文档库 最新最全的文档下载
当前位置:文档库 › 太阳能光伏电池输出特性分析与仿真研究_图文(精)

太阳能光伏电池输出特性分析与仿真研究_图文(精)

太阳能光伏电池输出特性分析与仿真研究_图文(精)
太阳能光伏电池输出特性分析与仿真研究_图文(精)

太阳能光伏电池标准_IEC_61427-2005(中文版)

国际标准IEC61427 第2版 2005.5 光伏太阳能系统(PVES) 储能二次电池和电池组 ―――一般要求和试验方法

目录前言 1.适用范围 2.标准性参考文献 3.术语和定义 4.使用条件 4.1光伏能源系统 4.2二次电池和电池组 4.3通用运行条件 5.一般要求 5.1机械耐受性 5.2充电效率 5.3深放电保护 5.4标记 5.5安全 5.6文件 6.功能特性 7.通用试验条件 7.1测量仪表精度 7.2测试样品的准备和维护 8.试验方法 8.1容量实验 8.2循环耐久试验 8.3荷电保持试验 8.4光伏用途循环耐久试验(极端条件)9.试验的推荐采用 9.1型式试验 9.2验收试验

前言 1)国际电工技术委员会(International Electrotechnical Commission――IEC)是一个全球性的、包括所有国家的电工技术委员会(IEC国家委员会)的标准化组织。 IEC的目的是推进所有电气和电子领域有关标准化方面的国际合作。为此目的,除了其它的活动之外,IEC出版国际标准、技术规范、技术报告、公开可获得的规范和指导(下称IEC出版物)。出版物的准备都是委托各技术委员会进行;任何IEC 国家委员会对于所涉及的出版物感兴趣都可以参加准备工作。在出版物的准备过程中,与IEC有联系的国际的、政府的和非政府组织也可以参加。IEC与国际标准化组织(International Organization for Standardization---ISO)按照两个组织一致同意的条件密切合作。 2)IEC对于技术问题所作出的结论和决议都尽可能地代表了相关问题国际上的一致意见,因为每一个技术委员会都有来自所有感兴趣的IEC国家委员会的代表。 3)IEC出版物的形式为国际上推荐采用,而且在这个意义上也已被IEC各国家委员会所接受。尽管已经尽力做到IEC出版物的技术内容准确无误,但IEC不能对其使用的方式或最终用户的误解负责。 4)为了促进国际上的一致性,所有IEC国家委员会都承诺在其国家的或地区的出版物中尽最大可能的明确使用IEC出版物。IEC出版物和国家的或地区的出版物之间的任何差异都需要在后者的出版物中予以明确标明。 5)IEC不提供其认可的程序,也不对任何声称符合IEC出版物的设备负责。 6)所有用户都应确保他们所持有的是最新版本。 7)对于由于使用或信任本出版物或其它IEC出版物所导致的任何人身伤害、财产损失或其它任何性质的损害――不论是直接的还是间接地――或者其它的费用(包括法律费用)和开销,都与IEC或其经理、雇员、服务人员或代理――包括个体的专家和技术委员会以及IEC国家委员会的委员无关。 8)注意该出版物引用的参见标准。对于正确使用本出版物,使用这些参见出版物是必须的。 9)注意本出版物的某些内容可能是专利权的标的。IEC没有责任标明任何或所有这些专利权。 IEC61427标准由IEC21技术委员会――二次电池和电池组――准备。 该第2版取代了1999年公布的第一版。该版本包括了一些技术方面的修改。 第二版在该文件第一版本的基础上重新组织,在使用条件、一般要求、功能特性、通用试验条件、试验方法以及试验的推荐采用等方面更加清晰,目的是让最终用户更容易理解。试验方法在两种不同的技术――铅酸和镍镉――方面都给予了详细清楚地解释。 该标准的内容以下述文件为基础: 关于该标准的批准投票详细情况可以在上表中示出的投票报告中去查找。 该出版物的起草根据ISO/IEC Directive Part2进行。

硅光电池伏安特性

实验 项目: 硅光电池伏安特性(综合设计 2-1) 实验 目的: 了解硅光电池的基本特性,测出它的伏安特性曲线和光照特性曲线。 实验 仪器: DH-CGOP 型光敏传感器实验仪(包括灯泡盒,硅光电池 PHC,直流恒压源 DH-VC3,九孔板实验箱,电阻箱,导线) 实验 原理: 硅光电池的工作原理 光电转换器件主要是利用物质的光电效应,即当物质在一定频率的照射下,释放出光电子的现象。当光照射金属、 金属氧化物或半导体材料的表面时,会被这些材料内的电子所吸收,如果光子的能量足够大,吸收光子后的电子可 挣脱原子的束缚而溢出材料表面,这种电子称为光电子,这种现象称为光电子发射,又称为外光电效应。有些物质 受到光照射时,其内部原子释放电子,但电子仍留在物体内部,使物体的导电性增强,这种现象称为内光电效应。 光电二极管是典型的光电效应探测器,具有量子噪声低、响应快、使用方便等优点,广泛用于激光探测器。外加反 偏电压与结内电场方向一致,当 PN 结及其附近被光照射时,就会产生载流子(即电子-空穴对)。结区内的电子-空 穴对在势垒区电场的作用下,电子被拉向 N 区,空穴被拉向 P 区而形成光电流。同时势垒区一侧一个扩展长度内的 光生载流子先向势垒区扩散,然后在势垒区电场的作用下也参与导电。当入射光强度变化时,光生载流子的浓度及 通过外回路的光电流也随之发生相应的变化。这种变化在入射光强度很大的动态范围内仍能保持线性关系。 硅光电池是一个大面积的光电二极管,它被设计用于把入射到它表面的光能转化为电能,因此,可用作光电探测器 和光电池,被广泛用于太空和野外便携式仪器等的能源。 光电池的基本结构如图 1 所示,当半导体 PN 结处于零偏或负偏时,在它们的结合面耗尽区存在一内电场。
图 1 光 电池结 构示意 图
图1
光电池结构示意图

