文档库 最新最全的文档下载
当前位置:文档库 › 主流分布式文件系统比较

主流分布式文件系统比较

主流分布式文件系统比较
主流分布式文件系统比较

主流分布式文件系统比较

分布式文件系统MFS(moosefs)实现存储共享

由于用户数量的不断攀升,我对访问量大的应用实现了可扩展、高可靠的集群部署(即lvs+keepalived的方式),但仍然有用户反馈访问慢的问题。通过排查个服务器的情况,发现问题的根源在于共享存储服务器NFS。在我这个网络环境里,N个服务器通过nfs方式共享一个服务器的存储空间,使得 NFS服务器不堪重负。察看系统日志,全是nfs服务超时之类的报错。一般情况下,当nfs客户端数目较小的时候,NFS性能不会出现问题;一旦NFS服务器数目过多,并且是那种读写都比较频繁的操作,所得到的结果就不是我们所期待的。 下面是某个集群使用nfs共享的示意图: 这种架构除了性能问题而外,还存在单点故障,一旦这个NFS服务器发生故障,所有靠共享提供数据的应用就不再可用,尽管用rsync方式同步数据到另外一个服务器上做nfs服务的备份,但这对提高整个系统的性能毫无帮助。基于这样一种需求,我们需要对nfs服务器进行优化或采取别的解决方案,然而优化并不能对应对日益增多的客户端的性能要求,因此唯一的选择只能是采取别的解决方案了;通过调研,分布式文件系统是一个比较合适的选择。采用分布式文件系统后,服务器之间的数据访问不再是一对多的关系(1个NFS服务器,多个NFS 客户端),而是多对多的关系,这样一来,性能大幅提升毫无问题。 到目前为止,有数十种以上的分布式文件系统解决方案可供选择,如 lustre,hadoop,Pnfs等等。我尝试了 PVFS,hadoop,moosefs这三种应用,参看了lustre、KFS等诸多技术实施方法,最后我选择了moosefs(以下简称MFS)

这种分布式文件系统来作为我的共享存储服务器。为什么要选它呢?我来说说我的一些看法: 1、实施起来简单。MFS的安装、部署、配置相对于其他几种工具来说,要简单和容易得多。看看lustre 700多页的pdf文档,让人头昏吧。 2、不停服务扩容。MFS框架做好后,随时增加服务器扩充容量;扩充和减少容量皆不会影响现有的服务。注:hadoop也实现了这个功能。 3、恢复服务容易。除了MFS本身具备高可用特性外,手动恢复服务也是非常快捷的,原因参照第1条。 4、我在实验过程中得到作者的帮助,这让我很是感激。 MFS文件系统的组成 1、元数据服务器。在整个体系中负责管理管理文件系统,目前MFS只支持一个元数据服务器master,这是一个单点故障,需要一个性能稳定的服务器来充当。希望今后MFS能支持多个master服务器,进一步提高系统的可靠性。 2、数据存储服务器chunkserver。真正存储用户数据的服务器。存储文件时,首先把文件分成块,然后这些块在数据服务器chunkserver之间复制(复制份数可以手工指定,建议设置副本数为3)。数据服务器可以是多个,并且数量越多,可使用的“磁盘空间”越大,可靠性也越高。 3、客户端。使用MFS文件系统来存储和访问的主机称为MFS的客户端,成功挂接MFS文件系统以后,就可以像以前使用NFS一样共享这个虚拟性的存储了。 元数据服务器安装和配置

分布式文件系统Hadoop HDFS与传统文件系统Linux FS的比较与分析

6苏州大学学报(工科版)第30卷 图1I-IDFS架构 2HDFS与LinuxFS比较 HDFS的节点不管是DataNode还是NameNode都运行在Linux上,HDFS的每次读/写操作都要通过LinuxFS的读/写操作来完成,从这个角度来看,LinuxPS是HDFS的底层文件系统。 2.1目录树(DirectoryTree) 两种文件系统都选择“树”来组织文件,我们称之为目录树。文件存储在“树叶”,其余的节点都是目录。但两者细节结构存在区别,如图2与图3所示。 一二 Root \ 图2ItDFS目录树围3LinuxFS目录树 2.2数据块(Block) Block是LinuxFS读/写操作的最小单元,大小相等。典型的LinuxFSBlock大小为4MB,Block与DataN-ode之间的对应关系是固定的、天然存在的,不需要系统定义。 HDFS读/写操作的最小单元也称为Block,大小可以由用户定义,默认值是64MB。Block与DataNode的对应关系是动态的,需要系统进行描述、管理。整个集群来看,每个Block存在至少三个内容一样的备份,且一定存放在不同的计算机上。 2.3索引节点(INode) LinuxFS中的每个文件及目录都由一个INode代表,INode中定义一组外存上的Block。 HDPS中INode是目录树的单元,HDFS的目录树正是在INode的集合之上生成的。INode分为两类,一类INode代表文件,指向一组Block,没有子INode,是目录树的叶节点;另一类INode代表目录,没有Block,指向一组子INode,作为索引节点。在Hadoop0.16.0之前,只有一类INode,每个INode都指向Block和子IN-ode,比现有的INode占用更多的内存空间。 2.4目录项(Dentry) Dentry是LinuxFS的核心数据结构,通过指向父Den姆和子Dentry生成目录树,同时也记录了文件名并 指向INode,事实上是建立了<FileName,INode>,目录树中同一个INode可以有多个这样的映射,这正是连

