文档库 最新最全的文档下载
当前位置:文档库 › 高精度温度传感器芯片调研及选型指导

高精度温度传感器芯片调研及选型指导

高精度温度传感器芯片调研及选型指导
高精度温度传感器芯片调研及选型指导

型号ADT7410ADT7411输出类型:Digital Digital

精度:±0.5°C(?40°C 至+105°C,2.7 V 至3.6

V)Typ=±0.5 Max =±3 °C from 0°C to 85°C. Typ=±2 Max=±5 °C from ?40°C to +120°C

(@VDD=3.3V±10%)

数字输出 - 总线接口:2-Wire, I2C, SMBus3-Wire, Microwire, SPI 电源电压-最大: 5.5 V 5.5 V

电源电压-最小: 2.7 V 2.7 V

最大工作温度:+ 150 C+ 120 C

最小工作温度:- 55 C- 40 C

安装风格:SMD/SMT SMD/SMT

封装 :SOIC-8QSOP-16

设备功能:Temperature Sensor Temperature Sensor 商标:ADI ADI

数字输出 - 位数:16 bit10 bit

电源电流:230 uA 3 mA

温度分辨率:0.0078°C0.25°C

温漂:

温度迟滞:0.02°C(温度循环= 25°C至125°C 并返回至25°C)

可重复性:0.01°C(25°C)

型号AD592ADT6501

输出类型:Analog Digital

精度:0.5°C MAX @ 25°C Typ=±0.5 Max= ±6 °C from ?45°C to ?25°

C

Typ=±0.5 Max=±4 °C from ?15°C to +15°

Typ=±0.5 Max=±4 °C from +35°C to +65

°C

数字输出 - 总线接口:2-Wire, I2C, SMBus-

电源电压-最大:30 V 5.5 V

电源电压-最小: 4 V 2.7 V

最大工作温度:+ 105 C+ 125 C

最小工作温度:- 25 C- 55 C

安装风格:Through Hole SMD/SMT

封装 :TO-92-3SOT-23-5

设备功能:Temperature Transducer Temperature Switch

商标:ADI ADI

数字输出 - 位数:11 bit

电源电流:50 uA

温度分辨率:

温漂:0.08°C (Drift over 10 years, if part is operated at 55°C)

温度迟滞:可重复性:

精度: ±0.20°C(?10°C至+85°C,3.0 V至3.3 V)

±0.25°C(?20°C至+105°C,3.0 V至3.6 V)

典型值0.0017°C(?10°C至+85°C,3.0 V至

3.3 V)±0.5°C(?40°C至+105°C,2.7 V至3.6V)

±0.4°C(?40°C至+105°C,3.0 V)

典型值-0.05°C(?40°C至+105°C,3.0

数字输出 - 总线接口:I2C3-Wire, Microwire, SPI 电源电压-最大: 5.5 V 5.5 V

电源电压-最小: 2.7 V 2.7 V

最大工作温度:+ 150 C+ 150 C

最小工作温度:- 40 C- 55 C

安装风格:SMD/SMT SMD/SMT

封装 :LFCSP-16(4*4)SOIC-8

设备功能:Temperature Sensor Temperature Sensor 商标:ADI ADI

数字输出 - 位数:16 bit16 bit

电源电流:210 uA230 uA

温度分辨率:0.0078°C0.0078°C

温漂:

0.0073°C精度包括寿命漂移

温度迟滞:±0.002°C(温度循环= 25°C至125°C并

返回至25°C)

±0.002°C(温度循环=25°C至125°

C并返回至25°C)

可重复性:±0.015°C(25°C)±0.015°C(25°C)

精度:±0.2°C(?10°C至+85°C, 3 V~3.3V)

±0.25°C(?20°C至+105°C, 3V~3.6V)

典型值0.0017°C(?10°C至+85°C,3.0 V至

3.3 V)±0.5°C from ?40°C to +105°C (2.7 V to 3.6 V)

±0.4°C from ?40°C to +105°C (3.0 V)典型值-0.05°C from ?40°C to +105°C

数字输出 - 总线接口:3-Wire, Microwire, SPI3-Wire, Microwire, SPI 电源电压-最大: 5.5 V 5.5 V

电源电压-最小: 2.7 V 2.7 V

最大工作温度:+ 150 C+ 150 C

最小工作温度:- 40 C- 40 C

安装风格:SMD/SMT

封装 :LFCSP-168lead SOIC—N

设备功能:Temperature Sensor Temperature Sensor 商标:ADI ADI

数字输出 - 位数:16 bit16 bit

电源电流:230 uA250 uA

温度分辨率:0.0078°C0.0078°C

温漂:

0.0073°C精度包括寿命漂移

温度迟滞:±0.002°C(温度循环=25°C至125°C并返

回至25°C)

±0.002°C(温度循环=25°C至125°C并

返回至25°C)

可重复性:±0.015°C(25°C)±0.015°C(25°C)

型号ADT7312LM45B

输出类型:Digital Analog

精度:±1°C from ?55°C to +175°C (2.7 V to 3.3 V)±2°C T=25°C

数字输出 - 总线接口:3-Wire, Microwire, SPI-

电源电压-最大: 5.5 V10 V

电源电压-最小: 2.7 V 4 V

最大工作温度:+ 175 C+ 100 C

最小工作温度:- 55 C- 20 C

安装风格:SMD/SMT 封装 :Die in Pocket Tape SOT-23-3设备功能:Temperature Sensor Sensor

商标:ADI TI

数字输出 - 位数:16 bit None

电源电流:255 uA120 uA

温度分辨率:0.0078

温漂:

精度包括寿命漂移

温度迟滞:±0.002°C

可重复性:±0.015°C(25°C)

型号LM92Si7021

输出类型:Digital Digital

精度:±0.33°C T=30°C (3.3 V to 4.0 V)

±0.4°C(from -10°C to 80°C)

±0.5°C from +10°C to +50°C (3.3 V to

4.0 V)

数字输出 - 总线接口:2-Wire, I2C, SMBus I2C

电源电压-最大: 5.5 V 3.6 V

电源电压-最小: 2.7 V 1.9 V

最大工作温度:+ 150 C+ 85 C

最小工作温度:- 55 C- 40 C

安装风格:SMD/SMT SMD/SMT

封装 :SOIC-8DFN-6

设备功能:Temperature Sensor humidity and temperature sensor 商标:TI Silicon Labs

数字输出 - 位数:12 bit7 bit

电源电流:350 uA150uA

温度分辨率:0.0625

温漂:

<=0.01°C/year

温度迟滞:

可重复性:

国际品牌温度传感器介绍一..

一、霍尼韦尔 公司简介: 霍尼韦尔是《财富》百强公司,总部位于美国。致力于发明制造先进技术以应对全球宏观趋势下的严苛挑战,例如生命安全、安防和能源。公司在全球范围内拥有大约130,000 名员工,其中包括19,000 多名工程师和科学家。 霍尼韦尔在华的历史可以追溯到1935年。当时,霍尼韦尔在上海开设了第一个经销机构。1973年美国总统尼克松访华时,应中国政府之邀从十大领域推荐精英企业来华推动两国双向交流,并促进中国的现代化建设。其中炼油石化领域唯一被选中推荐给中国政府的美国环球油品公司,正是霍尼韦尔旗下的子公司。80年代的改革开放成为了霍尼韦尔融入中国经济发展的又一个新起点,作为首批在北京设立代表处的跨国企业,霍尼韦尔在彼时开始了一系列的高品质投资。目前,霍尼韦尔四大业务集团均已落户中国,旗下所辖的所有业务部门的亚太总部也都已迁至中国,并在中国的20多个城市设有多家分公司和合资企业。目前,霍尼韦尔在中国的投资总额超10亿美金,员工人数超过12,000名。 主要产品及服务: 家具与消费品——环境自控解决方案及产品 航空与航天——航空航天UOP中国传感与控制 生命安全与安防——霍尼韦尔安全产品安防气体探测技术 建筑、施工与维护——环境自控解决方案及产品安防英诺威发泡剂极冷致制冷剂 传感与控制——扫描与移动生产力扫描与移动技术 工业过程控制——无线自动化解决方案环境自控解决方案及产品传感与控制气体探测技术 能效与公共事业——环境自控解决方案及产品无线自动化解决方案传感与控制 汽车与运输——极冷致制冷剂传感与控制 石油、天然气、炼油、石油化工与生物燃料——环境自控解决方案及产品UOP中国无线自动化解决方案传感与控制气体探测技术安防 医疗保健——扫描与移动技术阿克拉薄膜传感与控制Burdick & Jackson 溶剂和试剂 化学品、特殊材料与化肥——Burdick & Jackson 溶剂和试剂阿克拉薄膜尼龙6树脂UOP中国极冷致制冷剂OS有机硅密封胶添加剂 制造——环境自控解决方案及产品尼龙6树脂A-C高性能添加剂传感与控制 无线自动化解决方案

MP3解码芯片选型指南

MP3解码芯片选型指南 前言: 随着人们生活水平的提高,人们对生活质量的追求也越来越高了,所以人性化、智能化的产品很受消费者青睐,例如现在大多数人的家门都会装上MP3解码芯片的智能防盗电子锁,当半夜小偷非法撬门时可立即发出刺耳的报警声,惊醒入睡的房主吓跑小偷,及时避免盗窃损失,晚上再也不用担心被盗窃,可以安心的睡觉。而广州九芯的N910X系列的解码芯片就有此功能。

概述: N910X是一个提供串口的MP3 芯片,完美的集成了MP3、WMV的硬解码芯片。它包括了四种功能型号的MP3芯片,即N9100、N9101、N9102和N9103 MP3芯片,支持TF 卡驱动,支持电脑直接更新spi flash 的内容,支持FAT16、FAT32 文件系统。通过简单的UART串口指令或一线串口指令即可完成播放指定的音乐,以及如何播放音乐等功能,无需繁琐的底层操作,音质优美,使用方便,稳定可靠是此款产品的最大特点。另外该芯片也是深度定制的产品,专为固定语音播放领域开发的低成本解决方案。 功能: 支持采样率(KHz):8/11.025/12/16/22.05/24/32/44.1/48。音质优美,立体声。 24 位DAC 输出,内部采用DSP硬解码,非PWM输出,动态范围支持90dB,信 噪比支持85dB 完全支持FAT16、FAT32 文件系统,最大支持32G的TF 卡,支持32G的U盘 多种控制模式,UART串口模式、一线串口模式、AD按键控制模式。 广播语插播功能,可以暂停正在播放的背景音乐,支持指定路径下的歌曲播放,支持跨盘符插播,支持插播提前结束 指定盘符播放,指定曲目播放 30级音量可调,5种EQ可调(NORMAL—POP—ROCK—JAZZ--CLASSIC) 指定路径播放(支持中英文)功能以及文件夹切换功能,指定时间段播放功能; 支持立体声输出播放,MP3格式,可以直推0.25W耳机喇叭; 支持电脑声卡控制,支持USB mass storage SOP16封装形式,外围简单; 宽泛的输入电源范围3V--5V输入,内置看门狗复位电路,性能稳定; 支持开发定制特殊功能;