太阳能电池基本特性测定实验

太阳能电池基本特性测定实验 太阳能是一种新能源,对太阳能的充分利用可以解决人类日趋增长的能源需求问题。目前,太阳能的利用主要集中在热能和发电两方面。利用太阳能发电目前有两种方法,一是利用热能产生蒸气驱动发电机发电,二是太阳能电池。太阳能的利用和太阳能电池的特性研究是21 世纪的热门课题,许多发达国家正投入大量人力物力对太阳能接收器进行研究。 为此,我们尝试在普通物理实验中开设了太阳能电池的特性研究实验,介绍太阳能电池的电学性质和光学性质,并对两种性质进行测量。该实验作为一个综合设计性的普通物理实验,联系科技开发实际,有一定的新颖性和实用价值,能激发学生的学习兴趣。 【实验目的】 1. 无光照时,测量太阳能电池的伏安特性曲线 2. 有光照时,测量电池在不同负载电阻下,I 对U 变化关系,画出U I -曲线图;并测量太阳能电池的短路电流SC I 、开路电压OC U 、最大输出功率max P 及填充因子FF 3. 测量太阳能电池的短路电流SC I 与相对光强0J J 的关系,求出它们的近似函数关系。 【实验仪器】 光具座、滑块、白炽灯、太阳能电池、光功率计、遮光罩、电压表、电流表、电阻箱 【实验原理】 太阳能电池能够吸收光的能量,并将所吸收的光子的能量转化为电能。在没有光照时, 可将太阳能电池视为一个二极管,其正向偏压U 与通过的电流I 的关系为 ? ?? ? ??-=10nKT qU e I I (1) 其中0I 是二极管的反向饱和电流,n 是理想二极管参数,理论值为1。K 是玻尔兹曼常量,q 为电子的电荷量,T 为热力学温度。(可令nKT q =β ) 由半导体理论知,二极管主要是由如图所示的能隙为V C E E -的半导体所构成。C E 为半导体导电带,V E 为半导体价电带。 当入射光子能量大于能隙时,光子被半导体所吸收,并产生电子-空穴对。 电子-空穴对受到二极管内电场的影响而产生光生电动势,这一现象称为光伏效应。

影响光伏电池、组件输出特性的因素概要

由于光伏电池、组件的输出功率取决于太阳光照强度、太阳能光谱的分布和光伏电池的温度、阴影、晶体结构。因此光伏电池、组件的测量在标准条件下(STC进行,测量条件被欧洲委员会定义为101号标准,其条件是:光谱辐照度为1000瓦/平米;光谱 AM1.5;电池温度25摄氏度。 在该条件下,太阳能光伏、电池组件所输出的最大功率被称为峰值功率,其单位表示为瓦(Wp。在很多情况下,太阳能电池的光照、温度都是不断变化的,所以组件的峰值功率通常用模拟仪测定并和国际认证机构的标准化的光伏电池进行比较。 (1温度对光伏电池、组件输出特性的影响 大家都知道,光伏电池、组件温度较高时,工作效率下降。随着光伏电池温度的升高,开路电压减小,在20-100摄氏度范围,大约每升高1摄氏度,光伏电池的电压减小2mV;而光电流随温度的升高略有上升,大约每升高1摄氏度电池的光电流增加千分之一。总的来说,温度每升高1摄氏度,则功率减少0.35%。这就是温度系数的基本概念,不同的光伏电池,温度系数也不一样,所以温度系数是光伏电池性能的评判标准之一。 (2光照强度对光伏电池组建输出特性的影响 光照强度与光伏电池、组件的光电流成正比,在光强由100-1000瓦每平米范围内,光电流始终随光强的增长而线性增长;而光

照强度对电压的影响很小,在温度固定的条件下,当光照强度在400-1000哇每平米范围内变化,光伏电池、组件的开路电压基本保持不变。所以,光伏电池的功率与光强也基本保持成正比。 (3阴影对光伏电池、组件输出特性的影响 阴影对光伏电池、组件性能的影响不可低估,甚至光伏组件上的局部阴影也会引起输出功率的明显减少。所以要注意避免阴影的产生,及时清理组件表面,防止热斑效应的产生。一个单电池被完全遮挡时,太阳电池组件输出减少75%左右。虽然组件安装了二极管来减少阴影的影响,但如果低估局部阴影的影响,建成的光伏系统性能和投资收效都将大大降低。

