文档库 最新最全的文档下载
当前位置:文档库 › 单片机中使用DS18B20温度传感器C语言程序文件

单片机中使用DS18B20温度传感器C语言程序文件

单片机中使用DS18B20温度传感器C语言程序文件
单片机中使用DS18B20温度传感器C语言程序文件

单片机中使用DS18B20温度传感器C语言程序(参考1)

/********************************************************************************

DS18B20 测温程序

硬件:AT89S52

(1)单线ds18b20接P2.2

(2)七段数码管接P0口

(3)使用外部电源给ds18b20供电,没有使用寄生电源

软件:Kei uVision 3

**********************************************************************************/ #include "reg52.h"

#include "intrins.h"

#define uchar unsigned char

#define uint unsigned int

sbit ds=P2^2;

sbit dula=P2^6;

sbit wela=P2^7;

uchar flag ;

uint temp; //参数temp一定要声明为int 型

uchar code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,

0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71}; //不带小数点数字编码uchar code table1[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,

0x87,0xff,0xef}; //带小数点数字编码

/*延时函数*/

void TempDelay (uchar us)

{

while(us--);

}

void delay(uint count) //延时子函数

{

uint i;

while(count)

{

i=200;

while(i>0)

i--;

count--;

}

}

/*串口初始化,波特率9600,方式1 */

void init_com()

{

TMOD=0x20; //设置定时器1为模式2 TH1=0xfd; //装初值设定波特率

TR1=1; //启动定时器

SM0=0; //串口通信模式设置

SM1=1;

// REN=1; //串口允许接收数据

PCON=0; //波特率不倍频

// SMOD=0; //波特率不倍频

// EA=1; //开总中断

//ES=1; //开串行中断

}

/*数码管的显示*/

void display(uint temp)

{

uchar bai,shi,ge;

bai=temp/100;

shi=temp%100/10;

ge=temp%100%10;

dula=0;

P0=table[bai]; //显示百位

dula=1; //从0到1,有个上升沿,解除锁存,显示相应段dula=0; //从1到0再次锁存

P0=0xfe;

wela=1;

wela=0;

delay(1); //延时约2ms P0=table1[shi]; //显示十位dula=1;

dula=0;

P0=0xfd;

wela=1;

wela=0;

delay(1);

P0=table[ge]; //显示个位dula=1;

dula=0;

P0=0xfb;

wela=1;

wela=0;

delay(1);

}

/*****************************************

时序:初始化时序、读时序、写时序。

所有时序都是将主机(单片机)作为主设备,单总

线器件作为从设备。而每一次命令和数据的传输

都是从主机主动启动写时序开始,如果要求单总

线器件回送数据,在进行写命令后,主机需启动

读时序完成数据接收。数据和命令的传输都是低

位在先。

初始化时序:复位脉冲存在脉冲

读;1 或0时序

写;1 或0时序

只有存在脉冲信号是从18b20(从机)发出的,其

它信号都是由主机发出的。

存在脉冲:让主机(总线)知道从机(18b20)已

经做好了准备。

******************************************/

/*--------------------------------------------------------------------------------------------------------------------

初始化:检测总线控制器发出的复位脉冲

和ds18b20的任何通讯都要从初始化开始

初始化序列包括一个由总线控制器发出的复位脉冲

和跟在其后由从机发出的存在脉冲。

初始化:复位脉冲+存在脉冲

具体操作:

总线控制器发出(TX)一个复位脉冲(一个最少保持480μs 的低电平信号),然后释放总线,

进入接收状态(RX)。单线总线由5K 上拉电阻拉到高电平。探测到I/O 引脚上的上升沿后

DS1820 等待15~60μs,然后发出存在脉冲(一个60~240μs 的低电平信号)。

具体看18b20 单线复位脉冲时序和1-wire presence detect "的时序图

-------------------------------------------------------------------------------------------------------------------*/

void ds_reset(void)

{

ds=1;

_nop_(); //1us

ds=0;

TempDelay(80); //当总线停留在低电平超过480us,总线上所以器件都将被复位,这里延//时约530us总线停留在低电平超过480μs,总线上的所有器件都将被复位。

_nop_();

ds=1; //产生复位脉冲后,微处理器释放总线,让总线处于空闲状态,原因查18b20中文资料

TempDelay(5); //释放总线后,以便从机18b20通过拉低总线来指示其是否在线,

//存在检测高电平时间:15~60us,所以延时44us,进行1-wire presence detect(单线存在检测)

_nop_();

_nop_();

_nop_();

if(ds==0)

flag=1; //detect 18b20 success

else

flag=0; //detect 18b20 fail

TempDelay(20); //存在检测低电平时间:60~240us,所以延时约140us

_nop_();

_nop_();

ds=1; //再次拉高总线,让总线处于空闲状态

/**/

}

原理解释:控制器对18B20 操作流程:

1 ,复位:首先我们必须对DS18B20 芯片进行复位,复位就是由控制器(单片机)