温度传感器简介与选型

温度监控的I/O解决方案 选择和采购温度传感器 监测温度和采集数据的传感器种类繁多。从单一房间的温度监测到复杂的批次过程控制应用都依赖精准的温度获取。电阻温度计(RTD),热电偶,积体电路温度计(ICTD),热敏电阻,红外线传感器是用于以上目的的主要传感器类型。 RTD决定于材料电阻和温度的关系,它读数精确(一般小数点后2-3位),具有多种封装形式。他们一般由镍,铜及其他金属制造,但是较早前,RTD是由铂制造的,很大程度上因为铂的电阻在较宽的温度区间里与温度成线性关系。但是由于铂价格昂贵且当温度超过660°C时不能适用,因为在这范围以外铂的惰性会失效导致读数不准。RTD需要一个小功率激励源才能进行操作,且RTD应用性很强,在较大范围内它侦测温度非常准确漂移很小。 热电偶是由双金属导体制备,受热时产生的电压与温度成比例.同RTD一样,热电偶常用于工业设置里。其种类丰富(B,J,K,R,T等),提供不同的温度敏感范围。热电偶读数没有RTD那么精确,有时可能高达一度之差。热电偶和RTD一样本身及其脆弱,使用时它通常附有一根耐用探针。一般热电偶价格不贵,但若装了特殊外壳或装置,其价格将大大上升。因为热电偶种类繁多测温范围很大,最高可达1800°C,能用在高温条件下(但值得注意的是,高温使用一般需要特殊外壳、包装或绝热材料)。 ICTD是常见的通用温度传感器,其价格不贵,类似2线晶体管装置,工作电压在5-30V之间,由此产生的电流与温度成线性比例。也和RTD一样,ICTD低噪音,但比RTD更易使用,因为其无需电阻测量电路。ICTD的特点在于其简易,工业应用偏少,在-50~100°C范围内温度测量较准确,例如在HVAC,制冷机和室内温度监控等应用上。 热敏电阻工作原理是由电阻调节获得不同温度。这样看来热敏电阻和RTD的工作原理类似,差别在于前者使用2线互连,对温度更加敏感,但是一定程度上读数不准。除此,电热调节器所用材料通常是陶瓷或聚合物(而RTD使用纯金属),这样使其具有价格上的优势。热敏电阻适应于大容量的温度监测,范围在-40~200°C,并且允许一定量的漂移的场合。 红外传感器代表了温度监测设备中最新前沿的仪器。红外辐射通过监测物体的电磁辐射(也叫做热摄影或高温测量)来对其进行远程温度测定,红外监测对快速移动的物体或难以测得高温易变化的环境有很好的效果红外广泛应用在制造流程中,如对金属、玻璃、水泥、陶瓷半导体、塑料、纸品、织物及涂层的温度。 重要提示:在决定使用哪种测温器件时,需着重考虑的是价格、温度测量所需达到的精度、设备对环境的适用性以及布线。例如:对ICTD来说,一般双绞电缆,最简单的布线方案就能使它正常工作,几千米的布线也不会造成信号损失。;而相比较RTD,则需要3或4线制。对于RTD,线的规格也同样重要。直径必须相配,接合无误,即使在最佳的条件下,也易受噪音的影响,尤其在线过长的情况下。热电偶的应用通常都有严格的布线要求。每种热电偶有其匹配的线,和它的材料组成相搭配。这种专业线价格昂贵,所以在热电偶应用时,以短程布线为多。 Opto 22 的解决方案 SNAP输入模块 Opto 22的特点在于能为所有类型温度监测设备---RTD,热电偶,ICTD,热敏电阻,红外监测提供解决方案。方案包括一套完整的多通道模拟输入模块,能与以上设备连接用于远程监控和数据采集。 更值得注意的是,Opto 22的I/O模块有多种构造,从双通道到八通道一应俱全。八通道的模块是需要多通道温度采集的最佳经济选择。应用包括水处理、制冷系统、杀菌、巴氏消毒及焊接等。 Opto 22的SNAP AICTD-8模块是特别为能源管理相关应用而设计的,能从标准ICTD中获得八通道模

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

各PFC芯片选型

型号厂商引脚基准电压(V)最大开关频率(KHz)UCC28019TI85=65 UCC3817TI167.5 UCC28051TI8 2.5 UCC28060TI166 UC3852TI85 UC2854/3854TI87.5 UCC38050TI8 2.5 UCC3817 TI167.5 UCC3818TI207.5220 UCC3819TI167.5220 UCC38500/02TI207.5250 UCC385/01/03TI20250 NCP1601A ON8405 NCP1601B ON8405 NCP1654ON865/133/200 NCP1910ON24565 LT1248LT167.5300 LT1509LT207.5300 L4981A ST20 5.1=100 L4981B ST20 L6561ST8 FAN4810Fairchair16 ML4821Fairchair16/20 FAn9612Fairchair16 TEA1751NXP16 MC33/4261Motorala8

