文档库 最新最全的文档下载
当前位置:文档库 › 受迫振动的研究

受迫振动的研究

受迫振动的研究
受迫振动的研究

受迫振动研究报告

1. 实验原理

1.1受迫振动

本实验中采用的是伯尔共振仪,其外形如图1所示:

图1

铜质圆形摆轮系统作受迫振动时它受到三种力的作用:蜗卷弹簧B提供的弹性力矩

?kθ,轴承、空气和电磁阻尼力矩?b dθ

dt ,电动机偏心系统经卷簧的外夹持端提供的驱动力矩

M=M0cosωt。

根据转动定理,有

J d2θ

dt

=?kθ?b

dt

+M0cosωt(1)

式中,J为摆轮的转动惯量,M0为驱动力矩的幅值,ω为驱动力矩的角频率,令

ω02=k

J

,2δ=

b

J

,m=

M0

J

则式(1)可写为

d2θdt +2δ

dt

+ω02θ=m cosωt (2)

式中δ为阻尼系数,ω0为摆轮系统的固有频率。在小阻尼(δ2?ω2)条件下,方程(2)的通解为:

θ=θa e;δt cos(ω0t+a)+θb cos(ωt+φ)

此解为两项之和,由于前一项会随着时间的推移而消失,这反映的是一种暂态行为,与驱动力无关。第二项表示与驱动力同频率且振幅为θb的振动。可见,虽然刚开始振动比较复杂,但是在不长的时间之后,受迫振动会到达一种稳定的状态,称为一种简谐振动。公式为:

θ=θb cos (ωt +φ) (3)

振幅θb 和初相位φ(φ为受迫振动的角位移与驱动力矩之间的相位差)既与振动系统的性质与阻尼情况有关,也与驱动力的频率ω和力矩的幅度M 0有关,而与振动的初始条件无关(初始条件只是影响达到稳定状态所用的时间)。θb 与φ由下述两项决定:

θb =m

022222(4)

φ=arctan ?2δω

ω02?ω2

(5)

1.2共振

由极值条件

eθb eω

=0可以得出,当驱动力的角频率为ω=√ω02

?2δ2时,受迫振动的

振幅达到最大值,产生共振:

共振的角频率ωr =02

2

振幅:θr =2δ√ω0

;δ2(6)

相位差φr =arctan (

;√ω0

2;2δ2δ

)

由上式可以看出,阻尼系数越小,共振的角频率ωr 越接近于系统的固有频率ω0,共振振幅θr 也越大,振动的角位移的相位滞后于驱动力矩的相位越接近于π/2.

下面两幅图给出了不同阻尼系数δ的条件下受迫振动系统的振幅的频率相应(幅频特性)曲线和相位差的频率响应(相频特性)曲线。

受迫振动的幅频特性 受迫振动的相频特性

1.3阻尼系数δ的测量

(1)由振动系统作阻尼振动时的振幅比值求阻尼系数δ

摆轮如果只受到蜗卷弹簧提供的弹性力矩?kθ,轴承、空气和电磁阻尼力矩?b

dθdt

阻尼较小(δ2<ω02

)时,振动系统作阻尼振动,对应的振动方程和方程的解为:

d 2θdt +2δdθdt +ω02

θ=0 θ=θa e ;δt

cos (ωa t +a )

ωa =√ω02

?δ2

可见,阻尼振动的振幅随时间按指数律衰减,对相隔n 个周期的两振幅之比取对数,

则有:

ln θ0θn =ln θa e ;δt θa e ;δ(t:nT)

=nδT 实际的测量之中,可以以此来算出δ值。其中,n 为阻尼振动的周期数,θ0为计时开始时振动振幅,θn 为的n 次振动时振幅,T 为阻尼振动时周期。

(2)由受迫振动系统的幅频特性曲线求阻尼系数δ(只适合于δ2?ω02

时的情况)

由幅频特性可以看出,弱阻尼δ2?ω02

情况下,共振峰附近ωω0?≈1,ω+ω0≈2ω0,由(4)和(6)可得:

θb θr =02

2022222≈δ(ω?ω0)2+δ

2

当θb =θ

r √2

?时,由上式可得:ω?ω0≈±δ。

在幅频特性曲线上可以直接读出θb =θr √2

?处对应的两个横坐标ω:ω0?和ω

;ω0?,从而可得:

ω:?ω;=2δ (8)

2. 实验仪器

伯尔共振仪,如图:

3. 实验数据及其处理

3.1 测定电磁阻尼为0情况下摆轮的振幅与振动周期的对应关系

由拟合直线可以看出周期T与振幅θ的关系式为:

T=?6.6801?10;5?θ+1.5800

说明:

(1)由于材料的性质和制造工艺等原因,使得弹簧系数k在扭转角度θ的改变而略有变化(3%左右)。为此测出周期与振幅之间的关系曲线,供作幅频特性曲线和相频特性曲线是查用,有效减小实验的系统误差。

(2)由于实验测量精度的原因,测量值无法表现出一种连续性的变化。所以在图上的描点会出现这样的情况。采用直线拟合效果也是比较好的。

3.2观察研究摆轮的阻尼振动

由公式:

ln θ0

θn

=ln

θa e;δt

θa e;δ(t:nT)

=nδT

可以得出:

ln 150

71

=15.735?δ

所以:

δ=0.04753

3.3测定摆轮受迫振动的幅频与相频特性曲线,并求阻尼系数数据载入(周期的单位均为S):

初始周期指的是对应角度的阻尼为0是的周期。由此,可以作出幅频特性曲线和相频特性曲线。

拟合出来的幅频特性曲线:

拟合的幅频特性曲线的参数如下:

由拟合可得,振幅θ与ω

ω0

的关系为:

θ=55.7246+

3.02860.0252√

π

2

;2

(ω

ω0;0.9991)20.02522

因此,峰值θr =151.7293 由公式(8),当θb =

r

√2

时,

ω:?ω;=2δ

因为ω:?ω;=(0.01403?2)?ω0, 推出δ=

0.01403?

ω0

因为ω0=

2πT 0

,且理想条件为

ωω0

=

T 0T

=1,通过查表可知T 0=1.572s ,

所以,阻尼系数为:

δ=0.0561

说明:

(1)两次算出的值相差比较大,可能是因为使用的计算方式不一样造成的。

拟合出来的幅频特性曲线:

相应的拟合参数为:

所以,拟合的方程为:

φ=161.7824?

