文档库 最新最全的文档下载
当前位置:文档库 › 3.1.1空间向量及其运算

3.1.1空间向量及其运算

3.1.1空间向量及其运算
3.1.1空间向量及其运算

3. 1.1空间向量及其运算(一)

教学目标:

㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律;

㈡能力目标:⒈理解空间向量的概念,掌握其表示方法;

⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律;

⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题.

㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.

教学重点:空间向量的加减与数乘运算及运算律.

教学难点:应用向量解决立体几何问题.

教学方法:讨论式.

教学过程:

Ⅰ.复习引入

[师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢?

[生]既有大小又有方向的量叫向量.向量的表示方法有:

①用有向线段表示;

②用字母a、b等表示;

③用有向线段的起点与终点字母:AB.

[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量.

[师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:

⒈向量的加法:

⒉向量的减法:

⒊实数与向量的积:

实数λ与向量a的积

是一个向量,记作λa,其长度

和方向规定如下:

(1)|λa|=|λ||a|

(2)当λ>0时,λa

与a同向;

当λ<0时,λa与a反向;

当λ=0时,λa=0.

[师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢?

[生]向量加法和数乘向量满足以下运算律

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

数乘分配律:λ(a+b)=λa+λb

[师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本

Ⅱ.新课讲授

[师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?

[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量.

[师]由以上知识可知,向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.

[师]空间向量的加法、减法、数乘向量各是怎样定义的呢?

[生]空间向量的加法、减法、数乘向量的定义与平面向量的运算一样: AB OA OB +==a +b , OA OB AB -=(指向被减向量), =OP λa )(R ∈λ

[师]空间向量的加法与数乘向量有

哪些运算律呢?请大家验证这些运算律.

[生]空间向量加法与数乘向量有如下运算律:

⑴加法交换律:a + b = b + a ;

⑵加法结合律:(a + b ) + c =a + (b + c );(课件验证)

⑶数乘分配律:λ(a + b ) =λa +λb .

[师]空间向量加法的运算律要注意以下几点:

⑴首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的

向量.即:

n n n A A A A A A A A A A 11433221=++++-Λ

因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量.

⑵首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量.即:

011433221=+++++-A A A A A A A A A A n n n Λ.

⑶两个向量相加的平行四边形法则在空间仍然成立.

因此,求始点相同的两个向量之和时,可以考虑用平行四边形法则.

例1已知平行六面体''''D C B A ABCD -(如图),化简下列向量表达式,

并标出化简结果的向量:

;⑴BC AB + ;⑵'AA AD AB ++'21CC AD AB ++⑶

.⑷)'(3

1AA AD AB ++ 说明:平行四边形ABCD 平移向量 a 到A’B’C’D’的轨迹所形成的几何体,叫

做平行六面体.记作ABCD —A’B’C’D’.

平行六面体的六个面都是平行四边形,每个面的边叫做平行六面体的棱.

说明:由第2小题可知,始点相同且不在同一个平面内的三个向量之和,等于以这三个

向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量,这是平面向量加法的平行四边形法则向空间的推广.

例2、如图中,已知点O是平行六面体ABCD-A1B1C1D1体对角线的交点,点P是任意一点,则.

分析:

将要证明等式的左边分解成两部分:与,

第一组向量和中各向量的终点构成平行四边形ABCD,第二组向量和中的各向量的终点构成平行四边形A1B1C1D1,于是我们就想到了应该先证明:

将以上所述结合起来就产生了本例的证明思路.

解答:

设E,E1分别是平行六面体的面ABCD与A1B1C1D1的中心,于是有

点评:

空间向量的加减数乘运算练习题集

课时作业(十四) [学业水平层次] 一、选择题 1.对于空间中任意三个向量a ,b,2a -b ,它们一定是( ) A .共面向量 B .共线向量 C .不共面向量 D .既不共线也不共面向量 【解析】 由共面向量定理易得答案A. 【答案】 A 2.已知向量a 、b ,且AB →=a +2b ,BC →=-5a +6b ,CD → =7a -2b ,则一定共线的三点是( ) A .A 、 B 、D B .A 、B 、 C C .B 、C 、D D .A 、C 、D 【解析】 BD →=BC →+CD →=-5a +6b +7a -2b =2a +4b ,BA → =-AB →=-a -2b ,∴BD →=-2BA →, ∴BD →与BA → 共线, 又它们经过同一点B , ∴A 、B 、D 三点共线. 【答案】 A 3.A 、B 、C 不共线,对空间任意一点O ,若OP →=34OA →+18OB →+18OC → ,则P 、A 、B 、C 四点( ) A .不共面 B .共面

C .不一定共面 D .无法判断 【解析】 ∵34+18+1 8=1, ∴点P 、A 、B 、C 四点共面. 【答案】 B 4. (2014·莱州高二期末)在平行六面体ABCD -A 1B 1C 1D 1中,用向量AB →,AD →,AA 1→表示向量BD 1→ 的结果为( ) 图3-1-9 =AB →-AD →+AA 1→ =AD →+AA 1→-AB → =AB →+AD →-AA 1→ =AB →+AD →+AA 1→ 【解析】 BD 1→=BA →+AA 1→+A 1D 1→=-AB →+AA 1→+AD → .故选B. 【答案】 B 二、填空题 5.如图3-1-10,已知空间四边形ABCD 中,AB →=a -2c ,CD → =5a +6b -8c ,对角线AC ,BD 的中点分别为E 、F ,则EF → =________(用向量a ,b ,c 表示).