Hadoop分布式文件系统:架构和设计

Hadoop分布式文件系统:架构和设计 引言 (2) 一前提和设计目标 (2) 1 hadoop和云计算的关系 (2) 2 流式数据访问 (2) 3 大规模数据集 (2) 4 简单的一致性模型 (3) 5 异构软硬件平台间的可移植性 (3) 6 硬件错误 (3) 二HDFS重要名词解释 (3) 1 Namenode (4) 2 secondary Namenode (5) 3 Datanode (6) 4 jobTracker (6) 5 TaskTracker (6) 三HDFS数据存储 (7) 1 HDFS数据存储特点 (7) 2 心跳机制 (7) 3 副本存放 (7) 4 副本选择 (7) 5 安全模式 (8) 四HDFS数据健壮性 (8) 1 磁盘数据错误,心跳检测和重新复制 (8) 2 集群均衡 (8) 3 数据完整性 (8) 4 元数据磁盘错误 (8) 5 快照 (9)

引言 云计算(cloud computing),由位于网络上的一组服务器把其计算、存储、数据等资源以服务的形式提供给请求者以完成信息处理任务的方法和过程。在此过程中被服务者只是提供需求并获取服务结果,对于需求被服务的过程并不知情。同时服务者以最优利用的方式动态地把资源分配给众多的服务请求者,以求达到最大效益。 Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统。它和现有的分布式文件系统有很多共同点。但同时,它和其他的分布式文件系统的区别也是很明显的。HDFS是一个高度容错性的系统,适合部署在廉价的机器上。HDFS 能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。 一前提和设计目标 1 hadoop和云计算的关系 云计算由位于网络上的一组服务器把其计算、存储、数据等资源以服务的形式提供给请求者以完成信息处理任务的方法和过程。针对海量文本数据处理,为实现快速文本处理响应,缩短海量数据为辅助决策提供服务的时间,基于Hadoop云计算平台,建立HDFS分布式文件系统存储海量文本数据集,通过文本词频利用MapReduce原理建立分布式索引,以分布式数据库HBase 存储关键词索引,并提供实时检索,实现对海量文本数据的分布式并行处理.实验结果表 明,Hadoop框架为大规模数据的分布式并行处理提供了很好的解决方案。 2 流式数据访问 运行在HDFS上的应用和普通的应用不同,需要流式访问它们的数据集。HDFS的设计中更多的考虑到了数据批处理,而不是用户交互处理。比之数据访问的低延迟问题,更关键的在于数据访问的高吞吐量。 3 大规模数据集 运行在HDFS上的应用具有很大的数据集。HDFS上的一个典型文件大小一般都在G字节至T字节。因此,HDFS被调节以支持大文件存储。它应该能提供整体上高的数据传输带宽,能在一个集群里扩展到数百个节点。一个单一的HDFS实例应该能支撑数以千万计的文件。

分布式存储系统的一些理解和实践

分布式存储系统的一些理解和实践 张建伟 一、分布式存储系统介绍 1.简介 互联网数据规模越来越大,并发请求越来越高,传统的关系数据库,在很多使用场景下并不能很好的满足需求。分布式存储系统应运而生。它有良好的扩展性,弱化关系数据模型,甚至弱化一致性要求,以得到高并发和高性能。按功能分类,主要有以下几种: ?分布式文件系统 hdfs ceph glusterfs tfs ?分布式对象存储 s3(dynamo) ceph bcs(mola) ?分布式表格存储 hbase cassandra oceanbase ?块存储 ceph ebs(amazon) 分布式存储系统,包括分布式系统和单机存储两部分;不同的系统,虽在功能支持、实现机制、实现语言等方面是有差异的,但其设计时,关注的关键问题是基本相同的。单机存储的主流实现方式,有hash引擎、B+树引擎和LSM树(Log Structured Merge Tree)三种,不展开介绍。本文第二章节,主要结合hbase、cassandra和ceph,讲下分布式系统设计部分,需要关注的关键问题。 2.适用场景 各分布式存储系统功能定位不尽相同,但其适用和不适用的场景,在一定程度上是相同的,如下。

1)适用 大数据量(大于100T,乃至几十PB) key/value或者半结构化数据 高吞吐 高性能 高扩展 2)不适用 Sql查询 复杂查询,如联表查询 复杂事务 二、分布式存储系统设计要点 1.数据分布 分布式存储,可以由成千甚至上万台机器组成,以实现海量数据存储和高并发。那它最先要解决的就是数据分布问题,即哪些数据存储在哪些机器(节点)上。常用的有hash类算法和用meta表映射两种方式。一般完全分布式的设计(无master节点),会用hash类算法;而集中式的设计(有master节点)用meta表映射的方式。两者各有优缺点,后面讲到具体问题时再做比较。 1)一致性hash 将存储节点和操作的key(key唯一标识存储的object,有时也叫object name)都hash到0~2的32次方区间。映射到如下环中的某个位置。沿操作key的位置顺时针找到的第一个节点即为此key的primary存储节点。如下图所示:

分布式文件存储方案

1DFS系统 (DFS) 是AFS的一个版本,作为开放软件基金会(OSF)的分布 分布式文件系统 式计算环境(DCE)中的文件系统部分。 如果文件的访问仅限于一个用户,那么分布式文件系统就很容易实现。可惜的是,在许多网络环境中这种限制是不现实的,必须采取并发控制来实现文件的多用户访问,表现为如下几个形式: 只读共享任何客户机只能访问文件,而不能修改它,这实现起来很简单。 受控写操作采用这种方法,可有多个用户打开一个文件,但只有一个用户进行写修改。而该用户所作的修改并不一定出现在其它已打开此文件的用户的屏幕上。 并发写操作这种方法允许多个用户同时读写一个文件。但这需要操作系统作大量的监控工作以防止文件重写,并保证用户能够看到最新信息。这种方法即使实现得很好,许多环境中的处理要求和网络通信量也可能使它变得不可接受。 NFS和AFS的区别 NFS和AFS的区别在于对并发写操作的处理方法上。当一个客户机向服务器请求一个文件(或数据库记录),文件被放在客户工作站的高速缓存中,若另一个用户也请求同一文件,则它也会被放入那个客户工作站的高速缓存中。当两个客户都对文件进行修改时,从技术上而言就存在着该文件的三个版本(每个客户机一个,再加上服务器上的一个)。有两种方法可以在这些版本之间保持同步: 无状态系统在这个系统中,服务器并不保存其客户机正在缓存的文件的信息。因此,客户机必须协同服务器定期检查是否有其他客户改变了自己正在缓存的文件。这种方法在大的环境中会产生额外的LAN通信开销,但对小型LAN来说,这是一种令人满意的方法。NFS 就是个无状态系统。 回呼(Callback)系统在这种方法中,服务器记录它的那些客户机的所作所为,并保留它们正在缓存的文件信息。服务器在一个客户机改变了一个文件时使用一种叫回叫应答(callbackpromise)的技术通知其它客户机。这种方法减少了大量网络通信。AFS(及OSFDCE的DFS)就是回叫系统。客户机改变文件时,持有这些文件拷贝的其它客户机就被回叫并通知这些改变。 无状态操作在运行性能上有其长处,但AFS通过保证不会被回叫应答充斥也达到了这一点。方法是在一定时间后取消回叫。客户机检查回叫应答中的时间期限以保证回叫应答是当前有效的。回叫应答的另一个有趣的特征是向用户保证了文件的当前有效性。换句话说,若

HDFS分布式文件系统具备的优点

HDFS分布式文件系统具备的优点 随着互联网数据规模的不断增大,对文件存储系统提出了更高的要求,需要更大的容量、更好的性能以及更高安全性的文件存储系统,与传统分布式文件系统一样,HDFS分布式文件系统也是通过计算机网络与节点相连,但也有优于传统分布式文件系统的优点。 1. 支持超大文件 HDFS分布式文件系统具有很大的数据集,可以存储TB或PB级别的超大数据文件,能够提供比较高的数据传输带宽与数据访问吞吐量,相应的,HDFS开放了一些POSIX的必须接口,容许流式访问文件系统的数据。 2. 高容错性能 HDFS面向的是成百上千的服务器集群,每台服务器上存储着文件系统的部分数据,在集群的环境中,硬件故障是常见的问题,这就意味着总是有一部分硬件因各种原因而无法工作,因此,错误检测和快速、自动的恢复是HDFS最核心的架构目标,因此,HDFS具有高度的容错性。 3. 高数据吞吐量 HDFS采用的是“一次性写,多次读”这种简单的数据一致性模型,在HDFS 中,一个文件一旦经过创建、写入、关闭后,一般就不需要修改了,这样简单的一致性模型,有利于提高吞吐量。 4. 流式数据访问 HDFS的数据处理规模比较大,应用一次需要访问大量的数据,同时这些应用一般都是批量处理,而不是用户交互式处理,应用程序能以流的形式访问数据

集。 Hadoop已经迅速成长为首选的、适用于非结构化数据的大数据分析解决方案,HDFS分布式文件系统是Hadoop的核心组件之一,保证了大数据的可靠存储,与MapReduce配合使用,可以对结构化和复杂大数据进行快速、可靠分析,从而为企业做出更好的决策,促进收入增长,改善服务,降低成本提供有力支撑!

分布式文件系统架构设计(20201126073806)

分布式文件系统架构设计 1. 前言...................................................... 3.

