文档库 最新最全的文档下载
当前位置:文档库 › 动量定理及应用

动量定理及应用

动量定理及应用
动量定理及应用

[高考命题解读]

第1讲动量定理及应用

一、动量、动量变化、冲量

1.动量

(1)定义:物体的质量与速度的乘积.

(2)表达式:p=mv.

(3)方向:动量的方向与速度的方向相同.

2.动量的变化

(1)因为动量是矢量,动量的变化量Δp也是矢量,其方向与速度的改变量Δv的方向相同.

(2)动量的变化量Δp的大小,一般用末动量p′减去初动量p进行计算,也称为动量的增量.即Δp=p′-p.

3.冲量

(1)定义:力与力的作用时间的乘积叫做力的冲量.

(2)公式:I=Ft.

(3)单位:N·s.

(4)方向:冲量是矢量,其方向与力的方向相同.

自测1 下列说法正确的是( )

A.速度大的物体,它的动量一定也大

B.动量大的物体,它的速度一定也大

C.只要物体的运动速度大小不变,物体的动量就保持不变

D.物体的动量变化越大,则该物体的速度变化一定越大

答案D

二、动量定理

1.内容:物体在一个运动过程始末的动量变化量等于它在这个过程中所受合力的冲量.

2.公式:mv′-mv=F(t′-t)或p′-p=I.

3.动量定理的理解

(1)动量定理反映了力的冲量与动量变化量之间的因果关系,即外力的冲量是原因,物体的动量变化量是结果.

(2)动量定理中的冲量是合力的冲量,而不是某一个力的冲量,它可以是合力的冲量,可以是各力冲量的矢量和,也可以是外力在不同阶段冲量的矢量和.

(3)动量定理表达式是矢量式,等号包含了大小相等、方向相同两方面的含义.

自测2 (多选)质量为m的物体以初速度v0开始做平抛运动,经过时间t,下降的高度为h,速度变为v,在这段时间内物体动量变化量的大小为( )

(v-v0)

答案BCD

命题点一对动量和冲量的理解

1.对动量的理解

(1)动量的两性

①瞬时性:动量是描述物体运动状态的物理量,是针对某一时刻或位置而言的.

②相对性:动量的大小与参考系的选取有关,通常情况是指相对地面的动量.

(2)动量与动能的比较

2.对冲量的理解

(1)冲量的两性

①时间性:冲量不仅由力决定,还由力的作用时间决定,恒力的冲量等于该力与该力的作用时间的乘积.

②矢量性:对于方向恒定的力来说,冲量的方向与力的方向一致;对于作用时间内方向变化的力来说,冲量的方向与相应时间内物体动量改变量的方向一致.

(2)作用力和反作用力的冲量:一定等大、反向,但作用力和反作用力做的功之间并无必然联系.

(3)冲量与功的比较

例1 如图1所示是我国女子短道速滑队训练中的情景,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前冲出.在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则( )

图1

A.甲对乙的冲量一定等于乙对甲的冲量

B.甲、乙的动量变化一定大小相等、方向相反

C.甲的动能增加量一定等于乙的动能减少量

D.甲对乙做多少负功,乙对甲就一定做多少正功

答案B

变式1 (多选)两个质量不同的物体,如果它们的( )

A.动能相等,则质量大的动量大

B.动能相等,则动量大小也相等

C.动量大小相等,则质量大的动能小

D.动量大小相等,则动能也相等

答案AC

例2 (2018·甘肃西峰调研)如图2所示,竖直面内有一个固定圆环,MN是它在竖直方向上的直径.两根光滑滑轨MP、QN的端点都在圆周上,MP>QN.将两个完全相同的小滑块a、b分别从M、Q点无初速度释放,在它们各自沿MP、QN运动到圆周上的过程中,下列说法中正确的是( )

图2

A.合力对两滑块的冲量大小相同

B.重力对a滑块的冲量较大

C.弹力对a滑块的冲量较小

D.两滑块的动量变化大小相同

答案C

解析这是“等时圆”,即两滑块同时到达滑轨底端.合力F=mg sin θ(θ为滑轨倾角),F a>F b,因此合力对a滑块的冲量较大,a滑块的动量变化也大;重力的冲量大小、方向都相同;弹力F N=mg cos θ,F N a

变式2 (多选)如图3所示,一个物体在与水平方向成θ角的拉力F的作用下匀速前进了时间t,则( )

图3

A.拉力对物体的冲量大小为Ft

B.拉力对物体的冲量大小为Ft sin θ

C.摩擦力对物体的冲量大小为Ft sin θ

D.合外力对物体的冲量大小为零

答案AD

解析拉力F对物体的冲量就是Ft,所以A项正确,B项错误;物体受到的摩擦力F f=F cos

θ,所以,摩擦力对物体的冲量大小为F f t =Ft cos θ,C 项错误;物体匀速运动,合外力为

零,所以合外力对物体的冲量大小为零,D 项正确. 命题点二 动量定理的基本应用

1.动量定理的理解

(1)中学物理中,动量定理研究的对象通常是单个物体.

(2)Ft =p ′-p 是矢量式,两边不仅大小相等,而且方向相同.式中Ft 是物体所受的合外力的冲量.

(3)Ft =p ′-p 除表明两边大小、方向的关系外,还说明了两边的因果关系,即合外力的冲量是动量变化的原因. (4)由Ft =p ′-p ,得F =p ′-p t =Δp

t

,即物体所受的合外力等于物体的动量对时间的变化率.

2.用动量定理解题的基本思路

(1)确定研究对象.在中学阶段用动量定理讨论的问题,其研究对象一般仅限于单个物体. (2)对物体进行受力分析.可先求每个力的冲量,再求各力冲量的矢量和——合力的冲量;或先求合力,再求其冲量.

(3)抓住过程的初、末状态,选好正方向,确定各动量和冲量的正负号. (4)根据动量定理列方程,如有必要还需要补充其他方程,最后代入数据求解.

例3 (2015·重庆理综·3)高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动).此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) +mg -mg +mg -mg

答案 A

解析 由自由落体运动公式得人下降h 距离时的速度为v =2gh ,在t 时间内对人由动量定理得(mg -F )t =0-mv ,解得安全带对人的平均作用力为F =

m 2gh

t

+mg ,A 项正确. 变式3 篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做的目的是( ) A.减小球对手的冲量 B.减小球对手的冲击力 C.减小球的动量变化量 D.减小球的动能变化量

答案 B

变式4 (2015·安徽理综·22)一质量为 kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图4所示.物块以v 0=9 m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7 m/s ,碰后以6 m/s 的速度反向运动直至静止,g 取10 m/s 2

.

图4

(1)求物块与地面间的动摩擦因数μ;

(2)若碰撞时间为 s ,求碰撞过程中墙面对物块平均作用力的大小F ; (3)求物块在反向运动过程中克服摩擦力所做的功W . 答案 (1) (2)130 N (3)9 J

解析 (1)对小物块从A 运动到B 处的过程,应用动能定理得-μmgs =12mv 2-12mv 02

代入数值解得μ=

(2)取向右为正方向,碰后物块速度v ′=-6 m/s 由动量定理得:F Δt =mv ′-mv 解得F =-130 N

其中“-”表示墙面对物块的平均作用力方向向左. (3)对物块反向运动过程,应用动能定理得 -W =0-12mv ′2

解得W =9 J

命题点三 动量定理在多过程问题中的应用

应用动量定理解决多过程问题的方法与动能定理类似,有分段列式和全程列式两种思路. 例4 一高空作业的工人重为600 N ,系一条长为L =5 m 的安全带,若工人不慎跌落时安全带的缓冲时间t =1 s(工人最终悬挂在空中),则缓冲过程中安全带受的平均冲力是多少?(g 取10 m/s 2

,忽略空气阻力的影响) 答案 1 200 N ,方向竖直向下

解析 解法一 分段列式法:依题意作图,如图所示,

设工人刚要拉紧安全带时的速度为v 1,v 12

=2gL ,得

v 1=2gL

经缓冲时间t =1 s 后速度变为0,取向下为正方向,对工人由动量定理知,工人受两个力作用,即拉力F 和重力mg ,所以(mg -F )t =0-mv 1,F =mgt +mv 1

t

将数值代入得F =1 200 N.

