文档库 最新最全的文档下载
当前位置:文档库 › p27Kip1在神经前体细胞分化中的作用

p27Kip1在神经前体细胞分化中的作用

p27Kip1在神经前体细胞分化中的作用
p27Kip1在神经前体细胞分化中的作用

p27Kip1在神经前体细胞分化中的作用

作者:许秋岩张海燕赵咏梅

【关键词】 p27Kip1;神经前体细胞;细胞周期;分化

脊椎动物的神经系统发育过程是由细胞增殖与分化共同协调完成的,细胞周期调控蛋白参与了神经系统细胞周期的调节。受细胞周期调控蛋白严格调控的作用,多潜能神经前体细胞分化为神经元和神经胶质细胞,并在特异性形成的过程中,一些细胞周期调节蛋白起了关键的作用。p27Kip1作为细胞周期蛋白激酶抑制剂(CKI)家族的重要成员已经被广泛研究。本文将对p27Kip1在神经前体细胞分化中的作用及其调节机制作一综述。

1 p27Kip1与cyclins/CDKs结合促使细胞分化

在细胞分化过程中,G1期所有的周期蛋白激酶(CDKs)的活性都是降低的,在很多细胞的分化过程中都能观察到CKIs的聚集,作为CKIs家族主要成员的p27Kip1在细胞分化中发挥了关键的作用。p27Kip1是1994年由Polyak等〔1〕首先发现的一种周期蛋白依赖性激酶抑制剂,参与细胞周期的负向调控。p27Kip1能与很多细胞周期蛋白(cyclins)/CDKs结合,但主要与cyclinD/CDK4/6、cyclinE/CDK2结合,同时它对每种cyclins/CDKs活性的抑制也不同,对cyclinE/CDK2的抑制作用最强,cyclinD/CDK4次之,cyclinA/CDK2再次之,cyclinB/CDK2最弱。它的主要作用机制是与cyclins/CDKs 结合形成三聚体,并通过至少两个环节抑制cyclins/CDKs的活性:一方面,p27Kip1能够与CDK的亚单位结合,抑制CDK激活激酶 (CAK)

对CDK的激活过程;另一方面,p27Kip1直接抑制正常细胞中已激活的cyclin/CDK复合物活性。由于p27Kip1的作用,cyclinD/CDK4/6、cyclinE/CDK2不能有效地磷酸化Rb蛋白,E2F转录因子不能被释放,使细胞周期停滞在G1期不能进入S期。

2 p27Kip1在神经前体细胞分化过程中发挥重要作用

很多体内、外实验表明,p27Kip1在鼠和人神经前体细胞的分化过程中发挥了关键的作用〔2~5〕。Lee等报道〔6〕在鼠胚胎期前脑的大脑皮层腔室内,p27Kip1蛋白表达很弱,因为这一区域主要是由具有增殖能力的神经前体细胞组成的。而在由有丝分裂后神经元组成的皮层表面和前表面,p27Kip1的表达则很高,在端脑和间脑也能观察到p27Kip1的高表达。p27Kip1的高表达是神经元有丝分裂后的特征。p27Kip1缺陷鼠不仅细胞的增殖周期受到影响,而且细胞的分化过程与凋亡也受到影响。提示p27Kip1在细胞增殖及分化过程中具有双重作用〔7〕。这一结果也在鼠的多潜能胚胎干细胞(mESCs)的体外实验中得到证实〔8〕,在p27Kip1缺陷的mESCs中,加入诱导剂诱导分化后,可以观察到大部分细胞在分化前就已经凋亡了。因此,p27Kip1在体外培养的mESCs的分化过程中发挥了关键的作用。

在RA、BMP等诱导剂诱导的人神经母细胞瘤细胞系〔1,9〕及多潜能胚胎癌细胞系向神经元表型分化的研究中〔2,10〕,p27Kip1的表达与神经前体细胞分化的程度密切相关。在这些细胞系中,细胞生长终止前p27Kip1表达即增加,而在这一过程中CIP/KIP家族其他成员的表达没有明显改变。而且,用质粒转染细胞使其表达拮抗p27Kip1

神经干细胞的研究及其应用新进展

神经干细胞的研究及其应用新进展 [关键词] 神经干细胞研究 健康讯: 崔桂萍天津市脑系科中心医院 300060 1992 年, Reynolds 首次成功地从成年小鼠纹状体中分离出神经干细胞( neural stem cell, NSC ),于是“神经干细胞”这一概念被正式引入神经科学研究领域。可以总结为具有分化为神经元、星形细胞和少突胶质细胞的能力,能自我更新并足以提供大量脑组织细胞的细胞。不少文献中还提到神经祖细胞和神经前体细胞,目前认为,神经祖细胞是指比 NSC 更有明确发展方向的细胞,而神经前体细胞是指处于发育早期的增殖细胞,可指代 NSC 和神经祖细胞:与 NSC 相比,二者的分裂增殖能力较弱而分化能力较强,是有限增殖细胞,但三者均属 NSC 范畴。 1. NSC 的起源、存在部位及生物学特征中枢神经系统的发育起源于神经沟、神经嵴、神经管;研究发现, NSC 在神经管壁增殖,新生细胞呈放射状纤维迁移至脑的特定位置;主要存在于室管膜区,在成脑生发区以外的区域也广泛分布,即具有高度可塑性的神经前体细胞。现发现 NSC 的生物学特征为:( 1 )具有自我更新能力;( 2 )具有多向分化潜能,可分化为神经元、星形细胞和少突胶质细胞;( 3 )处于高度未分化状态;( 4 )终生具有增殖分化能力,在有损伤的局部环境信号变化的刺激下可以增殖分化。其中( 1 )和( 2 )是 NSC 的两个基本特征。 2. NSC 的基础研究进展 NSC 的增殖和分化调控是目前 NSC 研究的核心问题,最近的研究资料显示, NSC 的增殖、分化、迁移调控受多种相关因素的影响。神经递质神经递质作为细胞外环境的一员,不仅介导神经元之间和神经元与效应器之间的信号传递,还参与 NSC 的增殖和分化。这些神经递质包括谷氨酸( G1u )、 5- 羟色胺( 5-HT )、 GABA 、甘氨酸( G1y )、乙酰胆碱( Ach )一氧化氮( NO )、肾上腺素与性激素等。 G1u :在脑的发育过程中有高含量的 G1u 表达, Haydar 等发现, G1u 可以通过大鼠胚胎皮质 AMPA/KAR 的激活调节室周区前体细胞的增殖,但 GLU 对室管膜区( SZ )和室管膜下区( SVZ )体内细胞的影响是不同的,它可增加 SZ 细胞的增殖,减少 SVZ 细胞的增殖; GLU 还可促进神经元生长和分化。 5-HT :许多研究表明, 5-HT 在皮质发育、突触形成中起重要作用,抑制 5-HT 合成或选择性损伤 5-HT 神经元则引起齿状回及脑室下区神经元增殖活性下降, 5-HT 可促进胶质细胞分化和髓鞘形成。 GABA : GABA 是成体脑发育过程中主要