2. HDFS1 (3) 3. HDFS2 (5) 4. HDFS3 ............................................................................................. 1 1 5. 结语..................................................... 1.5

1. 刖言 Hadoop 是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。 Hadoop 实现了一个分布式文件系统(Hadoop Distributed File System ),简称HDFS,解 决了海量数据存储的问题;实现了一个分布式计算引擎MapReduce ,解决了海量数据如何计 算的问题;实现了一个分布式资源调度框架YARN,解决了资源调度,任务管理的问题。而我 们今天重点给大家介绍的是Hadoop 里享誉世界的优秀的分布式文件系统-HDFS。 Hadoop 重要的比较大的版本有:Hadoop1 ,Hadoop2 , hadoop3 。同时也相对应的有HDFS1 ,HDFS2,HDFS3三个大版本。后面的HDFS的版本,都是对前一个版本的架构进行了调整优 化,而在这个调整优化的过程当中都是解决上一个版本的架构缺陷,然而这些低版本的架构缺陷也是我们在平时工作当中会经常遇到的问题,所以这篇文章一个重要的目的就是通过给大家介绍HDFS不同版本的架构演进,通过学习高版本是如何解决低版本的架构问题从而来提升我 们的系统架构能力。 2. HDFS1

分布式文件系统DFS使用方法总结(超详细)

DFS使用方法总结(超详细) 使用分布式文件系统 (DFS),系统管理员可以使用户方便地访问和管理物理上分布在网络各处的文件。通过DFS,可以使分布在多个服务器上的文件如同位于网络上的一个位置一样显示在用户面前。 您可采用两种方式实施分布式文件系统:一种是独立的根目录分布式文件系统,另一种是域分布式文件系统。 独立的DFS根目录: 不使用 Active Directory。 至多只能有一个根目录级别的目标。 使用文件复制服务不能支持自动文件复制。 通过服务器群集支持容错。 域DFS根目录: 必须宿主在域成员服务器上。 使它的DFS名称空间自动发布到 Active Directory 中。 可以有多个根目录级别的目标。 通过 FRS 支持自动文件复制。 通过 FRS 支持容错。 分布式文件系统 (DFS) 映射由一个DFS根目录、一个或多个DFS链接以及指向一个或多个目标的引用组成。 DFS根目录所驻留的域服务器称为主服务器。通过在域中的其他服务器上创建根目标,可以复制DFS根目录。这将确保在主服务器不可用时,文件仍可使用。因为域分布式文件系统的主服务器是域中的成员服务器,所以默认情况下,DFS映射将自动发布到 Active Directory 中,从而提供了跨越主服务器的DFS拓扑同步。这反过来又对DFS根目录提供了容错性,并支持目标的可选复制。通过向DFS根目录中添加DFS链接,您可扩展DFS映射。Windows Server 2003 家族对DFS映射中分层结构的层数的唯一限制是对任何文件路径最多使用 260 个字符。新DFS链接可以引用具有或没有子文件夹的目标,或引用整个Windows Server 2003 家族卷。 创建DFS根目录 使用DFS管理工具,您可以指定某个目标,指派它为DFS根目录。除了访问该目标外,用户还可以访问该目标的任何子文件夹。使用 Windows Server 2003 Enterprise Edition 或Windows Server 2003 Datacenter Edition 时,您可在单独计算机上作为多个DFS根目录的宿主。由于DFS Active Directory 对象的大小,大型的基于域的DFS名称空间可能会显著地增加网络传输量。因此,建议您为域根使用的DFS链接的个数少于 5000。建议在运行 Windows Server 2003 的服务器上的独立的根目录的最大名称空间为 50,000 个链接。 如何创建DFS根目录: 1.打开分布式文件系统。 2.在“操作”菜单上,单击“新建根目录”。

分布式文件系统架构设计

分布式文件系统架构设计

目录 1.前言 (3) 2.HDFS1 (3) 3.HDFS2 (5) 4.HDFS3 (11) 5.结语 (15)

1.前言 Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。 Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS,解决了海量数据存储的问题;实现了一个分布式计算引擎MapReduce,解决了海量数据如何计算的问题;实现了一个分布式资源调度框架YARN,解决了资源调度,任务管理的问题。而我们今天重点给大家介绍的是Hadoop里享誉世界的优秀的分布式文件系统-HDFS。 Hadoop重要的比较大的版本有:Hadoop1,Hadoop2,hadoop3。同时也相对应的有HDFS1,HDFS2,HDFS3三个大版本。后面的HDFS的版本,都是对前一个版本的架构进行了调整优化,而在这个调整优化的过程当中都是解决上一个版本的架构缺陷,然而这些低版本的架构缺陷也是我们在平时工作当中会经常遇到的问题,所以这篇文章一个重要的目的就是通过给大家介绍HDFS不同版本的架构演进,通过学习高版本是如何解决低版本的架构问题从而来提升我们的系统架构能力。 2.HDFS1

最早出来投入商业使用的的Hadoop的版本,我们称为Hadoop1,里面的HDFS就是HDFS1,当时刚出来HDFS1,大家都很兴奋,因为它解决了一个海量数据如何存储的问题。HDFS1用的是主从式架构,主节点只有一个叫:Namenode,从节点有多个叫:DataNode。 我们往HDFS上上传一个大文件,HDFS会自动把文件划分成为大小固定的数据块(HDFS1的时候,默认块的大小是64M,可以配置),然后这些数据块会分散到存储的不同的服务器上面,为了保证数据安全,HDFS1里默认每个数据块都有3个副本。Namenode是HDFS的主节点,里面维护了文件系统的目录树,存储了文件系统的元数据信息,用户上传文件,下载文件等操作都必须跟NameNode进行交互,因为它存储了元数据信息,Namenode为了能快速响应用户的操作,启动的时候就把元数据信息加载到了内存里面。DataNode是HDFS的从节点,干的活就很简单,就是存储block文件块。

