文档库 最新最全的文档下载
当前位置:文档库 › 几何,函数题

几何,函数题

几何,函数题
几何,函数题

几何题

20.(本题满分8分)如图,在□ABCD 中,∠BAD 为钝角,且AE ⊥BC ,A F ⊥CD . (1)求证:A 、E 、C 、F 四点共圆;

(2)设线段BD 与(1)中的圆交于M 、N .求证:BM =ND .

23.(本题满分10分)如图,半径为

O 内有互相垂直的两条弦AB 、CD 相交于P 点. (1)求证:P A ·PB =PC ·PD ;

(2)设BC 的中点为F ,连结FP 并延长交AD 于E ,求证:EF ⊥AD : (3)若AB =8,CD =6,求OP 的长.

18.(8分)如图8,大楼AD 的高为10m ,远处有一塔BC . 某人在楼底A 处测得塔顶B 点处的仰角为60°,爬到楼顶 D 点处测得塔顶B 点的仰角为30°.求塔BC 的高度.

解:

第23题图 第20题图

N

M F E

B

D

A

C

22.已知:如图,在⊙O 中,弦AB 与CD 相交于点M . (1)若AD=CB ,求证:△ADM≌△CBM.

(2)若AB=CD ,△ADM 与△CBM 是否全等?为什么

?

21.(本题10分)如图,已知AB 是O ⊙的直径,过点作弦BC 的平行线,交过点的切线AP 于点,连结AC .

(1)求证:ABC POA △∽△; (2)若2OB =,72

OP =,求BC 的长.

21.(本小题满分8分)

已知:如图,在ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △. (1)求证:BE DG =;

(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.

A D G C

B F E 第21题图

二次函数结合图像题

(本题满分12分)一开口向上的抛物线与x 轴交于A (m -2,0),B (m +2,0)两点,记抛物线顶点为C ,且AC ⊥BC .

(1)若m 为常数,求抛物线的解析式;

(2)若m 为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点? (3)设抛物线交y 轴正半轴于D 点,问是否存在实数m ,使得△BOD 为等腰三角形?若存在,求出m 的值;若不存在,请说明理由.

21.(9分)如图10,已知:△ABC 是边长为4的等边三角形,BC 在 x 轴上,点D 为BC 的中点,点A 在第一象限内,AB 与y 轴正半轴 相交于点E ,点B 的坐标是(-1,0),P 点是AC 上的动点(P 点与

A 、C 两点不重合). (1) (2分)写出点A 、点E 的坐标.

(2)(2分)若抛物线c bx x y ++-

=2

7

36 过A 、E 两点,求抛物线的解析式.

(3)(5分)连结PB 、PD .设l 为△PBD 的周长,当l 取最小值时, 求点P 的坐标及l 的

最小值,并判断此时点P 是否在(2)中所求的抛物线上,请充分说明你的判断理由.

第25题图

22.(9分)如图11,AB 是⊙O 的直径,点E 是半圆上一个动点(点E 与点A 、B 都不重合),点C 是BE 延长线上的一点,且CD ⊥AB, 垂足 为D ,CD 与AE 交于点H ,点H 与点A 不重合. (1)(5分)求证:△AHD ∽△CBD ; 证明:

(2)(4分)连结HO .若CD =AB =2,求HD+HO 的值.

(2009年重庆市江津区)如图,抛物线c bx x y ++-=2与x 轴交与A(1,0),B(- 3,0)两点,

(1)求该抛物线的解析式;

(2)设(1)中的抛物线交y 轴与C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q

第26题图

A

B

C

几何题

20.解:∵AE⊥BC,A F⊥CD,∴∠AEC=∠AFC=90°.

∴∠AEC+∠AFC=180°.∴A、E、C、F四点共圆;…………………………………4分(2)由(1)可知,圆的直径是AC,设AC、BD相交于点O,

∵ABCD是平行四边形,∴O为圆心.

∴OM=ON.∴BM=DN.…………………………………………………………………8分23.(1)∵∠A、∠C所对的圆弧相同,∴∠A=∠C.

∴Rt△APD∽Rt△CPB,∴AP PD

CP PB

=,∴P A·PB=PC·PD;………………………3分

(2)∵F为BC的中点,△BPC为Rt△,∴FP=FC,∴∠C=∠CPF.

又∠C=∠A,∠DPE=∠CPF,∴∠A=∠DPE.∵∠A+∠D=90°,

∴∠DPE+∠D=90°.∴EF⊥AD.………………………………………………………7分(3)作OM⊥AB于M,ON⊥CD于N,同垂径定理:

∴OM2=2-42=4,ON2=2-32=11

又易证四边形MONP是矩形,

∴OP7分答案略

22.(1)证明:在△ADM与△CBM中,

∵∠DMA=∠BMC,

∠DAM=∠BCM,

AD=CB.