给DS18B20 单总线至少480uS 的低电平信号。当18B20 接到此复位信号后则会在

15~60uS 后回发一个芯片的存在脉冲。

2 ,存在脉冲:在复位电平结束之后,控制器应该将数据单总线拉高,以便于在15~60uS 后接收存在脉冲,存在脉冲为一个60~240uS 的低电平信号。至此,通信双方已经达成了基本的协议,接下来将会是控制器与18B20 间的数据通信。

/*----------------------------------------

读/写时间隙:

DS1820 的数据读写是通过时间隙处理

位和命令字来确认信息交换。

------------------------------------------*/

bit ds_read_bit(void) //读一位

{

bit dat;

ds=0; //单片机(微处理器)将总线拉低

_nop_(); //读时隙起始于微处理器将总线拉低至少1us

ds=1; //拉低总线后接着释放总线,让从机18b20能够接管总线,输出有效数据_nop_();

_nop_(); //小延时一下,读取18b20上的数据,因为从ds18b20上输出的数据//在读"时间隙"下降沿出现15us内有效

dat=ds; //主机读从机18b20输出的数据,这些数据在读时隙的下降沿出现//15us内有效

TempDelay(10); //所有读"时间隙"必须60~120us,这里77us

return(dat); //返回有效数据

原理:图8

读时间隙时控制时的采样时间应该更加的精确才行,读时间隙时也是必须先由主

机产生至少1uS 的低电平,表示读时间的起始。随后在总线被释放后的15uS 中

DS18B20 会发送内部数据位,这时控制如果发现总线为高电平表示读出“1 ”,

如果总线为低电平则表示读出数据“0 ”。每一位的读取之前都由控制器加一个

起始信号。注意:如图8 所示,必须在读间隙开始的15uS 内读取数据位才可以

保证通信的正确。

在通信时是以8 位“0 ”或“ 1 ”为一个字节,字节的读或写是从高位开始的,即A7 到A0. 字节的读写顺序也是如图2 自上而下的。

uchar ds_read_byte(void ) //读一字节

{

uchar value,i,j;

value=0; //一定别忘了给初值

for(i=0;i<8;i++)

{

j=ds_read_bit();

value=(j<<7)|(value>>1); //这一步的说明在一个word文档里面??

}

return(value); //返回一个字节的数据

}

void ds_write_byte(uchar dat) //写一个字节

{

uchar i;

bit onebit; //一定不要忘了,onebit是一位

for(i=1;i<=8;i++)

{

onebit=dat&0x01;

dat=dat>>1; //由低到高传送数据

if(onebit) //写1

{

ds=0;

_nop_();

_nop_(); //看时序图,至少延时1us,才产生写"时间隙"

ds=1; //写时间隙开始后的15μs内允许数据线拉到高电平

TempDelay(5); //所有写时间隙必须最少持续60us

}

else //写0

{

ds=0;

TempDelay(8); //主机要生成一个写0 时间隙,必须把数据线拉到低电平并保持至少60μs,这里64us

ds=1;

_nop_();

_nop_();

}

}

}

/*****************************************

主机(单片机)控制18B20完成温度转换要经过三个步骤:

每一次读写之前都要18B20进行复位操作,复位成功后发送

一条ROM指令,最后发送RAM指令,这样才能对DS18b20进行

预定的操作。

复位要求主CPU将数据线下拉500us,然后释放,当ds18B20

受到信号后等待16~60us,后发出60~240us的存在低脉冲,

主CPU收到此信号表示复位成功

******************************************/

/*----------------------------------------

进行温度转换:

先初始化

然后跳过ROM:跳过64位ROM地址,直接向ds18B20发温度转换命令,适合单片工作发送温度转换命令

------------------------------------------*/

void tem_change()

{

ds_reset();

delay(1); //约2ms

ds_write_byte(0xcc);//单线情况下,跳跃ROM指令

ds_write_byte(0x44);//温度转换指令

}

/*----------------------------------------

获得温度:

------------------------------------------*/

uint get_temperature()

{

float wendu;

uchar a,b;

ds_reset();

delay(1); //约2ms

ds_write_byte(0xcc);

ds_write_byte(0xbe);//发送读温度命令

a=ds_read_byte();//读出温度低8位

b=ds_read_byte();//读书温度高8位

temp=b;

temp<<=8;

temp=temp|a;

wendu=temp*0.0625; //得到真实十进制温度值,因为DS18B20

//可以精确到0.0625度,所以读回数据的最低位代表的是//0.0625度

temp=wendu*10+0.5; //放大十倍,这样做的目的将小数点后第一位

//也转换为可显示数字,同时进行一个四舍五入操作。return temp;

}

/*----------------------------------------

读ROM

------------------------------------------*/

/*

void ds_read_rom() //这里没有用到{

uchar a,b;

ds_reset();

delay(30);

ds_write_byte(0x33);

a=ds_read_byte();

b=ds_read_byte();

}

*/

void main()

{

uint a;

init_com();

while(1)

{

tem_change(); //12位转换时间最大为750ms for(a=10;a>0;a--)