3种分布式文件系统

第一部分CEPH 1.1 特点 Ceph最大的特点是分布式的元数据服务器通过CRUSH,一种拟算法来分配文件的locaiton,其核心是 RADOS(resilient automatic distributed object storage),一个对象集群存储,本身提供对象的高可用,错误检测和修复功能。 1.2 组成 CEPH文件系统有三个主要模块: a)Client:每个Client实例向主机或进程提供一组类似于POSIX的接口。 b)OSD簇:用于存储所有的数据和元数据。 c)元数据服务簇:协调安全性、一致性与耦合性时,管理命名空间(文件名和 目录名) 1.3 架构原理 Client:用户 I/O:输入/输出 MDS:Metadata Cluster Server 元数据簇服务器 OSD:Object Storage Device 对象存储设备

Client通过与OSD的直接通讯实现I/O操作。这一过程有两种操作方式: 1. 直接通过Client实例连接到Client; 2. 通过一个文件系统连接到Client。 当一个进行打开一个文件时,Client向MDS簇发送一个请求。MDS通过文件系统层级结构把文件名翻译成文件节点(inode),并获得节点号、模式(mode)、大小与其他文件元数据。注意文件节点号与文件意义对应。如果文件存在并可以获得操作权,则MDS通过结构体返回节点号、文件长度与其他文件信息。MDS同时赋予Client操作权(如果该Client还没有的话)。目前操作权有四种,分别通过一个bit表示:读(read)、缓冲读(cache read)、写(write)、缓冲写(buffer write)。在未来,操作权会增加安全关键字,用于client向OSD证明它们可以对数据进行读写(目前的策略是全部client 都允许)。之后,包含在文件I/O中的MDS被用于限制管理能力,以保证文件的一致性与语义的合理性。 CEPH产生一组条目来进行文件数据到一系列对象的映射。为了避免任何为文件分配元数据的需要。对象名简单的把文件节点需要与条目号对应起来。对象复制品通过CRUSH(著名的映射函数)分配给OSD。例如,如果一个或多个Client打开同一个文件进行读操作,一个MDS会赋予他们读与缓存文件内容的能力。通过文件节点号、层级与文件大小,Client可以命名或分配所有包含该文件数据的对象,并直接从OSD簇中读取。任何不存在的对象或字节序列被定义为文件洞或0。同样的,如果Client打开文件进行写操作。它获得使用缓冲写的能力。任何位置上的数据都被写到合适的OSD上的合适的对象中。Client 关闭文件时,会自动放弃这种能力,并向MDS提供新的文件大小(写入时的最大偏移)。它重新定义了那些存在的并包含文件数据的对象的集合。 CEPH的设计思想有一些创新点主要有以下两个方面: 第一,数据的定位是通过CRUSH算法来实现的。

分布式文件系统设计方案

分布式文件系统(DFS)解决方案 一“分布式文件系统(DFS)”概述 DFS并不是一种文件系统,它是Windows Server System上的一种客户/服务器模式的网络服务。它可以让把局域网中不同计算机上的不同的文件共享按照其功能组织成一个逻辑的分级目录结构。系统管理员可以利用分布式文件系统(DFS),使用户访问和管理那些物理上跨网络分布的文件更加容易。通过DFS,可以使分布在多个服务器或者不同网络位置的文件在用户面前显示时,就如同位于网络上的一个位置。用户在访问文件时不再需要知道和指定它们的实际物理位置。 例如,如果您的销售资料分散在某个域中的多个存储设备上,您可以利用DFS 使其显示时就好像所有的资料都位于同一网络共享下,这样用户就不必到网络上的多个位置去查找他们需要的信息。 二部署使用“分布式文件系统(DFS)”的原因 ●访问共享文件夹的用户分布在一个站点的多个位置或多个站点上; ●大多数用户都需要访问多个共享文件夹; ●通过重新分布共享文件夹可以改善服务器的负载平衡状况; ●用户需要对共享文件夹的不间断访问;

●您的组织中有供内部或外部使用的Web 站点; ●用户访问共享文件需要权限。 三“分布式文件系统(DFS)”类型 可以按下面两种方式中的任何一种来实施分布式文件系统: 1.作为独立的分布式文件系统。 ●不使用Active Directory。 ●至多只能有一个根目录级别的目标。 ●使用文件复制服务不能支持自动文件复制。 ●通过服务器群集支持容错。 2.作为基于域的分布式文件系统。 ●必须宿主在域成员服务器上。 ●使它的DFS 名称空间自动发布到Active Directory 中。 ●可以有多个根目录级别的目标。 ●通过FRS 支持自动文件复制。 ●通过FRS 支持容错。 四分布式文件系统特性 除了Windows Server System 中基于服务器的DFS 组件外,还有基于客户的DFS 组件。DFS 客户程序可以将对DFS 根目录或DFS 链接的引用缓存一段时间,该时间由管理员指定。此存储和读取过程对于