∴△ADM≌△CBM(AAS).

(2)解:△ADM≌△CBM

∵AB=CD,

∴弧ADB=弧CBD,

∴弧AD=弧CB

∴.AD=CB

与(1)同理可得△ADM≌△CBM.

二次函数

25.解:(1)设抛物线的解析式为:y=a(x-m+2)(x-m-2)=a(x-m)2-4a.…………2分∵AC⊥BC,由抛物线的对称性可知:△ACB是等腰直角三角形,又AB=4,

∴C (m ,-2)代入得a =

12.∴解析式为:y =12

(x -m )2-2.…………………………5分 (亦可求C 点,设顶点式)

(2)∵m 为小于零的常数,∴只需将抛物线向右平移-m 个单位,再向上平移2个单位,可

以使抛物线y =12(x -m )2-2顶点在坐标原点.………………………………………7分 (3)由(1)得D (0,12

m 2-2),设存在实数m ,使得△BOD 为等腰三角形. ∵△BOD 为直角三角形,∴只能OD =OB .……………………………………………9分 ∴12

m 2-2=|m +2|,当m +2>0时,解得m =4或m =-2(舍). 当m +2<0时,解得m =0(舍)或m =-2(舍);

当m +2=0时,即m =-2时,B 、O 、D 三点重合(不合题意,舍)

综上所述:存在实数m =4,使得△BOD 为等腰三角形.……………………………12分

21.解:

(1)点E 坐标是(0,3),点A 的坐标是(1,23). ……(2分)

(2 ) ∵抛物线c bx x y ++-

=2

7

36过E (0,3)

,A (1,23)两点, 得:???

??=++-=327

363

c b c ∴

??

?

??==37133b c 抛物线的解析式是: 37

3

137362++-

=x x y . ………(4分) (3) 过D 点作DF ⊥AC ,垂足为F 点,并延长DF 至G 点,使得DF=FG ,

则D 点关于AC 的对称点为G 点. 连结CG ,则CD=CG , ∠DCA=∠ACG .

再连结BG 交AC 于Q 点,连结DQ ,则DQ=QG .

当点P 运动到与Q 点重合,即B 、P(Q)、G 三点共线时, 依“两点之间,线段最短”.这时△PBD 的周长有最小值. ……(5分) 又过G 点作GH ⊥x 轴,垂足为H 点. ∵△ABC 是等边三角形, BC=4

∴∠DCA=∠ACG=∠HCG =60?

∵GH= CG ?sin60?

=32

3

2=?

,CH=

CG 2

1

=1. ∴OH=OC+CH=3+1=4.

即G 点的坐标(4,3). ∴BH=OB+OH=1+4=5

在Rt △GBH 中,BG=72)3(5222

2

=+=+GH

BH

△PBD 周长l = BD+BP+DP = BD+BQ+DQ = BD+BG = 272+ ……(6分) 设线段AC 的解析式b kx y +=,A 点的坐标(1,32),C 点的坐标( 3,0 )得

??

?=+=+3203b k b k ???=-=3

33b k 线段AC 的解析式:333+-=x y

同理可得线段BG 的解析式:5

3

53+

=

x y AC 与BG 的交点是方程组?????+=+-=5

3

53333x y x y 的解,得???

????

==33237y x

则此时P 点的坐标是(

3

3

2,

37) ……(7分) 此时P 点的坐标在上述(2)小题所求的抛物线37

3

137362++-

=x x y 上. ……(8分)

理由如下: 把332,37==

y x 代入37

3

137362++-=x x y 中,左边=右边

故此时P 点的坐标在上述(2)小题所求的抛物线37

3

137362++-

=x x y 上. ……(9分)

22.证明(1)∵AB 是⊙O 的直径,

∴∠AEB=90°,即AE ⊥BC .

∴∠BAE+∠ABE=90°. …………(1分) 又∵CD ⊥AB ,

∴∠BCD+∠CBD=90°.………………(2分)

而∠ABE=∠CBD ,

∴∠BAE=∠BCD . ……………(3分) 又∠ADH=∠CDB , ……………(4分) ∴△AHD ∽△CBD . ……………(5分)

(2)∵O 点是圆心,CD=AB=2,设OD=x ,

∴AO=1,AD=1+x ,BD=1-x . ∵ △AHD ∽△CBD , ∴

CD AD

BD HD =, ………………………(6分) ∴2

11x

x HD +=-, ∴)1(2

12

x HD -=. …………………(7分)

下面分两种情况讨论:

∴① 当HD 、HO 重合时,x =0,2

1=

=HD HO . 满足HD+HO=1; ………………(8分)

∴②当HD 、HO 不重合时,

在Rt △HDO 中,由勾股定理得:

)1(21)1(2122

22

2

2

x x x HD OD HO +=??