关于神经干细胞

.关于神经干细胞 定义是一类具有多向分化潜能, 能够自我复制, 在特定诱因下, 能够向神经元或神经胶质细胞分化的未分化细胞的总称。它是神经系统形成和发育的源泉。其主要功能是参与神经系统损伤修复或细胞凋亡的更新。 特点⑴自我更新:神经干细胞具有对称分裂及不对称分裂两种方式,从而保持干细胞库稳定。对称分裂由一个神经干细胞产生两个神经干细胞;在特定诱因下进行非对称分裂,会产生神经干细胞和神经胶质细胞(astrocyte,oligodendrocyte)。⑵多向分化潜能:神经干细胞可以向神经元、星形胶质细胞和少突胶质细胞分化,其分化与局部微环境(niche)密切相关。⑶低免疫源性:神经干细胞是未分化的原始细胞,不表达成熟的细胞抗原,可以不被免疫系统识别。⑷良好的组织融合性:可以与宿主(即接受神经干细胞移植的患者)的神经组织良好融合,并在宿主体内长期存活。 发现时间1992年,Reynodls等从成年小鼠脑纹状体中分离出能在体外不断分裂增殖,且具有多种分化潜能的细胞群,并正式提出了神经干细胞的概念,从而打破了认为神经细胞不能再生的传统理论。 产生区域神经干细胞主要产生于脑室周围的室管膜下区(SVZ,subvetricular zone)和海马齿状回的颗粒下区(SGZ,subgranular zone)。成人大脑中每天有3万个神经干细胞产生,按照从脑室周围的室管膜下区(SVZ)通过侧迁移流RMS(rostral migratory)最后到达嗅球 OB(olfactory bulb) 的方向移动。增殖时间为12~28天/代。 2.治疗机理与应用领域

神经干细胞的治疗机理 ⑴患病部位组织损伤后释放各种趋化因子,可以吸引神经干细胞聚集到损伤部位,并在局部微环境的作用下分化为不同种类的细胞,修复及补充损伤的神经细胞。 ⑵由于缺血、缺氧导致的血管内皮细胞、胶质细胞的损伤,使局部通透性增加,另外在多种黏附分子的作用下,神经干细胞可以透过血脑屏障,高浓度的聚集在损伤部位。 ⑶神经干细胞可以分泌多种神经营养因子,刺激原有神经元和神经胶质细胞,促进损伤细胞的修复。 ⑷神经干细胞可以增强神经突触之间的联系,建立新的神经环路,降低脑部氧化性压力。 神经干细胞的应用领域 神经干细胞主要应用于治疗中枢神经系统疾病,包括脑部和脊髓损伤的治疗。面前可以治疗的疾病包括脑瘫,脑膜炎后遗症, 脑发育不良脑, 中风(脑出血,脑梗塞)及后遗症, 脑外伤及脊髓损伤, 运动神经元病, 肌萎缩性侧索硬化症(ALS), 帕金森病, 脑萎缩, 共济失调, 癫痫, 多系统萎缩症(MSA), 老年性痴呆及血管性痴呆, 各种舞蹈症, 急性感染性多发性神经根炎(格林巴利氏病), 神经性耳聋, 面瘫及各类周围神经病。 目前有许多研究结果证明神经干细胞的分化潜能不仅仅局限于所属组织,在特定环境(niche)中,在一些细胞因子和蛋白的作用下,可以跨过神经系统而分化成其他类型的组织细胞,即具有横向分化潜能。如神经干细胞可被诱导分化为肌细胞和造血前体细胞。这无疑在理论上扩大了神经干细胞在今后的应用范围,使得更多用现今医学手段无法治愈的患者看到希望。 3.本公司的神经干细胞

神经干细胞的应用前景及研究进展

神经干细胞的应用前景及研究进展 生科1301班李桐 1330170031 神经干细胞( neuralstem cells, NSCs)是重要的干细胞类型之一,是神经系统发育过程中保留下来的具有自我更新和多向分化潜能的原始细胞,可分化为神经元、星形胶质细胞、少突胶质细胞等多种类型的神经细胞。具有很多的特性,如自我更新、多潜能分化、迁移和播散、低免疫原性、良好的组织相容性、可长期存活等。目前神经干细胞的分离与体外培养已取得可喜的进展,有关神经干细胞的研究已经成为国内外神经科学领域的热点。 一、神经干细胞的生物学特性 19世纪80年代提出了神经干细胞的概念,它是指一类多潜能的干细胞,能够长期自我更新与复制,并具有分化形成神经元、星形胶质细胞的能力。神经干细胞的主要特征:未分化、缺乏分化标记、能自我更新并具有多种分化潜能。它并不是指特定的单一类型的细胞,而是具有相类似性质的细胞群。Gage将神经干细胞的特性进一步描绘为以下三点,可生成神经组织或来源于神经系统,具有自我更新能力,可通过不对称法、分裂产生新细胞。神经干细胞经过不对称分裂产生一个祖细胞和另一个干细胞,祖细胞只有有限的自我更新能力,并自主分化产生神经元细胞和成胶质细胞。神经干细胞是具有自我更新和具有多种潜能的母系神经细胞,它能分化成各种神经组织细胞表型,如神经元、星形胶质细胞和少突胶质细胞.并能自我更新产生新的神经干细胞,在神经发育和神经损伤中发挥作用。神经干细胞移植、迁移及分化与局部环境密切相关,这种特性为移植及移植后的结构重建和功能恢复提供了依据,为移植治疗不同疾病提供了局可能。 二、神经干细胞的应用前景 1.细胞移植以往脑内移植或神经组织移植研究进展缓慢,主要受到胚胎脑组织的来源、数量以及社会法律和伦理等方面的限制。神经干细胞的存在、分离和培养成功,尤其是神经干细胞系的建立可以无限地提供神经元和胶质细胞,解决了胎脑移植数量不足的问题,同时避免了伦理学方面的争论,为损伤后进行替代治疗提供了充足的材料。研究表明,干细胞不仅有很强的增殖能力,而且尚有潜在的迁移能力,这一点为治疗脑内因代谢障碍而引起的广泛细胞受损提供了理论依据,借助于它们的迁移能力,可以避免多点移植带来的附加损伤。另外,神经干细胞移植也为研究神经系统发育及可塑性的实验研究提供了观察手段,前文提及细胞因子参与调控神经元增殖和分化,通过移植的手段对这些因素的具体作用形式和机制进行探索,为进一步临床应用提供了理论基础。 2.基因治疗目前诱导干细胞向具有合成某些特异性递质能力的神经元分化尚未找到成熟的方法,利用基因工程修饰体外培养的干细胞是这一领域的又一重大进展;另外已经发现许多细胞因子可以调节发育期甚至成熟神经系统的可塑性和结构的完整性,将编码这些递质或因子的基因导入干细胞,移植后可以在局部表达,同时达到细胞替代和基因治疗的作用。 3.自体干细胞分化诱导移植免疫至今为止仍是器官或组织移植的首要问题。前文提到已经证明成年动物或人脑内、脊髓内存在着具有多向分化潜能的干细胞,那么使人们很容易想到通过自体干细胞诱导来完成损伤的修复。中枢神经系统损伤后,首先反应的是胶质细胞,在某些因子的作用下快速分裂增殖,形成胶质瘢。其实在这个过程中也有干细胞的参与,可不幸的是大多数干细胞增殖后分化为胶