7种分布式文件系统介绍

FastDFS (7) Fastdfs简介 (7) Fastdfs系统结构图 (7) FastDFS和mogileFS的对比 (8) MogileFS (10) Mogilefs简介 (10) Mogilefs组成部分 (10) 0)数据库(MySQL)部分 (10) 1)存储节点 (11) 2)trackers(跟踪器) (11) 3)工具 (11) 4)Client (11) Mogilefs的特点 (12) 1. 应用层——没有特殊的组件要求 (12) 2. 无单点失败 (12) 3. 自动的文件复制 (12) 4. “比RAID好多了” (12) 5. 传输中立,无特殊协议 (13) 6.简单的命名空间 (13) 7.不用共享任何东西 (13) 8.不需要RAID (13)

9.不会碰到文件系统本身的不可知情况 (13) HDFS (14) HDFS简介 (14) 特点和目标 (14) 1. 硬件故障 (14) 2. 流式的数据访问 (14) 3. 简单一致性模型 (15) 4. 通信协议 (15) 基本概念 (15) 1. 数据块(block) (15) 2. 元数据节点(Namenode)和数据节点(datanode) . 16 2.1这些结点的用途 (16) 2.2元数据节点文件夹结构 (17) 2.3文件系统命名空间映像文件及修改日志 (18) 2.4从元数据节点的目录结构 (21) 2.5数据节点的目录结构 (21) 文件读写 (22) 1.读取文件 (22) 1.1 读取文件示意图 (22) 1.2 文件读取的过程 (23) 2.写入文件 (24) 2.1 写入文件示意图 (24)

Hadoop分布式文件系统方案

Hadoop分布式文件系统:架构和设计要点 Hadoop分布式文件系统:架构和设计要点 原文:https://www.wendangku.net/doc/325264043.html,/core/docs/current/hdfs_design.html 一、前提和设计目标 1、硬件错误是常态,而非异常情况,HDFS可能是有成百上千的server组成,任何一个组件都有可能一直失效,因此错误检测和快速、自动的恢复是HDFS的核心架构目标。 2、跑在HDFS上的应用与一般的应用不同,它们主要是以流式读为主,做批量处理;比之关注数据访问的低延迟问题,更关键的在于数据访问的高吞吐量。 3、HDFS以支持大数据集合为目标,一个存储在上面的典型文件大小一般都在千兆至T字节,一个单一HDFS实例应该能支撑数以千万计的文件。 4、 HDFS应用对文件要求的是write-one-read-many访问模型。一个文件经过创建、写,关闭之后就不需要改变。这一假设简化了数据一致性问题,使高吞吐量的数据访问成为可能。典型的如MapReduce框架,或者一个web crawler应用都很适合这个模型。 5、移动计算的代价比之移动数据的代价低。一个应用请求的计算,离它操作的数据越近就越高效,这在数据达到海量级别的时候更是如此。将计算移动到数据附近,比之将数据移动到应用所在显然更好,HDFS提供给应用这样的接口。 6、在异构的软硬件平台间的可移植性。 二、Namenode和Datanode HDFS采用master/slave架构。一个HDFS集群是有一个Namenode和一定数目的Datanode 组成。Namenode是一个中心服务器,负责管理文件系统的namespace和客户端对文件的访问。Datanode在集群中一般是一个节点一个,负责管理节点上它们附带的存储。在部,一个文件其实分成一个或多个block,这些block存储在Datanode集合里。Namenode执行文件系统的namespace操作,例如打开、关闭、重命名文件和目录,同时决定block到具体Datanode节点的映射。Datanode在Namenode的指挥下进行block的创建、删除和复制。Namenode和Datanode 都是设计成可以跑在普通的廉价的运行linux的机器上。HDFS采用java语言开发,因此可以部署在很大围的机器上。一个典型的部署场景是一台机器跑一个单独的Namenode节点,集群中的其他机器各跑一个Datanode实例。这个架构并不排除一台机器上跑多个Datanode,不过这比较少见。

典型分布式文件系统概述

分布式文件系统概述(一) 杨栋 yangdonglee@https://www.wendangku.net/doc/325264043.html, 2006-12 摘要 文件系统是操作系统用来组织磁盘文件的方法和数据结构。传统的文件系统指各种UNIX平台的文件系统,包括UFS、FFS、EXT2、XFS等,这些文件系统都是单机文件系统,也称本地文件系统。随着网络的兴起,为了解决资源共享问题,出现了分布式文件系统。分布式文件系统是指文件系统管理的物理存储资源不一定直接连接在本地节点上,而是通过计算机网络与节点相连。本文1简要回顾了本地文件系统,然后按照发展例程大致介绍了2006年之前各时期主要的分布式文件系统,最后从设计目标、体系结构及关键技术等方面比较了各个分布式文件系统的异同。目前很火的Hadoop文件系统、S3文件系统都是从NFS等早期文件系统一步步演化而来的,了解分布式文件系统的历史,有助于大家更加深刻地领会分布式文件系统的精髓。 1本文写于2006年底,借鉴了别人的大量资料,目的是为了与同学们分享分布式文件系统的发展史。笔者在硕士期间跟随中科院计算所的孟老师、熊老师和唐荣锋进行分布式文件系统的研究和开发。分布式文件系统源远流长,本文只是选择了其发展史上的部分实例进行简单描述,由于笔者水平十分有限,错误之处难免很多,各位同学发现问题之后麻烦回复邮件到yangdonglee@https://www.wendangku.net/doc/325264043.html,,我会尽全力完善,或者请各位同学自行修正。笔者目前在百度进行云计算方面的研究和开发,希望有兴趣的同学一起进行探讨。