门限电压(V)工作模式功率范围(W) 10.5/9.5CCM 16.0/10.0CCM 12.5/9.7CRM 12.6/10.35CRM 16.3/11.5DCM 16.0/10.0CCM 15.8/9.7CRM 16.0/10.0CCM 10.5/10.0CCM 10.2/9.7CCM 16.0/10.0CCM 10.5/10.0CCM 13.75/9DCM+CRM 10.5/9.5DCM+CRM 10.5/9.0CCM 10.5/9.0CCM 16.5/10.5CCM/DCM 16.5/10.5CCM/DCM 15.5/10.0CCM 15.5/10.0CCM 13.0/9.9CRM 13.0/2.8CCM 16.5/11.0CCM 12.5/7.5CRM 22.0/15.0DCM 10.0/8.0CRM

选择ntc温度传感器的注意事项

ntc温度传感器是温度测量仪表的核心部分,品种繁多。我们在选购ntc温度传感器的时候需要通过多个方面来考虑,如果选购的ntc温度传感器不合适在使用的时候很容易造成一定的损坏。那么我们具体要怎样选用呢?下面就让艾驰商城小编对选择ntc温度传感器的注意事项来一一为大家做介绍吧。 一是要根据应用的工作温度范围不同来选材.ntc温度传感器作为测温用的敏感元器件。根据其工作温度范围的不同来选择不同的材质至关重要。传感器一般由感温头(金属外壳或塑胶外壳),线材,端子及连接器,环氧树脂或其他填充材料等组成。要根据不同的工作环境温度来选择不同的材质。如:工作温度在105度以内的,我们会选用耐温105度pvc线,工作温度到125度的,我们会选用耐温125度左右的辐照线,温度高达200度时,我们会选用铁氟龙线或硅胶线。 二是要根据工作场合所要求测温的精度来选型。精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以。决定ntc温度传感器精度的有两个因素:一是热敏电阻本身的误差。热敏电阻的阻值误差,b值误差越小,测量精度越高。二是传感器的感温头与测温对象的接触方式。直接接触的比间接接触的测量精度要高。另因ntc热敏电阻的r-t曲线是非线性的。它不可能保证在很宽的工作温度范围内的精度都是一样的。因此,要想得到较高的测量精度。选定工作场合的中心工作温度点(一般中心工作温度点精度最高,根据r-t曲线的离散性,离中心工作温点越远的温度点,精度误差会逐渐加大)。如:用于测人体体温的传感器,一般会选择37度左右作为中心工作温度点。 三是要根据所使用的工作场合所要求的灵敏度来选型。不同的应用场合要求ntc温度传感器的响应速度快慢不一。而不同的材料有不同的导热系数。. 影响ntc温度传感器响应速度的有几个因素:,一是热敏电阻芯片的热时间常数。热时间常数小的,响应速度快。二是感温头外壳材质的导热系数,。导热系数高的材料热传导性能优良。三是感温头尺寸的大小,感温头尺寸小的,热传导时间会相应短,反应速度会快一点。四是感温头内部填充的导热胶。感温头内填充了导热系数高的导热硅脂的会比没填充\填充了导热系数低的导热硅脂反应速度快。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.wendangku.net/doc/3a3003173.html,/

温度传感器简介

简谈温度传感器及研究进展 摘要:温度传感器是使用范围最广,数量最多的传感器,在日常生活,工业生产等领域都扮演着十分重要的角色。从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器。近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。关键词:温度传感器;智能温度传感器;接触式温度传感器 中图分类号:TP212.1 文献标识码:A Abstract:temperature transducer is used most widely, the largest number of sensors, in daily life, such as industrial production field plays a very important role.Since the 17th century temperature sensor for the first time application, was born in turn contact temperature sensor, non-contact temperature sensor, integrated temperature sensor.Intelligent temperature sensor in recent years in semiconductor technology, materials technology, under the support of new technologies such as the temperature sensor is developing rapidly.Due to the software and hardware of the intelligent temperature sensor reasonable matching can greatly enhance the function of the sensor, improve the precision of the sensor, and can make the temperature sensor has simple and compact structure, use more convenient, thus intelligent temperature sensor is a hot spot nowadays.The introduction of the microprocessor, which makes the temperature signal collection, memory, storage, comprehensive, processing and control integration, make the temperature sensor to the intelligent direction. Key words:temperature transducer; Smart temperature sensor; Contact temperature sensors 前言:温度作为国际单位制的七个基本量之一,测量温度的传感器的各种各样,温度传感器是温度测量仪表的核心部分,十分重要。据统计,温度传感器是使用范围最广,数量最多的传感器。简而言之,温度传感器(temperature transducer)就是是指能感受温度并转换成可用输出信号的传感器。在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。在材料技术的支持下,陶瓷,有机,纳米等新材料用于温度传感器中可以使温度的测量和控制更加科学和精确。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。

AD590温度传感器简介

AD590温度传感器简介 AD590就是一种集成温度传感器(类似的芯片还有LM35等),其实质就是一种半导体集成电路。它利用晶体管的b-e结压降的不饱与值VRE与热力学温度T与通过发射极电流I的下述关系实现对温度的检测。 式中,k就是波耳兹曼常数;q就是电子电荷绝对值。 集成温度传感器的线性度好、精度适中、灵敏度高、体积小、使用方便,得到广泛应用。集成温度传感器的输出形式分为电压输出与电流输出两种。电压输出型的灵敏度一般为10mV/K(温度变化热力学温度1度输出变化10mV),温度0K时输出0,温度25℃时输出2、9815V。电流输出型的灵敏度一般为1μA/K,25℃时输出298、15μA。 AD590就是美国模拟器件公司生产的单片集成两端温度传感器。它主要特性如下: 1) 流过器件电流的微安数等于器件所处环境温度的热力学温度(开尔文)度数,即 式中,IT为流过器件(AD590)的电流,单位为μA;T为温度,单位为K。 2) AD590的测量范围为-55~+150℃。 3) AD590的电源电压范围为4~30V。电源电压从4~6V变化,电流IT 变化1μA,相当温度变化1K。AD590可以承受44V正向电压与20V 的反向电压。因而器件反接也不会损坏。