胚胎干细胞的归类

胚胎干细胞的归类 干细胞按分化潜能可分为全能干细胞、多能干细胞和专能干细胞三类,对于胚胎干细胞和造血干细胞各属于哪一类,不同的教材和资料说法不同。新课标人教版必修1教师教学用书P31“胚胎干细胞分裂速度快,并且有产生多种分化细胞类型的潜力,因此,它们也被称为多能干细胞。”选修3教师教学用书P73“全能干细胞是可以发育成一个完整个体的未分化细胞,如受精卵。多能干细胞是指能分化成除胎盘之外所有其它组织细胞的未分化细胞,如ES细胞(胚胎干细胞),他的分化能力仅次于受精卵。专能干细胞是指与特定器官和特定功能相关的一类干细胞,如神经干细胞、造血干细胞等。”从中不难看出,胚胎干细胞和造血干细胞分别属于多能干细胞和专能干细胞。 而苏教版教材上是这样解释的:“专能干细胞只能分化成一种类型或功能密切相关的两种类型的细胞,如上皮组织基底层的干细胞、肌肉中的成肌干细胞;多能干细胞具有分化成多种细胞或组织的潜能,但失去了发育成完整个体的能力,如造血干细胞等;全能干细胞可以分化为全身200多种细胞,如神经细胞,并进一步形成机体的所有组织、器官,如胚胎干细胞。” 再看中图版教材上的描述:“全能干细胞具有形成机体的任何组织或器官,直至形成完整个体的潜能。受精卵便是一个最初的全能干细胞,它可以分化出许多全能干细胞,如胚胎干细胞。提取这些细胞中的任意一个置于子宫内,就可以发育出一个完整的个体。多能干细胞具有分化出多种组织的潜能,但不能发育成完整的个体,如骨髓造血干细胞可以分化出至少12种血细胞。专能干细胞只能分化成某一类型的,如神经干细胞只可分化出各类神经细胞。” 从苏教版和中图版教材的内容中可以看出,胚胎干细胞是全能干细胞,造血干细胞是多能干细胞,这和人教版教师教学用书上的叙述相矛盾,和人

p27Kip1在神经前体细胞分化中的作用

p27Kip1在神经前体细胞分化中的作用 作者:许秋岩张海燕赵咏梅 【关键词】 p27Kip1;神经前体细胞;细胞周期;分化 脊椎动物的神经系统发育过程是由细胞增殖与分化共同协调完成的,细胞周期调控蛋白参与了神经系统细胞周期的调节。受细胞周期调控蛋白严格调控的作用,多潜能神经前体细胞分化为神经元和神经胶质细胞,并在特异性形成的过程中,一些细胞周期调节蛋白起了关键的作用。p27Kip1作为细胞周期蛋白激酶抑制剂(CKI)家族的重要成员已经被广泛研究。本文将对p27Kip1在神经前体细胞分化中的作用及其调节机制作一综述。 1 p27Kip1与cyclins/CDKs结合促使细胞分化 在细胞分化过程中,G1期所有的周期蛋白激酶(CDKs)的活性都是降低的,在很多细胞的分化过程中都能观察到CKIs的聚集,作为CKIs家族主要成员的p27Kip1在细胞分化中发挥了关键的作用。p27Kip1是1994年由Polyak等〔1〕首先发现的一种周期蛋白依赖性激酶抑制剂,参与细胞周期的负向调控。p27Kip1能与很多细胞周期蛋白(cyclins)/CDKs结合,但主要与cyclinD/CDK4/6、cyclinE/CDK2结合,同时它对每种cyclins/CDKs活性的抑制也不同,对cyclinE/CDK2的抑制作用最强,cyclinD/CDK4次之,cyclinA/CDK2再次之,cyclinB/CDK2最弱。它的主要作用机制是与cyclins/CDKs 结合形成三聚体,并通过至少两个环节抑制cyclins/CDKs的活性:一方面,p27Kip1能够与CDK的亚单位结合,抑制CDK激活激酶 (CAK)