141.22731+

e ω

ω0

;0.99980.0087

由拟合的参数可知,拟合的程度还是相当好的。

4 总结

本次试验通过伯尔共振仪测量观察电磁阻尼对摆轮的振幅与振动频率之间的影响。在此基础上,研究了受迫振动,测定摆轮受迫振动的幅频特性和相频特性曲线,并以此求出阻尼系数δ。

此外,本次试验未对两种方式算出的阻尼系数为什么相差比较大做出理论分析。

东南大学物理实验报告-受迫振动

物理实验报告 标题:受迫振动的研究实验 摘要: 振动是自然界中最常见的运动形式之一,由受迫振动引发的共振现象在日常生活和工程技术中极为普遍。共振现象在许多领域有着广泛的应用,例如,众多电声器件需要利用共振原理设计制作。它既有实用价值,也有破坏作用。本实验采用玻耳共振仪定量测定了阻尼振动的振幅比值,绘制了受迫振动的幅频特性和相频特性曲线,并分析了阻尼对振动的影响以及受迫振动的幅频特性和相频特性。另外,实验中利用了频闪法来测定动态的相位差。

目录 1引言 (3) 2.实验方法 (3) 2.1实验原理 (3) 2.1.1受迫振动 (3) 2.1.2共振 (4) 2.1.3阻尼系数的测量 (5) 2.2实验仪器 (6) 3实验内容、结果与讨论 (7) 3.1测定电磁阻尼为0情况下摆轮的振幅与振动周期的对应关系 (7) 3.2研究摆轮的阻尼振动 (8) 3.3测定摆轮受迫振动的幅频与相频特性曲线,并求阻尼系数 (9) 3.4比较不同阻尼的幅频与相频特性曲线 (14) 4.总结 (15) 5.参考文献 (16)

1引言 振动是自然界中最常见的运动形式之一,由受迫振动引发的共振现象在日常生活和工程技术中极为普遍。共振现象在许多领域有着广泛的应用,例如为研究物质的微观结构,常采用核共振方法。但是共振现象也有极大的破坏性,减震和防震是工程技术和科学研究的一项重要任务。表征受迫振动性质的是受迫振动的振幅—频率特性和相位—频率特性(简称幅频和相频特性)。本实验采用玻耳共振仪定量测定了阻尼振动的振幅比值,绘制了受迫振动的幅频特性和相频特性曲线,并分析了阻尼对振动的影响以及受迫振动的幅频特性和相频特性。 2.实验方法 2.1实验原理 2.1.1受迫振动 本实验中采用的是玻耳共振仪,其构造如图1所示: 图一

音叉的受迫振动与共振实验

2.13音叉的受迫振动与共振实验 受迫振动与共振等现象在工程和科学研究中经常用到。如在建筑、机械等工程中,经常须避免共振现象,以保证工程的质量。而在一些石油化工企业中,常用共振原理,利用振动式液体密度传感器和液体传感器,在线检测液体密度和液位高度,所以受迫振动与共振是重要的物理规律受到物理和工程技术广泛重现。 【实验目的】 (1)研究音叉振动系统在周期性外力作用下振幅与强迫力频率的关系,测量及绘制振动系统的共振曲线,并求出共振频率和振动系统振动的锐度,运用计算机进行实时测量,自动分析扫描的曲线。 (2)音叉共振频率与对称双臂质量关系曲线的测量,求出音叉共振频率与附在音叉双臂一定位置上相同物块质量的关系公式。 (3)通过测量共振频率的方法,测量一对附在音叉固定位置上物块的质量。 【实验原理】 1.简谐振动与阻尼振动 许多振动系统如弹簧振子的振动、单摆的振动、扭摆的振动等,在振幅较小而且在空气阻尼可以忽视的情况下,都可作简谐振动处理,即此类振动满足简谐振动方程 (1) 02022=+x dt x d ω(1)式的解为(2)) cos(0?ω+=t A x 式中,A 为系统振动最大振幅,为圆频率,为初相位。 0ω?对弹簧振子振动圆频率,为弹簧劲度,为振子的质量,为弹簧的等效0 0m m K += ωK m 0m 质量。弹簧振子的周期满足T (3) )(402 2m m K T +=π但实际的振动系统存在各种阻尼因素,因此(1)式左边须增加阻尼项。在小阻尼情况下,阻

尼与速度成正比,表示为,则相应的阻尼振动方程为dt dx β2(4)022022=++x dt dx dt x d ωβ式中为阻尼系数。 β2.受迫振动与共振 阻尼振动的振幅随时间会衰减,最后会停止振动,为了使振动持续下去,外界必须给系统一个周期性变化的力(一般采用的是随时间作正弦函数或余弦函数变化的力),振动系统在周期性的外力作用下所发生的振动称为受迫振动,这个周期性的外力称为策动力。假设策动力有简单的形式:,为策动力的角频率,此时,振动系统的运动满足下列方程 t F f ωcos 0=ω(5) t m F x dt dx dt x d ωωβcos '202022=++(5)式中,为振动系统的有效质量。 m ′式(5)为振动系统作受迫振动的方程,它的解包括 两项,第一项为瞬态振动,由于阻尼存在,振动开始后振 幅不断衰减,最后较快地为零;而后一项为稳态振动的解, 其为) cos(?ω+=t A x 式中 (6)()22222004ωβωω+?′= m F A 3.共振由式(6)可知,稳态受迫振动的位移振幅随策动力的频率而改变,当策动力的频率为某一特定值时,振幅达到极大值,此时称为共振。振幅达到极大值时的角频率为 (7) 2 202βωωγ?=振幅最大值为 图1共振曲线的锐度

阻尼振动与受迫振动 实验报告

《阻尼振动与受迫振动》实验报告 一、实验目的 1. 观测阻尼振动,学习测量振动系统基本参数的方法; 2. 研究受迫振动的幅频特性和相频特性,观察共振现象; 3. 观测不同阻尼对受迫振动的影响。 二、实验原理 1. 有粘滞阻尼的阻尼振动 弹簧和摆轮组成一振动系统,设摆轮转动惯量为J ,粘滞阻尼的阻尼力矩大小定义为角速度d θ/dt 与阻尼力矩系数γ的乘积,弹簧劲度系数为k ,弹簧的反抗力矩为-k θ。忽略弹簧的等效转动惯量,可得转角θ的运动方程为 220d d J k dt dt θθγθ++= 记ω0为无阻尼时自由振动的固有角频率,其值为ω0=k/J ,定义阻尼系数β =γ/(2J ),则上式可以化为: 2220d d k dt dt θθ βθ++= 小阻尼即22 00βω-<时,阻尼振动运动方程的解为 ( )) exp()cos i i t t θθβφ=-+ (*) 由上式可知, 阻尼振动角频率为d ω=阻尼振动周期为2d d T π ω= 2. 周期外力矩作用下受迫振动的解 在周期外力矩Mcos ωt 激励下的运动方程和方程的通解分别为 22cos d d J k M t dt dt θθγθω++= ()( )) ()exp cos cos i i m t t t θθβφθωφ=-++- 这可以看作是状态(*)式的阻尼振动和频率同激励源频率的简谐振动的叠加。 一般t >>τ后,就有稳态解 ()()cos m t t θθωφ=- 稳态解的振幅和相位差分别为 m θ=