@探究太阳能电池的输出特性

探究太阳能电池的输出特性 一、引言 能源危机与环境污染是人类正面临的重大挑战,开发新能源和可再生清洁能源是21世纪最具决定影响的技术领域之一。太阳能是一种取之不尽、用之不竭的可再生清洁能源,对太阳能电池的研究与开发也变得日益重要。 二、实验目的 1、在没有光照时,太阳能电池主要结构为一个二极管,测量该二极管在正向偏压时的伏安特性曲线,并求得电压和电流关系的经验公式。 2、测量太阳能电池在光照时的输出伏安特性,作出伏安特性曲线图,从图中求得它的短路电流 I SC 、开路电压U OC 、最大输出功率Pm 及填充因子 FF , [FF=Pm/(I SC *U OC )]。 三、实验原理 1、太阳能电池工作原理: 太阳能电池在没有光照时其特性可视为一个二极管,在没有光照时其正向偏压 U 与通过电流I 的关系式为:(1)式中,o I 和β是常数。 )1e (I I U o -?=β (1) 由半导体理论,二极管主要是由能隙为V C E E -的半导体构成,如图1所示。 C E 为半导体导电带,V E 为半导体价电带。当入射光子能量大于能隙时,光子会被半导体吸收,产生电子和空穴对。电子和空穴对会分别受到二极管之内电场的影响而产生光电流。

图1 电子和空穴在电场的作用下产生光电流 假设太阳能电池的理论模型是由一理想电流源(光照产生光电流的电流源)、一个理想二极管、一个并联电阻sh R 与一个电阻s R 所组成,如图2所示。 图2 太阳能电池的理论模型电路图 图2中,ph I 为太阳能电池在光照时的等效电源输出电流,d I 为光照时通过太阳能电池内部二极管的电流。由基尔霍夫定律得: 0R )I I I (U IR sh d ph s =---+ (2) (2)式中,I 为太阳能电池的输出电流,U 为输出电压。由(1)式可得, d sh ph sh s I R U I )R R 1(I --=+ (3) 假定∞=sh R 和0R s =,太阳能电池可简化为图3所示电路。 图3 太阳能电池的简化电路图

太阳能光伏电池检验测试结果与分析

H a r b i n I n s t i t u t e o f T e c h n o l o g y 近代光学创新实验 实验名称:太阳能光伏电池测试与分析院系: 专业: 姓名: 学号: 指导教师: 实验时间: 哈尔滨工业大学

一、实验目的 1、了解pn结基本结构和工作原理; 2、了解太阳能电池的基本结构,理解工作原理; 3、掌握pn结的IV特性及IV特性对温度的依赖关系; 4、掌握太阳能电池基本特性参数测试原理与方法,理解光源强度、波长、环境温度等因素对太阳能 电池特性的影响; 5、通过分析PN结、太阳能电池基本特性参数测试数据,进一步熟悉实验数据分析与处理的方法,分 析实验数据与理论结果间存在差异的原因。 二、实验原理 1、光生伏特效应 半导体材料是一类特殊的材料,从宏观电学性质上说它们导电能力在导体和绝缘体之间,导电能力随外界环境(如温度、光照等)发生剧烈的变化。半导体材料具有负的带电阻温度系数。从材料结构特点说,这类材料具有半满导带、价带和半满带隙,温度、光照等因素可以使价带电子跃迁到导带,改变材料的电学性质。通常情况下,都需要对半导体材料进行必要的掺杂处理,调整它们的电学特性,以便制作出性能更稳定、灵敏度更高、功耗更低的电子器件。基于半导体材料电子器件的核心结构通常是pn结,pn结简单说就是p型半导体和n型半导体的基础区域,太阳能电池本质上就是pn结。 常见的太阳能电池从结构上说是一种浅结深、大面积的pn结,如图1所示,它的工作原理的核心是光生伏特效应。光生伏特效应是半导体材料的一种通性。当光照射到一块非均匀半导体上时,由于内建电场的作用,在半导体材料内部会产生电动势。如果构成适当的回路就会产生电流。这种电流叫做光生电流,这种内建电场引起的光电效应就是光生伏特效应。 非均匀半导体就是指材料内部杂质分布不均匀的半导体。pn结是典型的一个例子。N型半导体材料和p型半导体材料接触形成pn结。pn结根据制备方法、杂质在体内分布特征等有不同的分类。制备方法有合金法、扩散法、生长法、离子注入法等等。杂质分布可能是线性分布的,也可能是存在突变的,pn结的杂质分布特征通常是与制备方法相联系的。不同的制备方法导致不同的杂质分布特征。

太阳能电池基本特性测定试验

太阳能电池基本特性测定实验 太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染。 太阳能电池根据所用材料的不同,可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池四大类,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为23%,规模生产时的效率为15%。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为10%。因此,多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。 太阳能的利用和太阳能电池的特性研究是21 世纪的热门课题,许多发达国家正投入大量人力物力对太阳能接收器进行研究。我们开设此太阳能电池的特性研究实验,通过实验了解太阳能电池的电学性质和光学性质,并对两种性质进行测量。该实验作为一个综合设计性的物理实验,联系科技开发实际,有一定的新颖性和实用价值。 【实验目的】 1. 无光照时,测量太阳能电池的伏安特性曲线; UI U I曲线图;并测量太阳能变化关系,画出2. 有光照时,测量电池在不同负载电阻下,对IUP FF;及填充因子电池的短路电流、开路电压、最大输出功率SCaxOCm IU L的关系,求出它们的近似函数关系。与光照度 3. 测量太阳能电池的短路电流、开路电压SCOC 【实验仪器】 白炽灯源、太阳能电池板、光照度计、电压表、电流表、滑线变阻器、稳压电源、单刀开关 连接导线若干 供参考. 】【实验原理 区,pn区流向结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由太阳光照在半导体

太阳能电池探究亮特性光照强度关系

扬州大学物理科学与技术学院 大学物理综合实验训练论文实验名称:太阳能电池探究亮特性光照强度关系 班级:物教1201班 姓名:郑清华 学号:120801117 指导老师:李俊来