?

???-+=+=,

也满足HD+HO=1.

∴综上所述:HD+HO 的值总是1. …………(9分)

中考复习:二次函数题型分类总结

【二次函数的定义】 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①y=x2-4x+1;②y=2x2;③y=2x2+4x;④y=-3x; ⑤y=-2x-1;⑥y=mx2+nx+p;⑦y =(4,x) ;⑧y=-5x。 2、在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则t=4 秒时,该物体所经过的路程为。 3、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围为。 4、若函数y=(m-2)x m -2+5x+1是关于x的二次函数,则m的值为。 6、已知函数y=(m-1)x m2 +1+5x-3是二次函数,求m的值。 【二次函数的对称轴、顶点、最值】 (技法:如果解析式为顶点式y=a(x-h)2+k,则最值为k; 如果解析式为一般式y=ax2+bx+c,则最值为4ac-b2 4a 1.抛物线y=2x2+4x+m2-m经过坐标原点,则m的值为。 2.抛物y=x2+bx+c线的顶点坐标为(1,3),则b=,c= . 3.抛物线y=x2+3x的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y=ax2-6x经过点(2,0),则抛物线顶点到坐标原点的距离为( ) B. 5.若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( ) A.开口向上,对称轴是y轴 B.开口向下,对称轴是y轴 C.开口向下,对称轴平行于y轴 D.开口向上,对称轴平行于y轴 6.已知抛物线y=x2+(m-1)x-1 4 的顶点的横坐标是2,则m的值是_ . 7.抛物线y=x2+2x-3的对称轴是。 8.若二次函数y=3x2+mx-3的对称轴是直线x=1,则m=。 9.当n=______,m=______时,函数y=(m+n)x n+(m-n)x的图象是抛物线,且其顶点在原点,此抛物线的开口________.

二次函数与几何综合压轴题题型归纳88728

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此 抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下:

已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解? ?? ?==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。 (3)如图,B A 、是直线l 同旁的两个定点,线段a ,在直线l 上确定两点E 、F (E 在F 的左侧 ),使得四边形AEFB 的周长最小。 8、在平面直角坐标系中求面积的方法:直接用公式、割补法 三角形的面积求解常用方法:如右图,S △PAB =1/2 ·PM ·△x=1/2 ·AN ·△y 9、函数的交点问题:二次函数(c bx ax y ++=2 )与一次函数(h kx y +=) (1)解方程组???h kx y c bx ax y +=++= 2可求出两个图象交点的坐标。 (2)解方程组???h kx y c bx ax y +=++= 2,即()02 =-+-+h c x k b ax ,通过?可判断两个图象的交点 的个数 有两个交点 ? 0>?

浅说函数与几何综合题的解题策略及复习

浅说函数与几何综合题的解题策略及复习 函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;这一特点在孝感市近三年的中考数学试卷中表现得尤为突出;如2001年的中考压轴题是以直角三角形为背景,揉合一次函数、相似形、直线与圆的位置关系等知识构成;2002年的中考压轴题是以矩形为背景,揉合轴对称、二次函数、几何证明等知识构成;2003年的压轴题是以二次函数为背景,揉合直角三角形的知识构成;因此,将函数知识与几何知识有机结合编制出综合题作为压轴题是我市中考命题的一大特点,也是今后中考命题的一大趋势; 函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题;本文特从2003年各地的中考试题中略选几例,谈一谈解决这类问题的策略和复习方法,以期达到抛砖引玉的目的。 一、函数与几何综合题例析 (一)“几函”问题: 1、线段与线段之间的函数关系: 由于这类试题的主要要素是几何图形,因此,在解决此类问题时首先要观察几何图形的特征,然后依据相关图形的性质(如直角三角形的性质、特殊四边形的性质、平行线分

二次函数综合题类型

二次函数综合题常见题型 一、线段最值 1、如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5). (1)求直线BC与抛物线的解析式; (2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值; (3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.

7),且顶点C的横坐标为4,该图象在x 轴上截2、如图,二次函数的图象经过点D(0,3 9 得的线段AB的长为6. ⑴求二次函数的解析式; ⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; ⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

3、如图,已知直线 1 1 2 y x =+与y轴交于点A,与x轴交于点D,抛物线2 1 2 y x bx c =++与直 线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0)。 ⑴求该抛物线的解析式; ⑵动点P在轴上移动,当△PAE是直角三角形时,求点P的坐标P。 ⑶在抛物线的对称轴上找一点M,使|| AM MC -的值最大,求出点M的坐标。

4、如图,已知ABC =,点A、C在x轴上,点B坐标 ∠=?,AC BC ACB ?为直角三角形,90 为(3,m)(0 m>),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.(1)求点A的坐标(用m表示); (2)求抛物线的解析式; (3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结BQ Array并延长交AC于点F,试证明:() FC AC EC +为定值.