空间向量及其运算

§8.5 空间向量及其运算 1. 空间向量的概念 (1)定义:空间中既有大小又有方向的量叫作空间向量. (2)向量的夹角:过空间任意一点O 作向量a ,b 的相等向量OA →和OB → ,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,0≤〈a ,b 〉≤π. 2. 共线向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)空间向量基本定理 如果向量e 1,e 2,e 3是空间三个不共面的向量,a 是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3使得a =λ1e 1+λ2e 2+λ3e 3,其中e 1,e 2,e 3叫作空间的一个基底. 3. 空间向量的数量积及运算律 (1)定义 空间两个向量a 和b 的数量积是一个数,等于|a ||b |cos 〈a ,b 〉,记作a ·b . (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4. 空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =a 21+a 22+a 23,

《3.1.2 空间向量的数乘运算(1)》导学案(新部编)3

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

《3.1.2 空间向量的数乘运算(1)》导学案3 学习目标 1. 掌握空间向量的数乘运算律,能进行简单的代数式化简; 2. 理解共线向量定理和共面向量定理及它们的推论; 3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 学习过程 一、课前准备 (预习教材P 86~ P 87,找出疑惑之处) 复习1:化简: ⑴ 5(32a b -r r )+4(23b a -r r ); ⑵ ()() 63a b c a b c -+--+-r r r r r r . 复习2:在平面上,什么叫做两个向量平行? 在平面上有两个向量,a b r r , 若b r 是非零向量,则a r 与b r 平行的充要条件是 二、新课导学 ※ 学习探究 探究任务一:空间向量的共线 问题:空间任意两个向量有几种位置关系?如何判定它们的位置关系? 新知:空间向量的共线: 1. 如果表示空间向量的 所在的直线互相 或 ,则这些向量叫共线向量,也叫平行向量. 2. 空间向量共线:

定理:对空间任意两个向量,a b r r (0b ≠r r ), //a b r r 的充要条件是存在唯一实数λ,使得 推论:如图,l 为经过已知点A 且平行于已知非零向量的直线,对空间的任意一点O ,点P 在直线l 上的充要条件是 试试:已知5,28,AB a b BC a b =+=-+u u u r r r u u u r r r () 3CD a b =-u u u r r r ,求证: A,B,C 三点共线. 反思:充分理解两个向量,a b r r 共线向量的充要条件中的0b ≠r r ,注意零向量与任何向量共线. ※ 典型例题 例1 已知直线AB ,点O 是直线AB 外一点,若OP xOA yOB =+u u u r u u u r u u u r ,且x +y =1,试判断 A,B,P 三点是否共线? 变式:已知A,B,P 三点共线,点O 是直线AB 外一点,若12OP OA tOB =+u u u r u u u r u u u r ,那么t = 例2 已知平行六面体''''ABCD A B C D -,点M 是棱AA '的中点,点G 在对角线A 'C 上,且CG:GA ' =2:1,设CD u u u r =a r ,',CB b CC c ==u u u u r u u u r r r ,试用向量,,a b c r r r 表示向量',,,CA CA CM CG u u u r u u u r u u u u r u u u r .

3.1.1空间向量及其运算

3. 1.1空间向量及其运算(一) 教学目标: ㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律; ㈡能力目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. ㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物. 教学重点:空间向量的加减与数乘运算及运算律. 教学难点:应用向量解决立体几何问题. 教学方法:讨论式. 教学过程: Ⅰ.复习引入 [师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢? [生]既有大小又有方向的量叫向量.向量的表示方法有: ①用有向线段表示; ②用字母a、b等表示; ③用有向线段的起点与终点字母:AB. [师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量. [师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算: ⒈向量的加法: ⒉向量的减法: ⒊实数与向量的积: 实数λ与向量a的积 是一个向量,记作λa,其长度 和方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa 与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. [师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢? [生]向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb [师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本

数学选修空间向量及其运算教案

第三章空间向量与立体几何 §3.1空间向量及其运算 3.1.1 空间向量及其加减运算 师:这节课我们学习空间向量及其加减运算,请看学习目标。 学习目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 师:在必修四第二章《平面向量》中,我们学习了平面向量的一些知识,现在我们一起来复习。(不要翻书) (在黑板或背投上呈现或边说边写) 1、在平面中,我们把具有__________________的量叫做平面向量; 2、平面向量的表示方法:

①几何表示法:_________________________ ②字母表示法:_________________________ (注意:向量手写体一定要带箭头) 3、平面向量的模表示_________________,记作____________ 4、一些特殊的平面向量: ①零向量:__________________________,记作___(零向量的方向具有任意性) ②单位向量:______________________________ (强调:都只限制了大小,不确定方向) ③相等向量:____________________________ ④相反向量:____________________________ 5、平面向量的加法: 6、平面向量的减法: 7、平面向量的数乘:实数λ与向量a的积是一个向量,记作λa,其长度和 方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. 8、向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb 数乘结合律:λ(aμ)=a) (λμ [师]:刚才我们复习了平面向量,那空间向量会是怎样,与平面向量有怎样的区别和联系呢?请同学们阅读书P84-P86.(5分钟) [师]:对比平面向量,我们得到空间向量的相关概念。(在刚复习的黑板或幻灯片上,只需将平面改成空间) [师]:空间向量与平面向量有什么联系? [生]:向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.所以凡涉及 空间两个向量的问题,平面向量中有关结论仍适用于它们。

空间向量及其运算练习题

空间向量及其运算练习题 一、选择题 1、在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是 ①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z ) A.0 B.1 C.2 D.3 2、点(2,3,4)关于xoz 平面的对称点为( ) A 、(2,3,-4) B 、(-2,3,4) C 、(2,-3,4) D 、(-2,-3,4) 3、在空间直角坐标系中,设z 为任意实数,相应的点(3,1,)P z 的集合确定的图形为 ( )A .点 B .直线 C .圆 D .平面 4、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b , A A 1=c .则下列向量中与M B 1相等的向量是( ) A .c b a ++- 21 21 B . c b a ++21 21 C .c b a +-2 1 21 D .c b a +--2 1 21 5、在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A .OC O B OA OM --=2 B .O C OB OA OM 2 1 3151++= C .=++MC MB MA 0 D .=+++OC OB OA OM 0 5、已知平行六面体''' ' ABCD A B C D -中,AB=4,AD=3,' 5AA =,0 90BAD ∠=, ''060BAA DAA ∠=∠=,则'AC 等于 ( ) A .85 B .85 C .52 D .50 图

空间向量及其运算测试题

高二选修(2—1)第三章3.1空间向量及其运算测试 一、选择题 1 抛物线2 81x y - =的准线方程是 ( ) A . 321=x B . 2=y C . 32 1 =y D . 2-=y 2.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是 ( ) A . 22 1169x y += B . 22 11612x y += C .22 143x y += D .22 134 x y += 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( ) A .平行四边形 B .梯形 C .长方形 D .空间四边形

《空间向量的数乘运算》教学设计

教学设计 3.1.2空间向量的数乘运算 整体设计 教材分析 本节课是在学习了空间向量的相关概念和空间向量加减法法则的基础上学习的,是空间向量加减法法则的进一步应用和补充.本节课在介绍实数与向量乘积的意义的基础上引入空间向量共线定理,类比平面向量基本定理得到空间向量共面定理,为后面将要学习的空间向量基本定理打下基础,具有承上启下的重要作用. 因为空间向量的数乘运算以及空间向量共线定理与平面向量数乘运算以及共线定理完全一样,空间向量共面定理其实就是平面向量基本定理的逆定理,所以在教学中仍应采用类比、比较的教学方法,通过问题驱动、启发式、自主探究式的教学方法引导学生自主地完成本节课的学习. 课时分配 1课时 教学目标 知识与技能 1.掌握空间向量的数乘运算及其运算律. 2.理解共线向量定理和向量共面定理. 过程与方法 1.运用类比方法,经历向量的数乘运算和向量共线定理由平面向空间推广的过程; 2.引导学生借助空间几何体理解空间向量数乘运算及其运算律的意义. 情感、态度与价值观 1.培养学生的类比思想、转化思想,培养探究、研讨、综合自学应用能力; 2.培养学生的空间想象能力,能借助图形理解空间向量数乘运算及其运算律的意义; 3.培养学生空间向量的应用意识. 重点难点 教学重点: 1.空间向量的数乘运算及其运算律、几何意义;