由牛顿第三定律,工人给安全带的平均冲力F ′为1 200 N ,方向竖直向下.

解法二 全程列式法:在整个下落过程中对工人应用动量定理,重力的冲量大小为mg (2L

g

+t ),拉力F 的冲量大小为Ft .初、末动量都是零,取向下为正方向,由动量定理知

mg (

2L

g

+t )-Ft =0

解得F =

mg

2L g

+t

t

=1 200 N

由牛顿第三定律知工人给安全带的平均冲力F ′=F =1 200 N ,方向竖直向下.

变式5 一个质量为m =100 g 的小球从离厚软垫h = m 高处自由下落,落到厚软垫上,若从小球接触软垫到小球陷至最低点经历了t = s ,则在这段时间内,软垫对小球的冲量是多少?(g =10 m/s 2

)

答案 N·s,方向竖直向上

解析 设小球自由下落h = m 的时间为t 1,由

h =12

gt 12得t 1=

2h

g

= s.

设I 为软垫对小球的冲量,并令竖直向下的方向为正方向,则对小球整个运动过程运用动量定理得

mg (t 1+t )+I =0,得I =- N·s.

负号表示软垫对小球的冲量方向和规定的正方向相反,方向竖直向上.

命题点四 应用动量定理处理“流体模型”

的冲击力问题

1.研究对象

常常需要选取流体为研究对象,如水、空气等. 2.研究方法

是隔离出一定形状的一部分流体作为研究对象,然后列式求解. 3.基本思路

(1)在极短时间Δt 内,取一小柱体作为研究对象. (2)求小柱体的体积ΔV =vS Δt (3)求小柱体质量Δm =ρΔV =ρvS Δt (4)求小柱体的动量变化Δp =v Δm =ρv 2

S Δt (5)应用动量定理F Δt =Δp

例5 (2016·全国卷Ⅰ·35(2))某游乐园入口旁有一喷泉,喷出的水柱将一质量为M 的卡通

玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S 的喷口持续以速度v 0竖直向上喷出;玩具底部为平板(面积略大于S );水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g .求:

(1)喷泉单位时间内喷出的水的质量;

(2)玩具在空中悬停时,其底面相对于喷口的高度.

答案 (1)ρv 0S (2)v 022g -M 2g

2ρ2v 02S

2

解析 (1)在刚喷出一段很短的Δt 时间内,可认为喷出的水柱保持速度v 0不变. 该时间内,喷出水柱高度Δl =v 0Δt ① 喷出水柱质量Δm =ρΔV

其中ΔV 为水柱体积,满足ΔV =ΔlS

由①②③可得:喷泉单位时间内喷出的水的质量为 Δm

Δt

=ρv 0S (2)设玩具底板相对于喷口的高度为h 由玩具受力平衡得F 冲=Mg

其中,F 冲为水柱对玩具底板的作用力 由牛顿第三定律:F 压=F 冲

其中,F 压为玩具底板对水柱的作用力,设v ′为水柱到达玩具底面时的速度 由运动学公式:v ′2

-v 02

=-2gh

在很短Δt 时间内,冲击玩具的水柱的质量为Δm Δm =ρv 0S Δt

由题意可知,在竖直方向上,对该部分水柱应用动量定理 (F 压+Δmg )Δt =Δmv ′

由于Δt 很小,Δmg 也很小,可以忽略,⑧式变为

F 压Δt =Δmv ′

由④⑤⑥⑦⑨可得h =v 022g -M 2g

2ρ2v 02S

2

变式6 为估算池中睡莲叶面承受雨滴撞击产生的平均压强,小明在雨天将一圆柱形水杯置于露台,测得1小时内杯中水位上升了45 mm.查询得知,当时雨滴竖直下落速度约为12 m/s ,据此估算该压强约为(设雨滴撞击睡莲后无反弹,不计雨滴重力,雨水的密度为1×103

kg/m 3

)( ) Pa Pa Pa

Pa

答案 A

解析 设雨滴受到支持面的平均作用力为F .设在Δt 时间内有质量为Δm 的雨水的速度由v =12 m/s 减为零.以向上为正方向,对这部分雨水应用动量定理:F Δt =0-(-Δmv )=Δmv ,得到F =Δm

Δt v .设水杯横截面积为S ,对水杯里的雨水,在Δt 时间内水面上升Δh ,则有Δm

=ρS Δh ,得F =ρSv Δh Δt .压强p =F S =ρv Δh Δt =1×103

×12×45×10-3

3 600

Pa = Pa.

变式7 如图5所示,由喷泉中喷出的水柱,把一个质量为M 的垃圾桶倒顶在空中,水以速率v 0、恒定的质量增率(即单位时间喷出的质量)Δm

Δt 从地下射向空中.求垃圾桶可停留的最大

高度.(设水柱喷到桶底后以相同的速率反弹)

图5

答案 v 022g -M 2g 8(Δt Δm

)2

解析 设垃圾桶可停留的最大高度为h ,并设水柱到达h 高处的速度为v t ,则

v t 2-v 02=-2gh

得v t 2

=v 02

-2gh

由动量定理得,在极短时间Δt 内,水受到的冲量为

F Δt =2(

Δm

Δt

·Δt )v t 解得F =2Δm Δt ·v t =2Δm

Δt v 02-2gh

据题意有F =Mg

联立解得h =v 022g -M 2g 8(Δt Δm

)2

1.物体的动量变化量的大小为5 kg·m/s,则( ) A.物体的动量在减小 B.物体的动量在增大 C.物体的动量大小也可能不变 D.物体的动量大小一定变化 答案 C

2.(多选)关于物体的动量,下列说法中正确的是( )

A.物体的动量越大,其惯性也越大

B.同一物体的动量越大,其速度一定越大

C.物体的加速度不变,其动量一定不变

D.运动物体在任一时刻的动量方向一定是该时刻的速度方向

答案BD

3.质量为m的钢球自高处落下,以速度v1碰地,竖直向上弹回,碰撞时间极短,离地的速率为v2.在碰撞过程中,地面对钢球的冲量的方向和大小为( )

A.向下,m(v1-v2)

B.向下,m(v1+v2)

C.向上,m(v1-v2)

D.向上,m(v1+v2)

答案D

4.质量为 kg的球竖直向下以6 m/s的速度落至水平地面,再以4 m/s的速度反向弹回.取竖直向上为正方向,在小球与地面接触的时间内,关于球动量变化量Δp和合外力对小球做的功W,下列说法正确的是( )

A.Δp=2 kg·m/s W=-2 J

B.Δp=-2 kg·m/s W=2 J

C.Δp=kg·m/s W=-2 J

D.Δp=-kg·m/s W=2 J

答案A

5.(多选)从同样高度静止落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是( )

A.掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小

B.掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小

C.掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢

D.掉在水泥地上的玻璃杯与地面接触时,相互作用力大,而掉在草地上的玻璃杯受地面的冲击力小

答案CD

6.如图1所示,质量为m的物体在水平外力F作用下以速度v沿水平面匀速运动,当物体运动到A点时撤去外力F,物体由A点继续向前滑行的过程中经过B点,则物体由A点到B点的过程中,下列说法正确的是( )