22 02arctan βω φωω =- 其中,φ的取值范围为(0,π),反映摆轮振动总是滞后于激励源支座的振动。 3. 电机运动时的受迫振动运动方程和解 弹簧支座的偏转角的一阶近似式可以写成 ()cos m t t ααω= 式中α m 是摇杆摆幅。由于弹簧的支座在运动,运动支座是激励源。弹簧总转 角为()cos m t t θαθαω-=-。于是在固定坐标系中摆轮转角θ的运动方程为 ()22cos 0m d d J k t dt dt θθγθαω++-= 也可以写成 22cos m d d J k k t dt dt θθγθαω++= 于是得到 2 m θ= 由θ m 的极大值条件0m θω? ?=可知,当外激励角频率ω=系统发生共振, θ m 有极大值 α 引入参数(0ζβωγ==,称为阻尼比。 于是,我们得到 m θ= ()() 02 02arctan 1ζωωφωω=- 三、实验任务和步骤 1. 调整仪器使波耳共振仪处于工作状态。 2. 测量最小阻尼时的阻尼比δ和固有角频率ω0。 3. 测量阻尼为3和5时的振幅,并求δ。 4. 测定受迫振动的幅频特性和相频特性曲线。 四、实验步骤。

受迫振动现象的研究.

受迫振动的规律研究 姜付锦 摘 要 用Laplace 变换方法得出受迫振动(共振)规律的数学描述 关键词 Laplace 变换;受迫振动;共振 共振是力学、电磁学中的一种现象,对共振现象的研究有重要意义。产生共振的内因是两系统的固有振荡频率相同,外因是能量的传递。没有能量传递是不会产生共振的。本文探讨用数学形式描述受迫振动现象的规律,从而得到共振现象的规律。 双摆的受迫振动 取摆长为1l 、2l 的两摆组成双摆,为简便取两摆锤质量12m m m ==,且假定两摆在摆动过程中对外没有能量损失。为了两摆之间有能量传递,两摆很接近地悬于一横梁,且横梁会因力的作用而有微小弹性形变。正是这微小的弹性形变传递了能量,才产生共振现象。 首先将摆1m 拉开,使之与平衡位置水平距离为(0)A A >,此时1m 具有了有限起始机械能;摆2m 下垂。松开摆1m ,1m 开始摆动。在1m 的作用下,摆2m 开始摆动,振幅由小逐渐变大,且1m 与2m 摆动频率相同,由于1m 对2m 作功,消耗了能量,1m 的振幅由大变小。当1m 的振幅最小时,2m 的振幅达到最大值;此时1m 将有限起始机械能部分传递给了2m ,2m 具有了机械能.再往下是1m 在2m 的作用下开始摆动,振幅逐渐变大,2m 的振幅由大变小直至零,当2m 的振幅为零时,1m 的振幅又达到最大值A ,1m 又具有了机械能,回复到初始状态。以后,两摆不断重复上述过程。这种受迫振动主要特点是: (1) 两摆的振幅呈周期性变化;且当一个为最小时,另一个为最大 (2) 两摆的振动频率相同,等于1m 的固有频率 (3) 当两摆摆长相等时,2m 会共振且会与1m 交换最大振幅

受迫振动与共振教学设计

1.5 受迫振动与共振 【教学目标】 (一)知识目标 1.知道什么叫驱动力,什么叫受迫振动,能举出受迫振动的实例; 2.知道受迫振动的频率等于驱动力的频率,跟物体的固有频率无关; 3.知道什么是共振以及发生共振的条件; 4.知道共振的应用和防止的实例。 (二)能力目标 1.通过分析实际例子,得到什么是受迫振动和共振现象,培养学生联系实际,提高观察和分析能力; 2.了解共振在实际中的应用和防止,提高理论联系实际的能力。 (三)德育目标 1.通过共振的应用和防止的教学,渗透一分为二的观点; 2.通过共振产生条件的教学,认识内因和外因的关系。 【教学重点】 1.受迫振动概念的建立; 2.什么是共振及产生共振的条件。 【教学难点】 1.物体发生共振决定于驱动力的频率与物体固有频率的关系,与驱动力大小无关; 2.当f=f'时,物体做受迫振动的振幅最大。 【教学方法】 实验演示、总结归纳与多媒体教学相结合 【教具准备】 受迫振动演示仪、共振演示仪、两个相同的带有共鸣箱的音叉、橡皮槌、CAI课件

【教学过程】 (一)导入新课 实际的振动系统不可避免地要受到摩擦阻力和其他因素的影响,系统的机械能损耗,导致振动完全停止,这类振动叫阻尼振动。物体之所以做阻尼振动,是由于机械能在损耗,那么如果在机械能损耗的同时我们不断地给振动系统补充能量,物体的振动情形又如何呢?本节课我们来学习这一问题。 (二)新课教学 1、受迫振动 演示:用如图所示的实验装置,向下拉一下振子,观察它 的振动情况。 现象:振子做的是阻尼振动,振动一段时间后停止振动。 演示:请一位同学匀速转动把手,观察振动物体的振动情 况。 现象:现在振子能够持续地振动下去。 分析:使振子能够持续振动下去的原因,是把手给了振动 系统一个周期性的外力的作用,外力结系统做功,补偿系统的 能量损耗。 (1)驱动力:使系统持续地振动下去的外力,叫驱动力。 (2)受迫振动:物体在外界驱动力作用下所做的振动叫受迫振动。 要想使物体能持续地振动下去,必须给振动系统施加一个周期性的驱动力作用。 受迫振动实例:发动机正在运转时汽车本身的振动;正在发声的扬声器纸盒的振动;飞机从房屋上飞过时窗玻璃的振动;我们听到声音时耳膜的振动等。 (多媒体展示几个受迫振动的实例) ①电磁打点计时器的振针;②工作时缝纫机的振针;③扬声器的纸盒;④跳水比赛时,人在跳板上走过时,跳板的振动;⑤机器底座在机器运转时发生的振动。 (3)受迫振动的特点 做简谐运动的弹簧振子和单摆在振动时,按振动系统的固有周期和固有频率振动。通过刚才的学习,我们知道物体在周期性的驱动力作用下所做的振动叫受迫振动;那么周期性作用的驱动力的频率、受迫振动的频率、系统的固有