2.空间向量的加减运算在空间几何体中的应用; 3.空间向量共线定理和共面定理. 教学难点: 1.空间想象能力的培养,思想方法的理解和应用; 2.空间向量的数乘运算及其几何的应用和理解; 3.空间向量共线定理和共面定理的理解. 教学过程 引入新课 提出问题:请同学们回忆“平面向量的数乘运算”的意义是什么,有什么性质,满足什么运算律. 活动设计:首先同学之间相互交流,教师适时介入,并一一板书出来. 活动结果:(板书) 1.实数λ和向量a的乘积λa是一个向量. 2.||λa=||λ||a. 3.λa的方向 ①当λ>0时,λa的方向和a方向相同; ②当λ<0时,λa的方向和a方向相反. 4.数乘运算的运算律: ①λ(μ a)=(λμ)a; ②λ(a+b)=λa+λb. 设计意图:这既复习了“平面向量的数乘运算”的意义、性质和运算律,又为类比得出“空间向量的数乘运算”的意义、性质和运算律作好了准备,而且在下面得出“空间向量的数乘运算”的意义、性质和运算律时,只需将“平面向量的数乘运算”中的“平面”换成“空间”即可.何乐而不为呢! 探究新知 提出问题1:上节课我们已经学习了空间向量的加减法运算,请同学们类比“平面向量的数乘运算”的意义、性质和运算律,猜想(给出)“空间向量的数乘运算”的意义、性质和运算律.即实数λ和向量a的乘积(λa)的意义是什么?有什么性质?满足什么运算律? 活动设计:教师从2a,-2a的意义中发现并类比平面中数乘的意义对学生进行引导,学生自己画出2a,-2a并总结λa的意义和运算律,然后自由发言,教师进行补充.师生发

专题01 空间向量及其运算、空间向量基本定理(解析版)

专题01 空间向量及其运算、空间向量基本定理 一、单选题 1.(2019·全国高二课时练习)已知a ,b ,c 是不共面的三个向量,则能构成一个基底的一组向量是( ) A .2a ,a ﹣b ,a +2b B .2b ,b ﹣a ,b +2a C .a ,2b ,b ﹣c D .c ,a +c ,a ﹣c 【答案】C 【解析】 对于A ,因为2a = 43(a ﹣b )+2 3(a +2b ),得2a 、a ﹣b 、a +2b 三个向量共面,故它们不能构成一个基底,A 不正确; 对于B ,因为2b = 43(b ﹣a )+2 3 (b +2a ),得2b 、b ﹣a 、b +2a 三个向量共面,故它们不能构成一个基底,B 不正确; 对于C ,因为找不到实数λ、μ,使a =λ?2b +μ(b ﹣c )成立,故a 、2b 、b ﹣c 三个向量不共面, 它们能构成一个基底,C 正确; 对于D ,因为c =12(a +c )﹣1 2 (a ﹣c ),得c 、a +c 、a ﹣c 三个向量共面,故它们不能构成一个基底,D 不正确 故选:C . 2.(2020·贵州省铜仁第一中学高二开学考试)如图所示,在平行六面体1111ABCD A B C D -中,设1AA a =, AB b =,AD c =,N 是BC 的中点,试用a ,b ,c 表示1A N ( ) A .12 a b c -++ B .a b c -++ C .12 a b c --+ D .12 a b c -+ 【答案】A

【解析】 N 是BC 的中点, 11111 222 A N A A A B BN a b B C a b A D a b c ∴=++=-++=-++=-++. 故选:A. 3.(2020·山东省章丘四中高二月考)如图,在四面体OABC 中,D 是BC 的中点,G 是AD 的中点,则OG 等于( ) A .111 333OA OB OC ++ B .111 234OA OB OC ++ C .111244 OA OB OC ++ D .111446 OA OB OC ++ 【答案】C 【解析】 在四面体OABC 中,D 是BC 的中点,G 是AD 的中点 ∴1 2 OG OA AD =+ 11 ()22OA AB AC =+?+ 1 ()4OA OB OA OC OA =+?-+- 111 244 OA OB OC =++ 故选:C. 4.(2020·河南省高二期末)如图在平行六面体1111ABCD A B C D -中,E 为11A D 的中点,设AB a =, AD b =,1AA c =,则CE =( )