太阳能电池探究亮特性光照强度关系 物教1201 郑清华指导老师:李俊来 摘要:本文介绍了太阳能电池研究背景、实验原理等。在不同光强条件对单晶硅太阳电尺进行了测试.研究发现,当光强为3433.56—10617.33W/2 m时,开路电压随着光强的增加呈对数关系增加,短路电流几乎呈线性变化。效率随着光强的增加先增加后减小,最大效率值1、21%。填充因子随着光强的增加减小。 关键词:太阳能电池;输出特性;光强特性。 一、研究背景 随着经济社会的不断发展,能量与能源问题的重要性日益凸显。人类对能源的需求,随着社会经济而急剧膨胀,专家估计目前每年能源总消耗量为200亿吨标准煤,并且其中90%左右为不可再生的化石能源来维持。就目前情况,全球化石能源储备只能维持100年左右。太阳能以其清洁、长久、无害等优点自然而然成为人类可持续发展不得不考虑的能源方式。太阳每年通过大气向地球输送的能量高达3×1024焦耳,而地球上人类一年的能源总需求达到约4.363×1020焦耳,也就是说,如果我们可以收集其中的万分之一到万分之二就足够我们的需求。太阳能是最为清洁的能源,并且不受任何地域限制,随处可取。此外,将太阳能转换为电能后,电能又是应用范围最广,输送最方便的一种能源。 太阳能一般指太阳光的辐射能量。我们知道在太阳内部无时无刻不在进行着氢转变为氦的热核反应,反应过程中伴随着巨大的能量释放到宇宙空间。太阳释放到宇宙空间的所有能量都属于太阳能的范畴。太阳能电池是目前太阳能利用的关键环节,核心概念是pn结和光生伏特效应 晶体硅太阳电池在如今的光伏市场中占据了绝对主导的地位,而且这一地位在今后很长一段时间内不会改变,因此提高晶体硅太阳电池效率,降低生产成本, 使晶体硅太阳电池能与常规能源进行竞争成为现今光伏时代的主题.太阳能是最具发展潜力的新能源。光伏发电是解决能源危机,实现能源可持续发展的重要途径之一。硅太阳能电池是当今市场的主流产品,其最高效率是24.7%,由新南威尔士大学马丁·格林教授研制的PERL单晶硅电池取得单并保持至今。继续提高转换效率十分困难,但电池的效率会随温度和光强变化而变化。因此,研究温度和光强对太阳能电池的影响是必要的。 二、太阳能光伏电池实验 (一)实验目的 1.了解pn结的基本结构与工作原理。 2.了解太阳能电池组件的基本结构,理解其工作原理。

太阳能光伏电池标准 IEC 61427-2005(中文版)

国际标准 IEC 61427 第2版 2005.5 光伏太阳能系统(PVES) 储能二次电池和电池组 ―――一般要求和试验方法

目录前言 1.适用范围 2.标准性参考文献 3.术语和定义 4.使用条件 4.1 光伏能源系统 4.2 二次电池和电池组 4.3 通用运行条件 5.一般要求 5.1 机械耐受性 5.2 充电效率 5.3 深放电保护 5.4 标记 5.5 安全 5.6 文件 6.功能特性 7.通用试验条件 7.1 测量仪表精度 7.2 测试样品的准备和维护 8.试验方法 8.1 容量实验 8.2 循环耐久试验 8.3 荷电保持试验 8.4 光伏用途循环耐久试验(极端条件)9.试验的推荐采用 9.1 型式试验 9.2 验收试验

前言 1)国际电工技术委员会(International Electrotechnical Commission――IEC)是一个全球性的、包括所有国家的电工技术委员会(IEC国家委员会)的标准化组织。 IEC的目的是推进所有电气和电子领域有关标准化方面的国际合作。为此目的,除了其它的活动之外,IEC出版国际标准、技术规范、技术报告、公开可获得的规范和指导(下称IEC出版物)。出版物的准备都是委托各技术委员会进行;任何IEC 国家委员会对于所涉及的出版物感兴趣都可以参加准备工作。在出版物的准备过程中,与IEC有联系的国际的、政府的和非政府组织也可以参加。IEC与国际标准化组织(International Organization for Standardization ---ISO)按照两个组织一致同意的条件密切合作。 2)IEC对于技术问题所作出的结论和决议都尽可能地代表了相关问题国际上的一致意见,因为每一个技术委员会都有来自所有感兴趣的IEC国家委员会的代表。 3)IEC出版物的形式为国际上推荐采用,而且在这个意义上也已被IEC各国家委员会所接受。尽管已经尽力做到IEC出版物的技术内容准确无误,但IEC不能对其使用的方式或最终用户的误解负责。 4)为了促进国际上的一致性,所有IEC国家委员会都承诺在其国家的或地区的出版物中尽最大可能的明确使用IEC出版物。IEC出版物和国家的或地区的出版物之间的任何差异都需要在后者的出版物中予以明确标明。 5)IEC不提供其认可的程序,也不对任何声称符合IEC出版物的设备负责。 6)所有用户都应确保他们所持有的是最新版本。 7)对于由于使用或信任本出版物或其它IEC出版物所导致的任何人身伤害、财产损失或其它任何性质的损害――不论是直接的还是间接地――或者其它的费用(包括法律费用)和开销,都与IEC或其经理、雇员、服务人员或代理――包括个体的专家和技术委员会以及IEC国家委员会的委员无关。 8)注意该出版物引用的参见标准。对于正确使用本出版物,使用这些参见出版物是必须的。 9)注意本出版物的某些内容可能是专利权的标的。IEC没有责任标明任何或所有这些专利权。 IEC 61427 标准由IEC 21 技术委员会――二次电池和电池组――准备。 该第2版取代了1999年公布的第一版。该版本包括了一些技术方面的修改。 第二版在该文件第一版本的基础上重新组织,在使用条件、一般要求、功能特性、通用试验条件、试验方法以及试验的推荐采用等方面更加清晰,目的是让最终用户更容易理解。试验方法在两种不同的技术――铅酸和镍镉――方面都给予了详细清楚地解释。 该标准的内容以下述文件为基础: 关于该标准的批准投票详细情况可以在上表中示出的投票报告中去查找。 该出版物的起草根据ISO/IEC Directive Part 2 进行。