{

display( get_temperature()); }

}

}

DS18B20 数字温度传感器

应用指引:在MC430F14板上是标配了DS18B20数字温度传感器器,同时希望用户通过以下DS18B20的讲解能够了解更多1线 MC430F14实物图如下: >>关于MC430F14开发板详情>> 在传统的模拟信号远距离温度测量系统中,需要很好的解决引线误差补偿问题、多点测量切换误差问题和放大电路零点漂移误差问题等技术问题,才能够达到较高的测量精度。另外一般监控现场的电磁环境都非常恶劣,各种干扰信号较强,模拟温度信号容易受到干扰而产生测量误差,影响测量精度。因此,在温度测量系统中,采用抗干扰能力强的新型数字温度传感器是解决这些问题的最有效方案,新型数字温度传感器DS18B20具有体积更小、精度更高、适用电压更宽、采用一线总线、可组网等优点,在实际应用中取得了良好的测温效果。 新的"一线器件"DS18B20体积更小、适用电压更宽、更经济。

美国Dallas半导体公司的数字化温度传感器DS1820是世界上第一片支持 "一线总线"接口的温度传感器,在其内部使用了在板(ON-B0ARD)专利技术。全部传感元件及转换电路集成在形如一只三极管的集成电路内。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。现在,新一代的DS18B20体积更小、更经济、更灵活。使你可以充分发挥“一线总线”的优点。目前DS18B20批量采购价格仅10元左右。 DS18B20、DS1822 "一线总线"数字化温度传感器 同DS1820一样,DS18B20也支持"一线总线"接口,测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS1822的精度较差为±2°C。现场温度直接以"一线总线"的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。 DS18B20、DS1822的特性 DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色!DS1822与DS18B20软件兼容,是DS18B20的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。继"一线总线"的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。 一、DS18B20的主要特性 (1)适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电 (2)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯

DS18B20温度检测程序

(1)先将数据线置高电平“1”。 (2)延时(该时间要求的不是很严格,但是尽可能的短一点) (3)数据线拉到低电平“0”。 (4)延时750微秒(该时间的时间范围可以从480到960微秒)。 (5)数据线拉到高电平“1”。 (6)延时等待(如果初始化成功则在15到60毫秒时间之内产生一个由DS18B20所返回的低电平“0”。据该状态可以来确定它的存在,但是应注意不能无限的进行等待,不然会使程序进入死循环,所以要进行超时控制)。 (7)若CPU读到了数据线上的低电平“0”后,还要做延时,其延时的时间从发出的高电平算起(第(5)步的时间算起)最少要480微秒。 (8)将数据线再次拉高到高电平“1”后结束。

(1)数据线先置低电平“0”。 (2)延时确定的时间为15微秒。 (3)按从低位到高位的顺序发送字节(一次只发送一位)。 (4)延时时间为45微秒。 (5)将数据线拉到高电平。 (6)重复上(1)到(6)的操作直到所有的字节全部发送完为止。(7)最后将数据线拉高。 DS18B20的写操作时序图如图

DS18B20的读操作 (1)将数据线拉高“1”。 (2)延时2微秒。 (3)将数据线拉低“0”。 (4)延时15微秒。 (5)将数据线拉高“1”。 (6)延时15微秒。 (7)读数据线的状态得到1个状态位,并进行数据处理。 (8)延时30微秒。DS18B20的读操作时序图如图所示。

DS18B20的Protues仿真图 源程序代码: #include "reg51.h" #include "intrins.h" // 此头文件中有空操作语句NOP 几个微秒的延时可以用NOP 语句,但本人没用NOP,直接用了I++来延时 #define uchar unsigned char #define uint unsigned int uchar code table[]={0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37, 0x38,0x39}; sbit ds18b20_io=P2^0; //单片机与DS18B20的连接口 sbit lcdrs=P2^6; //1602与单片机的接口 sbit lcden=P2^7;

基于单片机的温度测量系统设计

基于STC单片机的温度测量系统的研究 摘要:本文针对现有温度测量方法线性度、灵敏度、抗振动性能较差的不足,提出了一种基于STC单片机,采用Pt1000温度传感器,通过间接测量铂热电阻阻值来实现温度测量的方案。重点介绍了,铂热电阻测量温度的原理,基于STC实现铂热电阻阻值测量,牛顿迭代法计算温度,给出了部分硬件、软件的设计方法。实验验证,该系统测量精度高,线性好,具有较强的实时性和可靠性,具有一定的工程价值。 关键词:STC单片机、Pt1000温度传感器、温度测量、铂热电阻阻值、牛顿迭代法。 Study of Temperature Measurement System based on STC single chip computer Zhang Yapeng,Wang Xiangting,Xu Enchun,Wei Maolin Abstract:A method to achieve temperature Measurement by the Indirect Measurement the resistance of platinum thermistor is proposed. It is realized by the single chip computer STC with Pt1000temperature sensor.The shortcomings of available methods whose Linearity, Sensitivity, and vibration resistance are worse are overcame by the proposed method. This paper emphasizes on the following aspects:the principle of temperature measurement by using platinum thermistor , the measurement of platinum thermistor’s resistance based on STC single chip computer, the calculating temperature by Newton Iteration Method. Parts of hardware and software are given. The experimental results demonstrate that the precision and linearity of the method is superior. It is also superior in real-time character and reliability and has a certain value in engineering application. Keywords: STC single chip computer,Pt1000temperature sensor,platinum thermistor’s resistance,Newton Iteration Method 0 引言 精密化学、生物医药、精细化工、精密仪器等领域对温度控制精度的要求极高,而温度控制的核心正是温度测量。 目前在国内,应用最广泛的测温方法有热电偶测温、集成式温度传感器、热敏电阻测温、铂热电阻测温四种方法。 (1) 热电偶的温度测量范围较广,结构简单,但是它的电动势小,灵敏度较差,误差较大,实际使用时必须加冷端补偿,使用不方便。 (2) 集成式温度传感器是新一代的温度传感器,具有体积小、重量轻、线性度好、性能稳定等优点,适于远距离测量和传输。但由于价格相对较为昂贵,在国内测温领域的应用还不是很广泛。 (3) 热敏电阻具有灵敏度高、功耗低、价格低廉等优点,但其阻值与温度变化成非线性关系,在测量精度较高的场合必须进行非线性处理,给计算带来不便,此外元件的稳定性以及互换性较差,从而使它的应用范围较小。 (4)铂热电阻具有输出电势大、线性度好、灵敏度高、抗振性能好等优点。虽然它 的价格相对于热敏电阻要高一些,但它的综合性能指标确是最好的。而且它在0~200°C范