目录 1.引言 (5) 2.本地文件系统 (5) 2.1FFS (6) 2.2LFS (6) 2.3Ext3 (7) 3.分布式文件系统 (7) 3.1 发展历程 (7) 3.2分布式文件系统分类 (8) 3.2.1 实现方法 (8) 3.2.2研究状况 (8) 3.3 NFS (9) 3.3.1概述 (9) 3.3.2 体系结构 (9) 3.3.3 通信机制 (10) 3.3.4进程 (10) 3.3.5 命名 (10) 3.3.6 同步机制 (11) 3.3.7 缓存和复制 (11) 3.3.8 容错性 (12) 3.3.9 安全性 (13) 3.4 AFS、DFS、Coda和InterMezzo (13) 3.5 SpriteFS和Zebra (14) 3.6xFS (16) 3.6.1 概述 (16) 3.6.2 体系结构 (16) 3.6.3 通信 (16) 3.6.4 进程 (17) 3.6.5 命名 (18) 3.6.6 缓存 (19)

常见的分布式文件系统

常见的分布式文件系统有,GFS、HDFS、Lustre 、Ceph 、GridFS 、mogileFS、TFS、FastDFS等。各自适用于不同的领域。它们都不是系统级的分布式文件系统,而是应用级的分布式文件存储服务。 Google学术论文,这是众多分布式文件系统的起源 ================================== Google File System(大规模分散文件系统) MapReduce (大规模分散FrameWork) BigTable(大规模分散数据库) Chubby(分散锁服务) 一般你搜索Google_三大论文中文版(Bigtable、 GFS、 Google MapReduce)就有了。做个中文版下载源:https://www.wendangku.net/doc/325264043.html,/topics/download/38db9a29-3e17-3dce-bc93-df9286081126 做个原版地址链接: https://www.wendangku.net/doc/325264043.html,/papers/gfs.html https://www.wendangku.net/doc/325264043.html,/papers/bigtable.html https://www.wendangku.net/doc/325264043.html,/papers/mapreduce.html GFS(Google File System) -------------------------------------- Google公司为了满足本公司需求而开发的基于Linux的专有分布式文件系统。。尽管Google公布了该系统的一些技术细节,但Google并没有将该系统的软件部分作为开源软件发布。 下面分布式文件系统都是类 GFS的产品。

分布式文件系统研究-GFS

分布式文件系统研究16:Global File System 分类:技术日志 前段时间比较忙,好久没发技术文章了,几天来一个,嘿嘿 Global File System 简介 GFS(Global File System)是Minnesota大学开发的基于SAN的共享存储的机群文件系统,后来Sis tina公司将GFS产品化。GFS在很长一段时间都是以源代码开放软件的形式出现的,后来由于Sistina希望通过向用户提供支持和服务的计划未能取得成功,为了要促进自己的财务收入,Sistina在2001年将GFS 变成了一种“专有软件”。Red Hat公司收购Sistina之后,在遵循GPL协议(General Public License)的条件下履行诺言公开了GFS的源代码。现在,GFS的全名被称为“红帽全球文件系统”(Red Hat Global File System ,GFS)的软件,每台服务器每年收取2200美元的费用。 可能是redhat为了更好的收取服务费的缘故,有关GFS的文档真是少之又少,我只能从网上一些零星的资料来看看GFS的概貌。 框架 GFS最初是在IRIX上开发的,后来移植到LINUX上,并开放源码。基本框架如下图所示。 图1 GFS的基本框架图 通过使用GFS,多台服务器可以共用一个文件系统来存储文件。信息既可以存储在服务器上,也可以存储在一个存储局域网络上。 GFS与GPFS结构相似,但它是全对称的机群文件系统,没有服务器,因而没有性能瓶颈和单一故障点。GFS将文件数据缓存于节点的存储设备中,而不是缓存在节点的内存中。并通过设备锁来同步不同节点对文件的访问,保持UNIX文件共享语义。GFS实现了日志,节点失效可以快速恢复。GFS使用SCSI