图1

越大,摩擦力对物体的冲量越大;摩擦力做功越多

越大,摩擦力对物体的冲量越大;摩擦力做功与v的大小无关

越大,摩擦力对物体的冲量越小;摩擦力做功越少

越大,摩擦力对物体的冲量越小;摩擦力做功与v 的大小无关 答案 D

7.(2018·广东珠海调研)将质量为 kg 的小球以20 m/s 的初速度竖直向上抛出,不计空气阻力,g 取10 m/s 2

,以下判断正确的是( )

A.小球从被抛出至到达最高点受到的冲量大小为10 N·s

B.小球从被抛出至落回出发点动量的变化量大小为零

C.小球从被抛出至落回出发点受到的冲量大小为10 N·s

D.小球从被抛出至落回出发点动量的变化量大小为10 N·s 答案 A

8.质量为1 kg 的物体做直线运动,其速度图象如图2所示,则物体在前10 s 内和后10 s 内所受外力的冲量分别是( )

图2

N·s 10 N·s N·s -10 N·s 10 N·s -10 N·s 答案 D

9.物体在恒定的合力作用下做直线运动,在时间t 1内动能由零增大到E 1,在时间t 2内动能由

E 1增加到2E 1,设合力在时间t 1内做的功为W 1,冲量为I 1,在时间t 2内做的功是W 2,冲量为I 2,则( )

<I 2,W 1=W 2 >I 2,W 1=W 2 >I 2,W 1<W 2 =I 2,W 1<W 2

答案 B

10.(2018·河南邢台质检)一位质量为m 的运动员从下蹲状态向上起跳,经Δt 时间,身体伸直并刚好离开地面,速度为v .在此过程中( ) A.地面对他的冲量为mv +mg Δt ,地面对他做的功为12mv 2

B.地面对他的冲量为mv +mg Δt ,地面对他做的功为零

C.地面对他的冲量为mv ,地面对他做的功为12

mv 2

D.地面对他的冲量为mv -mg Δt ,地面对他做的功为零 答案 B

11.如图3所示,一质量为M 的长木板在光滑水平面上以速度v 0向右运动,一质量为m 的小铁块在木板上以速度v 0向左运动,铁块与木板间存在摩擦,为使木板能保持速度v 0向右匀速运动,必须对木板施加一水平力,直至铁块与木板达到共同速度v 0.设木板足够长,求此过程中水平力的冲量大小.

图3

答案 2mv 0

解析 考虑M 、m 组成的系统,设M 运动的方向为正方向,根据动量定理有Ft =(M +m )v 0-(Mv 0-mv 0)=2mv 0

则水平力的冲量I =Ft =2mv 0.

12.质量为1 kg 的物体静止放在足够大的水平桌面上,物体与桌面间的动摩擦因数为μ=.有一大小为5 N 的水

平恒力F 作用于物体上,使之加速前进,经3 s 后撤去F .求物体运动的总时间(g 取10 m/s 2

). 答案 s

解析 物体由开始运动到停止运动的全过程中,F 的冲量为Ft 1,摩擦力的冲量为F f t .选水平恒力F 的方向为正方向,根据动量定理有

Ft 1-F f t =0

① 又F f =μmg

联立①②式解得t =

Ft 1

μmg

,代入数据解得t = s. 13.一辆轿车强行超车时,与另一辆迎面驶来的轿车相撞,两车相撞后,两车车身因相互挤压,皆缩短了 m ,据测算两车相撞前速度约为30 m/s. (1)试求车祸中车内质量约60 kg 的人受到的平均冲力.

(2)若此人系有安全带,安全带在车祸过程中与人体的作用时间是1 s ,求这时人体受到的平均冲力.

答案 (1)×104

N (2)×103

N

解析 (1)两车相撞时认为人与车一起做匀减速运动直到停止,位移为 m.

设运动的时间为t ,根据x =v 02t ,得t =2x v 0=1

30

s ,

根据动量定理Ft =Δp =mv 0 得F =

mv 0t =60×301

30

N =×104

N.

mv0 t′=

60×30

1

N=×103 N.

(2)若人系有安全带,则F′=

电磁感应动量定理的应用

电磁感应中动量定理的运用 动量定律I =?P 。 设想在某一回路中,一部分导体仅在安培力作用下运动时,安培力F 为变力,但其冲量可用它对时间的平均值进行计算,即I =F t ?, 而F =B I L (I 为电流对时间的平均值) 故有:B I L t ?=mv 2-mv 1 . 而I t=q ,故有q=BL mv 12mv - 理论上电量的求法:q=I ?t 。 这种方法的依据是电流的定义式I=q/t 该式的研究对象是通电导体的某一截面,若在t 时间内流过该截面的电量为q ,则流过该切面的电流为I =q/t ,显然,这个电流应为对时间的平均值,因此该式应写为I = q/t ,变形后可以得q =I t ,这个关系式具有一般性,亦即无论流经导体的电流是恒定的还是变化的,只要电流用这段时间内的平均值代入,该式都适用,而平均电流的求解,在电磁感应问题中最为常见的思路为:对某一回路来说,据法拉第电磁感应定律,得E=t ??φ,显然该感应电动势也为对其时间的平均值,再由I =R E (R 为回路中的总电阻)可以得到I = t R ??φ。 综上可得q =R φ?。若B 不变,则q =R φ?=R s B ? 电量q 与安培力的冲量之间有什么联系?可用下面的框图来说明。 从以上框图可见,这些物理量之间的关系可能会出现以下三种题型: 第一:方法Ⅰ中相关物理量的关系。 第二:方法Ⅱ中相关物理量的关系。 第三:就是以电量作为桥梁,直接把上面框图中左右两边的物理量联系起来,如把导体

棒的位移和速度联系起来,但由于这类问题导体棒的运动一般都不是匀变速直线运动,无法使用匀变速直线运动的运动学公式进行求解,所以这种方法就显得十分巧妙。这种题型难度最大。 2在解题中强化应用意识,提高驾驭能力 由于这些物理量之间的关系比较复杂,只能从理论上把握上述关系还不够,还必须通过典型问题来培养学生的应用能力,达到熟练驾驭的目的。请看以下几例:(1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应 强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量 为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点 cd时的速度为v,不计摩擦。求: (1)棒从ab到cd过程中通过棒的电量。 (2)棒在cd处的加速度。 分析与解 有的同学据题目的已知条件,不假思索的就选用动量定理,对该过程列式如下: mgt-B I Lt=mv -0显然该式有两处错误:其一是在分析棒的受力时,漏掉了轨道对 棒的弹力N,从而在使用动量定理时漏掉了弹力的冲量I N;其二是即便考虑了I N,这种解法也是错误的,因为动量定理的表达式是一个矢量式,三个力的冲量不在同一直线上,而且IN的方向还不断变化,故 我们无法使用I=Ft来求冲量,亦即无法使用前面所提到的方法二。 为此,本题的正确解法是应用前面提到的方法一,具体解答如下: 对应于该闭合回路应用以下公式: (2)如图2所示,在光滑的水平面上,有一垂直向下的 匀强磁场分布在宽度为L的区域内,现有一个边长为 a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边 界滑过磁场后,速度为v(v﹤v0),那么线圈 A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 分析与解 这是一道物理过程很直观的问题,可分为三个阶段:进入和离开磁场过程中均为加速度不断减少的减速运动,完全进入磁场后即作匀速直线运动,那么这三个过程的速度之间的关系如何呢?乍看好象无从下手,但对照上面的理论分析,可知它属于第三类问题。首先,由于进入磁场和离开磁场两段过程中,穿过线圈回路的磁通量变化量Δφ相同,故有q0=q=Δφ/R;其次,对线框应用动量定理,设线框完全进入磁场后的速度为v′,则有:

动量和冲量概念详解+典型例题

第二讲动量与能量 命题趋向 “动量和能量”问题是高考的主考题型,出现的频率也是比较高的,是高考的一个热点,专家命题十分重视对主干知识的考查,在命题时不避讳常规试题,也考查我们认为的超纲问题(弹性碰撞)。注重对试题的题境的创新、设问的创新、条件的变化,注重考查学生对概念的理解、规律的应用及学生学习中可能存在的思维障碍。动量、能量考点在历年的高考物理计算题中一定应用,且分值都不低于20分,09年也不例外。 力与运动、动量、能量是解动力学问题的三种观点,一般来说,用动量观点和能量观点比用力的观点解题简便,因此在解题时优先选用这两种观点;但在涉及加速度问题时就必须用力的观点. 有些问题,用到的观点不只一个,特别像高考中的一些综合题,常用动量观点和能量观点联合求解,或用动量观点与力的观点联合求解,有时甚至三种观点都采用才能求解,因此,三种观点不要绝对化. 考点透视 1、动量 动量观点包括动量定理和动量守恒定律。 (1)动量定理 凡涉及到速度和时间的物理问题都可利用动量定理加以解决,特别对于处理位移变化不明显的打击、碰撞类问题,更具有其他方法无可替代的作用。 (2)动量守恒定律 动量守恒定律是自然界中普通适用的规律,大到宇宙天体间的相互作用,小到微观粒子的相互作用,无不遵守动量守恒定律,它是解决爆炸、碰撞、反冲及较复杂的相互作用的物体系统类问题的基本规律。 动量守恒条件为: ①系统不受外力或所受合外力为零 ②在某一方向上,系统不受外力或所受合外力为零,该方向上动量守恒。 ③系统内力远大于外力,动量近似守恒。 ④在某一方向上,系统内力远大于外力,该方向上动量近似守恒。 应用动量守恒定律解题的一般步骤: 确定研究对象,选取研究过程;分析内力和外力的情况,判断是否符合守恒条件;选定正方向,确定初、末状态的动量,最后根据动量守恒定律列方程求解。 应用时,无需分析过程的细节,这是它的优点所在,定律的表述式是一个矢量式,应用时要特别注意方向。 2、能量

电磁感应中动量定理和动量守恒定律地运用

高考物理电磁感应中动量定理和动量守恒定律的运用 (1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。求:(1)棒从ab到cd过程中通过棒的电量。 (2)棒在cd处的加速度。 (2)如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈 A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能(3)在水平光滑等距的金属导轨上有一定值电阻R,导轨宽d电阻不计,导体棒AB垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B.现给导体棒一水平初速度v0,求AB在导轨上滑行的距离. (4)如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为:A.1:1 B.1:2 C.2:1 D.1:1

5:如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab、cd是质量均为m的金属棒,现让ab从离水平轨道h高处由静止下滑,设导轨足够长。试求:(1)ab、cd棒的最终速度;(2)全过程中感应电流产生的焦耳热。 6、:如图所示,竖直放置的两光滑平行金属导轨,置于垂直于导轨平面向里的匀强磁场中,两根质量相同的导体棒a和b,与导轨紧密接触且可自由滑动。先固定a,释放b,当b的速度达到10m/s时,再释放a,经过1s后,a的速度达到12m/s,则(1)此时b的速度大小是多少?(2)若导轨很长,a、b棒最后的运动状态。 7、:两根平行的金属导轨,固定在同一水平面上,磁感强度B=0.5T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离l=0.20m,两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0时刻,两杆都处于静止状态。现有一与导轨平行,大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。经过T=5.0s,金属杆甲的加速度为a=1.37 m/s2,求此时两金属杆的速度各为多少?

动量定理在电磁感应中的应用

动量定理在电磁感应中的应用 例1.如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L的区域内,有一个边长为a(a

滑动,先固定a释放b,当b速度达到10m/s时,再释放a,经过1s 时间 a的速度达到12m/s,则() A.当va=12m/s时,vb=18m/s B. 当va=12m/s时,vb=22m/s C.若导轨很长,它们最终的速度必相同 D.它们最终速度不相同,但速度差恒定 (2003年全国理综卷)如图5所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离l=0.20m。两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0时刻,两杆都处于静止状态。现有一与导轨平行、大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。经过t=5.0s,金属杆甲的加速度为a=1.37m/s2,问此时两金属杆的速度各为多少?

专题一 动量和动量定理的理解和应用

专题一动量和动理定理的理解和应用 一、动量和动量变化量的理解 1.物体质量和速度的乘积叫动量,动量是矢量,方向与速度的方向相同。 2.动量与动能的关系:E k=p2 2m或p=2mE k。 3.动量的变化量Δp=p′-p,Δp也是矢量,其方向与速度变化量的方向相同。若初、末动量在一条直线上,计算时可把矢量运算化为代数运算;若初、末动量不在一条直线上,运用平行四边形定则求解。 [复习过关] 1.(多选)下列关于动量的说法正确的是() A.动量相同的两个物体,质量大的动能小 B.一个物体动量改变了,则速率一定改变 C.一个物体的速率改变,它的动量一定改变 D.一个物体的运动状态变化,它的动量一定改变 解析由动能公式E k=p2 2m 可知A正确;动量为矢量,动量发生变化有可能是速度方向发生变化,B错误;同理C、D正确。 答案ACD 2.一个质量为0.18 kg的垒球,以25 m/s的水平速度向左飞向球棒,被球棒打击后反向水平飞回,速度大小变为45 m/s,则这一过程中动量的变化量为() A.大小为3.6 kg·m/s,方向向左 B.大小为3.6 kg·m/s,方向向右 C.大小为12.6 kg·m/s,方向向左 D.大小为12.6 kg·m/s,方向向右 解析选向左为正方向,则动量的变化量为Δp=m v1-m v0=(-0.18×45-0.18×25)kg·m/s=-12.6 kg·m/s,大小为12.6 kg·m/s,负号表示其方向向右,故D正确。

答案 D 3.一质量为m的小球以速度v在水平面内做匀速圆周运动,从如图1中的A点转过90°到达B点,小球动量的变化量是多少? 图1 解析如图所示。由于初、末动量不在一条直线上,由平行 四边形定则可知 Δp=mΔv=(m v)2+(m v)2 =2m v。 tan α=m v′ m v =1,α=45°, Δp与A点速度方向的夹角为135°。 答案2m v,与A点速度方向的夹角为135° 二、冲量的理解和计算 1.冲量的公式I=Ft,矢量,方向与力的方向相同,反映了力的作用对时间的积累。 2.冲量的计算: (1)直接由定义式I=Ft计算。 (2)F-t图像中可用图像与坐标轴围成的面积表示。 [复习过关] 4.关于冲量,下列说法正确的是() A.冲量是物体动量变化的原因 B.作用在静止的物体上的力的冲量一定为零 C.动量越大的物体受到的冲量越大 D.冲量的方向就是物体受力的方向 解析力作用一段时间便有了冲量,而力作用一段时间后,物体的运动状态发生了变化,物体的动量也发生了变化,因此说冲量使物体的动量发生了变化,选项