4) 输出电阻为710MΩ。 5) AD590在出厂前已经校准,精度高。AD590共有I、J、K、L、M 五挡。其中M档精度最高,在-55~+150℃范围内,非线性误差为±0.3℃。I档误差较大,误差为±10℃,应用时应校正。 由于AD590的精度高、价格低、不需辅助电源、线性度好,因此常用于测量与热电偶的冷端补偿。

高精度温度传感器芯片调研及选型指导

型号ADT7410ADT7411输出类型:Digital Digital 精度:±0.5°C(?40°C 至+105°C,2.7 V 至3.6 V)Typ=±0.5 Max =±3 °C from 0°C to 85°C. Typ=±2 Max=±5 °C from ?40°C to +120°C (@VDD=3.3V±10%) 数字输出 - 总线接口:2-Wire, I2C, SMBus3-Wire, Microwire, SPI 电源电压-最大: 5.5 V 5.5 V 电源电压-最小: 2.7 V 2.7 V 最大工作温度:+ 150 C+ 120 C 最小工作温度:- 55 C- 40 C 安装风格:SMD/SMT SMD/SMT 封装 :SOIC-8QSOP-16 设备功能:Temperature Sensor Temperature Sensor 商标:ADI ADI 数字输出 - 位数:16 bit10 bit 电源电流:230 uA 3 mA 温度分辨率:0.0078°C0.25°C 温漂: 温度迟滞:0.02°C(温度循环= 25°C至125°C 并返回至25°C) 可重复性:0.01°C(25°C)

型号AD592ADT6501 输出类型:Analog Digital 精度:0.5°C MAX @ 25°C Typ=±0.5 Max= ±6 °C from ?45°C to ?25° C Typ=±0.5 Max=±4 °C from ?15°C to +15° Typ=±0.5 Max=±4 °C from +35°C to +65 °C 数字输出 - 总线接口:2-Wire, I2C, SMBus- 电源电压-最大:30 V 5.5 V 电源电压-最小: 4 V 2.7 V 最大工作温度:+ 105 C+ 125 C 最小工作温度:- 25 C- 55 C 安装风格:Through Hole SMD/SMT 封装 :TO-92-3SOT-23-5 设备功能:Temperature Transducer Temperature Switch 商标:ADI ADI 数字输出 - 位数:11 bit 电源电流:50 uA 温度分辨率: 温漂:0.08°C (Drift over 10 years, if part is operated at 55°C) 温度迟滞:可重复性:

步进电机驱动芯片选型指南

以下是中国步进电机网对步进电机驱动系统所做的较为完整的表述: 1、系统常识: 步进电机和步进电机驱动器构成步进电机驱动系统。步进电机驱动系统的性能,不但取决于步进电机自身的性能,也取决于步进电机驱动器的优劣。对步进电机驱动器的研究几乎是与步进电机的研究同步进行的。 2、系统概述: 步进电机是一种将电脉冲转化为角位移的执行元件。当步进电机驱动器接收到一个脉冲信号(来自控制器),它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它 的旋转是以固定的角度一步一步运行的。 3、系统控制: 步进电机不能直接接到直流或交流电源上工作,必须使用专用的驱动电源(步进电机驱动器)。控制器(脉冲信号发生器)可以通过控制脉冲的个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 4、用途: 步进电机是一种控制用的特种电机,作为执行元件,是机电一体化的关键产品之一,随着微电子和计算机技术的发展(步进电机驱动器性能提高),步进电机的需求量与日俱增。步进电机在运行中精度没有积累误差的特点,使其广泛应用于各种自动化控制系统,特别是开环控制系统。 5、步进电机按结构分类: 步进电机也叫脉冲电机,包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)等。 (1)反应式步进电机: 也叫感应式、磁滞式或磁阻式步进电机。其定子和转子均由软磁材料制成,定子上均匀分布的大磁极上装有多相励磁绕组,定、转子周边均匀分布小齿和槽,通电后利用磁导的变化产生转矩。一般为三、四、五、六相;可实现大转矩输出(消耗功率较大,电流最高可达20A,驱动电压较高);步距角小(最小可做到六分之一度);断电时无定位转矩;电机内阻尼较小,单步运行(指脉冲频率很低时)震荡时间较长;启动和运行频率较高。 (2)永磁式步进电机: 通常电机转子由永磁材料制成,软磁材料制成的定子上有多相励磁绕组,定、转子周边没有小齿和槽,通电后利用永磁体与定子电流磁场相互作用产生转矩。一般为两相或四相;输出转矩小(消耗功率较小,电流一般小于2A,驱动电压12V);步距角大(例如7.5度、15度、22.5度等);断电时具有一定的保持转矩;启动和运行频率较低。 (3)混合式步进电机: 也叫永磁反应式、永磁感应式步进电机,混合了永磁式和反应式的优点。其定子和四相反应式步进电机没有区别(但同一相的两个磁极相对,且两个磁极上绕组产生的N、S极性必须相同),转子结构较为复杂(转子内部为圆柱形永磁铁,两端外套软磁材料,周边有小齿和槽)。一般为两相或四相;须供给正负脉冲信号;输出转矩较永磁式大(消耗功率相对较小);步距角较永磁式小(一般为1.8度);断电时无定位转矩;启动和运行频率较高;是目前发展较快的一种步进电机。 6、步进电机按工作方式分类:可分为功率式和伺服式两种。 (1)功率式:输出转矩较大,能直接带动较大负载(一般使用反应式、混合式步进电机)。(2)伺服式:输出转矩较小,只能带动较小负载(一般使用永磁式、混合式步进电机)。 7、步进电机的选择: (1)首先选择类型,其次是具体的品种与型号。