光伏组件中电池遮挡与伏安特性曲线变化的关系

体硅太阳电池组件有指导作用,而且也有利于人们正确判断光伏发电系统输 ... 配等因素是导致输出功率降低的主要原因,研究这些因素的影响不仅对制造晶体硅太阳电池组件有指导作用,而且也有利于人们正确判断光伏发电系统输出降低或失效的原因。 国外曾经有人报道一些在现场用了10到15年的组件电特性已经恶化。其I-V特性曲线已经和一些普通的光伏组件差别很大,而这种变化的I-V曲线可以用来分析晶体硅太阳电池组件输出降低的原因。本文主要讨论了遮挡部分电池组件输出特性的影响,并用计算机对核过程进行了模拟。 一、模拟方法 在晶体硅太阳电池组件中,当有电池被遮挡时,组件的输出特性可以用下式表示: 这些参数估算时可以用一下参数代替:n=1.96,I0=3.86X10-5(A),Rsh=15.29(Ω)。a=2.0x10-3,Vbr=-21.29(V),nn=3.R3=0.008. 组件中有电池被遮盖时的电路可以用图片三来表示,正常的电池和被遮盖住的电池在组建中是串联关系,因此电压V和电流I满足以下等式:

组件中电池被遮挡时的模拟电路 其中,Iph1代表组件中普通电池的光电流,Iph2代表遮挡电池产生的光电流,与等式(2)中的遮挡透过率有关系,例如,当遮挡透过率为35%时,Iph2是Iph1的0.35倍。通过解(3)-(6)式可以计算出I-V的特性。 二、实验 图2(a)和(b)是通过改变阴影透过率的情况下分别计算和实际测量的I-V 特性曲线。当组件上的一个电池用不同的透过率(一个组件由36块电池组成)时,短路电流大致变化不大。结果是透过率越低,电流随着电压的升高下降越快。另一方面,开路电压基本上相同。由图可看出:测量结果与计算的结果相吻合。

太阳能电池特性研究_实验报告参考

E I I 圏&全暗吋太阳能电池在外加偏压吋的伏安特性测量电路之二 四、实验步骤 1 ?在没有光源(全黑)的条件下,测量太阳能电池施加正向偏压时的I ~ U特性,用实验测得的正向偏压时I ~ U关

系数据,画出I ~ U曲线并求得常数1和I。的值。 2?在不加偏压时,用白色光源照射,测量太阳能电池一些特性。注意此时光源到太阳能电池距离保持为20cm。 (1 )画出测量实验线路图。 (2)测量太阳能电池在不同负载电阻下,|对U变化关系,画出I ~ U曲线图。 (3)用外推法求短路电流| sc和开路电压U oc。 (4)求太阳能电池的最大输出功率及最大输出功率时负载电阻。 (5)计算填充因子[FF =P m/(l sc ?U°c)]。 五、实验数据和数据处理 1.在没有光源(全黑)的条件下,测量太阳能电池施加正向偏压时的I ~ U特性。 表1 图-(b)全暗情况下太阳能电池外加偏压时的伏安特性半对数曲线 二V ,丨0二mA,相关系数0.9996,电流与电压的指数关系得到验证。

2 ?在不加偏压时,用白色光源照射,测量太阳能电池一些特性。

图9恒定光强无偏压时太阳能电池输出功率与负载电阻关系曲线 太阳能电池的最大输出功率 P m 二 ,最大输出功率时负载电阻 R L 二 1. 2 I (inA) 3在恒定光照下太阳能电池不加偏压时的伏安特性曲线

填充因子[FF 二P m/(l sc ?U°c)]= = 。 六.实验结果 - V ' , I o = mA, 短路电流l sc= ,开路电压U OC=。 填充因子[FF =P m/(l sc ?U°c)]= 七.分析讨论(实验结果的误差来源和减小误差的方法、实验现象的分析、问题的讨论等) 八.思考题