高二物理选修3-4 受迫振动 共振

高二物理选修3-4 受迫振动共振 【教学目标】 一、知识与技能 1、掌握阻尼振动的概念,知道阻尼振动中的能量转化的情况; 2、知道在什么情况下可以把实际的振动看作简谐运动; 3、知道受迫振动和共振的概念;特点以及它们的区别和共同点; 4、知道受迫振动的频率等于驱动力的频率;与固有频率不同; 5、知道发生共振的条件;知道共振的应用和防止的实例。 二、过程与方法 1、通过再现实际振动情景,让学生知道实际的振动一般是阻尼振动 2、通过实际演示,总结归纳得到受迫振动的频率决定于驱动力的频率; 3、通过演示、举例,了解什么是共振, 并大致画出共振曲线,认识共振曲线的物理意义。 4、了解共振的应用和防止。 三、情感态度与价值观 1、培养学生善于观察与思考的学习习惯。 2、通过受迫振动的频率由驱动力的频率决定,认识内因和外因的关系。通 过共振的应用和防止的教学,渗透一分为二的观点; 3、懂得进行物理实验是学习与掌握物理知识的主要途经。 【教学重点、难点】 1、重点:受迫振动的概念;共振的概念及产生共振的条件。 2.难点:受迫振动的频率由驱动力的频率决定;当f驱=f固时,物体受迫振动的振幅最大。 【教学用具】 CAI课件、受迫振动演示仪、共振演示仪、两个相同的带有共鸣箱的音叉、小槌。 【教学过程】 一、创设情境,了解受迫振动 我们刚刚学过了弹簧振子和单摆。在忽略到它们所受的空气阻力和摩擦力时,系统的机械能守恒,它们会以不变的振幅永不停息地振动下去。这种振动我们称为等幅振动。 但是实际情况下这两种振子在振动过程中,肯定是要受到空气阻力的作用,

因此它们的振幅会越来越小,最后静止振动。这类振动我们称为阻尼振动。 提问:是不是所有的振动,只要有空气阻力存在,它们的振动都会越来越慢,最终停止的呢?(稍作停顿,让学生思考) 通过两个实例来帮助学生思考: 事例一:机械钟摆在摆动过程中,虽然受空气阻力,但是我们只要定期给这座 钟上发条,它会不会停下来? 事例二:如果一个人坐在秋千上玩,那秋千荡了一会就会停下来,那是因为秋 千在荡的过程中要受到空气阻力的作用。但如果旁边有一个人帮助推一下,只要他不停的推一下,那秋千摆动就不会停下来。 一般情况下,在空气中的振动最终都要停下来,但如果定期给它一个动力,用来补偿空气阻力所造成的能量损失,这个振动就可以一直维持下去。这种周期性的外力就叫做驱动力;这种情况下振子的振动已非己愿,它是被迫振动,所以物体在驱动力作用下的振动就称之为受迫振动。 (5) ⑤机器底座在机器运转时发生的振动 . 二、进一步认识受迫振动 通过刚才的学习,我们知道物体在周期性的驱动力作用下所做的振动叫受迫振动;那么做受迫振动的物体还是不是按自身的固有频率振动的呢? 受迫振动实验:介绍实验装置,先让振子做自由振动,说明振子做自由振动时周期与振幅无关,振子的频率或周期是振子的本身的属性,所以他们的频率或周期称之为固有频率或固有周期。 说明摇柄的作用,再摇动摇柄,让学生注意观察摇柄的节奏和下面所挂弹簧振子的振动关系。从而定性说明摇得越快,下面的弹簧振子振动得也越快。 同学们可以这样想:如果我用手握住下面所挂的勾码,让勾码振动起来,那是不是要它快就快,要慢就慢呢?这时振子的振动频率就和我的手的频率或周期保持一致。 能够从这个实验中得出什么结论?

受迫振动研究实验报告

受迫振动研究报告 1. 实验原理 1.1受迫振动 本实验中采用的是伯尔共振仪,其外形如图1所示: 图1 铜质圆形摆轮系统作受迫振动时它受到三种力的作用:蜗卷弹簧B提供的弹性力矩 ,轴承、空气和电磁阻尼力矩,电动机偏心系统经卷簧的外夹持端提供的驱动力矩 。 根据转动定理,有 式中,J为摆轮的转动惯量,为驱动力矩的幅值,为驱动力矩的角频率,令 则式(1)可写为 式中为阻尼系数,为摆轮系统的固有频率。在小阻尼条件下,方程 (2)的通解为: 此解为两项之和,由于前一项会随着时间的推移而消失,这反映的是一种暂态行为,与驱动力无关。第二项表示与驱动力同频率且振幅为的振动。可见,虽然刚开始振

动比较复杂,但是在不长的时间之后,受迫振动会到达一种稳定的状态,称为一种简谐振动。公式为: 振幅和初相位(为受迫振动的角位移与驱动力矩之间的相位差)既与振动系统 的性质与阻尼情况有关,也与驱动力的频率和力矩的幅度有关,而与振动的初始条件无关(初始条件只是影响达到稳定状态所用的时间)。与由下述两项决定: 1.2共振 由极值条件可以得出,当驱动力的角频率为时,受迫振动的振幅达到最大值,产生共振: 共振的角频率 振幅: 相位差 由上式可以看出,阻尼系数越小,共振的角频率越接近于系统的固有频率,共 振振幅也越大,振动的角位移的相位滞后于驱动力矩的相位越接近于. 下面两幅图给出了不同阻尼系数的条件下受迫振动系统的振幅的频率相应(幅频特 性)曲线和相位差的频率响应(相频特性)曲线。 受迫振动的幅频特性受迫振动的相频特性 1.3阻尼系数的测量 (1)由振动系统作阻尼振动时的振幅比值求阻尼系数 摆轮如果只受到蜗卷弹簧提供的弹性力矩,轴承、空气和电磁阻尼力矩, 阻尼较小()时,振动系统作阻尼振动,对应的振动方程和方程的解为:

实验要求-受迫振动

受迫振动 实验仪器 波耳共振仪及控制箱闪光灯 实验内容 1.阅读说明书,学习波耳共振仪的使用方法; 2.在自由振荡模式下,测量摆轮振幅θ与周期T的关系; 3.在阻尼振荡模式下,测定阻尼系数β;(要求:三个阻尼档各测1次) 4.选择两种阻尼档,测定受迫振动的幅频特性和相频特性曲线; a.调节仪器面板“强迫力周期”旋钮,以改变电机的转速(强迫外力矩周期)。 建议每次改变量对应相位差变化△φ为5度左右。 b.每次改变电机的转速后,应等待系统稳定——摆轮和电机周期相同(末位 数差异不大于2,大约需要等2分钟)),在开始测量振幅θ、周期10T和 相位差φ三个物理量,并记录这时候的“强迫力周期”值; c.在共振点附近(相位差φ≈90°),调节应缓慢,以尽可能测出共振时振幅 最大值的位置。 d.根据测量结果在坐标纸上画出受迫振动的幅频特性和相频特性曲线,并讨 论不同阻尼系数β时受迫振动的幅频特性和相频特性的区别。要求:实验 测量点相位差范围在30°~150°内,测量数据至少有15组,一般要求每隔 5度左右取一个数据点,在接近共振位置时点应选得密一些。 5. 仪器复位(清除实验数据),关机。 注意事项 1.波尔共振仪各部分均是精密装配,不能随意乱动。控制箱功能与面板上旋 钮、按键均较多,务必在弄清其功能后,按规则操作。