神经干细胞的培养鉴定及分化

朱琼,女,1990年生,重庆市人,汉族,2009年第三军医大学毕业,在读硕士,主要从事神经干细胞治疗阿尔茨海默病的作用及机制研究。 通讯作者:徐亚丽,博士,副主任医师,副教授,解放军第三军医大学第二附属医院超声科,重庆市 400037 Zhu Qiong, Studying for master’s degree, Department of Ultrasound, Second Affiliate Hospital of Third Military Medical University, Chongqing 400037, China Corresponding author: Xu Ya-li, M.D., Associate chief physician, Department of Ultrasound, Second Affiliate Hospital of Third Military Medical University, Chongqing 400037, China 神经干细胞的培养鉴定及分化 朱 琼1,皋月娟2,高顺记1,陈 重1,刘 政1,徐亚丽1(1解放军第三军医大学第二附属医院超声科,重庆市 400037;2解放军第三○二医院超声科,北京市 100039) 引用本文:朱琼,皋月娟,高顺记,陈重,刘政,徐亚丽. 神经干细胞的培养鉴定及分化[J].中国组织工程研究,2017,21(17):2708-2713. DOI: 7.17.014 ORCID: 0000-0002-1810-5009(朱琼) 文章快速阅读: 不仅能分化为多种类型的神经细胞替代缺失神经组织,同时能产生多种细胞因子,如脑源性神经营养因子、神经生长因子及胶质源性神经营养因子等,并促进突触发生,调节其可塑性,且能重建部分环路和功能,是神经元替代治疗的理想靶细胞。 细胞分化:指同一来源的细胞逐渐由全能到多能,最后到单能,从而产生形态功能不同的细胞群的过程,其本质是基因组在时间和空间上的选择性表达。如神经干细胞能分化为多种类型神经细胞:星形胶质细胞、小胶质细胞及神经元。同时该过程受局部微环境调节,多种理化因素都能诱导全能细胞产生分化,如血清诱导神经干细胞分化。 摘要 背景:神经干细胞在神经损伤修复和退行性疾病中有广泛的应用前景,体外培养鉴定及促神经元诱导分化是后续研究的基础。 目的:采用悬浮神经球培养法分离培养神经干细胞并对其鉴定,了解生物学特性。 方法:采用悬浮神经球培养法从C57BL/6胎鼠大脑半球分离培养神经干细胞,观察形态特征及超微结构,CCK-8法绘制生长曲线,流式细胞仪检测细胞周期,免疫荧光法检测特异性标志蛋白Nestin 的表达;用体积分数为1%和10%的血清诱导分化后,免疫荧光法检测GFAP 、βⅢ-tubulin 和MBP 的表达。 结果与结论:①体外培养得到悬浮生长的神经球,生长曲线和细胞周期表明细胞增殖力强;②透射电镜观察到神经干细胞核浆比高,呈未分化状态;③Nestin 免疫荧光阳性;④不同体积分数的血清诱导后均可分化为星形胶质细胞、神经元和少突胶质细胞,体积分数为1%血清能诱导分化得到更多的神经元细胞;⑤结果表明,采用悬浮神经球培养法成功分离培养得到了神经干细胞,低体积分数血清有利于神经干细胞向神经元分化。 关键词: 干细胞;分化;神经干细胞;培养;鉴定;血清;诱导分化;国家自然科学基金 主题词: 神经干细胞;细胞, 培养的;血清;细胞分化;组织工程 基金资助: Cultivation, identification and differentiation of neural stem cells Zhu Qiong 1, Hao Yue-juan 2, Gao Shun-ji 1, Chen Zhong 1, Liu Zheng 1, Xu Ya-li 1 (1Department of Ultrasound, Second Affiliate Hospital of Third Military Medical University, Chongqing 400037, China; 2Department of Ultrasound, the 302nd Hospital of PLA, Beijing 100039, China) Abstract BACKGROUND: Neural stem cell transplantation is an emerging therapeutic option in the recovery of neural lesions and neurodegenerative diseases. Neural stem cell culture and differentiation lay a foundation for the further study. OBJECTIVE: To improve the techniques for the isolation, cultivation, differentiation and identification of neural stem cells, and to explore the biological characteristics of cells. METHODS: The neural stem cells from C57BL/6 fetal rats were isolated and cultured in vitro using neurophere culture method followed by morphological and ultrastucture examination. The growth curve and cell cycle of passage 3 cells were drawn and analyzed. Nestin expression was tested by immunofluorescence. Neural stem cells induced in 1% and 10% fetal bovine serum were identified using anti-GFAP, anti-βIII -tubulin and anti-MBP by immunofluorescence. RESULTS AND CONCLUSION: The neurospheres exhibited strong cell proliferation ability. Under transmission electron microscope, there was a high nuclear/cytoplasmic ratio in the neural stem cells, indicating a low differentiation degree. Immunofluorescence analysis revealed that neural stem cells were positive for Nestin. The induced cells were positive for GFAP, βIII -tubulin, and MBP, indicating these cells were induced to differentiate into astrocytes, neurons and oligodendrocytes, and there were more neurons in 1% fetal bovine serum than those