温度传感器的选用

温度传感器的选用 摘要:在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为许多的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视。可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。 关键字:温度传感器热电偶热电阻集成电路 引言: 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温 度传感器;每一类温度传感器有自己独特的温度测量围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。 1、热电偶 热电偶由二根不同的金属线材,将它们一端焊接在一起构成;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需 要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差 引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情 真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度,以硬件或硬件-软件相结 合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电 阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量 (取决于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T 的微分热电势为热电势率, 又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。 2. 热电偶的种类

TRINAMIC驱动芯片选型手册2019版

选型手册 2019集成电路我们将数字信号转化为物理运动

关于我们 拥有数以十年构筑高可靠性嵌 入式构架的行业经验 Trinamic 是一家在嵌入式电机运动控制领域的全球领导企业。 我们的芯片和微控制系统将数字信号和现实物理世界联系在 一起。 我们的工程师是解决现实世界问题的专家, 他们几十年 的经验体现在我们的每一个产品中。Trinamic代表了精密、可 靠和高效。 2 Trinamic 选型手册

电动机是日常生活中必不可少的一部分,近年来,这些设备的使用量持续上升。中产阶级的不断壮大,加上家庭自动化程度的提高,以及家庭周围电动马达驱动的 产品数量的增加,是经济增长的主要动力” 使用TRINAMIC技术来提升您的产品品质 人类生活环境对自动化不断增加的需求趋势导致了控制运动系统的爆炸式增长。 产品开发人员必须处理日益复杂的系统,而且很难成为所有领域的专家。Trinamic通过一种基于API的方法解决了这一问题,帮住用户缩短其产品上市时间,节约了成本,并最终提 高产品性能。 Trinamic产品服务于多个市场,包括实验室自动化,工厂自动化,半导体设备,纺织设备,机器人,金融设备......等对可靠性要求比较 高的场合。 Bryan Turnbough, IHS分析师。 我们最新的产品为高速增长的新兴市场,如3D打印,医疗泵和自动化移液提升了新的性能标准。 为什么世界上最具前瞻性的公司一再选择Trinamic? 诚然, 有些人选择我们是因为我们的产品性能优越。然而,我们的大多数客户选择我们,是因为我们对运动控制的专注 为用户提供了深入的应用知识,并使我们的客户能够在他们的特定领域更快地创新。 Trinamic 选型手册 3

温度传感器的选用

温度传感器的选用 温度传感器 1、温度传感器的分类 1)接触式温度传感器 特点:传感器直接与被测物体接触进行温度测量,由于被测物体的热量传递给传感器,降低了被测物体温度,特别是被测物体热容量较小时,测量精度较低。因此采用这种方式要测得物体的真实温度的前提条件是被测物体的热容量要足够大。 2)非接触式温度传感器 特点:利用被测物体热辐射而发出红外线,从而测量物体的温度,可进行遥测。其制造成本较高,测量精度却较低。优点是:不从被测物体上吸收热量;不会干扰被测对象的温度场;连续测量不会产生消耗;反应快等。 表2-1 温度传感器的种类及特点 测量方法传感器机理和类型测温范围℃特点 接触式体积热膨胀玻璃水银温度计 双金属片温度计 气体温度计 液体压力温度计 -50~350 -50~300 -250~1000 -200~350 不需要电源,耐用;但感 温部件体积较大 接触热电势钨铼热电偶 铂铑热电偶 其他热电偶 1000~2100 50~1800 -200~1200 自发电型,标准化程度较 高,品种多,可根据需要 选择;须进行冷端温度补 偿 电阻变化铂热电阻 铜热电阻 热敏电阻 -200~850 -50~150 -50~450 标准化程度高;但需要接 入桥路才能得到电压输 出 PN结结电 压 半导体集成温度 传感器 -50~150 体积小,线性好,-2mV /℃;但测量范围小 温度?颜色试温材料 液晶 -50~1300 0~100 面积大,可得到温度图 像;但易衰老,准确度低 非接触式光辐射 热辐射 红外辐射温度计 光学高温温度计 热释电温度计 光子探测器 -80~1500 500~3000 0~1000 0~3500 响应快;但易受环境及被 测体表面状态影响,标定 困难 2、温度传感器的物理原理 1)、随物体的热膨胀相对变化而引起的体积变化

电源类芯片选型指南

MOSFET驱动器 TPS28225DR 特征: 8引脚高频4-amp库同步MOSFET驱动器 广泛的门驱动电压:4.5V至8.8V 最好的效率在7v到8V 宽功率系统输入电压:3v到27v 宽输入PWM信号:2.0v到13.2v振幅 能够驱动MOSFET开关的电流>=每相40A 高频操作:14ns传播延迟和10ns的上升/下降时间允许FSW - 2MHz 可小于30 ns输入PWM脉冲的传播 低侧驱动器接收器电阻(0.4?)防止相关直通电流DV / DT 三态PWM输入为了关闭功率级 节省空间的启用(输入)和电源良好(输出)在相同的引脚信号 热关机 欠压保护 内部自举二极管 经济的SOIC - 8和热增强