高二物理动量定理的应用

动量定理的应用(2)·典型例题解析 【例1】 500g 的足球从1.8m 的高处自由下落碰地后能弹回到1.25m 高,不计空气阻力,这一过程经历的时间为1.2s ,g 取10m/s 2,求足球对地面的作用力. 解析:对足球与地面相互作用的过程应用动量定理,取竖直向下为 正,有-Δ=′-其中Δ=--=-×-×=--=,′=-=-××=(mg N)t mv mv t 1.2 1.21.20.60.50.1(s)v 2gh 210 1.2522221810 21251012h g h g .. -,==××=,解得足球受到向上的 弹力='+=+×=+=5(m /s)v 2gh 210 1.86(m /s)N mg 0.51055560(N)1v v v t ().(). -+?056501 由牛顿第三定律得足球对地面的作用力大小为60N ,方向向下. 点拨:本例也可以对足球从开始下落至弹跳到最高点的整个过程应用动量定理:mgt 总-N Δt =0-0,这样处理更为简便. 从解题过程可看出,当Δt 很短时,N 与mg 相比较显得很大,这时可略去重力. 【例2】如图51-1所示,在光滑的水平面上有两块前后并排且靠在一起的木块A 和B ,它们的质量分别为m 1和m 2,今有一颗子弹水平射向A 木块,已知子弹依次穿过A 、B 所用的时间分别是Δt 1和Δt 2,设子弹所受木块的阻力恒为f ,试求子弹穿过两木块后,两木块的速度各为多少? 解析:取向右为正,子弹穿过A 的过程,以A 和B 作为一个整体, 由动量定理得=+,=,此后,物体就以向右匀速运动,接着子弹要穿透物体. f t (m m )v v A v B 112A A A ??f t m m 1 12+ 子弹穿过B 的过程,对B 应用动量定理得f Δt 2=m 2v B -m 2v A , 解得子弹穿出后的运动速度=+.B B v B f t m m f t m ??11222 + 点拨:子弹穿过A 的过程中,如果只将A 作为研究对象,A 所受的冲量

【精品专题】动量定理与电磁感应地综合应用

动量定理与电磁感应的综合应用 姓名:____________ 【例题精讲】 例1:如图所示,水平面上有两根相距0.5m足够长的平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和P之间接有阻值为R=3Ω的定值电阻;有一质量m=0.1kg,长L=0.5m,电阻r=1Ω的导体棒ab,与导轨接触良好,整个装置处于方向竖直向上的匀强磁场中,磁感应强度B=1T,在t=0s开始,使ab以v0=10m/s的初速度向右运动,直至ab停止,求: (1)t=0时刻,棒ab两端电压; (2)整个过程中R上产生的总热量是多少; (3)整个过程中ab棒的位移是多少 针对训练1-1:如图所示,两条相距L的光滑平行金属导轨位于同一竖直面(纸面)内,其上端接一阻值为R的电阻;在两导轨间OO′下方区域内有垂直导轨平面向里的匀强磁场,磁感应强度为B。现使电阻为r、质量为m的金属棒ab由静止开始自OO′位置释放,向下运动距离d后速度不再变化。(棒ab与导轨始终保持良好的电接触且下落过程中始终保持水平,导轨电阻不计). (1)求棒ab在向下运动距离d过程中回路产生的总焦耳热; (2)棒ab从静止释放经过时间t0下降了0.5d,求此时刻的速度大小。

针对训练1-2:(浙江2015年4月选考)如图所示,质量m=3.0×10-3kg的“”型金属细框竖直放置在两水银槽中,“”型框的水平细杆CD长l=0.20 m,处于磁感应强度大小B1=1.0 T、方向水平向右的匀强磁场中,有一匝数n=300匝、面积S=0.01 m2的线圈通过开关K与两水银槽相连。线圈处于与线圈平面垂直的、沿竖直方向的匀强磁场中,其磁感应强度B2的大小随时间t变化的关系如图所示。 (1)求0~0.10 s线圈中的感应电动势大小; (2)t=0.22 s时闭合开关K,若细杆CD所受安培力方向竖直向上,判断CD中的电流方向及磁感应强度B2的方向; (3)t=0.22 s时闭合开关K,若安培力远大于重力,细框跳起的最大高度h=0.20 m,求通过细杆CD的电荷量。 针对训练1-3:(浙江2017年11月选考)所图所示,匝数N=100、截面积s=1.0×10-2m2、电阻r=0.15Ω的线圈内有方向垂直于线圈平面向上的随时间均匀增加的匀强磁场B1,其变化率k=0.80T/s。线圈通过开关S连接两根相互平行、间距d=0.20m的竖直导轨,下端连接阻值R=0.50Ω的电阻。一根阻值也为0.50Ω、质量m=1.0×10-2kg的导体棒ab搁置在等高的挡条上。在竖直导轨间的区域仅有垂直纸面的不随时间变化的匀强磁场B2。接通开关S后,棒对挡条的压力恰好为零。假设棒始终与导轨垂直,且与导轨接触良好,不计摩擦阻力和导轨电阻。 (1)求磁感应强度B2的大小,并指出磁场方向; (2)断开开关S后撤去挡条,棒开始下滑,经t=0.25s后下降了h=0.29m,求此过程棒上产生的热量。

动量定理及应用

[高考命题解读] 分析 年份 高考(全国卷)四年命题情况对照分析 1.考查方式 从前几年命题规律来 看,应用碰撞或反冲运 动模型,以计算题的形 式考查动量和能量观 点的综合应用. 2.命题趋势 由于动量守恒定律作 为必考内容,因此综合 应用动量和能量观点 解决碰撞模型问题将 仍是今后命题的热点, 既可以将动量与力学 知识结合,也可将动量 和电学知识结合,作为 理综试卷压轴计算题 进行命题. 题号命题点 2014年 Ⅰ卷35题 第(2)问计算题,考查了两物体的瞬时碰撞, 应用动量和能量观点解决问题 Ⅱ卷35题 第(2)问计算题,考查了对碰撞问题的理解, 应用动量和动量守恒定律解决问题 2015年 Ⅰ卷35题 第(2)问计算题,考查了三物体的瞬时碰撞, 应用动量和能量观点解决问题 Ⅱ卷35题同2014年Ⅰ卷35题 2016年 Ⅰ卷35题第(2)问计算题,考查了动量定理的应用 Ⅱ卷35题 第(2)问计算题,考查了应用动量守恒定律 和能量观点解决三物体碰撞问题 Ⅲ卷35题同2014年Ⅰ卷35题 2017年 Ⅰ卷14题考查动量守恒定律的应用 Ⅱ卷15题考查动量守恒定律的应用 Ⅲ卷20题考查动量定理的应用 第1讲动量定理及应用 一、动量、动量变化、冲量 1.动量 (1)定义:物体的质量与速度的乘积.

(2)表达式:p=m v. (3)方向:动量的方向与速度的方向相同. 2.动量的变化 (1)因为动量是矢量,动量的变化量Δp也是矢量,其方向与速度的改变量Δv的方向相同. (2)动量的变化量Δp的大小,一般用末动量p′减去初动量p进行计算,也称为动量的增量.即Δp=p′-p. 3.冲量 (1)定义:力与力的作用时间的乘积叫做力的冲量. (2)公式:I=Ft. (3)单位:N·s. (4)方向:冲量是矢量,其方向与力的方向相同. 自测1下列说法正确的是() A.速度大的物体,它的动量一定也大 B.动量大的物体,它的速度一定也大 C.只要物体的运动速度大小不变,物体的动量就保持不变 D.物体的动量变化越大,则该物体的速度变化一定越大 答案 D 二、动量定理 1.内容:物体在一个运动过程始末的动量变化量等于它在这个过程中所受合力的冲量. 2.公式:m v′-m v=F(t′-t)或p′-p=I. 3.动量定理的理解 (1)动量定理反映了力的冲量与动量变化量之间的因果关系,即外力的冲量是原因,物体的动量变化量是结果. (2)动量定理中的冲量是合力的冲量,而不是某一个力的冲量,它可以是合力的冲量,可以是各力冲量的矢量和,也可以是外力在不同阶段冲量的矢量和. (3)动量定理表达式是矢量式,等号包含了大小相等、方向相同两方面的含义. 自测2(多选)质量为m的物体以初速度v 0开始做平抛运动,经过时间t,下降的高度为h,速度变为v,在这段时间内物体动量变化量的大小为() A.m(v-v0) B.mgt C.m v2-v02 D.m2gh 答案BCD