2.阻尼选择开关位置一经选定,在整个实验过程中就不能任意改变。本实验中 应保证有机玻璃转盘上的挡光杆置于水平位置。 3.摆轮的转动振幅不要超过170度。 课后问题 1.为什么在测量幅频特性和相频特性时,决不能将阻尼开关打在“0”处? 2.什么条件下强迫力的周期与摆轮的周期相同? 3.每改变一次外加驱动力矩的频率后,能否立即测量幅频特性和相频特性? 4.将实验测量的相频特性曲线和书上理论公式(4-16-11)计算的相频特性曲线 作于同一图中进行比较,并讨论之。

华中科技大学大学物理实验报告_音叉的受迫振动与共振

华中科技大学音叉的受迫振动与共振 【实验目的】 1.研究音叉振动系统在驱动力作用下振幅与驱动力频率的关系,测量并绘制它们的关系曲线,求出共振频率和振动系统振动的锐度。 2.通过对音叉双臂振动与对称双臂质量关系的测量,研究音叉共振频率与附在音叉双臂一定位置上相同物块质量的关系。 3.通过测量共振频率的方法,测量附在音叉上的一对物块的未知质量。 4.在音叉增加阻尼力情况下,测量音叉共振频率及锐度,并与阻尼力小情况进行对比。【实验仪器】 FD-VR-A型受迫振动与共振实验仪(包括主机和音叉振动装置)、加载质量块(成对)、阻尼片、电子天平(共用)、示波器(选做用) 【实验装置及实验原理】 一.实验装置及工作简述 FD-VR-A型受迫振动与共振实验仪主要由电磁激振驱动线圈、音叉、电磁线圈传感器、支座、低频信号发生器、交流数字电压表(0~1.999V)等部件组成(图1所示) 1.低频信号输出接口 2.输出幅度调节钮 3.频率调节钮 4.频率微调钮 5.电压输入接口 6.电源开关 7.信号发生器频率显示窗 8.数字电压表显示窗 9.电压输出接口10.示波器接口Y11.示波器接口X12.低频信号输入接口13.电磁激振驱动线圈14.电磁探测线圈传感器15.质量块16.音叉17.底座18.支架19. 固定螺丝 图1 FD-VR-A型受迫振动与共振实验仪装置图 在音叉的两双臂外侧两端对称地放置两个激振线圈,其中一端激振线圈在由低频信号发生器供给的正弦交变电流作用下产生交变磁场激振音叉,使之产生正弦振动。当线圈中的电流最大时,吸力最大;电流为零时磁场消失,吸力为零,音叉被释放,因此音叉产生的振动频率与激振线圈中的电流有关。频率越高,磁场交变越快,音叉振动的频率越大;反之则小。另一端线圈因为变化的磁场产生感应电流,输出到交流数字电压表中。因为I=dB/dt,而dB/dt取决于音叉振动中的速度v,速度越快,磁场变化越快,产生电流越大,电压表显示的数值越大,即电压值和速度振幅成正比,因此可用电压表的示数代替速度振幅。由此可知,将探测线圈产生的电信号输入交流数字电压表,可研究音叉受迫振动系统在周期外力作用下振幅与驱动力频率的关系及其锐度,以及在增加音叉阻尼力的情况下,振幅与驱动力频率的关系及其锐度。

实验1 用摆球探究受迫振动和共振现象

实验1 用摆球探究受迫振动和共振现象 实验目的 探究受迫振动的振动频率由什么因素决定,以及发生共振的条件是什么。 实验器材 一组带小孔的金属小球(质量不同)、细绳、钢丝、电子秒表。 实验设计与步骤 1.改变甲球的振幅,测量乙球的周期。 2.改变乙球的绳长,测量乙球的周期。 3.不改变绳长,改变乙球的质量(如更换不同质量的小球或 在球上增加一块橡皮泥),测量乙球的周期。 4.改变甲球的绳长,测量乙球的周期。 5.用5个摆球演示共振现象,三个摆球的长摆相同,另外两 个摆长不同。 实验结果与分析 1.从小到大改变驱动球甲球的振幅,测量乙球的周期。 表7.4-1

实验分析:甲球的振幅改变,不影响乙球的振动周期(频率)。 2.改变乙球的绳长,测量乙球的周期变化。 表7.4—2 实验分析:乙球的振动周期(频率)不随着自身摆长(固有周期)的改变而改变。 3.不改变绳长,改变乙球的质量,测量乙球的周期变化。 表7.4-3 实验分析:乙球的振动周期(频率)不随着自身的质量的改变而改变。 4.改变甲球的绳长,测量乙球的周期变化。

表7.4-4 实验分析:甲球绳长的改变,即驱动周期(频率)的改变影响了乙球的振动周期(频率)的变化。 5.演示共振现象。 实验装置如图所示。球A、B、C的摆长一样,球E的摆长较短,球D的摆长最长。让球A振动起来,观察其他小球振动稳定后的现象。 实验现象:与球A同摆长的球B、C的振幅最大,摆长与球A越接近的球E的振幅次之,球D的振幅最小。 实验分析:对于摆长与球A同摆长的球B、C,即固有周期(频率)与驱动力周期(频率)相等的摆球的振动,振幅最大;固有周期(频率)与驱动力周期(频率)相差最大的摆球(如球D)的振幅最小。 结论与解释 为了使阻尼振动能够持续的周期性振动,可以施加外界驱动力;受迫振动的物体振动稳定后的频率等于驱动力的频率,与物体的固有频率无关;当驱动力的频率接近或等于物体的

受迫振动和共振的研究

受迫振动和共振的研究 振动科学是物理学的重要组成部分。其中受迫振动....和共振.. 问题的研究,不但在理论上涉及经典和现代物理科学的发展;更在工程技术领域受到极大的重视并不断取得新的成果。例如:在建筑、机械等工程问题中,经常须避免“共振”现象的出现以保证工程质量;但目前新研发的很多仪器和装置的工作原理又是基于各种“共振”现象的产生;在微观科学研究领域中“共振”也已成为重要的研究手段。 本实验以音叉振动系统为研究对象,用电磁激振线圈的电磁力作为驱动力使音叉起振;并以另一电磁线圈作为检测振幅传感器,观测受迫振动系统的振幅与驱动力频率之间的关系,以研究“受迫振动”与“共振”现象及其规律。 一、 实验目的 (1) 研究音叉振动系统在周期性外力作用下振幅与外力频率的关系,测绘其关系曲线,并求出系统的共振频率和系统的振动锐度(和品质因素Q 值有关的参量); (2) 通过改变音叉双臂同一位置处所加金属块的质量,研究系统的共振频率与系统质量的关系; (3) 通过测量音叉的共振频率,确定未知物体的质量,以了解音叉式传感器的工作原理; (4) 改变音叉阻尼状态,了解阻尼力对音叉系统的共振频率及其振动锐度的影响。 二、 实验原理 1. 简谐振动与阻尼振动 众所周知:弹簧振子、单摆、复摆、扭摆等振动系统在作小幅度振动,并且其所受各种阻尼力小到可以忽略的情况下,可视为简谐振动状态。此类振动满足下述简谐振动.... 方程: 02022=+x dt x d ω (1) 上式的解为: )cos(00?ω+=t A x (2) 以理想弹簧振子为例:其固有角频率m K =0ω,K 为弹簧的劲度系数,m 为振动系统的有效质量,振幅A 和初位相0?与振动系统的初始状态有关,系统的振动周期T =K m πωπ220=。即振动周期仅与系统的质量及弹簧的劲度系数有关;由此可知:理想弹簧振子的振动频率f=m K T π 211=。 但是,实际的振动系统存在各种阻尼因素。仍以弹簧振子为例:其振动幅度在摩擦力(空气阻力、内力等)的阻尼下会逐步减小直到零——即阻尼振动.... 状态。摩擦力的大小通常与振动速率有关,在多数情况下其大小与速率成正比而方向相反,可以dt dx b ?表述。由牛顿第二定律ma F =给出的阻尼运动方程可以表示为:22dt x d m dt dx b Kx =??。则相应的阻尼振动....方程则为:

FD-FV-I受迫振动与共振实验仪

音叉的受迫振动与共振实验 一、预备问题 1、 实验中策动力的频率为200Hz 时,音叉臂的振动频率为多少? 2、实验中在音叉臂上加砝码时,为什么每次加砝码的位置要固定? 二、引言 实际的振动系统总会受到各种阻力。系统的振动因为要克服内在或外在的各种阻尼而消耗自身的能量。如果系统没有补充能量,振动就会衰减,最终停止振动。要使振动能持续下去,就必须对系统振子施加持续的周期性外力,以补充因各种阻尼而损失的能量。振子在周期性外力作用下产生的振动叫做受迫振动。当外加的驱动力的频率与振子的固有频率相同时,会产生共振现象。 音叉是一个典型的振动系统,其二臂对称、振动相反,而中心杆处于振动的节点位置,净受力为零而不振动,我们将它固定在音叉固定架上是不会引起振动衰减的。其固有频率可因其质量和音叉臂长短、粗细而不同。音叉广泛应用于多个行业,如用于产生标准的“纯音”、鉴别耳聋的性质、用于检测液位的传感器、用于检测液体密度的传感器、以及计时等等。 本实验借助于音叉,来研究受迫振动及共振现象。用带铁芯的电磁线圈产生不同频率的电磁力,作为驱动力,同样用电磁线圈来检测音叉振幅,测量受迫振动系统振动与驱动力频率的关系,研究受迫振动与共振现象及其规律。具有不直接接触音叉,测量灵敏度高等特点。 三、实验原理 1、音叉的电磁激振与拾振 将一组电磁线圈置于钢质音叉臂的上下方两侧,并靠近音叉臂。对驱动线圈施加交变电流,产生交变磁场,使音叉臂磁化,产生交变的驱动力。接收线圈靠近被磁化的音叉臂放置,可感应出音叉臂的振动信号。由于感应电流dt dB I / , dt dB /代表交变磁场变化的快慢,其值大小取决于音叉振动的速度,速度越快,磁场变化越快,产生的电流越大,从而使测得的电压值越大。所以,接收线圈测量电压值获得的曲线为音叉受迫振动的速度共振曲线。相应的输出电压代表了音叉的速度共振幅值。

(完整word版)自激振动、自由振动、受迫振动和共振[转]

自激振动、自由振动、受迫振动和共振[转] 自激振动:结构系统受到自身控制的激励作用时所引起的振动。 自由振动:定义1:激励或约束去除后出现的振动。定义2:引起振动的激励除去后,结构系统所保持的振动。自激振动系统为能把固定方向的运动变为往复运动(振动)的装置,它由三部分组成:①能源,用以供给自激振动中的能量消耗;②振动系统;③具有反馈特性的控制和调节系统。在振幅小的期间,振动能量可平均地得到补充;在振幅增大期间,耗散能量的组成,被包含在振动系统中,此时补充的能量与耗散的能量达到平衡而接近一定振幅的振动。心脏的搏动、颤抖、性周期等一些在生物中所看到的周期现象,有许多是自激振动。 自由振动:在外力使弹簧振子的小球和单摆的摆球偏离平衡位置后,它们就在系统内部的弹力或重力作用下振动起来,不再需要外力的推动,这种振动叫做自由振动。简单说自激振动初始状态为不动或只有些微的振动,由于外界驱动下可以自发的激励起来某个模式或多个模式,随着耗散和驱动而其中一个或几个模式增长,其他消亡。自激振动的频率一般就是自由振动频率,但是由于要维持振动就

必须有能量的输入,一般说来自激振动是非线性过程。常见的自激振动如机械表、风吹过某腔体而发声等;自由振动指无外加驱动,当系统偏离平衡状态而引起的振动,这个例子很多,如钟摆拉离平衡点引起的摆动,扔块石子在水面后引起的水波自由振动等。 区别:一个有持续或多次能量馈入,有耗散,振动可维持,一般为非线性过程。一个可以称之为只有一次能量馈入,当有耗散时最终振动会停止,自由振动只是与系统自身相关,可能线性也可能非线性。自由振动和自激振动的本质区别在于,自由振动的激励来自外界,并且只在初始受激励;而自激振动的激励来自自身,并一直存在。受迫振动:线性阻尼系统对简谐性激励的长期响应。为了弥补阻尼造成的机械能损失,使振动持续下去,也可以采用其它方式的激励。自激振动就是一种在单方向(即非振动型)的激励作用下,振动系统的响应。自激振动在激励方式上是不同于受迫振动的。并且,由此导致了另外两个不同点:一是受迫振动的长期行为与初始状态无关,而自激振动的形成却依赖于初始振动的存在,因为若没有初始振动,也就没有可以反馈的信号,系统不能“起振”。二是,受迫振动中,系统对外界激励作出的响应就是“服从”,即受迫振动频率等于简谐性驱动力的频率(当受迫振动驱动力频率等于固有频率时,即发生共振),而自激振动的频率为系统

受迫振动和共振

受迫振动和共振 (1)受迫振动 系统在驱动力作用下的振动.做受迫振动的物体,它做受迫振动的周期(或频率)等于驱动力的周期(或频率),而与物体的固有周期(或频率)无关. (2)共振 做受迫振动的物体,它的驱动力的频率与固有频率越接近,其振幅就越大,当二者相等时,振幅达到最大,这就是共振现象.共振曲线如图2所示. 图2 例题 1.如图3所示的装置,弹簧振子的固有频率是4 Hz.现匀速转动把手,给弹簧振子以周期性的驱动力,测得弹簧振子振动达到稳定时的频率为1 Hz ,则把手转动的频率为( ) 图3 A .1 Hz B .3 Hz C .4 Hz D .5 Hz 答案 A 解析 受迫振动的频率等于驱动力的频率,把手转动的频率为1 Hz ,选项A 正确. 2.有一弹簧振子,振幅为0.8 cm ,周期为0.5 s ,初始时具有负方向的最大加速度,则它的振动方程是( ) A .x =8×10-3sin ? ???4πt +π2 m B .x =8×10-3sin ????4πt -π2 m