二次函数与几何综合(习题及答案)

二次函数与几何综合(习题) ?例题示范 例1:如图,抛物线y=ax2+2ax-3a 与x 轴交于A,B 两点(点 A 在点 B 的左侧),与y 轴交于点C,且OA=OC,连接AC. (1)求抛物线的解析式. (2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值. (3)若点E 在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由. 第一问:研究背景图形 【思路分析】 读题标注,注意到题中给出的表达式中各项系数都只含有字母a,可以求解A(-3,0),B(1,0),对称轴为直线x=-1;结合题中给出的OA=OC,可得C(0,-3),代入表达式,即可求得抛物线解析式. 再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形. 【过程示范】 解:(1)由y=ax2+2ax-3a=a(x+3)(x-1) 可知A(-3,0),B(1,0), ∵OA=OC, ∴C(0,-3), 将C(0,-3)代入y=ax2+2ax-3a, 解得,a=1, ∴y=x2+2x-3. 1

△ 第二问:铅垂法求面积 【思路分析】 (1) 整合信息,分析特征: 由所求的目标入手分析,目标为 S △ACP 的最大值,分析 A ,C 为定点,P 为动点且 P 在直线 AC 下方的抛物线上运动,即 -3<x P <0; (2) 设计方案: 注意到三条线段都是斜放置的线段,需要借助横平竖直的线段来表达,所以考虑利用铅垂法来表达 S △ACP . 【过程示范】 如图,过点 P 作 PQ ∥y 轴,交 AC 于点 Q , 易得 l AC :y =-x -3 设点 P 的横坐标为 t ,则 P (t ,t 2+2t -3), ∵PQ ∥y 轴, ∴Q (t ,-t -3), ∴PQ =y Q -y P =-t -3-(t 2+2t -3)=-t 2-3t (-3<t <0), ∴ S = 1 PQ ? (x - x ) = - 3 t 2 - 9 t (-3<t <0) △ ACP 2 C A 2 2 ∵ - 3 < 0 , 2 ∴抛物线开口向下,且对称轴为直线t = - 3 , 2 ∴当t = - 3 时,S ACP 最大,为 27 . 2 8 第三问:平行四边形的存在性 【思路分析】 分析不变特征: 以 A ,B ,E ,F 为顶点的四边形中,A ,B 为定点,E ,F 为动点,定点 A ,B 连接成为定线段 AB . 分析形成因素: 要使这个四边形为平行四边形.首先考虑 AB 在平行四边形中的作用,四个顶点用逗号隔开,位置不确定,则 AB 既可以作边,也可以作对角线. 画图求解: 先根据平行四边形的判定来确定 EF 和 AB 之间应满足的条 2

一次函数与几何综合(一)(讲义及答案).

一次函数与几何综合(一)(讲义) ? 课前预习 1. 若一次函数经过点 A (2,-1)和点 B (4,3),则该一次函数的表达式为 . 2. 若直线 l 平行于直线 y =-2x -1,且过点(1,4),则直线 l 的表 达式为 . 3. 如图,一次函数的图象经过点 A ,且与正比例函数 y =-x 的图象交于点 B ,则该一次函数的表达式为 . 第 3 题图 第 4 题图 4. 如图,点 A 在直线 l 1:y =3x 上,且点 A 在第一象限,过点 A 作 y 轴的平行线交直线 l 2:y =x 于点 B . (1) 设点 A 的横坐标为 t ,则点 A 的坐标为 ,点 B 的坐标为 ,线段 AB 的长为 ;(用含 t 的式子表示) (2) 若 AB =4,则点 A 的坐标是 . ? 知识点睛 1. 一次函数与几何综合的处理思路: 从已知的表达式、坐标或几何图形入手,分析特征,通过坐标与横平竖直线段长、函数表达式相互转化解决问题. 2. 函数与几何综合问题中常见转化方式: (1) 借助表达式设出点坐标,将点坐标转化为横平竖直线段 长,结合几何特征利用线段长列方程; (2) 研究几何特征,考虑线段间关系,通过设线段长进而表 达点坐标,将点坐标代入函数表达式列方程. 表达线段长: 横平线段长,横坐标相减,右减左; 竖直线段长,纵坐标相减,上减下.