神经干细胞研究介绍

神经干细胞研究介绍 陈晓萍 程君奇 (浙江大学生命科学学院浙江省细胞与基因工程重点实验室浙江杭州310029) 摘要 神经干细胞研究是近年脑科学研究的热点,本文综述了神经干细胞的分离培养方法、脑内迁移路线、发育分化的影响因素以及可能的应用前景。 关键词 神经干细胞 分离 迁移 发育 分化 脑的结构与机能一直是生命科学的研究难题,它以极其错综复杂而又高度易变为特征,至今仍保持着极大的神秘性。近年来科学家对神经干细胞的研究是脑科学领域的重要成果之一,它突破了以往一直认为的成年动物神经细胞不能分裂再生的观念,为神经细胞的发育分化过程,也为神经系统疾病的治疗开辟了一条全新的途径。 1 神经干细胞的分离培养 神经干细胞(N eural stem cells,N SCS)是指具有如下特征的细胞:1)能形成神经组织;2)具有自我繁殖和自我更新能力;3)细胞分裂后能发生分化[1]。 胚胎时期是神经系统快速增长发育的阶段,在这时期脑内的许多部位都存在神经干细胞,这包括大脑皮质、纹状体、小脑等区域。成年后,脑细胞一般不再分裂增殖。以往曾一度认为成年动物神经细胞完全失去了这种能力,但近年科学家在高等哺乳动物(包括人)的脑室管膜下层等区域发现了仍具有增殖分化能力的神经干细胞。另外,在啮齿类动物主管学习记忆的海马区,也发现了神经干细胞的存在[2]。 成年动物脑内的神经干细胞仅仅是保存了能进行分裂增殖的潜能,通常情况下得不到足够的正面刺激信号,因而并不分裂增殖,而是处于静止状态。 从脑组织分离培养神经干细胞需要特殊的条件,目前多采用生长因子刺激和细胞克隆技术。具体有3种方法[3]:1)用无血清培养液将脑细胞分离,再加入具有丝裂原作用的生长因子如表皮生长因子或碱性成纤维生长因子,待原代克隆形成后挑选单个克隆机械分离继续进行亚克隆培养,也可采用单细胞克隆分离;2)用反转录病毒向脑细胞内导入原癌基因,如V2m yc和SV40大T抗原等,部分细胞可因此获得持续分裂的能力;3)从脑组织以外的部位,如胚胎干细胞,经过适当化学因子的诱导,使其定向分化为神经干细胞。 外加化学因子对于维持神经干细胞的分裂增殖能力是必须的。培养液中如撤去外加的化学因子,改用普通培养,神经细胞会很快发生分化,失去分裂增殖能力。 2 神经细胞的发育及脑内迁移路径 神经系统的发育源于胚胎早期的神经管和神经嵴[4],其中的中央管经发育形成脑室系统和脊髓中央管,管腔内表面覆盖的上皮细胞具有活跃的增殖和分化能力,是神经细胞发生的来源。成年后这个区域称为室管膜 室管膜下区。 内径1~2mm的完全闭合的呼吸管。据B landfo rd报道,这种呼吸管中衬有外套膜组织。上述蜗牛的夏眠能从1月持续至6月。同时具有裂口、裂沟和缝合线管的结构有利于气体的循环。在足部和外套膜肌肉运动下,可促使气体交流和循环,贝类学家F ischer曾对冬眠期间的盖罩大蜗牛进行了研究,业已证明其足部和外套膜从未停止过运动。 8)喇叭状口和壳壁上的穿孔 A lycaeinae的种类,其成体的壳口呈喇叭状,其后逐渐缩小成一口颈。在口颈近缝合线的壳壁上有穿孔。A ly caeus属的种类,如A2 ly caeus m ajor壳壁上的孔由内向外通入一覆盖在缝合线上的管。管的截面略呈三角形。此管在缝合线上,略弯曲,呈带状,长约6~7mm,管的末端是盲端,但常破碎,即使不破碎,该管仍可进行气体交换。据分析这个带状结构比通常的贝壳更具通透性。因种类不同,喇叭口的长度有差异,缝合线管内开口到口缘距离也有所不同。喇叭状的壳口可能是为了蜗牛在夏眠期间有一个较大的气室,这与无厣贝类具有的盖膜腔情况相似。由此可以推断A ly caeus和Pup ininae的一些种类缝合线管在内部的开口可能与肺呼吸孔靠得很近。 其他的一些陆生螺类,如R um ina d ecollata和C lausilia的一些种类,在夏眠期间往往胚螺层失去,然而可能也有利于呼吸。破损的一端由内脏分泌的膜封住,这比休眠时螺壳倒下,靠外套膜边缘呼吸更利于气体交换。 (BF) — 8 1 —生 物 学 通 报 2003年第38卷第2期

前体细胞淋巴瘤(1)

B cell lymphoma DLBCL,37% FL,29% MALT,9% MCL,7% CLL,12% others T cell lymphoma PTCL,NOS,25.9% AITL,18.5% E/NK T cell lymphoma,10.4% ATLL,9.6% ALCL,ALK+,6.6% ALCL,ALK-,5.5% ETTL,4.7% Others,18.8% 这基本概括了淋巴瘤的相对发生率,由此可见,在B细胞淋巴瘤中,我们只要了解5种基本常见的淋巴瘤,就可以诊断大约95%以上的B细胞淋巴瘤;T细胞淋巴瘤的诊断相对复杂,分类也较多,一个原因是它与NK细胞来源的肿瘤被共同分在一组,还因为TCR的不同以及T细胞功能的多样化,导致了T细胞淋巴瘤在临床中的诊断相对于B细胞要困难一些。前面已经讲过分类的原则,是基于细胞分化所对应的阶段,还有一个重要原则就是预后和治疗手段。

前体细胞淋巴瘤 B淋巴母细胞淋巴瘤/B急性淋巴母细胞白血病 B淋巴母细胞淋巴瘤/白血病是来源于B前体细胞的肿瘤.前面已经讲解过淋巴瘤与白血病 的区别,即对于淋巴瘤的诊断来讲,当病变带有巨大肿块并表现为无外周血和骨髓或少量 外周血和骨髓浸润;当病变主要以骨髓和外周血浸润为主的情况下,诊断为白血病更为合适。但是如果既有巨大肿块又有骨髓病变应该如何来明确的区分两种诊断呢,WHO血液 系统分类将25%骨髓母细胞浸润来定义白血病。于髓系白血病相比,没有下线的限制,但 是通常如果母细胞少于20%的骨髓浸润,则应该避免诊断为白血病。 ALL: 75%的病例发生于小于6岁的儿童。全世界范围内的发病率在1-4.75/100,000人。遗 传性病变可能占有一小部分病例。 骨髓病变为主,通常具有外周血浸润。髓外浸润也很常见,如中枢神经系统,淋巴结,脾,肝和睾丸。 临床特征主要为血小板减少,贫血,中性粒细胞减少。白细胞计数可能减少,不变或 显著增加。淋巴结病变,肝脾肿大常见。骨痛和关节痛多见。 LBL: 主要为淋巴结或结外病变,最常见的侵犯部位有皮肤,软组织和骨。在无白血病相时 可能无症状,大多数病例为临床I/II级,头颈部表现较为常见,特别是儿童病例。骨髓和 外周血浸润可能存在,但是通常母细胞小于25%。 细胞形态学:组织切片表现为细胞中等大小,核圆形/椭圆形,或轻微的内陷,染色质 均质性弥散。核仁在不同病例中差异较大,有时不明显。有丝分裂情况也因为病例不同富 于变化。天星现象可见。低倍镜下主要是弥漫性生长,有时也呈现副皮质区生长,但较为 少见。在软组织切片上,肿瘤细胞呈单线排列,即single-file pattern。印片时,细胞可能 为小的带有少量细胞质和浓缩的核染色质肿瘤细胞,至大的中等量淡蓝染色的细胞质,弥 散的染色质及显著细胞核的大细胞。核圆形,不规则或呈回旋状。细胞质空泡可见,嗜天 青颗粒大约见于10%的病例。有时一些肿瘤细胞表现为“手镜”样(hand mirror cells)的 形态.