DS18b20温度传感器

最小的温度显示程序-c51 (2010-12-07 00:45:27) 转载 分类:51单片机 标签: 杂谈 #include #include sbit DQ=P2^0; bit presence; unsigned char templ,temph; char array[10]={0x7e,0x48,0x3d,0x6d,0x4b,0x67,0x73,0x4c,0x7f,0x4f}; void Delay(unsigned int num)//可定义延时 { while( --num ); } bit Init_DS18B20(void) { DQ = 1; //DQ复位 Delay(8); //稍做延时 DQ = 0; //单片机将DQ拉低 Delay(90); //精确延时大于 480us DQ = 1; //拉高总线 Delay(8); presence = DQ; //如果=0则初始化成功 =1则初始化失败 Delay(100); DQ = 1; return(presence); //返回信号,0=presence,1= no presence } unsigned int ReadOneChar(void) { unsigned char i = 0; unsigned char dat = 0;

for (i = 8; i > 0; i--) { DQ = 0; // 给脉冲信号 dat >>= 1; //位右移 DQ = 1; // 给脉冲信号等待传感器返回脉冲 if(DQ) dat |= 0x80; Delay(4); } return (dat); } void WriteOneChar(unsigned char dat) { unsigned char i = 0; for (i = 8; i > 0; i--) { DQ = 0; DQ = dat&0x01; Delay(5); DQ = 1; dat>>=1; } } void Read_Temperature(void) { Init_DS18B20(); WriteOneChar(0xcc); // 跳过读序号列号的操作 WriteOneChar(0x44); // 启动温度转换 Init_DS18B20(); WriteOneChar(0xCC); //跳过读序号列号的操作 WriteOneChar(0xBE); //读取温度寄存器 templ = ReadOneChar(); //温度低8位 temph = ReadOneChar(); //温度高8位 }

基于51单片机及DS18B20温度传感器的数字温度计程序(详细注释)

基于51单片机及DS18B20温度传感器的数字温度计程序(详细注释)

电路实物图如下图所示: C 语言程序如下所示: /******************************************************************** zicreate ----------------------------- Copyright (C) https://www.wendangku.net/doc/352606822.html, -------------------------- * 程序名; 基于DS18B20的测温系统 * 功 能: 实时测量温度,超过上下限报警,报警温度可手动调整。K1是用来 * 进入上下限调节模式的,当按一下K1进入上限调节模式,再按一下进入下限 * 调节模式。在正常模式下,按一下K2进入查看上限温度模式,显示1s 左右自动 * 退出;按一下K3进入查看下限温度模式,显示1s 左右自动退出;按一下K4消除 * 按键音,再按一下启动按键音。在调节上下限温度模式下,K2是实现加1功能, * K1是实现减1功能,K3是用来设定上下限温度正负的。 * 编程者:Jason * 编程时间:2009/10/2 *********************************************************************/ #include //将AT89X52.h 头文件包含到主程序 #include //将intrins.h 头文件包含到主程序(调用其中的_nop_()空操作函数延时) #define uint unsigned int //变量类型宏定义,用uint 表示无符号整形(16位) #define uchar unsigned char //变量类型宏定义,用uchar 表示无符号字符型(8位) uchar max=0x00,min=0x00; //max 是上限报警温度,min 是下限报警温度 bit s=0; //s 是调整上下限温度时温度闪烁的标志位,s=0不显示200ms ,s=1显示1s 左右 bit s1=0; //s1标志位用于上下限查看时的显示 void display1(uint z); //声明display1()函数 #include"ds18b20.h" //将ds18b20.h 头文件包含到主程序 #include"keyscan.h" //将keyscan.h 头文件包含到主程序 #include"display.h" //将display.h 头文件包含到主程序