分布式文件系统、集群文件系统、并行文件系统

分布式文件系统、集群文件系统、并行文件系统,这三种概念很容易混淆,实际中大家也经常不加区分地使用。总是有人问起这三者的区别和联系,其实它们之间在概念上的确有交叉重叠的地方,但是也存在显著不同之处。分布式文件系统自然地,分布式是重点,它是相对与本地文件系统而言的。分布式文件系统通常指C/S架构或网络文件系统,用户数据没有直接连接到本地主机,而是存储在远程存储服务器上。NFS/CIFS是最为常见的分布式文件系统,这就是我们说的NAS系统。分布式文件系统中,存储服务器的节点数可能是1个(如传统NAS),也可以有多个(如集群NAS)。对于单个节点的分布式文件系统来说,存在单点故障和性能瓶颈问题。除了NAS以外,典型的分布式文件系统还有AFS,以及下面将要介绍的集群文件系统(如Lustre, GlusterFS, PVFS2等)。集群文件系统集群主要分为高性能集群HPC(High Performance Cluster)、高可用集群HAC(High Availablity Cluster)和负载均衡集群LBC(Load Balancing Cluster)。集群文件系统是指协同多个节点提供高性能、高可用或负载均衡的文件系统,它是分布式文件系统的一个子集,消除了单点故障和性能瓶问题。对于客户端来说集群是透明的,它看到是一个单一的全局命名空间,用户文件访问请求被分散到所有集群上进行处理。此外,可扩展性(包括Scale-Up和Scale-Out)、可靠性、易管理等也是集群文件系统追求的目标。在元数据管理方面,可以采用专用的服务器,也可以采用服务器集群,或者采用完全对等分布的无专用元数据服务器架构。目前典型的集群文件系统有SONAS, ISILON, IBRIX, NetAPP-GX, Lustre, PVFS2, GlusterFS, Google File System, LoongStore, CZSS等。并行文件系统这种文件系统能够支持并行应用,比如MPI。在并行文件系统环境下,所有客户端可以在同一时间并发读写同一个文件。并发读,大部分文件系统都能够实现。并发写实现起来要复杂许多,既要保证数据一致性,又要最大限度提高并行性,因此在锁机制方面需要特别设计,如细粒度的字节锁。通常SAN 共享文件系统都是并行文件系统,如GPFS、StorNext、GFS、BWFS,集群文件系统大多也是并行文件系统,如Lustre, Panasas等。如何区分?区分这三者的重点是分布式、集群、并行三个前缀关键字。简单来说,非本地直连的、通过网络连接的,这种为分布式文件系统;分布式文件系统中,服务器节点由多个组成的,这种为集群文件系统;支持并行应用(如MPI)的,这种为并行文件系统。在上面所举的例子中也可以看出,这三个概念之间具有重叠之处,比如Lustre,它既是分布式文件系统,也是集群和并行文件系统。但是,它们也有不同之处。集群文件系统是分布式文件系统,但反之则不成立,比如NAS、AFS。SAN文件系统是并行文件系统,但可能不是集群文件系统,如StorNext。GFS、HDFS之类,它们是集群文件系统,但可能不是并行文件系统。实际中,三者概念搞理清后,分析清楚文件系统的特征,应该还是容易正确地为其划分类别的。

分布式存储相对集中式存储优势

明确要求采用分布式架构存储,而非传统集中式存储FCSAN/IP SAN的原因:从软件定义存储概念提出到现在,分布式架构存储系统正成为业界存储主流和发展方向,逐渐取代传统集中式存储系统,随着云计算和大数据的建设成为数据中心建设主流形态,互联网+、人工智能、物联网应用等的普及,以非结构化数据为主的海量数据爆发式增长,如视音频存储、图像存储及识别、流媒体处理等,基于海量数据存储、分析、挖掘等,传统集中式存储无论从架构、扩展性、性能及成本,运维管理优势等方面,都无法满足业务增长及数据处理所带来的存储问题。 首先从架构上,集中式存储FC SAN/IP SAN 采用Scale up的扩展方式,通过存储控制器挂接扩展柜的方式,实现存储容量的扩展,扩展能力有限,并且性能随着容量扩展并非线性关系,可能存储前端及后端端口带宽会成为海量数据并发处理的瓶颈,并且存储资源分布不均,无法做到资源动态均衡伸缩及调度,这对于响应级别要求不一致的应用来说是致命的;分布式架构存储系统,采用Scale out 横向扩展方式,无节点扩展限制,存储容量可轻易扩展至几十甚至几百PB以上,这是集中式存储无法做到的,能够很好解决在云计算架构下海量数据存储及并发问题。并且基于分布式软件的分布式调度算法,可实现资源动态伸缩,随着节点增加,其性能是线性增加,能够很好满足如云计算架构下海量数据存储及处理对存储资源池可动态伸缩及并发访问性能要求。 由于采用软件定义存储方式,无论是成本还是后期运维管理,比传统集中式存储FC SAN/ IP SAN优势明显,分布式软件自动实现对存储资源调度及管理,实现跨数据中心资源分配。集中式存储系统,需要借助存储虚拟化技术(虚拟化网关)才能将存储资源聚合为统一存储资源池,随着规模扩大,网关往往更易成为性能瓶颈。 关于数据安全性问题,分布式架构存储系统基于机架自动感知的数据多副本技术,例如采用三副本技术,即使数据中心同一机架故障,对业务透明无感知,数据安全级别高,业务连续性更好。集中式存储往往采用双活架构实现容灾,不仅初期投入成本高,运维部署复杂。 从应用角度来看,现在越来越多的应用迁到分布式存储系统上,例如海量视频、音频、图像、文档的存储,流媒体及视频图像处理所带来的高并发低延迟,高性能计算应用等,都非常适合分布式架构存储系统,而不采用集中式存储系统,并且从数据存储及性能要求、容量扩展方便,集中式存储做起来非常困难。 诸如以上原因,明确要求采用采用分布式架构存储,而非传统集中式存储FCSAN/IP SAN。

相关文档
相关文档 最新文档