各类神经元细胞的培养方法

体外神经细胞的培养已成为神经生物学研究中十分有用的技术手段。神经细胞培养的主要优点是:(1)分散培养的神经细胞在体外生长成熟后,能保持结构和功能 上的某些特点, 而且长期培养能形成髓鞘和建立突触联系,这就提供了体内生长过程在体外重现的机会。(2)能在较长时间内直接观察活细胞的生长、分化、形态和功能变化,便于使用各种不同的技术方法如相差显微镜、荧光显微镜、电子显微镜、激光共聚焦显微镜、同位素标记、原位杂交、免疫组化和电生理等手段进行研究。(3)易于施行物理(如缺血、缺氧)、化学和生物因子(如神经营养因子)等实验条件, 观察条件变更对神经细胞的直接或间接作用。(4)便于从细胞和分子水平探讨某些神经疾病的发病机制,药物或各种因素对胚胎或新生动物神经细胞在生长、发育和分化等各方面的影响。我们实验室从80年代始开展了神经细胞的体外培养工作,取得了一些经验,现将培养细胞分类及方法简要介绍如下: 一、鸡胚背根神经节组织块培养 主要用于神经生长因子(NGF)等神经营养因子的生物活性测定。在差倒置显微镜下观察以神经突起的生长长度和密度为指标半定量评估NGF的活性。 1、材料和方法 (1)选正常受精的鸡蛋,置于37℃生化培养箱内孵化,每日翻动鸡蛋一次。 (2)取孵化8-12 d 的鸡蛋, 用70% 酒精消毒蛋壳,从气室端敲开蛋壳,用消毒镊剥除气室部蛋壳。 (3)用弯镊钩住鸡胚颈部,无菌条件下取出鸡胚置小平皿内,除去头部后,腹侧向上置灭菌毛玻璃片上,用眼科弯镊子打开胸腹腔,除去内脏器官。 (4)在解剖显微镜下,小心除去腹膜,暴露脊柱及其两侧,在椎间孔旁可见到沿脊柱两侧排列的背根节(图1),用一对5号微解剖镊小心取出。 (5)置背根节于解剖溶液内,用微解剖镊去除附带组织,接种于涂有鼠尾胶的玻璃或塑料培养瓶中,在DMEM无血清培养液中培养。 2、结果 鸡胚背根神经节在含神经生长因子(NGF, 2.5S,20ng/ml)的无血清培养液中培养24 h,神经节长出密集的神经突起。而未加NGF的神经节培养24 h, 未见神经突起生长。 二、新生大鼠、新生小鼠及鸡胚背根神经节分散细胞培养 背根神经节(DRG)细胞起源于神经嵴,NGF研究先驱Levi-Montalcini的实验表明,外原性NGF能刺激DRG细胞生长发育并形成广泛的神经网络。在体外,分离培养的神经节在NGF存在的情况下,神经突起的生长在一天之内可长达数

神经干细胞及其应用研究新进展

神经干细胞及其应用研究新进展 摘要:长期以来,人们一直认为成年哺乳动物脑内神经细胞不具备更新能力,一旦受损乃至死亡不能再生。这种观点使人们对中枢神经系统疾病的治疗受到了很大限制。虽然传统的药物、手术及康复治疗取得了一定的进展,但是仍不能达到满意的效果。现在,神经干细胞(neural stem cells,NSCs)不仅存在于所有哺乳动物胚胎发育期的脑内,而且在其成年之后也有,这已为神经科学界所普遍接受。神经干细胞由于具有自我更新和多向分化潜能,使神经系统损伤后的细胞替代治疗成为可能本文综述了神经干细胞的分布、生物学特性、神经干细胞在细胞疗法中的多功能应用,并对神经干细胞临床应用前景做出了展望。 关键词:神经干细胞细胞疗法多向分化潜能转分化性 1、神经干细胞的分布 大量研究表明成年哺乳动物的脑室下区、海马、纹状体、大脑皮质等区域均有NSCs存在,其中侧脑室壁的脑室下层(sub ventricular zone,SVZ)和海马齿状回的颗粒下层(sub granular zone,SGZ)是神经干细胞的两个主要脑区。另外,研究者们还在成年哺乳动物脑内的其他部位发现了神经干细胞的存在,例如在黑质内发现了新生的多巴胺能神经元。 2、神经干细胞在细胞疗法中的多功能应用 2.1细胞替代治疗中外源性NSCs的使用 NSCs可以用来代替因为损伤或神经系统退行性病变而缺失的组织。理想的是重建组织适宜的结构并整合人周围组织;重要的是在这种治疗方案中,几种细胞类型需替代。在移植入成年啮齿动物脑内前,首先需从人胚胎干细胞或胎儿脑内分离出NSCs,并在体外诱导分化为神经元、星形胶质细胞和少突胶质细胞。值得注意的是NSCs整合入室管下区的微环境,促成嗅球的神经发生。在海马,移植的神经祖细胞分化为特定区域的神经细胞亚型,并功能性整合入周围的环路。NSCs移植入疾病或损伤的啮齿动物模型中取得了预期的效果。移植入的存活的NSCs首先迁移到病变部位并分化。成年鼠的NSCs移植入多发性硬化大鼠模型后可观察到少突胶质细胞祖细胞、宿主和移植来源的成熟细胞数量增加,病情明显好转。在大鼠脑梗死模型中,移植的NSCs迁移到损伤部位并大部分分化为神经元。在脑出血模型中,由静脉移植的NSCs在损伤部位分化成神经元和星形胶质细胞,并引起了功能的恢复。将富有多巴胺神经元的胚胎腹侧中脑移植入去神经的帕金森鼠中,结果移植物中的多巴胺神经元修复了损害引起的功能缺损。神经干细胞植入大鼠亨廷顿病模型脑内能保护维持运动习惯的能力,受损的运动习性也可重新恢复,表明植入的细胞在体内形成了功能性连接。Mcdona等给胸髓损伤大鼠分别注入单纯培养基、成年小鼠皮层神经元和胚胎干细胞,2周后发现植入干细胞者后肢恢复部分负重与协调能力,明显优于前二者。田增明等报道了人胚胎神经干细胞治疗21例小脑萎缩患者,发现移植后临床症状有改善。 2.2脑损伤激发内源性NSCs 近年研究表明多种神经系统损伤均可激发内源性神经细胞再生。追踪巢蛋白阳性的神经祖细胞定殖在成年脊髓损伤区,可以观察到这种祖细胞扩增并在损伤区分化为神经元;在脊髓挤压伤、局灶性脑缺血中,在有正常神经发生的大脑皮质和海马可观察到NSCs的增生,并可以被外源性神经营养因子所加强。但在病理状态下这种内源性干细胞的修复反应很显然是不够的,大量实验已证实哺乳动