WZPK型温度传感器使用说明书

WZPK型温度传感器 使用说明书 泰兴市热工仪表厂2015年01月10日

隔爆温度传感器 ■应用 通常和显示仪表、记录仪表、电子计算机等配套使用。直接测量生产现场存在碳氢化合物等爆炸的0~500℃范围内液体、蒸汽和气体介质以及固体表面温度。 ■特点 ●压簧式感温元件,抗振性能好; ●测量范围大; ●毋须补偿导线,节省费用; ●进口薄膜电阻元件,性能可靠稳定。 ●防爆标志:Ex dⅡBT1~T5,防爆合格证号:GYB ■主要技术参数 ●产品执行标准 JB/T8622-1997 《工业铂热电阻技术条件》 《爆炸性气体环境用电气设备第1部分:设备通用要求_部分2》和《爆炸性气体环境用电气设备第2部分:隔爆型“d”保护的设备》,《设备保护等级(EPL)为Gb级的设备产品防爆标志为Ex d ⅡB T1~T5 Gb ■常温绝缘电阻 防爆热电阻在环境温度为15~35℃,相对湿度不大于80%,试验电压为10~100V(直流)电极及外套管之间的绝缘电阻≥100MΩ.m。

■测温范围及允差 ●测温范围及允差 注:t为感温元件实测绝对值。 ●防爆分组形式 d Ⅱ□ T □ 温度组别:T1~T5 防爆等级:A、B、C 工厂用电气设备 d:隔爆型 ai:本质安全型 ○电气设备类别 Ⅰ类——煤矿井下用电气设备 Ⅱ类——工厂用电气设备 ○防爆等级 防爆热电偶的防爆等级按其使用于爆炸性气体混合物最大安

全间隙分为A、B、C三级。 ○温度组别 防爆热电偶的温度组别按其外漏部分允许最高表面温度分为T1~T5 ●防爆等级 ●Exd Ⅱ□T□ ●Exia Ⅱ□T□ ●防护等级:IP65 ■接线盒形式

DS18B20温度传感器使用方法以及代码

第7章 DS18B20温度传感器 7.1 温度传感器概述 温度传感器是各种传感器中最常用的一种,早起使用的是模拟温 度传感器,如热敏电阻,随着环境温度的变化,它的阻值也发生线性变化,用处理器采集电阻两端的电压,然后根据某个公式就可以计算出当前环境温度。随着科技的进步,现代的温度传感器已经走向数字化,外形小,接口简单,广泛应用在生产实践的各个领域,为我们的生活提供便利。随着现代仪器的发展,微型化、集成化、数字化、正成为传感器发展的一个重要方向。美国DALLS半导体公司推出的数字化温度传感器DS18B20采用单总线协议,即单片机接口仅需占用一个 I/O端口,无需任何外部元件,直接将环境温度转化为数字信号,以数码方式串行输出,从而大大简化了传感器与微处理器的接口。 7.2 DS18B20温度传感器介绍 DS18B20是美国DALLAS^导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9?12位的数字 值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入 DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的 DS18B20供电,而无需额外电源。因而使用

DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较 DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。 1. DS18B20温度传感器的特性 ①独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口 线即可实现微处理器与DS18B20勺双向通讯。 ②在使用中不需要任何外围元件。 ③可用数据线供电,电压范围:+3.0~ +5.5 V。 ④测温范围:-55 ~+125 C。固有测温分辨率为0.5 C。 ⑤通过编程可实现9~12位的数字读数方式。 ⑥用户可自设定非易失性的报警上下限值。 ⑦支持多点组网功能,多个 DS18B20可以并联在惟一的三线上,实现多点测温。 ⑧负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。 2. 引脚介绍 DS18B20有两种封装:三脚TO-92直插式(用的最多、最普遍的封装)和八脚SOIC贴片式。下图为实验板上直插式 DS18B20的原理图。 3. 工作原理 单片机需要怎样工作才能将DS18B2 0中的温度数据独取出来呢?F面将给出详细分析

DS18B20单片机数码管显示原理图和程序

最近天气热了,想要是做个能显示温度的小设备就好了, 于是想到DIY 个电子温度计, 网上找了很多资料,结合自己的材料,设计了这个用单片机控制的实时电子温度计。 作为单 片机小虾的我做这个用了 2天时间,当然是下班后,做工不行见谅了。 主要元件用到了单片机 STC89C54RD+ , DB18B20温度传感器,4为共阳数码管, PNPS8550三极管等。 先上原理图: 洞洞板布局图: 然后就是实物图了: 函8D P3 iW 、 E E FJ T I RF D51*BZ0渥度澈码管显示 F7 Dl'AI>D li'A£> I 2、心 PDRM, 杖心P0WAD7 Pl I^TO 洋心EI^AJ D FLSAH