动量和动量守恒

第五章 动量和动量守恒 冲量和动量是物理学中的重要概念,动量定理和动量守恒是自然界中最重要、最普遍、最基本的客观规律之一.动量定理和动量守恒定律是可以用牛顿第二定律导出,但适用范围比牛顿第二定律要广。动量守恒定律广泛应用于碰撞、爆炸、冲击;近代物理中微观粒子的研究,火箭技术的发展都离不开动量守恒定律有关的物理知识。在自然界中,大到天体间的相互作用,小到如质子、中子等基本粒子间的相互作用,都遵守动量守恒定律。 第一讲 动量基本知识 动量问题是指与动量有关的问题和用动量观点解决的问题。其中,与动量有关的问题,本专题主要指动量定理和动量守恒定律。用动量观点解决问题,即是指用动量定理和动量守恒定律解决的问题。 1.1动量定理 ⑴动量定理内容:物体所受合外力的冲量等于它的动量变化。 ⑵动量定理公式:12mv mv Ft -=∑,它为一矢量式,在一维情况时可变为代数式运算。 ⑶动量定理的研究对象是质点。它说明的是外力对时间的累积效应。应用动量定理分析或解题时,只考虑物体的始、末状态的动量,而不必考虑中间的运动过程。 ⑷应用动量定理的思路: a. 确定研究对象,进行受力分析; b. 确定初末状态的动量mv 1和mv 2(要先规定正方向,以便确定动量的正负, 还要把v 1和v 2换成相对于同一惯性参照系的速度); c. 利用12mv mv Ft -=∑列方程求解。 1.2动量守恒定律 ⑴内容及表达式: a. 动量守恒定律内容:系统不受外力或所受外力的合力为零时,系统的总动量保持不变。 b. 动量守恒定律的公式:'2'121mv mv mv mv +=+ ⑵说明及注意事项: a.定律适用条件: ① 系统不受外力或所受外力的合力为零时; ② 系统内力远大于外力时(如碰撞、爆炸等); ③ 系统在某一方向上不受外力或所受外力的合力为零时(只在这一方向上动量守恒) b .注意表达式的矢量性: 对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢量运算简化为代数运算。 c .注意速度的相对性。 所有速度必须是相对同一惯性参照系。 d.注意同时性: 表达式中v 1和v 2必须是相互作用前同一时刻的瞬时速度,v 1’和v 2’必须是相 互作用后同一时刻的瞬时速度。

动量和动量定理的应用

动量和动量定理的应用 知识点一——冲量(I ) 要点诠释: 1. 定义:力F 和作用时间的乘积,叫做力的冲量。 2. 公式: 3. 单位: 4. 方向:冲量是矢量,方向是由力F 的方向决定。 5. 注意: ①冲量是过程量,求冲量时一定要明确是哪一个力在哪一段时间内的冲量。 ②用公式求冲量,该力只能是恒力 1. 推导: 设一个质量为的物体,初速度为,在合力 F 的作用下,经过一段时间,速度变为 则物体的加速度 由牛顿第二定律 2. 动量定理:物体所受合外力的冲量等于物体的动量变化。 3. 公式:或 4. 注意事项: ②式中F 是指包含重力在内的合外力,可以是恒力也可以是变力。当合外力是变力时,F 应该是合外力在这段时间内的平均值; ③研究对象是单个物体或者系统; 规律方法指导 1. 动量定理和牛顿第二定律的比较 (1 )动量定理反映的是力在时间上的积累效应的规律,而牛顿第二定律反映的是力的瞬时效应的规律 (2 )由动量定理得到的,可以理解为牛顿第二定律的另一种表达形式,即:物体所受的合外力等于物体动量的变化率。 (3 )在解决碰撞、打击类问题时,由于力的变化规律较复杂,用动量定理处理这类问题更有其优越性。 4. 应用动量定理解题的步骤 ①选取研究对象;

②确定所研究的物理过程及其始末状态; ③分析研究对象在所研究的物理过程中的受力情况; ④规定正方向,根据动量定理列式; ⑤解方程,统一单位,求得结果。 经典例题透析 类型一——对基本概念的理解 1. 关于冲量,下列说法中正确的是() A. 冲量是物体动量变化的原因 B. 作用在静止的物体上力的冲量一定为零 C. 动量越大的物体受到的冲量越大 D. 冲量的方向就是物体受力的方向 思路点拨:此题考察的主要是对概念的理解 解析:力作用一段时间便有了冲量,而力作用一段时间后物体的运动状态发生了变化,物体的动量也发生了变化,因此说冲量使物体的动量发生了变化, A 对; 只要有力作用在物体上,经历一段时间,这个力便有了冲量,与物体处于什么状态无关,B 错误;物体所受冲量大小与动量大小无关, C 错误;冲量是一个过程量,只有在某一过程中力的方向不变时,冲量的方向才与力的方向相同,故 D 错误。 答案:A 【变式】关于冲量和动量,下列说法中错误的是() A. 冲量是反映力和作用时间积累效果的物理量 B. 冲量是描述运动状态的物理 量 C. 冲量是物体动量变化的原因 D. 冲量的方向与动量的方向一致 答案:BD 点拨:冲量是过程量;冲量的方向与动量变化的方向一致。故BD 错误。 类型二——用动量定理解释两类现象 2. 玻璃杯从同一高度自由落下,落到硬水泥地板上易碎,而落到松软的地毯上不 易碎。这是为什么? 解释:玻璃杯易碎与否取决于落地时与地面间相互作用力的大小。由动量定理可知,此作用力的大小又与地面作用时的动量变化和作用时间有关。 因为杯子是从同一高度落下,故动量变化相同。但杯子与地毯的作用时间远比杯子与水泥地面的作用时间长,所以地毯对杯子的作用力远比水泥地面对杯子的作用力小。所以玻璃杯从同一高度自由落下,落到硬水泥地板上易碎,而落到松软的地毯上不易碎。 3. 如图,把重物压在纸带上,用一水平力缓缓拉动纸带,重物跟着一起运动,若迅速拉动纸带,纸带将会从重物下面抽出,解释这些现象的正确说法是() A. 在缓慢拉动纸带时,重物和纸带间的摩擦力大

动量定理应用举例

动量定理应用举例 1、用锤子使劲压钉子,就很难把钉子压入木块中去,如果用锤子以一定的速度敲钉子,钉子就很容易钻入木块,这是为什么? 分析:压铁钉与敲铁钉区别在于:压铁钉时锤子是静止在铁钉上,敲铁钉时,铁锤以较大的速度与铁钉碰撞;压铁钉时作用时间长,而敲铁钉作用时间短,致使铁钉受到的作用力不同。 用锤子敲铁钉时,由于锤子质量较大,同时与铁钉碰撞前有较大的速度(即有较大的动量),遇到钉子后,在极短的时间内停下,动量变化很大,据动量定理mv v m t F -'=?,得t mv v m F -'=,对锤子来说,作用时间t 极短,动量变化mv v m -'又很大,说明铁钉必须对锤子施加很大的阻力F ,同时,据牛顿第三定律,锤子也必然对钉子施加很大的反作用力F ',此力远远大于压铁钉时所用的压力,所以用锤子压钉子,铁钉很难被压入,而以一定速度敲铁钉,钉子就很容易钻入木块。 注意:许多物体间相互作用问题,可以根据动量定理来解释.根据mv v m Ft -'= 可看出:物体间相互作用时,从t v v m F 0-'=中可以看出若要获得较大作用力必须使物体动量变化大(如使物体速度变大),同时使作用时间缩短(如碰撞);反之,如需减小相互间的作用力时,则可以使物体动量变化小些,同时延长相互作用时间。 2、杂技表演时,常可看见有人用铁锤猛击放在“大力士”身上的大石块,石裂而人不伤,这是什么道理?请加以分析。 分析:大石块意味它的质量很大:“猛击”表示作用力很大,且作用时间极短;“人未受伤”说明大石块对人身体的压强不大。 用铁锤猛击放在“大力上”身上的大石块,大石块受到很大的打击力而破裂,但是,根据动量定理01mv mv Ft -=得m t F v v t ?=-0,对大石块来说,虽然受到的作用力F 很大,但力作用时间极短,而大石块的质量又很大,因而引起的速度变化0v v t -就很小,即大石块几乎没有向下运动,而且石块与人的身体接触面积又较大,据S F P /=,所以人身体受的压强并不很大,故此人不会受伤(当然,这还和表演者技术本领有关)。 注意:根据牛顿第二定律可知,有力就一定有加速度,它们是同时产生的.但有加速度不一定有位移,从位移公式可以看出,产生位移是需要时间的.