胚胎干细胞体外诱导分化综述

胚胎干细胞体外诱导分化综述 摘要:由于胚胎干细胞具有自我更新、高度增值和多向分化的潜能,因此,自20世纪90年代开始,对胚胎干细胞的研究成为生物学领域和医药工程领域研究的一个焦点。本文从胚胎干细胞的分离、体外诱导胚胎干细胞的原理和定向分化的机制、胚胎干细胞体外诱导的方法、定向分化的细胞、应用前景和研究存在的问题对胚胎干细胞进行综述。 关键词:胚胎干细胞;体外培养;诱导分化;应用 干细胞是一种具有多分化潜能和自我更新功能的早期未分化细胞。在特定条件下,它可以 分化成不同的功能细胞,形成多种组织和器官,它包括胚胎干细胞和成体干细胞。前者指早期胚胎的多能干细胞,后者是存在于胎儿和成体不同的组织内的多潜能干细胞这些细胞具有自我复制能力,并产生不同种类的具有特定表型和功能的成熟细胞的能力,能够维持机体功能的稳定,发挥生理性的细胞更新和修复组织损伤作用[4,9,10]。 胚胎干细胞(embryonic stem cell,ESC)是从着床前胚胎内内细胞团(inner cell mass,ICM)或原始生殖细胞经体外分化抑制培养分离的一种全能性细胞[1]。它能在体外长期不断自我更新,并保持多向分化潜能,可以分化为内、中、外三个胚层的几乎所有类型细胞。自1981年Evans和Kauffman[2,8]用不同的方法首次成功分离得到小鼠胚胎干细胞以来,小鼠胚胎干细胞成为近20年来人们用来研究发育分化、基因表达调控、基因治疗等最理想的模型,并且有大量研究表明小鼠胚胎干细胞可以在体外被诱导分化为绝大多数类型的成体细胞.1998年Thomson等首次成功分离并建立人胚胎干细胞系。自此,人胚胎干细胞不但提供了一个研究人类自身发育分化的良好机会,而且如果人胚胎干细胞能像小鼠胚胎干细胞一样可以在体外诱导形成各种成体细胞,那么利用这些诱导分化形成的成熟细胞将有可能进行细胞和组织替代治疗, 包括糖尿病、帕金森病、早老性痴呆、心血管疾病和肿瘤等多种目前临床上难以治愈的疾病。 1 胚胎干细胞的分离 自Thomson成功分离并建立人胚胎干细胞系后,多年以来,人们研究出很多胚胎干细胞的 分离方法,在这里主要介绍三种: 1.1 分离自胚胎内细胞团 内细胞团又称胚细胞(embryoblast),是一团于哺乳动物初期胚胎中的一个细胞团块。从早期胚胎内细胞团(inner cell mass,ICM)分离是获得胚胎干细胞的主要途径。由于不同动物的胚胎发育存在差异,因此应注意取材时间。可通过免疫外科手术法、机械剥离法、组织培 养法等方法除去胚胎滋养层细胞获得囊胚内细胞团(ICM)细胞进行体外分化抑制培养。 1.2分离自原始生殖细胞

少突胶质前体细胞

少突胶质细胞前体细胞(OPCs)对髓鞘再生的影响 作者:裴星瑶 0905010326 动医093班 【关键词】少突胶质细胞;前体细胞(OPCs);髓鞘再生;多发性硬化病(MS);因素;炎症 髓鞘再生是一个在脱髓鞘的轴突上重新形成髓鞘的过程。在多发性硬化症中出现的非连续性髓鞘化,以及后继的轴突完整性丧失,使得增强髓鞘再生成为一个重要的治疗靶标。前体细胞(OPCs)分化为成熟的少突胶质细胞是髓鞘再生成功的一个关键步骤。而髓鞘再生遇到许多障碍,少突胶质细胞及其OPCs在的聚集不足或分化失败,受到了多种因素的调控。 少突胶质细胞前体细胞OPCs 募集:包括细胞活化、增殖和迁移,受多种信号系统调控。正常情况下,少突胶质细胞前体细胞存在于前脑脑室下区、后脑和脊髓的腹侧区,处于相对静止状态,数量也相对稳定。当CNS脱髓鞘时,OPCs被激活,体积增大,出现粘蛋白NG2阳性细胞标志。其中OPCs增殖与血小板源性生长因子(PDGF)关系密切。PDGF是胎儿OPCs的有丝分裂原,在脑发育阶段能调节OPCs数量。证明PDGF—Ot是调控OPCs增殖的重要因素。 分化:OPCs达到一定数量,即停止增殖并进入分化阶段。OPCs的分化是指在裸露的轴突周围,OPCs形成了能生成新的髓鞘的少突胶质细胞及其它胶质细胞的过程。 少突胶质细胞前体细胞(OPCs)及少突胶质细胞介导在中枢神经系统(CNS)中起着重要的作用,髓鞘再生是脱髓鞘疾病发生后的重要修复方式,其过程中OPCs 分化形成具有功能性的少突胶质细胞,而少突胶质细胞形成髓鞘。近来研究表明,前体细胞也可以分化成为星形胶质细胞,小胶质细胞等其它神经胶质细胞,但少突胶质细胞是形成中枢神经系统有髓神经纤维髓鞘的重要形成细胞,包裹髓磷脂于中枢神经的轴突周围,而且目前有大量的间接的证据表明少突胶质细胞不仅形成髓鞘,它们释放的营养因子,对于轴突生存是必要的。其中的一部分证据来源于对Cnpl基因在干细胞中功能的研究。在中枢神经系统中,这个编码2"-3 环核苷酸磷酸二酯酶的基因无一例外地只在少突胶质细胞中表达。实验表明少突胶质细胞在保护轴突完整性方面起着重要的作用,而该保护功能的实现,依赖于2"-3 环核苷酸磷酸二酯酶的表达。少突胶质细胞的这个营养功能与其形成正常髓鞘的功能有很大的不同。 多发性硬化病(MS) 多发性硬化(MS)是以中枢神经系统炎性脱髓鞘为特征的自身免疫性疾病。其发生机制与遗传易感性和环境因素(致病微生物)有关,引起T细胞介导的免疫系统紊乱,导致神经髓鞘破坏和继发轴索损害。是中枢神经系统脱髓鞘疾病。治疗这种疾病,首先要了解髓鞘再生和修复。 多发性硬化(MS)病人OPCs募集和分化均存在障碍,导致OPCs髓鞘不能修复,影响跳跃性传导,进而影响神经功能恢复。脱髓鞘化轴突的动作电位传导是非跳跃性的,在传导过程中的衰减也很快,而髓鞘再生可以恢复轴突高效的跳跃式动作电位传导功能。近来,研究者开始关注,髓鞘可以通过营养支持而提高轴突的寿命,从而保护神经元。由于其指出在脱髓鞘中更有效的保护轴突的方法是诱导