3毫米x 3毫米DFN 8包 高性能的替代流行的三态输入驱动器 应用: 多相DC-DC转换器的模拟或数字控制桌面和服务器Vrms和evrds 笔记本电脑/笔记本管理 用于隔离电源的同步整流 典型应用

对于互补驱动MOSFET同步整流驱动器 多相同步降压转换器

输入电源电压范围VDD: 启动电压Vboot: 相电压:DC: 脉冲<400ns,E=20uJ 输入电压范围, 输出电压范围 输出电压范围 ESD额定值,HBM ESD额定值,HBM的ESD额定值,CDM

连续总功耗见耗散评级表 经营虚拟结温范围,Tj 工作环境温度范围,TA 铅的温度 TPS40210, 适用于升压,反激式,SEPIC,和LED 驱动器拓扑 宽输入电压:4.5 V至52 V 振荡器频率可调 固定频率电流模式控制 内部斜率补偿 集成的低侧驱动器 可编程闭环软启动 过流保护 700 mV参考(tps40210) 低电流禁用功能

选择温度传感器的注意事项

首先,必须选择传感器的结构,使敏感元件的规定的测量时间之内达到所测流体或被测表面的温度。温度传感器的输出仅仅是敏感元件的温度。实际上,要确保传感器指示的温度即为所测对象的温度,常常是很困难的。 在大多数情况下,对温度传感器的选用,需考虑以下几个方面的问题: (1)被测对象的温度是否需记录、报警和自动控制,是否需要远距离测量和传送。 (2)测温范围的大小和精度要求。 (3)测温元件大小是否适当。 (4)在被测对象温度随时间变化的场合,测温元件的滞后能否适应测温要求。 (5)被测对象的环境条件对测温元件是否有损害。 (6)价格如何,使用是否方便。 温度传感器的选择主要是根据测量范围。当测量范围预计在总量程之内,可选用铂电阻传感器。较窄的量程通常要求传感器必须具有相当高的基本电阻,以便获得足够大的电阻变化。热敏电阻所提供的足够大的电阻变化使得这些敏感元件非常适用于窄的测量范围。如果测量范围相当大时,热电偶更适用。最好将冰点也包括在此范围内,因为热电偶的分度表是以此温度为基准的。已知范围内的传感器线性也可作为选择传感器的附加条件。 响应时间通常用时间常数表示,它是选择传感器的另一个基本依据。当要监视贮槽中温度时,时间常数不那么重要。然而当使用过程中必须测量振动管中的温度时,时间常数就成为选择传感器的决定因素。珠型热敏电阻和铠装露头型热电偶的时间常数相当小,而浸入式探头,特别是带有保护套管的热电偶,时间常数比较大。 动态温度的测量比较复杂,只有通过反复测试,尽量接近地模拟出传感器使用中经常发生的条件,才能获得传感器动态性能的合理近似。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.wendangku.net/doc/3a3003173.html,。

DS18B20温度传感器设计

智能化仪器及原理应用课程设计 设计题目: DS18B20数字温度计的设计专业班级: 10自动化1 班 姓名: 组员: 指导老师: 日期:2012-11-26

目录 一、摘要 (2) 二、方案论证 (2) 三、电路设计 (2) 1、设备整机结构及硬件电路框图 (2) 2、单片机的选择 (3) 3、温度显示电路 (3) 4、温度传感器 (4) 5、软件设计 (6) 6、系统所运用的功能介绍: (8) 四、系统的调试及性能分析: (8) 附件:DS18B20温度计C程序 (9)

一、摘要 本设计的主要内容是应用单片机和温度传感器设计一个数字温度表,DS18B20是一种可组网的高精度数字温度传感器,由于其具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠。本设计基于数字温度传感器DS18B20,以AT89C51片机为核心设计此测试系统,具有结构简单、测温精度高、稳定可靠的优点。可实现温度的实时检测和显示,本文给出了系统的硬件电路详细设计和软件设计方法,经过调试和实验验证,实现了预期的全部功能。 二、方案论证 方案一: 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D 转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D 转换电路,感温电路比较麻烦。 方案设计框图如下: 方案二:考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 从以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 三、电路设计 1、 设备整机结构及硬件电路框图 根据设计要求与设计思路,设计硬件电路框图如下图所示, 4位数码管显示器系统中AT89C51成对DS18B20初始化、温度采集、温度转换、温度数码显示。 本装置详细组成部分如下: a. 主控模块:AT89C51片机; b. 传感器电路:DS18B20温度传感器;