附上源程序:程序是别人写的,我只是自己 修改了下,先谢谢原程序者的无私奉献。 #include"reg52.h” #define uchar unsigned char #define uint unsigned int sbit DQ=P3A 4; 〃温度数据口 sbit wx1=P2A0; sbit wx2=P2A1; sbit wx3=P2A2; sbit wx4=P2A3; unsigned int temp, temp1,temp2, xs; //位选1 //位选2 //位选3 //位选4

uchar code table[]={0xc0,0xf9,0xa4,0xb0,0x99, 0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6}; /****** 延时程序 *******/ void delay1(unsigned int m) { unsigned int i,j; for(i=m;i>0;i--) for(j=110;j>0;j--); } void delay(unsigned int m) { while(m--); } /***********ds18b20 uchar ReadOneChar() { unsigned char i=0; unsigned char dat = 0; for (i=8;i>0;i--) { 读一个字节 **************/ void Init_DS18B20() { unsigned char x=0; DQ = 1; //DQ 复位 delay(8); 〃稍做延时 DQ = 0; 〃单片机将 ds18b20通信端口 DQ 拉低 delay(80); //精确延时大于480us DQ = 1; delay(4); x=DQ; delay(20); } 〃拉高总线 //稍做延时后如果x=0则初始化成功 x=1 则初始化失败 〃共阳数码管 〃温度延时程序

基于51单片机DS18B20温度传感器的C语言程序和电路

基于51单片机DS18B20温度传感器的C语言程序和电路 DS18B20在外形上和三极管很像,有三只脚。电压范围为3.0 V至5.5 V 无需备用电源测量温度位温度转换为12位数字格式最大值为750毫秒用户可定义的非易失性温度报警设置应用范围包敏感系统。 下面是DS18B20的子程序,本人用过完全可行的: #include #include #define uchar unsigned char #define uint unsigned int sbit DQ=P2^0; void reset(); //DS18B20 void write_byte(uchar val); //DS18B20写命令函数 uchar read_byte(void); //DS18B20读1字节函数 void read_temp(); //温度读取函数 void work_temp(); //温度数据处理函数 uchar data temp_data[2]={0x00,0x00}; uchar data display[5]={0x00,0x00,0x00,0x00,0x00}; //对于温度显示值值 uchar code ditab[16]={0x00,0x01,0x01,0x02,0x03,0x03,0x04,0x04,0x05,0x06,0x06,0x07,0x0数部分查表 main() { while(1) { 自己添加; } } void delay1(uint t) { for(;t>0;t--); } ///////温度控制子函数 void reset() { uchar presence=1; while(presence) { while(presence) {

GFSIGNET2350温度传感器操作说明书.

? SIGNET 2820 Series Conductivity Sensor Instruction Manual ENGLISH 1. Wiring 2. Recommended Position 3. 2819/2820/2821 In-line Installation SAFETY INSTRUCTIONS FOR IN-LINE ELECTRODE INSTALLATION 1.Do not remove from pressurized lines.2.Do not exceed maximum temperature/pressure specifications.3.Wear safety goggles or face shield during installation/service.4.Do not alter product construction. Failure to follow safety instructions may result in severe personal injury! Customer supplied pipe tee/reducer Standard fitting kit Hole up Mark hole position 3/4 in. NPT Hand tighten only! Optional fitting kit Hole up Mark hole position

Customer supplied pipe tee/reducer 1/2 in. NPT Hand tighten only! O-ring O-ring Sealant Sealant +GF + SIGNET 5800CR ?Use three conductor shielded cable for cable extensions up to 30 m (100 ft max.? Shield must be maintained through cable splice RED WHITE BLACK SILVER (SHLDS h l d S i g n a l I N T e m p . I N I s o . G n d CH 2 CH 1 RED SILVER (SHLD BLACK

AT89C51单片机温度控制系统

毕业设计(论文) 论文题目:AT89C51单片机温度控制系统 所属系部:电子工程系 指导老师:职称: 学生姓名:班级、学号: 专业:应用电子技术 2012 年05 月15 日

毕业设计(论文)任务书 题目:AT89C51单片机温度控制系统 任务与要求:设计并制作一个能够控制1KW电炉的温度控制系统,控制温度恒定在37--38度之间。 时间:年月日至年月日 所属系部:电子工程系 学生姓名:学号: 专业:应用电子技术 指导单位或教研室:测控技术教研室 指导教师:职称: 年月日

摘要 本设计是以一个1KW电炉为控制对象,以AT89C51为控制系统核心,通过单片机系统设计实现对保电炉温度的显示和控制功能。本温度控制系统是一个闭环反馈调节系统,由温度传感器DS18B20对保炉内温度进行检测,经过调理电路得到合适的电压信号。经A/D转换芯片得到相应的温度值,将所得的温度值与设定温度值相比较得到偏差。通过对偏差信号的处理获得控制信号,去调节加热器的通断,从而实现对保温箱温度的显示和控制。本文主要介绍了电炉温度控制系统的工作原理和设计方法,论文主要由三部分构成。①系统整体方案设计。②硬件设计,主要包括温度检测电路、A/D转换电路、显示电路、键盘设计和控制电路。③系统软件设计,软件的设计采用模块化设计,主要包括A/D转换模块、显示模块等。 关键词:单片机传感器温度控制