神经干细胞研究进展

神经干细胞研究进展 一、引言 神经干细胞(neural stem cell,NSC)是指存在于神经系统中,具有分化为神经神经元、星形胶质细胞和少突胶质细胞的潜能,从而能够产生大量脑细胞组织,并能进行自我更新,并足以提供大量脑组织细胞的细胞群[1]。狭义的神经干细胞是指成体神经干细胞,指的是分布于胚胎及成人中枢及周围神经系统的干细胞。简单的说,就是在成年哺乳动物的大脑中分离出来的具有分化潜能和自我更新能力的母细胞,它可以分化各类神经细胞,包括神经元、星形胶质细胞和少突胶质细胞。我们所讲的神经干细胞指的就是成体中存在于脑中的中枢神经干细胞,其实在外周也有一些“神经干细胞”称为“神经嵴干细胞”,可以分化成外周神经细胞、神经内分泌细胞和施旺细胞,还可横向分化成色素细胞和平滑肌细胞[2]。 神经干细胞具有以下特征:(1)有增殖能力;(2)由于自我维持和自我更新能力,对称分裂后形成的两个子细胞为干细胞,不对称分裂后形成的两个自细胞中的一个为干细胞,另一个为祖细胞,祖细胞在特定条件下可以分化为多种神经细胞;(3)具有多向分化潜能,在不同因子下,可以分化为不同类型的神经细胞,损伤或疾病可以刺激神经干细胞分化,自我更新能力和多向分化潜能是神经干细胞的两个基本特征[3]。 需要注意的是,在脑脊髓等所有神经组织中,不同的神经干细胞类型产生的子代细胞种类不同,分布也不同。神经干细胞的治疗机理是:(1)患病部位组织损伤后释放各种趋化因子,可以吸引神经干细胞聚集到损伤部位,并在局部微环境的作用下分化为不同种类的细胞,修复及补充损伤的神经细胞。由于缺血、缺氧导致的血管内皮细胞、胶质细胞的损伤,使局部通透性增加,另外在多种黏附分子的作用下,神经干细胞可以透过血脑屏障,高浓度的聚集在损伤部位;(2)神经干细胞可以分泌多种神经营养因子,促进损伤细胞的修复;(3)神经干细胞可以增强神经突触之间的联系,建立新的神经环路[4]。 二、研究现状

石墨烯加速神经干细胞成熟和分化

启示神经与基于BSC疗法的导电材料的接口:通过偶合石墨烯加速神经干细胞的生物电功能开发 为了管理在组织工程细胞特异性行为神经修复和再生,更好地理解材料- 细胞相互作用,尤其是生物电功能的,极其important.Graphene已报道是用作支架的潜在候选和神经interfacingmaterial.However,石墨烯这些导电性基板细胞膜的生物电演变在很大程度上仍然没有进行过。在这项研究中,我们使用了神经干细胞(NSC)模型,探讨膜生物电属性E包括增殖和分化conditions.We下休息膜电位和动作电位E和细胞行为上的石墨烯薄膜中使用的组合可能发生的变化 单细胞电生理记录和传统的细胞生物学技术。石墨烯不影响基本膜电参数(电容和输入电阻),但搁在石墨烯衬底细胞膜电位分别更强烈增殖和分化的条件下为负。此外,神经干细胞及其对石墨烯基片表现出的后代与对照相比,在开发过程中增加的动作电位的射击。但是,石墨烯只有轻微影响电动刻画ofmature NSC后代。石墨烯基片上的被动和主动的生物电特性Themodulation伴随着增强NSC分化。此外,棘密度,突触 突触蛋白表达和在.Modeling石墨组所有activitywere增加上导电的石墨烯衬底电场表明由该负电的细胞膜产生的电场大于上即控制它的石墨烯衬底高得多,这可以解释观察到的 通过耦合石墨烯的生物电的发展变化。我们的研究结果表明石墨烯是能够加速在开发过程中的NSC成熟,特别是在生物电发展方面。我们的发现提供对导电材料在调谐膜中的作用的基本理解石墨烯模型中的生物电性能,为未来的发展研究铺平道路方法和材料形成在基于NSC的治疗的可控通道中的膜性质。 石墨烯,碳原子的2维单层,由于材料的独特的电,机械和热特性,一直在纳米技术的最前沿。它最近被认为是一个有前途的候选人制造超快纳米电子器件,透明电极,纳米复合材料和生物医学材料[3]。 它已经用于多种生物医学应用,包括细胞成像和药物递送[4],生物分析[5],干细胞研究[6,7],甚至光热疗法治疗肿瘤 [8]。最近,我们和其他团体发现使用石墨烯作为神经接口材料的可能性,因为它可以促进人类成神经细胞瘤(SH-SY5Y)细胞培养[9],PC-12细胞[10],海马原代培养神经元[11]和直接NSC分化神经元[12,13],促进神经干细胞分化成石墨烯纳米网半导体神经元和形成神经元纤维[14,15]。此外,越来越多的研究表明石墨烯表现出操纵茎的命运的潜在能力细胞。例如,石墨烯基材料能够诱导NSC分化成神经元谱系[7,16],控制甚至加速间充质细胞的分化干细胞[6,17e22],并调节其他类型的行为干细胞,包括多能干细胞和胚胎干细胞[23e25]。这些开创性的研究清楚地证明了在细胞治疗中基于石墨烯的材料的巨大潜力。然而,改变细胞行为背后的基础机制,例如增强的分化和促进的细胞增长,仍然很大程度上未知。 细胞功能和细胞之间的强连接膜的生物电性质启发我们调查石墨烯是否可以调节NSC发育和成熟的子代通过影响其生物电特性细胞。在这项工作中,我们研究了石墨烯的影响在NSC 发育期间电生理状态的成熟,包括被动和主动生物电特性和随后的NSC命运的选择。 2。材料和方法2.1。石墨烯膜制备 根据先前公布的CVD方法[26]合成石墨烯样品。简言之,将薄铜箔(5cm×5cm)加热至1000℃并在H 2和Ar气体下退火20分钟,随后暴露于H 2和CH 4下5分钟。然后在H 2和Ar气下将膜从1000℃冷却至室温。通过在硝酸铁水溶液中蚀刻从铜箔上除去石墨烯膜。在铜膜溶解之后,使TCPS基板与石墨烯膜接触,并将其从溶液中拉出以制造石墨烯/ TCPS基板。

相关文档