《空间向量数量积的运算》的教学反思

《空间向量数量积的运算》教学反思 本节课我讲了选修2-1第三章《空间向量的数量积运算》这个节,这是本章第三节的内容,主要学习的是空间向量的数量积的运算及应用。根据大纲,要求学生能熟练应用空间向量的运算解决简单的立体几何问题,这也是本节课的难点。突破难点的方法是让学生会用已知向量表示相关向量,就是利用三角形法则或多边形法则把未知向量表示出来,进而再求两个向量的数量积、夹角、距离等。 三方面实行整体设计,注重与学生已有知识的联系及相关学科知识的联系(物理学:功),因为本节知识是向量由二维向三维的推广,所以预习平面向量的运算起了一定的作用,使学生体会知识的形成过程和数学中的类比学习方法。在整个教学过程中,我还是沿用知识复习、学生探究、教师例题分析、师生合作归纳小结的主线实行教学,符合学生的认知规律,也易于学生对知识的掌握,在教学方法上,我注重多媒体演示和传统板书教学有效结合,较好地辅助了教学。同时,结合新高考的要求,我注重了数学核心素养的培养,在教学中例题分析与归纳时,我注重了数学思想方法的渗透,如本节课我就渗透了数形结合思想、类比思想等,本节课的核心理念是体现学生在学习中的主体性。但我注重调动学生的主观能动性,最大限度的发挥学生的主体作用,在教学过程中,学生的思维活跃,积极讨论问题,自主解决相关例题。精彩处在于学生积极参与互动,学生评判,教师引导,学生积极归纳知识点,整个课堂热烈有序,张而有驰,整体课多次出现教学高潮,博得了学生与听课专家的热烈掌声,从课后反馈来看,本堂课普片反应学懂了,掌握了知识和解决问题的水平,正在学有所用。 不足之处:在创设情境时,我用的是知识性引课,不够引人入胜,要是能想出更好的引课方式或动画设计,在一开始就抓住学生的眼球,调动起学生学习的积极性,应该效果会更好。其次,在课堂中没有充分发挥学生的主体性,老师由引导者又逐步变成了主导者。另外,难点突破应该在两个例题上,不过前边耽误了时间,导致重点地方没有充足的时间解决,没达到最初的意图。对问题的探究需要时间,课上让学生放开去探究,减少了课堂容量,影响到了例题的分析讲解。应

高中数学选修2-1 同步练习 专题3.1.1空间向量及其加减运算、空间向量的数乘运算(原卷版)

第三章 空间向量与立体几何 3.1.1 空间向量及其加减运算 3.1.2 空间向量的数乘运算 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在平行六面体ABCD ﹣A 1B 1C 1D 1中,1AB AD AA ++= A .1AC B .1CA C .1BC D .1CB 2.已知空间任意一点O 和不共线的三点A ,B ,C ,若2CP CA CB =+,则下列结论正确的是 A .22OP OA OB OC =+- B .23OP OA OB OC =--+ C .23OP OA OB OC =+- D .22OP OA OB OC =+- 3.若OA ,OB ,OC 是空间不共面的三个向量,则与向量OA OB +和OA OB -不共面的向量是 A .BA B .OA C .OB D .OC 4.如图,已知AB =c ,AC =b ,若点D 满足2BD DC =,则AD = A .21 33+b c B .5 233-c b C . 2133 -b c D .123 3 + b c 5.如图,已知空间四边形ABCD 的对角线为AC ,BD ,设G 是CD 的中点,则1 ()2 AB BD BC + +=

A .BC B .CG C . 1 2 BC D .AG 6.如图,在底面为平行四边形的四棱柱中,是 与 的交点,若 ,则 下列向量中与 相等的向量是 A .11 22 -++a b c B . 11 22++a b c C . 11 22 -+a b c D .11 22 - -+a b c 7.在平行六面体1111ABCD A B C D -中,向量, , 是 A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 8.对于空间任意一点O 和不共线的三点A ,B ,C ,且有(),OP xOA yOB x C z zO y ∈=++R ,,则 1x y z ++=是P ,A ,B ,C 四点共面的 A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件 二、填空题:请将答案填在题中横线上. 9.给出下列命题: ①零向量没有方向; ②若两个空间向量相等,则它们的起点相同、终点也相同; ③若空间向量a ,b 满足=|a ||b |,则=a b ;

(教案)空间向量及其运算

空间向量及其运算 【高考导航】 本节内容是高中教材新增加的内容,在近两年的高考考查中多作为解题的方法进行考查,主要是解题的方法上因引入向量得以扩展.例如2001上海5分,2002上海5分. 【学法点拨】 本节共有4个知识点:空间向量及其线性运算、共线向量与共面向量、空间向量的分解定理、两个向量的数量积.这一节是空间向量的重点,在学习本节内容时要与平面向量的知识结合起来,认识到研究的范围已由平面扩大到空间.一个向量是空间的一个平移,两个不平行向量确定的是一个平行平面集,在此基础上,把平行向量基本定理和平面向量基本定理推广到空间,得出空间直线与平面的表达式,有了这两个表达式,我们可以很方便地解决空间的共线和共面问题.空间向量基本定理是空间几何研究代数化的基础,有了这个定理,整个空间被3个不共面的基向量所确定,空间一个点或一个向量和实数组(x ,y ,z )建立起一一对应关系,空间向量的数量积一节中,由于空间任一向量都可以转化为共面向量,所以空间两个向量的夹角的定义、取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同. 【基础知识必备】 一、必记知识精选 1.空间向量的定义 (1)向量:在空间中具有大小和方向的量叫作向量,同向且等长的有向线段表示同一向量或相等向量. (2)向量的表示有三种形式:a ,AB ,有向线段. 2.空间向量的加法、减法及数乘运算. (1)空间向量的加法.满足三角形法则和平行四边形法则,可简记为:首尾相连,由首到尾.求空间若干个向量之和时,可通过平移将它们转化为首尾相接的向量.首尾相接的若干个向量若构成一个封闭图形,则它们的和为0,即21A A +32A A +…1A A n =0. (2)空间向量的减法.减法满足三角形法则,让减数向量与被减数向量的起点相同,差向量由减数向量的终点指向被减数向量的终点,可简记为“起点相同,指向一定”,另外要注意 -=的逆应用. (3)空间向量的数量积.注意其结果仍为一向量. 3.共线向量与共面向量的定义. (1)如果表示空间向量的有向线段在直线互相平行或重合,那么这些向量叫做共线向量或平行向量.对于空间任意两个向量a,b(b≠0),a∥b ?a=λb ,若A 、B 、P 三点共线,则对空间任意一点O ,存在实数t,使得OP =(1-t)OA +t OB ,当t=2 1 时,P 是线段AB 的中点,则中点公式为OP = 2 1 (OA +OB ). (2)如果向量a 所在直线O A 平行于平面α或a 在α内,则记为a ∥α,平行于同一个平面的

