事物的运动都严格地遵从一定的机械规律。因此,只要知道了它的原因,就可以唯一地决定它的结果;反过来,只要知道了它的结果,也就可以唯一地决定它的原因。或者,只要知道了某个事物的初始条件和运动规律,就可以唯一地确定它在各个时刻的运动状态。这种观点只承认必然性,排斥、否认偶然性。 根据通信问题研究对象的特点,信息理论按照非决定论的观点,采用了概率统计的方法,作为分析通信问题的数学工具,因而比以往的研究更切合实际、更科学、更有吸引力。 ?二、形式化假说 可提出如下的假设:虽然信息的语义因素和语用因素对于广义信息来说并不是次要因素,但对于作为“通信的消息”来理解的狭义信息来说是次要因素。因此,在描述和度量作为“通信的消息”来理解的狭义信息时,可以先把语义、语用因素搁置起来,假定各种信息的语义信息量和语用信息量恒定不变,而只单纯考虑信息的形式因素。 ?三、不确定性 对通信过程作进一步分析就可发现,人们要进行通信,不外有两种情形:一是自己有某种形式的信息要告诉对方,同时估计对方既会对这种信息感到兴趣,而又尚不知道这个信息。也就是说,对方在关于这个信息的知识上存在着不确定性;另一种情况是,自己有某种疑问要向对方询问,而且估计对方能够解答自己的疑问。在前一种情况下,如果估计对方已经了解了所欲告之的消息,自然就没有必要通信了;在后一种情况,如果自己没有疑问,当然就不必询问了。 这里所谓“疑问”、“不知道”,就是一种知识上的“不确定性”,即对某个事情的若干种可能结果,或对某个问题的若干可能答案,不能做出明确的判断。 所以,我们可以把作为“通信的消息”来理解的“狭义信息”,看作(或明确定义)为一种用来消除通信对方知识上的“不确定性”的东西。由此,我们可以引伸出一个十分重要而关键的结论:接收者收到某一消息后所获得的信息,可以用接收者在通信前后“不确定性”的消除量来度量。简而言之,接收者所得到的信息量,在数量上等于通信前后“不确定性”的消除量(或减少量)。这就是信息理论中度量信息的基本观点。

相关文档
相关文档 最新文档