太阳能电池光伏特性研究

太阳能光伏电池特性实验研究 太阳能光伏电池的输出具有非线性,这种非线性受到外部环境(包括日照强度、温度等)以及本身技术指标(如输出阻抗)的影响,从而使得太阳能电池的输出功率发生变化,其实际转换效率受到一定限制。因此,对太阳能光伏电池输出特性的研究成为了一个重要课题[1]。与跟踪式太阳能光伏系统相比,固定式太阳能光伏系统有着结构简单、成本低廉等优点。太阳能光伏电池表面温度将随辐射能的增强而升高,在一定程度上影响了太阳能电板的输出功率。本文主要对固定式单晶硅太阳能电池输出功率等进行了实验研究。 1、理论分析 理想的太阳能电池可以看做是一个产生光生电流I ph 的恒流源与一个处于正向偏置的二极管并联,如图1所示。如果负载R L 短路了,电路只有光生电流I ph ,光强越强,电子-空穴对的产生率越高,光生电流I ph 越大,即短路电流I sc 为: sc ph I I =- (1) I I 图1 理想太阳能电池等效电路[2] 如果负载R L 不短路,那么P-N 结内流过的电流I d 方向与光生电流方向相反,会抵消部分光生电流,使少数载流子注入和扩散。太阳能电池输出的净电流I 是光生电流I ph 和二极管电流I d 之差,故太阳能电池的光伏I-V 特性可表示为: ph d ph exp 1O qV I I I I I nkT ?? ??=-=-- ?????? ? (2) 式中:I o ——反向饱和电流;n ——理想因子,由半导体材料和制造技术决定, n=1~2;V ——二极管电压;k ——波尔兹曼常数;q ——电子电量;T ——二极管绝对温度。 当电流I =0时,这意味着产生的光生电流I ph 正好等于光电压V oc 产生的二极管电流I d ,即I ph =I d 。从式(2)可得出V oc 为: ph 01OC I nkT V In q I ?? =+???? (3)

光伏组件(太阳能电池板)规格表

光伏组件(太阳能电池板)规格表如本页不能正常显示,请点击刷新 型号材料 峰值 功率 Pm (watt) 峰值 电压 Vmp (V) 峰值 电流 Imp (A) 开路 电压 Voc (V) 短路 电流 Isc (A) 尺寸 (mm) APM18M5W27x27单晶硅 5 8.75 0.57 10.5 0.66 265*265*25 APM36M5W27x27单晶硅 5 17.5 0.29 21.5 0.32 265*265*25 APM18P5W27x27多晶硅 5 8.75 0.57 10.5 0.66 265*265*25 APM36P5W27x27多晶硅 5 17.5 0.29 21.5 0.32 265*265*25 APM36M8W36x30单晶硅8 17.5 0.46 21.5 0.52 301*356*25 APM36P8W36x30多晶硅8 17.5 0.46 21.5 0.52 301*356*25 APM36M10W36x30单晶硅10 17.5 0.57 21.5 0.65 301*356*25 APM36P10W36x30多晶硅10 17.5 0.57 21.5 0.65 301*356*25 APM36M15W49x29单晶硅15 17.5 0.86 21.5 0.97 287*487*25 APM36P15W43x36多晶硅15 17.5 0.86 21.5 0.97 356*426*28 APM36M20W63x28单晶硅20 17.5 1.14 21.5 1.29 281*627*25 APM36P20W58x36多晶硅20 17.5 1.14 21.5 1.29 356*576*28 APM36M25W48x54单晶硅25 17.5 1.43 21.5 1.61 536*477*28 APM36P25W68x36多晶硅25 17.5 1.43 21.5 1.61 356*676*28 APM36M30W48x54单晶硅30 17.5 1.71 21.5 1.94 536*477*28 APM36P30W82x36多晶硅30 17.5 1.71 21.5 1.94 356*816*28 APM36M35W62x54单晶硅35 17.5 2.00 21.5 2.26 537*617*40

电池组件技术参数功率输出特性分析

电池组件技术参数功率输出特性分析 1.电池主要参数指标 与硅太阳能电池的主要性能参数类似,太阳能电池组件的性能参数也主要有:短路电流、开路电压、峰值电流、峰值电压、峰值功率、填充因子和转换效率等。这些性能参数的概念与前面所定义的硅太阳能电池的主要性能参数相同,只是在具体的数值上有所区别。 (1)短路电流I S 当将太阳能电池组件的正负极短路,使U=0时,此时的电流就是电池组件的短路电流,短路电流的单位是A,短路电流随着光强的变化而变化。 (2)开路电压Uo 当太阳能电池组件的正负极不接负载时,组件正负极间的电压就是开路电压,开路电压的单位是V。太阳能电池组件的开路电压随电池片串联数量的增减而变化。 (3)峰值电流I m 峰值电流也叫最大工作电流或最佳工作电流。峰值电流是指太阳能电池组件输出最大功率时的工作电流,峰值电流的单位是A。 (4)峰值电压U m 峰值电压也叫最大工作电压或最佳工作电压。峰值电压是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位是V。 (5)峰值功率Pm 峰值功率也叫最大输出功率或最佳输出功率。峰值功率是指太阳能电池组件在正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:Pm =I m×U m。峰值功率的单位是W。太阳能电池组件的峰值功率取决于太阳辐照度、太阳光谱分布和组件的工作温度,因此太阳能电池组件的测量要在标准条件下进行,测量标准为:辐照度lkW/mz、光谱AMl.5、测试温度25℃。 (6)填充因子 填充因子也叫曲线因子,是指太阳能电池组件的最大功率与开路电压和短路电流乘积的比值。填充因子是反应太阳能电池组件所用电池片输出特性好坏的一个重要参数,它的值越高,表明所用太阳能电池组件输出特性越趋于矩形,电池组件的光电转换效率越高。太阳能电池组件的填充因子系数一般在0.5~0.8之间,也可以用百分数表示。