空间向量及其运算

空间向量及其运算 1.空间向量的有关概念 2.空间向量中的有关定理 (1)共线向量定理 空间两个向量a与b(b≠0)共线的充要条件是存在实数λ,使得a=λb. (2)共面向量定理 共面向量定理的向量表达式:p=x a+y b,其中x,y∈R,a,b为不共线向量. (3)空间向量基本定理 如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p =x a+y b+z c,{a,b,c}叫作空间的一个基底.

3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB → =b ,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π 2,则称a 与b 互相垂直, 记作a ⊥b . ②两向量的数量积 已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫作向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ; ③分配律:a ·(b +c )=a ·b +a ·c . 4.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). 概念方法微思考 1.共线向量与共面向量相同吗? 提示 不相同.平行于同一平面的向量就为共面向量. 2.零向量能作为基向量吗? 提示 不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量. 3.空间向量的坐标运算与坐标原点的位置选取有关吗? 提示 无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.

空间向量的数乘运算(一)

3.1.2空间向量的数乘运算(一) ------共线向量和共面向量 雷店高中 佘佳 【教学目标】 知识目标:理解共线向量定理和共面向量定理及它们的推论; 掌握空间直线、空间平面的向量方程和线段中点的向量公式. 能力目标:培养学生的空间想象能力; 培养学生的类比思想、转化思想; 培养学生探讨、研讨、综合自学应用能力; 培养学生空间向量的应用意识。 【教学重点】:共线、共面定理及其应用. 【教学难点】:共面定理的证明及应用 【教学方法】:问题探究式,启发引导式。 【课时安排】:一课时 【教学过程】: 一、引入新课 提出问题:平面向量的数乘运算的意义、性质、满足什么条件。由同学们互相交流,讨论,教师引导,并得出结果。 二 、新课讲解 思考:能否直接推广到空间向量,?空间向量的数乘运算的定义,方向,大小,运算律是怎样的? 利用道具和动画演示向量的平移,指出空间中任何两个向量都可以平移到同一个平面当中来,并指出任何两个空间向量的问题都可以用平面向量的结论来完成。并引出空间向量的数乘运算以及它的运算律。 思考:1.空间中任意两个向量共面吗? 2.两个向量贡献的充要条件是什么?能否推广到空间向量呢? 3.空间中三点共线上的充要条件是什么? (1).共线(平行)向量: 如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向 量。读作:a 平行于b ,记作://a b . 2.共线向量定理: 对空间任意两个向量,(0),//a b b a b ≠ 的充要条件是存在实数λ,使a b λ= (λ唯一). 由此可判断空间中两直线平行或三点共线问题 推论:如果l 为经过已知点A ,且平行于已知向量a 的直线,那么对空间任一点O , 点P 在直线l 上的充要条件是存在实数t ,满足等式a t OA OP += ①, 其中向量a 叫做直线l 的方向向量。 在l 上取A B a = ,则①式可化为O P O A t A B =+ 或(1)O P t O A t O B =-+ ② a l P B A

3.1空间向量及其运算测试题(答案)