C .x =8×10-1sin ? ???πt +3π2 m D .x =8×10-1sin ????π4t +π2 m 答案 A 解析 振幅A =0.8 cm =8×10-3 m ,ω=2πT =4π rad/s.由题知初始时(即t =0时)振子在正向最大位移处,即sin φ0=1,得φ0=π2 ,故振子做简谐运动的方程为:x =8×10-3sin ????4πt +π2 m ,选项A 正确. 3.(人教版选修3-4P5第3题)如图4所示,在t =0到t =4 s 的范围内回答以下问题. 图4 (1)质点相对平衡位置的位移的方向在哪些时间内跟它的瞬时速度的方向相同?在哪些时间内跟瞬时速度的方向相反? (2)质点在第2 s 末的位移是多少? (3)质点在前2 s 内走过的路程是多少? 答案 (1)在0~1 s,2~3 s 内位移方向跟它的瞬时速度方向相同;在1~2 s,3~4 s 内位移方向跟它的瞬时速度方向相反. (2)0 (3)20 cm 4.(人教版选修3-4P12第4题)如图5所示为某物体做简谐运动的图象,在所画曲线的范围内回答下列问题. 图5 (1)哪些时刻物体的回复力与0.4 s 时刻的回复力相同? (2)哪些时刻物体的速度与0.4 s 时刻的速度相同? (3)哪些时刻的动能与0.4 s 时刻的动能相同? (4)哪些时间的加速度在减小?

音叉的受迫振动与共振实验

音叉的受迫振动与共振实验 华中科技大学 一、预备问题 1、 实验中策动力的频率为200Hz 时,音叉臂的振动频率为多少? 2、实验中在音叉臂上加砝码时,为什么每次加砝码的位置要固定? 二、引言 实际的振动系统总会受到各种阻力。系统的振动因为要克服内在或外在的各种阻尼而消耗自身的能量。如果系统没有补充能量,振动就会衰减,最终停止振动。要使振动能持续下去,就必须对系统振子施加持续的周期性外力,以补充因各种阻尼而损失的能量。振子在周期性外力作用下产生的振动叫做受迫振动。当外加的驱动力的频率与振子的固有频率相同时,会产生共振现象。 音叉是一个典型的振动系统,其二臂对称、振动相反,而中心杆处于振动的节点位置,净受力为零而不振动,我们将它固定在音叉固定架上是不会引起振动衰减的。其固有频率可因其质量和音叉臂长短、粗细而不同。音叉广泛应用于多个行业,如用于产生标准的“纯音”、鉴别耳聋的性质、用于检测液位的传感器、用于检测液体密度的传感器、以及计时等等。 本实验借助于音叉,来研究受迫振动及共振现象。用带铁芯的电磁线圈产生不同频率的电磁力,作为驱动力,同样用电磁线圈来检测音叉振幅,测量受迫振动系统振动与驱动力频率的关系,研究受迫振动与共振现象及其规律。具有不直接接触音叉,测量灵敏度高等特点。 三、实验原理 1、音叉的电磁激振与拾振 将一组电磁线圈置于钢质音叉臂的上下方两侧,并靠近音叉臂。对驱动线圈施加交变电流,产生交变磁场,使音叉臂磁化,产生交变的驱动力。接收线圈靠近被磁化的音叉臂放置,可感应出音叉臂的振动信号。由于感应电流dt dB I / , dt dB /代表交变磁场变化的快慢,其值大小取决于音叉振动的速度,速度越快,磁场变化越快,产生的电流越大,从而使测得的电压值越大。所以,接收线圈测量电压值获得的曲线为音叉受迫振动的速度共振曲线。相应

实验5 音叉的受迫振动与共振

实验5 音叉的受迫振动与共振 【实验目的】 1.研究音叉振动系统在驱动力作用下振幅与驱动力频率的关系,测量并绘制它们的关系曲线,求出共振频率和振动系统振动的锐度。 2.通过对音叉双臂振动与对称双臂质量关系的测量,研究音叉共振频率与附在音叉双臂一定位置上相同物块质量的关系。 3.通过测量共振频率的方法,测量附在音叉上的一对物块的未知质量。 4.在音叉增加阻尼力情况下,测量音叉共振频率及锐度,并与阻尼力小情况进行对比。【实验仪器】 FD-VR-A型受迫振动与共振实验仪(包括主机和音叉振动装置)、加载质量块(成对)、阻尼片、电子天平(共用)、示波器(选做用) 【实验装置及实验原理】 一.实验装置及工作简述 FD-VR-A型受迫振动与共振实验仪主要由电磁激振驱动线圈、音叉、电磁线圈传感器、支座、低频信号发生器、交流数字电压表(0~1.999V)等部件组成(图1所示) 1.低频信号输出接口 2.输出幅度调节钮 3.频率调节钮 4.频率微调钮 5.电压输入接口 6.电源开关 7.信号发生器频率显示窗 8.数字电压表显示窗 9.电压输出接口10.示波器接口Y11.示波器接口X12.低频信号输入接口13.电磁激振驱动线圈14.电磁探测线圈传感器15.质量块16.音叉17.底座18.支架19. 固定螺丝 图1 FD-VR-A型受迫振动与共振实验仪装置图 在音叉的两双臂外侧两端对称地放置两个激振线圈,其中一端激振线圈在由低频信号发生器供给的正弦交变电流作用下产生交变磁场激振音叉,使之产生正弦振动。当线圈中的电流最大时,吸力最大;电流为零时磁场消失,吸力为零,音叉被释放,因此音叉产生的振动频率与激振线圈中的电流有关。频率越高,磁场交变越快,音叉振动的频率越大;反之则小。另一端线圈因为变化的磁场产生感应电流,输出到交流数字电压表中。因为I=dB/dt,而dB/dt取决于音叉振动中的速度v,速度越快,磁场变化越快,产生电流越大,电压表显示的数值越大,即电压值和速度振幅成正比,因此可用电压表的示数代替速度振幅。由此可知,将探测线圈产生的电信号输入交流数字电压表,可研究音叉受迫振动系统在周期外力作用下振幅与驱动力频率的关系及其锐度,以及在增加音叉阻尼力的情况下,振幅与驱动力频率的关系及其锐度。