目录 绪论 (1) 第一章温度控制系统设计和思路 (2) 1.1温度控制系统设计思路 (2) 1.2 系统框图 (2) 第二章 AT89C51单片机 (3) 2.1 AT89C51单片机的简介 (3) 2.2 AT89C51单片机的主要特性 (3) 2.3 AT89C51单片机管脚说明 (4) 第三章温度控制的硬件设备 (6) 3.1温度传感器简介 (6) 3.2 DS18B20工作原理 (7) 3.3 DS18B20使用中注意事项 (8) 第四章系统硬件设计 (9) 4.1温度采集电路 (9) 4.2 数码管温度显示电路 (9) 4.2.1 数码管的分类 (9) 4.2.2 数码管的驱动方式 (10) 4.2.3 恒流驱动与非恒流驱动对数码管的影响 (11) 4.3 单片机接口电路 (12) 4.3.1 P0口的上拉电阻原理 (12) 4.3.2 上拉电阻的选择 (14) 4.4 单片机电源及下载线电路 (14) 4.5 温度控制电路 (15) 第五章温度控制的软件设计 (17) 5.1 数码管动态显示 (17) 5.2 DS18B20初始化 (17) 5.3 系统流程图 (19) 谢辞 (20) 参考文献 (21) 附录 (22)

T255温度传感器使用说明

T255温度传感器使用说明 T255温度传感器是一款用来检测功率半导体温升的理想模拟器件,主要配合运放整形或直接送入单片机A/D口采集温度信息,并作出实时显示或过温保护等动作。 T255是以其阻值变化来反映温度变化的,故选用相应电阻分压来获取对应电压值是非常重要的参数。 典型:R(25℃)=5.000kΩ ,静动态特性好,灵敏度高。 阻值-温度特性表 温度℃ 阻值KΩ 温度℃ 阻值KΩ 温度℃ 阻值KΩ 温度℃ 阻值KΩ -20 37.49 11 8.801 42 2.674 73 0.980 -19 35.53 12 8.439 43 2.582 74 0.951 -18 33.76 13 8.093 44 2.493 75 0.923 -17 32.09 14 7.764 45 2.409 76 0.896 -16 30.52 15 7.451 46 2.327 77 0.870 -15 29.03 16 7.151 47 2.249 78 0.844 -14 27.62 17 6.866 48 2.174 79 0.820 -13 26.29 18 6.593 49 2.102 80 0.796 -12 25.03 19 6.333 50 2.032 81 0.773 -11 23.84 20 6.085 51 1.966 82 0.751 -10 22.72 21 5.848 52 1.902 83 0.729 -9 21.65 22 5.621 53 1.840 84 0.709 -8 20.64 23 5.405 54 1.780 85 0.689 -7 19.68 24 5.198 55 1.723 86 0.670 -6 18.77 25 5.000 56 1.668 87 0.650 -5 17.91 26 4.811 57 1.615 88 0.632 -4 17.10 27 4.630 58 1.564 89 0.614 -3 16.32 28 4.457 59 1.514 90 0.597 -2 15.59 29 4.291 60 1.467 91 0.581 -1 14.89 30 4.132 61 1.421 92 0.565 0 14.23 31 3.980 62 1.376 93 0.549 1 13.60 3 2 3.835 6 3 1.33 4 94 0.534 2 13.01 3 3 3.696 6 4 1.292 9 5 0.520 3 12.4 4 34 3.562 6 5 1.252 9 6 0.506 4 11.90 3 5 3.434 6 6 1.214 9 7 0.492 5 11.39 3 6 3.311 6 7 1.177 9 8 0.479 6 10.90 3 7 3.194 6 8 1.141 9 9 0.466 7 10.44 38 3.081 69 1.107 100 0.453 8 10.00 39 2.973 70 1.073 9 9.580 40 2.869 71 1.041 10 9.181 41 2.769 72 1.010

温度传感器DS18B20工作原理

温度传感器: DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。以上特点使DS18B20非常适用于远距离多点温度检测系统。 2 DS18B20的内部结构 DS18B20内部结构如图1所示,主要由4部分组成:64位ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如图2所示,DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地,见图4)。 ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码,每个DS18B20的64位序列号均不相同。64位ROM的排的循环冗余校验码(CRC=X8+X5+X4+1)。ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。 图1 DS18B20的内部结构

图2DS18B20的管脚排列 DS18B20中的温度传感器完成对温度的测量,用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FF6FH,-55℃的数字输出为FC90H。 温度值高字节 高低温报警触发器TH和TL、配置寄存器均由一个字节的EEPROM组成,使用一个存储器功能命令可对TH、TL或配置寄存器写入。其中配置寄存器的格式如下: R1、R0决定温度转换的精度位数:R1R0=“00”,9位精度,最大转换时间为93.75ms;R1R0=“01”,10位精度,最大转换时间为187.5ms;R1R0=“10”,11位精度,最大转换时间为375ms;R1R0=“11”,12位精度,最大转换时间为750ms;未编程时默认为12位精度。 高速暂存器是一个9字节的存储器。开始两个字节包含被测温度的数字量信息;第3、4、5字节分别是TH、TL、配置寄存器的临时拷贝,每一次上电复位时被刷新;第6、7、8字节未用,表现为全逻辑1;第9字节读出的是前面所有8个字节的CRC码,可用来保证通信正确。 3 DS18B20的工作时序 DS18B20的一线工作协议流程是:初始化→ROM操作指令→存储器操作指令→数据传输。其工作时序包括初始化时序、写时序和读时序,如图3(a)(b)(c)所示。