1 A.-a+b+c B.a+b+c C.a-b+c D.-a-b+c A.OM=2OA-OB-OC B.O M=OA+OB+OC 1 C.(-,,-1)D.(2,-3,-22) 2 C.π N A.a-b+c B.-a+b+c C.a+b-c D.a+b-c 精心整理 新课标高二数学同步测试(2-1第三章3.1) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填 在题后的括号内(每小题5分,共50分). 1.在平行六面体ABCD—A B C D中,M为AC与BD的交点,若A B=a, 1111 A D=b,A A=c.则下列向量中与 B M相等的向量是() 1111 1111 2222 1111 2222 图 2.在下列条件中,使M与A、B、C一定共面的是() 111 532 C.MA+MB+MC=0D.OM+OA+OB+OC=0 3.已知平行六面体ABCD-A'B'C'D'中,AB=4,AD=3,AA'=5,∠BAD=900, ∠BAA'=∠DAA'=600,则AC'等于() A.85B.85C.52D.50 4.与向量a=(1,-3,2)平行的一个向量的坐标是() A.(,1,1)B.(-1,-3,2) 3 13 22 5.已知A(-1,-2,6),B(1,2,-6)O为坐标原点,则向量OA,与OB的夹角是() A.0B.πD.3π2 6.已知空间四边形ABCD中,OA=a,OB=b,OC=c,点M在OA上,且OM=2MA,为BC中点,则MN=() 121 232 111 222 211 322 221 332 7.设A、B、C、D是空间不共面的四点,且满足AB?AC=0,AC?AD=0,AB?AD=0,则?BCD是 () A.钝角三角形B.锐角三角形C.直角三角形D.不确定 8.空间四边形OABC中,OB=OC,?AOB=?AOC=600,则cos O A,BC=()

《空间向量的数量积运算》示范教案

3.1.3空间向量的数量积运算 整体设计 教材分析 本节课在平面向量的夹角和向量长度的概念的基础上,引入了空间向量的夹角和向量长度的概念和表示方法,介绍了空间两个向量数量积的概念、计算方法、性质和运算律,并举例说明利用向量的数量积解决问题的基本方法. 通常,按照传统方法解立体几何题,需要有较强的空间想象能力、逻辑推理能力以及作图能力,学生往往由于这些能力的不足造成解题困难.用向量处理立体几何问题,可使学生克服空间想象力的障碍而顺利解题,为研究立体几何提供了新的思想方法和工具,具有相当大的优越性;而且,在丰富学生思维结构的同时,应用数学的能力也得到了锻炼和提高.课时分配 1课时 教学目标 知识与技能 1.掌握空间向量夹角的概念及表示方法; 2.掌握两个向量数量积的概念、性质和计算方法及运算律; 3.掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题. 过程与方法 1.运用类比方法,经历向量的数量积运算由平面向空间推广的过程; 2.引导学生借助空间几何体理解空间向量数量积运算的意义. 情感、态度与价值观 1.培养学生的类比思想、转化思想,培养探究、研讨、综合自学应用能力; 2.培养学生空间向量的应用意识. 重点难点 教学重点: 1.空间向量的数量积运算及其运算律、几何意义; 2.空间向量的数量积运算及其变形在空间几何体中的应用. 教学难点: 1.空间想象能力的培养,思想方法的理解和应用; 2.空间向量的数量积运算及其几何应用和理解. 教学过程 引入新课 提出问题:已知在正方体ABCD—A′B′C′D′中,E为AA′的中点,点F在线段 D′C′上,D′F=1 2FC′,如何确定BE → ,FD → 的夹角?

空间向量及其运算和空间位置关系(含解析)

归纳与技巧:空间向量及其运算和空间位置关系 基础知识归纳 一、空间向量及其有关概念 二、数量积及坐标运算 1.两个向量的数量积 (1)a·b=|a||b|cos〈a,b〉; (2)a⊥b?a·b=0(a,b为非零向量); (3)|a|2=a2,|a|=x2+y2+z2. 2.向量的坐标运算

三、平面的法向量 (1)所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量有无数多个,它们是共线向量. (2)在空间中,给定一个点A 和一个向量a ,那么以向量a 为法向量且经过点A 的平面是唯一的. 基础题必做 1.(课本习题改编)已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2)则下列结论正确的是( ) A .a ∥c ,b ∥c B .a ∥b ,a ⊥c C .a ∥c ,a ⊥b D .以上都不对 解析:选C ∵c =(-4,-6,2)=2a ,∴a ∥c .又a ·b =0,故a ⊥b . 2. 若{a ,b ,c }为空间的一组基底,则下列各项中,能构成基底的一组向量是( ) A .{a ,a +b ,a -b } B .{b ,a +b ,a -b } C .{c ,a +b ,a -b } D .{a +b ,a -b ,a +2b } 解析:选C 若c 、a +b 、a -b 共面, 则c =λ(a +b )+m (a -b )=(λ+m )a +(λ-m )b ,则a 、b 、c 为共面向量,与{a ,b ,c }为空间向量的一组基底矛盾,故c ,a +b ,a -b 可构成空间向量的一组基底. 3.(教材习题改编)下列命题: ①若A 、B 、C 、D 是空间任意四点,则有AB u u u r +BC u u u r +CD u u u r +DA u u u r =0; ②若MB u u u r =x MA u u u r +y MB u u u r ,则M 、P 、A 、B 共面; ③若p =x a +y b ,则p 与a ,b 共面. 其中正确的个数为( ) A .0 B .1 C .2 D .3 解析:选D 可判断①②③正确. 4.在四面体O -ABC 中,OA u u u r =a ,OB u u u r =b ,OC u u u r =c ,D 为BC 的中点,E 为AD 的 中点,则OE u u u r =________(用a ,b ,c 表示). 解析:如图,OE u u u r =12OA u u u r +12 OD u u u r