太阳能电池的基本特性与性能参数

1、太阳能电池的基本特性 太阳能电池的基本特性有太阳能电池的极性、太阳电池的性能参数、太阳能电池的伏安特性三个基本特性。具体解释如下 1、太阳能电池的极性 硅太阳能电池的一般制成P+/N型结构或N+/P型结构,P+和N+,表示太阳能电池正面光照层半导体材料的导电类型;N和P,表示太阳能电池背面衬底半导体材料的导电类型。太阳能电池的电性能与制造电池所用半导体材料的特性有关。 2、太阳电池的性能参数 太阳电池的性能参数由开路电压、短路电流、最大输出功率、填充因子、转换效率等组成。这些参数是衡量太阳能电池性能好坏的标志。 3 太阳能电池的伏安特性 P-N结太阳能电池包含一个形成于表面的浅P-N结、一个条状及指状的正面欧姆接触、一个涵盖整个背部表面的背面欧姆接触以及一层在正面的抗反射层。当电池暴露于太阳光谱时,能量小于禁带宽度Eg的光子对电池输出并无贡献。能量大于禁带宽度Eg的光子才会对电池输出贡献能量Eg,大于Eg的能量则会以热的形式消耗掉。因此,在太阳能电池的设计和制造过程中,必须考虑这部分热量对电池稳定性、寿命等的影响。 2、有关太阳电池的性能参数 1、开路电压 开路电压UOC:即将太阳能电池置于100 mW/cm2的光源照射下,在两端开路时,太阳能电池的输出电压值。 2、短路电流 短路电流ISC:就是将太阳能电池置于标准光源的照射下,在输出端短路时,流过太阳能电池两端的电流。 3、大输出功率

太阳能电池的工作电压和电流是随负载电阻而变化的,将不同阻值所对应的工作电压和电流值做成曲线就得到太阳能电池的伏安特性曲线。如果选择的负载电阻值能使输出电压和电流的乘积最大,即可获得最

硅光电池特性的研究实验报告2

硅光电池基本特性的研究 太阳能是一种清洁能源、绿色能源,许多国家正投入大量人力物力对太阳能接收器进行研究和利用。硅光电池是一种典型的太阳能电池,在日光的照射下,可将太阳辐射能直接转换为电能,具有性能稳定,光谱范围宽,频率特性好,转换效率高,能耐高温辐射等一系列优点,是应用极其广泛的一种光电传感器。因此,在普通物理实验中开设硅光电池的特性研究实验,介绍硅光电池的电学性质和光学性质,并对两种性质进行测量,联系科技开发实际,有一定的新颖性和实用价值。 [实验目的] 1.测量太阳能电池在无光照时的伏安特性曲线; 2.测量太阳能电池在光照时的输出特性,并求其的短路电流I SC、开路电压 U OC、最大FF 3.测量太阳能电池的短路电流I及开路电压U与相对光强J /J0的关系,求出它们的近似函数关系; [实验原理] 1、硅光电池的基本结构 目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。 零偏反偏正偏 图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区 图2-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合时,由于P型材料空穴多电子少,而N型材料电子多空穴少,结果P 型材料中的空穴向N型材料这边扩散,N型材料中的电子向P型材料这边扩散,扩散的结果使得结合区两侧的P型区出现负电荷,N型区带正电荷,形成一个势垒,由此而产生的内电场将阻止扩散运动的继续进行,当两者达到平衡时,在PN结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。当PN 结反偏时,外加电场与内电场方向一致,耗尽区在外电场作用下变宽,使势垒加强;当PN结正偏时,外加电场与内电场方向相反,耗尽区在外电场作用下变窄,

光伏组件问题系列总结——部分遮挡对组件输出特性的影响

光伏组件问题系列总结——部分遮挡对组件输出特性的影响 1.0绪论 众所周知,晶体硅太阳电池组件的表面阴影、焊接不良及单体电池功率不匹配等因素是导致输出功率降低的主要原因,研究这些因素的影响不仅对制造晶体硅太阳电池组件有指导作用,而且也有利于人们正确判断光伏发电系统输出降低或失效的原因。 国外曾经有人报道一些在现场用了10到15年的组件电特性已经恶化。其I-V特性曲线已经和一些普通的光伏组件差别很大,而这种变化的I-V曲线可以用来分析晶体硅太阳电池组件输出降低的原因。本文主要讨论了遮挡部分电池组件输出特性的影响,并用计算机对核过程进行了模拟。 2.0模拟方法 在晶体硅太阳电池组件中,当有电池被遮挡时,组件的输出特性可以用下式表示: 这些参数估算时可以用一些参数代替:n=1.96,I0=3.86X10-5(A),Rsh=15.29(Ω)。 a=2.0x10-3,Vbr=-21.29(V),nn=3.R3=0.008. 组件中有电池被遮盖时的电路可以用图片三来表示,正常的电池和被遮盖住的电池在组件中是串联关系,因此电压V和电流I满足以下等式:

组件中电池被遮挡时的模拟电路 其中,Iph1代表组件中普通电池的光电流,Iph2代表遮挡电池产生的光电流,与等式(2)中的遮挡透过率有关系,例如,当遮挡透过率为35%时,Iph2是Iph1的0.35倍。通过解(3)-(6)式可以计算出I-V的特性。 二、实验 图2(a)和(b)是通过改变阴影透过率的情况下分别计算和实际测量的I-V特性曲线。当组件上的一个电池用不同的透过率(一个组件由36块电池组成)时,短路电流大致变化不

太阳能电池伏安特性曲线实验报告概要

太阳能光伏发电应用技术 实验项目:太阳能电池伏安特性曲线 专业年级: 2014级电子科学与技术 学生姓名: 学号: 146711000 指导老师: 成绩: 福建农林大学金山学院信息与机电工程系 2017年 6月 18日