1

? 精讲精练 1. 如图,直线 y = - 3 x + 3 与 x 轴、y 轴交于 A ,B 两点,点 C 4 是 y 轴负半轴上一点,若 BA =BC ,则直线 AC 的表达式为 . 第 1 题图 第 2 题图 2. 如图,在平面直角坐标系中,一次函数 y =kx +b 的图象经过点A (-2,6),且与 x 轴相交于点 B ,与正比例函数 y =3x 的图象交于点 C ,点 C 的横坐标为 1,则△OBC 的面积为 . 3. 如图,直线l :y = 3 x + 6 与 y 轴相交于点 N ,直线l :y = kx -3 1 4 2 与直线l 1 相交于点 P ,与 y 轴相交于点 M ,若△PMN 的面积为 18,则直线l 2的表达式为 . 4. 如图,一次函数 y = 1 x + 2 的图象与 y 轴交于点 A ,与正比例 3 函数 y =kx 的图象交于第二象限内的点 B ,若 AB =OB ,则 k 的值为 .

重庆市中考数学题型复习 题型八 二次函数综合题 类型一 线段、周长最值问题练习

类型一线段、周长最值问题 1. 如图,抛物线y=-x2-2x+3交x轴于A,C两点(点A在C的左边),抛物线交y轴于点B,点D是抛物线的顶点. (1)求线段AB的长; (2)点P是直线AB上方的抛物线上一点(不与A,B重合),过点P作x轴的垂线,交x轴于点H,交直线AB于点F,作PG⊥AB于点G,求出△PFG周长的最大值; 2. 已知二次函数y=x2-x-2的图象和x轴相交于点A、B,与y轴交于点C,过直线BC

的下方抛物线上一动点P作PQ∥AC交线段BC于点Q,再过P作PE⊥x轴于点E,交BC于点D. (1)求直线AC的解析式; (2)求△PQD周长的最大值; (3)当△PQD的周长最大值时,在y轴上有两个动点M、N(M在N的上方),若MN=1,求PN +MN+AM的最小值. 第2题图 3. (2017重庆大渡口二模)如图,抛物线y=x2-2x-3与x轴交于A、B两点(点A在点B

的左侧),与y轴交于点C,该抛物线的顶点为D,对称轴交x轴于H. (1)求A、B两点的坐标; (2)设点P在x轴下方的抛物线上,当∠ABP=∠CDB时,求出点P的坐标; (3)以OB为边在第四象限内作等边△OBM,设点E为x轴正半轴上一动点(OE>OH),连接ME,把线段ME绕点M旋转60°得MF,求线段DF的长的最小值. 第3题图 4. (2017遵义改编)如图,抛物线y=ax2+bx-a-b(a<0,a、b为常数)与x轴交于A、C

两点,与y 轴交于B 点,直线AB 的函数关系式为y =89x +16 3. (1)求该抛物线的函数关系式与C 点坐标; (2)已知点M (m ,0)是线段OA 上的一个动点,过点M 作x 轴的垂线l 分别与直线AB 和抛物线交于D 、E 两点.当△BDE 恰好是以DE 为底边的等腰三角形时,动点M 相应位置记为点M ′,将OM ′绕原点O 顺时针旋转得到ON (旋转角在0°到90°之间); ⅰ:探究:线段OB 上是否存在定点P (P 不与O 、B 重合),无论ON 如何旋转,NP NB 始终保持 不变,若存在,试求出P 点坐标;若不存在,请说明理由; ⅱ:试求出此旋转过程中,(NA +3 4 NB )的最小值. 第4题图 5. (2016重庆渝中区校级二模)如图①,在平面直角坐标系中,已知抛物线y =- 33 x 2 -3

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

二次函数和几何综合压轴题题型归纳

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 课 题 函数的综合压轴题型归类 教学目标 1、 要学会利用特殊图形的性质去分析二次函数与特殊图形的关系 2、 掌握特殊图形面积的各种求法 重点、难点 1、 利用图形的性质找点 2、 分解图形求面积 教学内容

5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。

二次函数中考复习(题型分类练习)

二次函数题型分析练习 题型一:二次函数对称轴及顶点坐标的应用 1.(2015?兰州)在下列二次函数中,其图象对称轴为x =﹣2的是( ) A . y =(x +2)2 B .y =2x 2﹣2 C .y =﹣2x 2﹣2 D .y =2(x ﹣2)2 2.(2014?浙江)已知点A (a ﹣2b ,2﹣4ab )在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称 点坐标为( ) A.(﹣3,7) B.(﹣1,7) C.(﹣4,10) D.(0,10) 3.在同一坐标系中,图像与y=2x 2 的图像关于x 轴对称的函数是( ) A.212y x = B.212y x =- C.22y x =- D.2y x =- 4.二次函数 无论k 取何值,其图象的顶点都在( ) A.直线 上 B.直线 上 C.x 轴上 D.y 轴上 5.(2012?烟台)已知二次函数y=2(x ﹣3)2 +1.下列说法:①其图象的开口向下;②其图象的对称轴为直 线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( ) A .1个 B .2个 C .3个 D .4个 6.(2014?扬州)如图,抛物线y =ax 2+bx +c (a >0)的对称轴是过点(1,0)且平行于y 轴的直线,若点 P (4,0)在该抛物线上,则4a ﹣2b +c 的值为 . 7.已知二次函数 ,当 取 , ( ≠ )时,函数值相等,则当 取 时,函数值为 ( ) A. B . C. D.c 8.如图所示,已知二次函数 的图象经过(-1,0)和(0,-1)两点,则化简代数式 = . 题型二:平移