2019届二轮复习 动量及其守恒定律 作业 (全国通用)

专题二·第二讲 动量及其守恒定律——课后“高仿”检测卷 一、高考真题集中演练——明规律 1.(2017·全国卷Ⅰ)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出。在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( ) A .30 kg·m/s B .5.7×102 kg·m/s C .6.0×102 kg·m/s D .6.3×102 kg·m/s 解析:选A 燃气从火箭喷口喷出的瞬间,火箭和燃气组成的系统动量守恒,设燃气喷出后的瞬间,火箭的动量大小为p ,根据动量守恒定律,可得p -m v 0=0,解得p =m v 0=0.050 kg ×600 m/s =30 kg·m/s ,选项A 正确。 2.[多选](2017·全国卷Ⅲ)一质量为2 kg 的物块在合外力F 的作用下 从静止开始沿直线运动。F 随时间t 变化的图线如图所示,则( ) A .t =1 s 时物块的速率为1 m/s B .t =2 s 时物块的动量大小为4 kg·m/s C .t =3 s 时物块的动量大小为5 kg·m/s D .t =4 s 时物块的速度为零 解析:选AB 法一:根据F -t 图线与时间轴围成的面积的物理意义为合外力F 的冲量,可知在0~1 s 、0~2 s 、0~3 s 、0~4 s 内合外力冲量分别为2 N·s 、4 N·s 、3 N·s 、2 N·s ,应用动量定理I =m Δv 可知物块在1 s 、2 s 、3 s 、4 s 末的速率分别为1 m/s 、2 m/s 、1.5 m/s 、1 m/s ,物块在这些时刻的动量大小分别为2 kg·m/s 、4 kg·m/s 、3 kg·m/s 、2 kg·m/s ,则A 、B 项正确,C 、D 项错误。 法二:前2 s 内物块做初速度为零的匀加速直线运动,加速度a 1=F 1m =22 m/s 2=1 m/s 2,t =1 s 时物块的速率v 1=a 1t 1=1 m/s ,A 正确;t =2 s 时物块的速率v 2=a 1t 2=2 m/s ,动量大小为p 2=m v 2=4 kg·m/s ,B 正确;物块在2~4 s 内做匀减速直线运动,加速度的大小为a 2=F 2m =0.5 m/s 2,t =3 s 时物块的速率v 3=v 2-a 2t 3=(2-0.5×1) m/s =1.5 m/s ,动量大小为p 3=mv 3=3 kg·m/s ,C 错误;t =4 s 时物块的速率v 4=v 2-a 2t 4=(2-0.5×2) m/s =1 m/s ,D 错误。 3.(2018·全国卷Ⅱ)汽车A 在水平冰雪路面上行驶。驾驶员发现 其正前方停有汽车B ,立即采取制动措施,但仍然撞上了汽车B 。两 车碰撞时和两车都完全停止后的位置如图所示,碰撞后B 车向前滑动 了4.5 m ,A 车向前滑动了2.0 m 。已知A 和B 的质量分别为2.0×103 kg 和1.5×103 kg ,两

动量定理及应用

[高考命题解读] 第1讲动量定理及应用 一、动量、动量变化、冲量 1.动量 (1)定义:物体的质量与速度的乘积. (2)表达式:p=mv. (3)方向:动量的方向与速度的方向相同. 2.动量的变化 (1)因为动量是矢量,动量的变化量Δp也是矢量,其方向与速度的改变量Δv的方向相同. (2)动量的变化量Δp的大小,一般用末动量p′减去初动量p进行计算,也称为动量的增量.即Δp=p′-p. 3.冲量 (1)定义:力与力的作用时间的乘积叫做力的冲量. (2)公式:I=Ft.

(3)单位:N·s. (4)方向:冲量是矢量,其方向与力的方向相同. 自测1 下列说法正确的是( ) A.速度大的物体,它的动量一定也大 B.动量大的物体,它的速度一定也大 C.只要物体的运动速度大小不变,物体的动量就保持不变 D.物体的动量变化越大,则该物体的速度变化一定越大 答案D 二、动量定理 1.内容:物体在一个运动过程始末的动量变化量等于它在这个过程中所受合力的冲量. 2.公式:mv′-mv=F(t′-t)或p′-p=I. 3.动量定理的理解 (1)动量定理反映了力的冲量与动量变化量之间的因果关系,即外力的冲量是原因,物体的动量变化量是结果. (2)动量定理中的冲量是合力的冲量,而不是某一个力的冲量,它可以是合力的冲量,可以是各力冲量的矢量和,也可以是外力在不同阶段冲量的矢量和. (3)动量定理表达式是矢量式,等号包含了大小相等、方向相同两方面的含义. 自测2 (多选)质量为m的物体以初速度v0开始做平抛运动,经过时间t,下降的高度为h,速度变为v,在这段时间内物体动量变化量的大小为( ) (v-v0) 答案BCD 命题点一对动量和冲量的理解 1.对动量的理解 (1)动量的两性 ①瞬时性:动量是描述物体运动状态的物理量,是针对某一时刻或位置而言的. ②相对性:动量的大小与参考系的选取有关,通常情况是指相对地面的动量. (2)动量与动能的比较