_受迫振动_共振_演示实验的研究与改进

第29卷 第10期 2009年10月 物 理 实 验 P H YSICS EXPERIM EN TA TION Vol.29 No.10  Oct.,2009  收稿日期:2009208221  作者简介:王浙伟(1972-),男,浙江温州人,永强中学一级教师,学士,从事高中物理教学工作. 基础教育研究 “受迫振动、共振”演示实验的研究与改进 王浙伟 (永强中学,浙江温州325024) 摘 要:对现有受迫振动、共振演示实验装置的不足进行了剖析,改进了原有的实验装置,制作了受迫振动、共振演示仪器.阐述了改进后的实验装置的具体制作、教学使用及特点. 关键词:受迫振动;共振;演示实验 中图分类号:G 633.7 文献标识码:B 文章编号:100524642(2009)1020016204 1 现有实验装置存在的问题 在新教材(人教版)选修3-4“外力作用下的 振动”一节中,教材通过2个演示实验,研究了物体做受迫振动时的频率与驱动力频率的关系及共振现象.教学中,做好2个实验的课堂演示,是上好这节课的重点.但笔者在教学中发现,教材中提供的2个实验装置在演示相关实验现象时存在较大问题,难以达到预期的实验教学效果. 图1为教材中研究受迫振动频率的实验装置.装置中2个弹簧振子做受迫振动的周期性驱动力由可变转速的电动机提供,改变电动机的转速可调整驱动力的频率.教材要求在实验中记录驱动力的周期和振子振动的周期,通过比较得出驱动力的周期与振子振动的周期的关系,即物体做受迫振动时的频率等于驱动力频率 . 图1 教材中研究受迫振动频率的实验装置 在实际教学中笔者发现该实验存在3个问题:a.电动机转动的周期(或偏心轮转动的周期) 不能目测,即使用秒表来测量也有一定的困难,实验中根本无法记录. b.当启动电动机驱动振子做受迫振动时,振子振动并不稳定,几乎只有在发生共振时振子振动才比较稳定,当逐渐调节电动机转速时,振子振动的频率难以随之同步. c.电动机带动偏心轮转动,使悬挂在偏心轮上的细线周期性上下扯动,进而驱动振子做受迫振动,这一驱动力传递过程可视性不强,除前排几个学生可看到外,其他学生根本无法看到. 图2为教材中用于演示受迫振动的振幅与固有频率关系以及共振现象实验装置.按教材介绍,当A 摆振动时,通过绳子给其他摆以驱动力,从而使其他摆做受迫振动,与A 摆摆长相同的摆球振幅最大,其他摆摆幅小.但该实验在实际中观察到的现象并非如预想的理想,实际情况是:当驱动摆A 振动时,开始时是与驱动摆A 邻近的D ,E 两摆振动明显,且振幅大于离A 摆较远的共 图2 教材中演示受迫振动的振幅与 固有频率关系的实验装置

实验6受迫振动与共振实验

实验六 受迫振动与共振实验 受迫振动与共振等现象在工程和科学研究中经常用到,如在建筑、机械等工程中,经常须避免共振现象,以保证工程的质量,而在一些石油化工企业中,用共振现象测量音叉式液体密度传感器和液体传感器在线检测液体密度和液位高度。所以受迫振动与共振是重要的物理规律,受到物理和工程技术广泛重现。 实验目的 1.研究音叉振动系统在周期外力作用下振幅与强迫力频率的关系,测量及绘制它们的关系曲线,并求出共振频率和振动系统振动的锐度(其值等于Q 值)。 2.音叉双臂振动与对称双臂质量关系的测量,求音叉振动频率f (即共振频率)与附在音叉双臂一定位置上相同物块质量m 的关系公式。 3.通过测量共振频率的方法,测量一对附在音叉上的物块m x 的未知质量。 4.在音叉增加阻尼力情况下,测量音叉共振频率及锐度,并与阻尼力小情况进行对比。 实验原理 1.简谐振动与阻尼振动 许多振动系统如弹簧振子的振动、单摆的振动、扭摆的振动等,在振幅较小而且在空气 阻尼可以忽视的情况下,都可作简谐振动处理。即此类振动满足简谐 振动方程 02022=+x dt x d ω (1) (1)式的解为 )cos(0?ω+=t A x (2) 对弹簧振子振动圆频率0 0m m K +=ω,K 为弹簧劲度,m 为振子的质量,m 0为弹簧的等效质量。弹簧振子的周期T 满足 )(402 2 m m K T +=π (3) 但实际的振动系统存在各种阻尼因素,因此(1)式左边须增加阻尼项。在小阻尼情况下,阻尼与速度成正比,表示为dt dx β2,则相应的阻尼振动方程为 022022=++x dt dx dt x d ωβ (4) 式中β为阻尼系数。 2.受迫振动与共振 阻尼振动的振幅随时间会衰减,最后回停止振动。为了使振动持续下去,外界必须给系

音叉的受迫振动

音叉的受迫振动与共振 (实验预习报告) 【实验目的】 1.研究音叉振动系统在驱动力作用下振幅与驱动力频率的关系,测量并绘制它们的关系曲线,求出共振频率和振动系统振动的锐度。 2.通过对音叉双臂振动与对称双臂质量关系的测量,研究音叉共振频率与附在音叉双臂一定位置上相同物块质量的关系。 3.通过测量共振频率的方法,测量附在音叉上的一对物块的未知质量。 4.在音叉增加阻尼力情况下,测量音叉共振频率及锐度,并与阻尼力小情况进行对比。【实验仪器】 FD-VR-A型受迫振动与共振实验仪(包括主机和音叉振动装置)、加载质量块(成对)、阻尼片、电子天平(共用)、示波器(选做用) 【实验装置及实验原理】 一.实验装置及工作简述 FD-VR-A型受迫振动与共振实验仪主要由电磁激振驱动线圈、音叉、电磁线圈传感器、支座、低频信号发生器、交流数字电压表(0~1.999V)等部件组成(图1所示) 1.低频信号输出接口 2.输出幅度调节钮 3.频率调节钮 4.频率微调钮 5.电压输入接口 6.电源开关 7.信号发生器频率显示窗 8.数字电压表显示窗 9.电压输出接口10.示波器接口Y11.示波器接口X12.低频信号输入接口13.电磁激振驱动线圈14.电磁探测线圈传感器15.质量块16.音叉17.底座18.支架19. 固定螺丝 图1 FD-VR-A型受迫振动与共振实验仪装置图 在音叉的两双臂外侧两端对称地放置两个激振线圈,其中一端激振线圈在由低频信号发生器供给的正弦交变电流作用下产生交变磁场激振音叉,使之产生正弦振动。当线圈中的电流最大时,吸力最大;电流为零时磁场消失,吸力为零,音叉被释放,因此音叉产生的振动频率与激振线圈中的电流有关。频率越高,磁场交变越快,音叉振动的频率越大;反之则小。另一端线圈因为变化的磁场产生感应电流,输出到交流数字电压表中。因为I=dB/dt,而dB/dt取决于音叉振动中的速度v,速度越快,磁场变化越快,产生电流越大,电压表显示的数值越大,即电压值和速度振幅成正比,因此可用电压表的示数代替速度振幅。由此可知,将探测线圈产生的电信号输入

相关文档
相关文档 最新文档