一次函数与几何图形综合题

一次函数与几何图形 1、 平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m 的值是多少? 2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。 3、如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线y=1/3x+b 恰好将矩形OABC 分为面积相等的两部分,试求b 的值。 4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C 在x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。 5、在平面直角坐标系中,已知A (1,4)、B (3,1),P 是坐标轴上一点,(1)当P 的坐标为多少时,AP+BP 取最小值,最小值为多少? 当P 的坐标为多少时,AP-BP 取最大值,最大

值为多少? 6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。 7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。 8、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A 点的坐标是(-1,0), (1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积; (2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。

9、在平面直角坐标系中,一次函数y=kx+b(b 小于0)的图像分别与x 轴、y 轴和直线x=4交于A 、B 、C ,直线x=4与x 轴交于点D ,四边形OBCD 的面积为10,若A 的横坐标为-1/2,求此一次函数的关系式 10、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y 轴交于点A ,且OA=OB :求这个一次函数解析式 11、如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,m )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S AOP =6. 求:(1)△COP 的面积 (2)求点A 的坐标及m 的值; (3)若S BOP =S DOP ,求直线BD 的解析式 12、一次函数y=- 3 3x+1的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内做等边△ABC

一次函数的与几何图形综合的题目(含答案)

一次函数与几何图形综合专题讲座 思想方法小结 : (1)函数方法. 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题. (2)数形结合法. 数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用. 知识规律小结 : (1)常数k ,b 对直线y =kx +b (k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b =0时,直线经过原点; 当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-k b >0时,直线与x 轴正半轴相交; 当b =0时,即- k b =0时,直线经过原点; 当k ,b 同号时,即-k b ﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b =0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b =0时,图象经过第二、四象限;

当b <O ,b <O 时,图象经过第二、三、四象限. (2)直线y =kx +b (k ≠0)与直线y =kx (k ≠0)的位置关系. 直线y =kx +b (k ≠0)平行于直线y =kx (k ≠0) 当b >0时,把直线y =kx 向上平移b 个单位,可得直线y =kx +b ; 当b ﹤O 时,把直线y =kx 向下平移|b |个单位,可得直线y =kx +b . (3)直线b 1=k 1x +b 1与直线y 2=k 2x +b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2?y 1与y 2相交; ②?? ?=≠2 12 1b b k k ?y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2) ; ③???≠=21 21,b b k k ?y 1与y 2平行; ④?? ?==2 121, b b k k ?y 1与y 2重合. 例题精讲: 1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB (1) 求AC (2) 在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC 于Q ,试探究BP 与PQ 的数量关系, 并证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M ,BP 交AC 于N ,下面两个结论:①(MQ +AC )/PM x y

二次函数题型分类总结(学生版)

二次函数的定义 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①y=x 2-4x+1; ②y=2x 2; ③y=2x 2 +4x ; ④y=-3x ; ⑤y=-2x -1; ⑥y=mx 2 +nx+p ; ⑦y =(4,x) ; ⑧y=-5x 。 2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2 +2t ,则t =4秒时,该物体所经过的路程为 。 3、若函数y=(m 2+2m -7)x 2 +4x+5是关于x 的二次函数,则m 的取值范围为 。 4、若函数y=(m -2)x m -2 +5x+1是关于x 的二次函数,则m 的值为 。 6、已知函数y=(m -1)x m2 +1 +5x -3是二次函数,求m 的值。 二次函数的对称轴、顶点、最值 (技法:如果解析式为顶点式y=a(x -h)2 +k ,则最值为k ;如果解析式为一般式y=ax 2 +bx+c 则最值为4ac-b 2 4a 1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。 2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2 +3x 的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y =ax 2 -6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( ) 5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2 +bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知抛物线y =x 2 +(m -1)x -14 的顶点的横坐标是2,则m 的值是_ . 7.抛物线y=x 2 +2x -3的对称轴是 。 8.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m = 。 9.当n =______,m =______时,函数y =(m +n)x n +(m -n)x 的图象是抛物线,且其顶点在原点,此抛物线的开口________. 10.已知二次函数y=x 2-2ax+2a+3,当a= 时,该函数y 的最小值为0. 11.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = ______ 。 12.已知二次函数y=x 2-4x+m -3的最小值为3,则m = 。 函数y=ax 2 +bx+c 的图象和性质 1.抛物线y=x 2 +4x+9的对称轴是 。 2.抛物线y=2x 2 -12x+25的开口方向是 ,顶点坐标是 。 3.试写出一个开口方向向上,对称轴为直线x =-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 。 4.通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)y=12 x 2-2x+1 ; (2)y=-3x 2 +8x -2; (3)y=-14 x 2+x -4 5.把抛物线y=x 2+bx+c 的图象向右平移3个单位,在向下平移2个单位,所得图象的解析式是y=x 2 -3x+5,试求b 、c 的值。