常用大功率D类音频功放IC芯片选型说明

常用大功率D类音频功放IC芯片选型说明传统大功率功放芯片,一般都是模拟的功放芯片,象大家都熟悉的TDA2030、LM1875、TDA1521等。这些功放除了音质会好一点,其它的对于现在的D类功放来说,都是缺点。如今随着技术的进步,D类功放的音质技术早已突破,比传统功放芯片差不了多少。以HX8330为代表的D类功放,是替代这些优秀的前辈产品不二之选。 二、模拟功放的缺点: ●电源供电一般都要用正负双电源供电。 ●大部分都是插件式。 ●因本身发热严重,需要带一块沉重的铝片散热。 ●占用PCB板和机壳的空间很大。 ●外围元件多,特别是电解电容也用的多。 三、HX8330概述: HX8330是一款30W高效D类音频功率放大电路,主要应用于音响等消费类音频设备。此款电路可以驱动低至4Ω负载的立体声扬声器,功效高达90%,使得在播放音乐时不需要额外的散热器。其特点如下: ●15W功率输出(12V电压,4Ω负载,TND+N=10%); ●30W功率输出(16V电压,4Ω负载,TND+N=10%); ●效率高达90%,无需散热片; ●较大的电源电压范围8V~20V; ●免滤波功能,输出不需要电感进行滤波; ●输出管脚方便布线布局; ●良好短路保护和具备自动恢复功能的温度保护; ●良好的失真; ●增益36dB; ●差分输入; ●简单的外围设计;QQ:1207435600 ●封装形式:ESOP8。 四、应用领域: ●拉杆音箱: ●大功率喊话器: ●落地音箱: ●蓝牙音箱 ●扩音器

五、芯片对比分析: 六、 功能框图与引脚说明:

七、应用原理图: 如上图,可以很清晰的看出硬件的外围电路是极其简单的,bom成本低廉 八、HX8330优势说明: 1、外围元件少,电路简单, 2、效率高达90%,无需散热片 3、占用PCB板空间小 4、16V供电时,功率可以到达30W 九、总结: 我写这边文章的目的,并不是想要抵扉传统的模拟功放。只是想告诉各位同仁,在如今市场竞争激烈的环境下,一个成品的利润能多铮几毛钱,都是一件不容易的事。我们在选择功放的时候,如果不是做HIFI级别的音箱,音质要求不是很高的情况下。选择合适的D类功放也是一种有效降低生产成本的方法。 IPET

温度传感器选用时的注意事项

温度传感器选用时的注意事项 本文转载于:工控商务网 温度传感器是利用物质各种物理性质随温度变化的规律把温度转换为电量的传感器。这些呈现规律性变化的物理性质主要有体。温度传感器是温度测量仪表的核心部分,品种繁多。那么我们该如何选择温度传感器,同时要注意哪些问题呢? 选择温度传感器比选择其它类型的传感器所需要考虑的内容更多。首先,必须选择传感器的结构,使敏感元件的规定的测量时间之内达到所测流体或被测表面的温度。温度传感器的输出仅仅是敏感元件的温度。实际上,要确保传感器指示的温度即为所测对象的温度,常常是很困难的。在大多数情况下,对温度传感器的选用,需考虑以下几个方面的问题:(1)被测对象的温度是否需记录、报警和自动控制,是否需要远距离测量和传送。 (2)测温范围的大小和精度要求。 (3)测温元件大小是否适当。 (4)在被测对象温度随时间变化的场合,测温元件的滞后能否适应测温要求。 (5)被测对象的环境条件对测温元件是否有损害。 (6)价格如保,使用是否方便。 容器中的流体温度一般用热电偶或热电阻探头测量,但当整个系统的使用寿命比探头的预计使用寿命长得多时,或者预计会相当频繁地拆卸出探头以校准或维修却不能在容器上开

口时,可在容器壁上安装永久性的热电偶套管。用热电偶套管会显著地延长测量的时间常数。当温度变化很慢而且热导误差很小时,热电偶套管不会影响测量的精确度,但如果温度变化很迅速,敏感元件跟踪不上温度的迅速变化,而且导热误差又可能增加时,测量精确度就会受到影响。因此要权衡考虑可维修性和测量精度这两个因素。 热电偶或热电阻探头的全部材料都应与可能和它们接触的流体适应。使用裸露元件探头时,必须考虑与所测流体接触的各部件材料(敏感元件、连接引线、支撑物、局部保护罩等)的适应性,使用热电偶套管时,只需要考虑套管的材料。电阻式热敏元件在浸入液体及多数气体时,通常是密封的,至少要有涂层,裸露的电阻元件不能浸入导电或污染的流体中,当需要其快速响应时,可将它们用于干燥的空气和有限的几种气体及某些液体中。电阻元件如用在停滞的或慢速流动的流体中,通常需有某种壳体罩住以进行机械保护。当管子、导管或容器不能开口或禁止开口,因而不能使用探头或热电偶套管时,可通过在外壁钳夹或固定一个表面温度传感器的方法进和测量。为了确保合理的测量精度,传感器必须与环境大气热隔离并与热辐射源隔离,而且必须通过传感器的适当设计与安装使壁对敏感元件的热传导达到到最佳状态。所测的固体材料可以是金属的或非金属的,任何类型的表面温度传感器都会在某种程度上改变被测物表面或表面下层的材料特性。因此,必须对传感器及其安装方法进行适当的选择以便将这种干扰减到最小程度。理想的传感器应该完全用与所测固体相同的材料制造并与材料形成一体,这样测量点或其周围的结构特征就不会以任何方式改变。可用的这类传感器有各种各样,其中包括电阻(薄膜热电阻、热敏电阻)型,也包括薄膜和细导线型的热电偶。用可埋入的小传感器或带螺纹的镶嵌件进行表面玉的温度测量,应使埋入的传感器或镶嵌件的外缘与所测材料的外表面平齐。镶嵌件的材料应与所测的材料相同,至少要非常相似。使用垫圈式传感器时,必须注意确保垫圈所能达到的温度尽可能接近欲测温度。

相关文档
相关文档 最新文档