一、实验目的 (1) 二、实验要求 (1) 三、实验仪器设备 (1) 四、实验原理 (1) 1、太阳能电池工作原理 (2) 2、太阳能电池等效电路图 (2) 3、伏安特性曲线 (2) 五、实验内容与步骤 (4) 1、实验内容 (4) 2、实验步骤 (4) 最大输出功率与入射角的关系测试 (7) 六、实验分析与实验总结 (10)

一、实验目的 1、了解并掌握光伏发电系统的原理 2、了解并掌握光伏发电系统的组成,学习太阳能发电系统的装配 3、了解并掌握太阳能电池的工作原理及其应用 二、实验要求 1、熟悉光伏发电系统的功能。 2、测量太阳能电池板的不同距离下开路电压、短路电流、并算出填充因子及绘出功率曲线 三、实验仪器设备 1、太阳能电池板 2、光源 3、可调电阻 4、2台万用表 四、实验原理 太阳能电池结构图

1、太阳能电池工作原理 光照下,P-N结将产生光生伏特效应。当入射光能量大于导体材料的禁带宽度时,光子在表面一定深度的范围内被吸收,并在结区及其附近的空间激发电子空穴对。此时,空间电荷区内的光生电子和空穴分离,P-N结附近扩散长度范围内的光生载流子扩散到空间电荷区。P区的电子在电场作用下漂移到N区,N区的空穴漂移到P区,产生光生电流。光生载流子的漂移并堆积形成与结电场方向相反的电场及正向结电流。当光生电流和正向结电流相等时,P-N结建立稳定的电势差,即光生电压。 2、太阳能电池等效电路图 为了进一步分析太阳能电池的特点,可以使用一个等效电路来表现太阳能电池的工作情况,等效电路图如图所示。电路由一个理想恒流源IL,一个串联电阻Rs,一个并联电阻Rsn,以及理想因子分别为1和2的两个二极管D1和D2组成。 太阳能电池等效电路图 3、伏安特性曲线 根据伏安特性曲线的数据,可以计算出太阳能电池性能的重要参数,包括开路电压、短路电流、最大输出功率、最佳输出电压、最佳输出电流、填充因子、太阳能电池光电转换效率,串联电阻以及并联电阻。下面对这些参数进行具体的解释。

光伏组件测试标准内容对比

光伏组件测试标准内容对比 郭素琴李娜武耀忠傅冬华 (阿特斯阳光电力科技有限公司测试中心,常熟215562 )摘要:对光伏行业内主要的组件测试标准中预处理试验、基本检查试验、电击危害试验、火灾试验、机械应力试验、结构试验和性能测试的试验内容进行对比总结,包括IEC 61215:2005地面用晶体硅光伏组件设计鉴定和定型、UL1703:2004平板组件安全测试、IEC 61730-2:2004 光伏组件安全鉴定。 关键词:组件测试标准IEC 61215 IEC 61730 UL1703 Comparison of PV module test standards Suqin Guo, Na Li, Willon Wu, Albert Fu (Changshu CSI Advanced Solar Inc,Changshu 215562 ) Abstract:According to PV module test standards including IEC 61215:2005, UL1703:2004 and IEC 61730-2:2004 Comparation of the Preconditioning tests, General inspection test, Electrical shock hazard tests, Fire hazard tests, Mechanical stress tests, Component tests and performance test were studied in this paper. Keywords:Photovoltaic modules, Test standards, IEC 61215, IEC 61730, UL 1703 1.引言 在低碳经济成为热点,节能减排成为目标时,使用光伏组件的进行发电能大量减少温室气体的排放。随着光伏电站建设的增多与光伏组件应用领域的扩大,越来越多的客户和光伏组件生产厂商认识到光伏组件使用时安全性能的重要性。现在已有很多国际知名的认证机构开展了对光伏组件的可靠性检测,而且也有很多的生产厂商在公司内部建立实验室对光伏组件进行可靠性检测。故本文对IEC 61215:2005、IEC 61730-2:2004、UL 1703:2004三份光伏组件测试标准的内容进行对比。 2.标准介绍 2.1 IEC 61215:2005《地面用晶体硅光伏组件:设计鉴定和定型》,该标准规定了地面用光伏组件设计鉴定和定型的要求,表明组件能够在规定的气候条件下长期使用。 2.2 IEC 61730-2:2004《光伏(PV)组件安全鉴定 第二部分:试验要求》,IEC 61730-2部分规定了光伏组件的试验要求,以使其在预期的使用期内提供安全的电气和机械运行。对由机械或外界环境影响造成的电击、火灾和人身伤害的保护措施进行评估。 2.3 UL 1703:2004《平面组件安全测试》,该标准适用于安装在建筑物或与建筑物连为一体的平面光伏电池板,也适用于独立应用的太阳能电池平板。适用于在电压小于等于1000伏的系统中应用的光伏电池板,还适用于连接在或是装置在光伏电池板上的设备部分。不适于从组件中获得电压、电流的输出设备,任何追踪装置,在强光下照射下的应用的电池组件,光学集中器,光电热结合的模块及面板。 3.预处理试验对比 3.1 IEC 61215:2005有温度循环(50或200次循环、-40℃至+85℃)、湿冻试验(10次循环、-40℃至+85℃、85%RH)、湿热试验(1000小时、85℃,85%RH)、紫外预处理试验(15KWh/m2)、室外曝晒试验(60KWh/m2)。 作者简介:郭素琴(1979-),女,江西兴国人,阿特斯光伏测试中心质量监督员,主要从事太阳能 光伏组件可靠性检测室的监督工作。

相关文档
相关文档 最新文档