浅说函数与几何综合题的解题策略及复习

浅说函数与几何综合题的解题策略及复习 Last revision on 21 December 2020

浅说函数与几何综合题的解题策略及复习 函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;这一特点在孝感市近三年的中考数学试卷中表现得尤为突出;如2001年的中考压轴题是以直角三角形为背景,揉合一次函数、相似形、直线与圆的位置关系等知识构成;2002年的中考压轴题是以矩形为背景,揉合轴对称、二次函数、几何证明等知识构成;2003年的压轴题是以二次函数为背景,揉合直角三角形的知识构成;因此,将函数知识与几何知识有机结合编制出综合题作为压轴题是我市中考命题的一大特点,也是今后中考命题的一大趋势; 函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题;本文特从2003年各地的中考试题中略选几例,谈一谈解决这类问题的策略和复习方法,以期达到抛砖引玉的目的。 一、函数与几何综合题例析 (一)“几函”问题: 1、线段与线段之间的函数关系: 由于这类试题的主要要素是几何图形,因此,在解决此类问题时首先要观察几何图形的特征,然后依据相关图形的性质(如直角三角形的性质、特殊四边形的性质、平行线分线段成比例定理及其推论、相似三角形的性质、圆的基本性质、圆中的比例线段等等)找出几何元素之间的联系,最后将它们的联系用数学式子表示出来,并整理成函数关系式,在此函数关系式的基础上再来解决其它的问题;解决此类问题时,要特别注意自变量的 取值范围。 例1 如图,AB是半圆的直径,O为圆心 AB=6,延长BA到F,使FA=AB,若P为线段 AF上的一个动点(不与A重合),过P点作半 圆的切线,切点为C,过B点作BE⊥PC交PC 的延长线于E,设AC=x,AC+BE=y,求y与x 的函数关系式及x的取值范围。(2003年山东省烟台市中考题)O

反比例函数与几何图形的综合

代几结合专题:反比例函数与几何图形的综合(选做) ——代几结合,掌握中考风向标 ◆类型一 与三角形的综合 1.(2016·云南中考)位于第一象限的点E 在反比例函数y =k x 的图象上,点F 在x 轴的 正半轴上,O 是坐标原点.若EO =EF ,△EOF 的面积等于2,则k 的值为( ) A .4 B .2 C .1 D .-2 2.(2016·菏泽中考)如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数y =6 x 在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC -S △BAD 为( ) A .36 B .12 C .6 D .3 3.如图,点A 在双曲线y =5x 上,点B 在双曲线y =8 x 上,且AB ∥x 轴,则△OAB 的 面积等于________. 第3题图 第4题图 4.(2016·包头中考)如图,在平面直角坐标系中,点A 在第二象限内,点B 在x 轴上,∠AOB =30°,AB =BO ,反比例函数y =k x (x <0)的图象经过点A ,若S △AOB =3,则k 的值为________. 5.(2016·宁波中考)如图,点A 为函数y =9 x (x >0)图象上一点,连接OA ,交函数y =1 x (x >0)的图象于点B ,点C 是x 轴上一点,且AO =AC ,则△ABC 的面积为________.

第5题图 第6题图 6.★如图,若双曲线y =k x (k >0)与边长为3的等边△AOB (O 为坐标原点)的边OA 、 AB 分别交于C 、D 两点,且OC =2BD ,则k 的值为________. 7.(2016·宁夏中考)如图,Rt △ABO 的顶点O 在坐标原点,点B 在x 轴上,∠ABO =90°,∠AOB =30°,OB =23,反比例函数y =k x (x >0)的图象经过OA 的中点C ,交 AB 于点D . (1)求反比例函数的关系式; (2)连接CD ,求四边形CDBO 的面积. 8.(2016·大庆中考)如图,P 1、P 2是反比例函数y =k x (k >0)在第一象限图象上的两点,点A 1的坐标为(4,0).若△P 1OA 1与△P 2A 1A 2均为等腰直角三角形,其中点P 1、P 2为直角顶点. (1)求反比例函数的解析式; (2)①求P 2的坐标;②根据图象直接写出在第一象限内当x 满足什么条件时,经过点P 1、 P 2的一次函数的函数值大于反比例函数y =k x 的函数值.