DS18B20温度传感器工作原理及其应用电路图

DS18B20温度传感器工作原理及其应用电路图 时间:2012-02-16 14:16:04 来源:赛微电子网作者: 前言 温度与工农业生产密切相关,对温度的测量和控制是提高生产效率、保证产品质量以及保障生产安全和节约能源的保障。随着工业的不断发展,由于温度测量的普遍性,温度传感器的市场份额大大增加,居传感器首位。数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器。现在,新一代的DS18B20温度传感器体积更小、更经济、更灵活。DS18B20温度传感器测量温度范围为-55℃~+125℃。在-10℃~+85℃范围内,精度为±0.5℃。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。基于DS18B20温度传感器的重要性,小编整理出DS18B20温度传感器工作原理及其应用电路图供大家参考。 一、DS18B20温度传感器工作原理(热电阻工作原理) DS18B20温度传感器工作原理框图如图所示: DS18B20温度传感器工作原理框图 图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。 二、DS18B20温度传感器的应用电路 1.DS18B20温度传感器寄生电源供电方式电路图 寄生电源方式特点: (1)进行远距离测温时,无须本地电源。 (2)可以在没有常规电源的条件下读取ROM。 (3)电路更加简洁,仅用一根I/O口实现测温。 (4)只适应于单一温度传感器测温情况下使用,不适于采用电池供电系统中。

51单片机操作DS18B20汇编源程序

51单片机操作DS18B20汇编源程序 推荐 ; FLAG1:标志位,为"1"时表示检测到DS18B20 ; DQ:DS18B20的数据总线接脚 ; TEMPER_NUM:保存读出的温度数据 ; 本程序仅适合单个DS18B20和51单片机的连接,晶振为12MHZ左右TEMPER_LEQU36H TEMPER_HEQU35H DQBITP1.7 ; DS18B20初始化程序 ;//*****************************************// INIT_1820: SETBDQ NOP CLRDQ MOVR0,#06BH TSR1: DJNZR0,TSR1; 延时 SETBDQ MOVR0,#25H TSR2: JNBDQ,TSR3 DJNZR0,TSR2 LJMPTSR4; 延时 TSR3: SETBFLAG1; 置标志位,表示DS1820存在 LJMPTSR5 TSR4: CLRFLAG1; 清标志位,表示DS1820不存在 LJMPTSR7 TSR5: MOVR0,#06BH TSR6: DJNZR0,TSR6; 延时 TSR7: SETBDQ RET ;//*****************************************//

; 重新写DS18B20暂存存储器设定值 ;//*****************************************// RE_CONFIG: JBFLAG1,RE_CONFIG1; 若DS18B20存在,转RE_CONFIG1 RET RE_CONFIG1: MOVA,#0CCH; 发SKIP ROM命令 LCALLWRITE_1820 MOVA,#4EH; 发写暂存存储器命令 LCALLWRITE_1820 MOVA,#00H; TH(报警上限)中写入00H LCALLWRITE_1820 MOVA,#00H; TL(报警下限)中写入00H LCALLWRITE_1820 MOVA,#1FH; 选择9位温度分辨率 LCALLWRITE_1820 RET ;//*****************************************// ; 读出转换后的温度值 ;//*****************************************// GET_TEMPER: SETBDQ; 定时入口 LCALLINIT_1820 JBFLAG1,TSS2 RET; 若DS18B20不存在则返回 TSS2: MOVA,#0CCH; 跳过ROM匹配 LCALLWRITE_1820 MOVA,#44H; 发出温度转换命令 LCALLWRITE_1820 LCALLINIT_1820 MOVA,#0CCH; 跳过ROM匹配 LCALLWRITE_1820 MOVA,#0BEH; 发出读温度命令 LCALLWRITE_1820 LCALLREAD_1820 MOVTEMPER_NUM,A; 将读出的温度数据保存 RET ;//*****************************************// ; 读DS18B20的程序,从DS18B20中读出一个字节的数据

基于单片机的数字温度计设计课程设计

摘要 温度的检测与控制是工业生产过程中比较典型的应用。本设计以AT89C52单片机为核心,采用DS18B20温度传感器检测温度,由温度采集、温度显示,温度报警等功能模块组成。基于题目基本要求,本系统对温度采集和温度显示系统行了重点设计。本系统大部分功能能由软件实现,吸收了硬件软件化的思想。实际操作时,各功能在开发板上也能完美实现。本系统实现了要求的基本功能,其余发挥部分也能实现。 关键字:AT89C52单片机、DS18B20温度传感器、数码管显示、温度采集

目录 一.绪论 .............................................................................................................

二.设计目的..................................................................................................... 三.设计要求..................................................................................................... 四.设计思路..................................................................................................... 五.系统的硬件构成及功能................................................................. 5.1主控制器............................................................................................... 5.2显示电路............................................................................................... 5.3温度传感器.......................................................................................... 六.系统整体硬件电路................................................................................. 七.系统程序设计 .......................................................................................... 八.测量及其结果分析 ................................................................................... 九.设计心得体会............................................................................................ 十.参考文献..................................................................................................... 附录1 源程序 附录2 元件清单及PCB图 一.绪论

相关文档
相关文档 最新文档