专题01 空间向量及其运算、空间向量基本定理(原卷版)

专题01 空间向量及其运算、空间向量基本定理 一、单选题 1.(2019·全国高二课时练习)已知a ,b ,c 是不共面的三个向量,则能构成一个基底的一组向量是( ) A .2a ,a ﹣b ,a +2b B .2b ,b ﹣a ,b +2a C .a ,2b ,b ﹣c D .c ,a +c ,a ﹣c 2.(2020·贵州省铜仁第一中学高二开学考试)如图所示,在平行六面体1111ABCD A B C D -中,设1AA a =,AB b =,AD c =,N 是BC 的中点,试用a ,b ,c 表示1A N ( ) A .12a b c -++ B .a b c -++ C .12a b c --+ D .12 a b c -+ 3.(2020·山东省章丘四中高二月考)如图,在四面体OABC 中,D 是BC 的中点,G 是AD 的中点,则OG 等于( ) A .111 333 OA OB OC ++ B .111234OA OB OC ++ C .111244OA OB OC ++ D .111446OA OB OC ++ 4.(2020·河南省高二期末)如图在平行六面体1111ABCD A B C D -中, E 为11A D 的中点,设AB a =,AD b =,1AA c =,则CE =( )

A .12a b c --+ B .12a b c -+ C .12a b c -- D .12 a b c +- 5.(2020·广东省红岭中学高二期末) AB 与CD 共线是直线AB ∥CD 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 6.(2020·广东省红岭中学高二期末)O 为空间任意一点,,,A B C 三点不共线,若OP =111326 OA OB OC + +,则,,,A B C P 四点 A .一定不共面 B .不一定共面 C .一定共面 D .无法判断 7.(2019·随州市第一中学高二期中)空间A B C D 、、、四点共面,但任意三点不共线,若P 为该平面外一点且5133PA PB xPC PD = --,则实数x 的值为( ) A .13 B .13- C .23 D .23 - 8.(2020·甘肃省高二期末)如图,空间四边形OABC 中,OA a =,OB b =,OC c =,且2OM MA =,BN NC =,则MN 等于( ) A .221332 a b c ++ B . 122121a b c +- C .122132a b c -++ D .123122a b c -+

专题02 空间向量及其运算的坐标表示(解析版)

专题02 空间向量及其运算的坐标表示 一、单选题 1.(2019·黑龙江省牡丹江一中高二期中)已知向量(1,2,1)a =-,(1,2,1)a b -=--,则向量b =( ) A .(2,4,2)- B .(2,4,2)-- C .(2,0,2)-- D .(2,1,3)- 【答案】A 【解析】 由已知可得()()()1,2,11,2,12,4,2b =----=-. 故选:A. 2.(2020·南京市秦淮中学高二期末)已知向量()3,2,a x =,向量()2,0,1b =,若a b ⊥,则实数x =( ) A .3 B .3- C .6 D .6- 【答案】D 【解析】 ()3,2,a x =,()2,0,1b =,a b ⊥,60a b x ∴?=+=,解得6x =-. 故选:D. 3.(2019·湖南省衡阳县江山学校高二月考)若向量(0,1,1),(1,1,0)a b =-=,且()a b a λ+⊥,则实数λ的值是( ) A .1- B .0 C .2- D .1 【答案】C 【解析】 由已知(0,1,1)(1,1,0)(,1,1)a b λλλλ+=-+=+-, 由()a b a λ+⊥得:()(,1,1)(0,1,1)110a b a λλλλ+?=+-?-=++=, 2λ∴=-, 故选:C. 4.(2019·浙江省宁波市鄞州中学高二月考)已知空间向量()1,,2a n =,()2,1,2b =-,若2a b -与b 垂直,

则a 等于( ) A B C . 2 D . 2 【答案】A 【解析】 由空间向量()1,,2a n =,()2,1,2b =-,若2a b -与b 垂直, 则(2)0a b b -?=, 即2 2a b b ?=, 即249n +=, 即52n = , 即51,,22 a ??= ??? , 即251a =+ = , 故选:A. 5.(2019·佛山市荣山中学高二期中)已知()2,1,2a =-,()4,2,b x =-,且//a b ,则x =( ) A .-4 B .-5 C .5 D .-2 【答案】A 【解析】 因为()2,1,2a =-,()4,2,b x =-,且//a b , 所以存在实数λ,使得b a λ=, 即4222x λ λλ -=?? =-??=? 解得24x λ=-??=-? 故选:A 6.(2019·湖北省沙市中学高二月考)若(1,21,0),(2,,)a m m b m m =--=,则b a -的最小值是( )

相关文档
相关文档 最新文档