动量定理的理解与应用

动量定理的理解与应用 动量定理运用问题,能很好地考查学生理解、建模、推理和理论联系实际的能力,其题型新颖多变,联系的知识面宽而倍受命题者的青睐,是高考的重点和热点问题,也是同学们学习中的难点问题。初学者常犯的错误主要是:只注意公式的代入与求解,忽视了各自的对应关系;只注意力或动量的数值大小,而忽视力和动量的方向性,造成应用动量定理时一列方程就出错。本文就动量定理应用时应澄清的几个问题和同学们交换一下意见,促使同学们能学以致用,融会贯通。 1.对动量定理的理解 动量定理的表述是:物体所受合外力的冲量等于物体动量的变化量。其一般公式形式为: Ft=mV 2-mV 1 。理解定理时要把握住以下几个方面:①研究对象可以是单一物体,也可是多个 物体组成的系统。所谓物体系总动量的变化量应是各个物体动量变化量的矢量和。②力F 是指研究对象所受的包括重力在内的所有外力的合力,它可以是恒力也可以是变力,当合外力变化时,F应是物体所受合外力的平均值。③公式中的ΔmV是研究对象动量的增量,是某一过程中末态的动量减去初态的动量(要考虑方向),切不可颠倒顺序。④公式中的等号表示合外力的冲量与研究对象动量的增量在数值上是相等的,但不能认为合外力的冲量就是动量的增量,合外力的冲量是导致研究对象运动改变的外因,而动量的增量却是研究对象外部冲量作用的结果。⑤用动量定理解题,只能选取地球或相对地球匀速直线运动的物体做参照物。⑥动量定理可由牛顿定律推导出来,但不能认为它是牛顿运动定律的一个推论。动量定理和牛顿定律都是研究物体运动状态变化和所受外力间的关系,牛顿定律说明了力与加速度的瞬时关系,但对迅速变化的问题,由于发生冲击作用产生的量值很大、变化很快、作用时间很短,运用牛顿定律求解就比较困难,若用动量定理就可不考虑中间细节变化,只求整个过程中冲量的总体效果,这就为解决力学问题提供了另一种重要方法。 2.动量定理的应用 ①定性分析 例1特技演员从高处跳下,要求落地时必须脚先触地,为尽量保证安全,他落地时最好采用的方法是() A.让脚尖先触地,且着地瞬间同时下蹲 B.让整个脚板着地,且着地瞬间同时下蹲 C.让整个脚板着地,且着地瞬间不下蹲 D.让脚尖先触地,且着地瞬间不下蹲 解析:特技演员从高处跳下,其动量变化一定,让脚尖先触地,且着地瞬间同时下蹲,这都是为了延长与地面间的作用时间,从而减小相互作用力,故A选项正确。 评析:应用动量定理进行定性分析时,一般采用控制变量法,即在F、t和ΔP三个中限定某个参量不变,考虑另两个间的变化关系,而得出相应的结论来。 拓展:从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是( ) A.掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量 B.掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小 C.掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢 D.掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与

动量与动量定理的应用

类型一——对基本概念的理解 1.关于冲量,下列说法中正确的是() A.冲量是物体动量变化的原因 B.作用在静止的物体上力的冲量一定为零 C.动量越大的物体受到的冲量越大 D.冲量的方向就是物体受力的方向 思路点拨:此题考察的主要是对概念的理解 解析:力作用一段时间便有了冲量,而力作用一段时间后物体的运动状态发生了变化,物体的动量也发生了变化,因此说冲量使物体的动量发生了变化,A对;只要有力作用在物体上,经历一段时间,这个力便有了冲量,与物体处于什么状态无关,B错误;物体所受冲量大小与动量大小无关,C错误;冲量是一个过程量,只有在某一过程中力的方向不变时,冲量的方向才与力的方向相同,故D错误。 答案:A 【变式】关于冲量和动量,下列说法中错误的是() A.冲量是反映力和作用时间积累效果的物理量 B.冲量是描述运动状态的物理量 C.冲量是物体动量变化的原因 D.冲量的方向与动量的方向一致 答案:BD 点拨:冲量是过程量;冲量的方向与动量变化的方向一致。故BD错误。 类型二——用动量定理解释两类现象 2.玻璃杯从同一高度自由落下,落到硬水泥地板上易碎,而落到松软的地毯上不易碎。这是为什么? 解释:玻璃杯易碎与否取决于落地时与地面间相互作用力的大小。由动量定理可知,此作用力的大小又与地面作用时的动量变化和作用时间有关。 因为杯子是从同一高度落下,故动量变化相同。但杯子与地毯的作用时间远比杯子与水泥地面的作用时间长,所以地毯对杯子的作用力远比水泥地面对杯子的作用力小。所以玻璃杯从同一高度自由落下,落到硬水泥地板上易碎,而落到松软的地毯上不易碎。 3. 如图,把重物压在纸带上,用一水平力缓缓拉动纸带,重物跟着一起运动,若迅速拉动纸带,纸带将会从重物下面抽出,解释这些现象的正确说法是() A.在缓慢拉动纸带时,重物和纸带间的摩擦力大 B.在迅速拉动时,纸带给重物的摩擦力小 C.在缓慢拉动时,纸带给重物的冲量大 D.在迅速拉动时,纸带给重物的冲量小 解析:在缓慢拉动时,两物体之间的作用力是静摩擦力,在迅速拉动时,它们之间的作用力是滑动摩擦力。由于通常认为滑动摩擦力等于最大静摩擦力。所以一般情况是:缓拉摩擦力小;快拉摩擦力大,故AB都错;缓拉纸带时,摩擦力虽小些,但作用时间很长,故重物获得的冲量可以很大,所以能把重物带动。快拉时摩擦力虽大些,但作用时间很短,故冲量小,所以动量改变也小,因此,CD正确。 总结升华:用动量定理解释现象一般可分为两类:一类是物体的动量变化一定,力的作用时间越短,力就越大;时间越长,力就越小。另一类是作用力一定,力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小。分析问题时,要搞清楚哪个量一定,哪个量变化。 【变式1】有些运动鞋底有空气软垫,请用动量定理解释空气软垫的功能。 解析:由动量定理可知,在动量变化相同的情况下,时间越长,需要的作用力越小。因此运动鞋底部的空气软垫有延长作用时间,从而减小冲击力的功能。 【变式2】机动车在高速公路上行驶,车速越大时,与同车道前车保持的距离也越大。

(完整版)动量定理的应用练习题及答案

三动量定理的应用姓名 一、选择题(每小题中至少有一个选项是正确的) 1、在下列各种运动中,任何相等的时间内物体动量的增量总是相同的有() A、匀加速直线运动 B、平抛运动 C、匀减速直线运动 D、匀速圆周运动 2、质量为5 kg的物体,原来以v=5 m/s的速度做匀速直线运动,现受到跟运动方向相同的冲量15 N·s的作用,历时4 s,物体的动量大小变为 ( ) A.80 kg·m/s B.160 kg·m/s C.40 kg·m/s D.10 kg·m/s 3、用力拉纸带,纸带将会从重物下抽出,解释这些现象的正确说法是: () A、在缓慢拉动纸带时,纸带给物体的摩擦力大; B、在迅速拉动纸带时,纸带给物体的摩擦力小; C、在缓慢拉动纸带时,纸带给重物的冲量大; D、在迅速拉动纸带时,纸带给重物的冲量小. 4、从同一高度的平台上,抛出三个完全相同的小球,甲球竖直上抛,乙球竖直下抛,丙球平抛.三球落地时的速率相同,若不计空气阻力,则() A 、抛出时三球动量不是都相同,甲、乙动量相同,并均不小于丙的动量 B、落地时三球的动量相同 C、从抛出到落地过程,三球受到的冲量都不同 D、从抛出到落地过程,三球受到的冲量不都相同 5、若质量为m的小球从h高度自由落下,与地面碰撞时间为,地面对小球的平均作用力大小为F,则在碰撞过程中(取向上的方向为正)对小球来说 () A 、重力的冲量为B、地面对小球的冲量为 C、合力的冲量为 D、合力的冲量为 6、一物体竖直向上抛出,从开始抛出到落回抛出点所经历的时间是t,上升的最大高度是H,所受空气阻力大小恒为F,则在时间t 内 A.物体受重力的冲量为零 B.在上升过程中空气阻力对物体的冲量比下降过程中的冲量小 C.物体动量的增量大于抛出时的动量 D.物体机械能的减小量等于FH 7.恒力F作用在质量为m的物体上,如图8—1所示,由于地面对 图8—1 物体的摩擦力较大,没有被拉动,则经时间t,下列说法正确的是 A.拉力F对物体的冲量大小为零 B.拉力F对物体的冲量大小为Ft C.拉力F对物体的冲量大小是Ftcosθ D.合力对物体的冲量大小为零 *8、物体在恒定的合力F作用下作直线运动,在时间Δt1内速度由0增大到v,在时间Δt2内速度由v增大到2v。设F在Δt1内做的功W1,冲量是I1;在Δt2内做的

相关文档