苏科版数学九下第五章二次函数综合经典题归类复习(附练习及解析)

2015年初三数学《二次函数综合题》归类复习 1.图像与性质: 例1.(2014年四川资阳,第24题12分)如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1. (1)求抛物线的解析式; (2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标; (3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S. 考点:二次函数综合题. 分析:(1)根据对称轴可知,抛物线y=ax2+bx+c与x轴的另一个交点为(﹣1,0),根据待定系数法可得抛物线的解析式为y=﹣x2+2x+3. (2)分三种情况:①当MA=MB时;②当AB=AM时;③当AB=BM时;三种情况讨论可得点M的坐标. (3)平移后的三角形记为△PEF.根据待定系数法可得直线AB的解析式为y=﹣x+3.易得直线EF的解析式为y=﹣x+3+m.根据待定系数法可得直线AC的解析式.连结BE,直线BE交AC于G,则G(,3).在△AOB沿x 轴向右平移的过程中.分二种情况:①当0<m≤时;②当<m<3时;讨论可得用m的代数式表示S. 解:(1)由题意可知,抛物线y=ax2+bx+c与x轴的另一个交点为(﹣1,0),则,解得. 故抛物线的解析式为y=﹣x2+2x+3. (2)①当MA=MB时,M(0,0);②当AB=AM时,M(0,﹣3);③当AB=BM时,M(0,3+3)或M(0,3﹣3).所以点M的坐标为:(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3). (3)平移后的三角形记为△PEF.设直线AB的解析式为y=kx+b,则 ,解得.则直线AB的解析式为y=﹣x+3. △AOB沿x轴向右平移m个单位长度(0<m<3)得到△PEF,易得直线EF的解析式为y=﹣x+3+m. 设直线AC的解析式为y=k′x+b′,则

一次函数与几何图形综合题10及答案(供参考)

1文档来源为: . 专题训练:一次函数与几何图形综合 1、直线y=-x+2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC=OB (1) 求AC 的解析式; (2) 在OA 的延长线上任取一点P,作PQ ⊥BP,交直线AC 于Q,试探究BP 与PQ 的数量关系,并 证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M,BP 交AC 于N,下面两个结论:①(MQ+AC)/PM 的值不 变;②(MQ-AC)/PM 的值不变,期中只有一个正确结论,请选择并加以证明。 2.(本题满分12分)如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。 (1)当OA=OB 时,试确定直线L 的解析式; (2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM=4,BN=3,求MN 的长。 (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。 问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。 3、如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+, x y o B A C P Q x y o B A C P Q M 第2题图① 2题图② 题图③

2文档来源为:从网络收集整理.word 版本可编辑. (1)求直线2l 的解析式;(3分) (2)过A 点在△ABC 的外部作一条直线3l ,过点B 作BE ⊥3l 于E,过点C 作CF ⊥3l 于F 分别,请画出图形并求证:BE +CF =EF (3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P ,过P 点的直线与AC 边的延长线相交于点Q ,与y 轴相交与点M ,且BP =CQ ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值。在 这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。(6分) 4.如图,在平面直角坐标系中,A (a ,0),B (0,b ),且a 、 b 满足 . (1)求直线AB 的解析式; (2)若点M 为直线y =mx 上一点,且△ABM 是以AB 为底的等腰直角三角形,求m 值; (3)过A 点的直线交y 轴于负半轴于P ,N 点的横坐标为-1,过N 点的直线 交AP 于点M ,试证明的值为定值. 5.如图,直线AB :y =-x -b 分别与x 、y 轴交于A (6,0)、B 两点,过点B 的直线交x 轴负半轴于C ,且OB :OC=3:1。 (1)求直线BC 的解析式: (2)直线EF :y =kx-k (k ≠0)交AB 于E ,交BC 于点F ,交x 轴于D ,是否存在这样的直线EF ,使得S △EBD =S △FBD ?若 存在,求出k 的值;若不存在,说明理由? (3)如图,P 为A 点右侧x 轴上的一动点,以P 为直角顶点,BP 为腰在第一象限内作等腰直角△BPQ ,连接QA 并延长交y轴于点K ,当P 点运动时,K 点的位置是否发现变化?若不变,请求出它的坐标;如果变化,请说明理由。 C B A 0x y Q M P C B A x y

相关文档
相关文档 最新文档