文档库 最新最全的文档下载
当前位置:文档库 › 无人机“蜂群”协同控制及自主避技术

无人机“蜂群”协同控制及自主避技术

无人机“蜂群”协同控制及自主避技术
无人机“蜂群”协同控制及自主避技术

干货分享|无人机“蜂群”协同控制与自主避技术

概述

随着常规无人机技术逐渐成熟,无人机系统(UAS)的发展潮流转向集群化、特异化。为了在战术战略层面重新获得非对称优势,美国国防部错误!未找到引用源。、美国空军分别提出了未来若干年无人系统发展规划,其中以小型无人机组成“蜂群”执行任务是重点发展方向之一。为了使用无人机蜂群进行诸如协同侦查、协同打击任务,蜂群需具备良好的整体行为控制能力,保证其在飞行过程中能够保持蜂群构型的稳定、蜂群成员间的安全距离,并自主规避飞行路线上的动静态障碍物,因此无人机“蜂群”协同控制与自主避障是最基础的核心技术。

针对这一需求,恒润科技集团北京润科通用技术有限公司(以下简称“润科通用”)自主研发并成功攻关无人机蜂群协同控制与自主避障技术,可以提供核心算法协助客户实现蜂群控制能力、战术战略任务效能仿真能力。

无人机“蜂群”协同控制与自主避障技术特点

无人机蜂群协同控制与自主避障技术聚焦两个及以上无人机的编队构型控制、自主避障等问题,自主实现蜂群无人机各成员间导航与控制,使得蜂群成为一个整体执行上层系统分配的任务。无人机蜂群协同控制与自主避障技术的特点包括:

●对蜂群的控制只需类似单机无人机的简单指令

●蜂群可以自动规避动静态障碍物

●避免蜂群成员间自主避撞

●蜂群可以再拆分成小蜂群执行多个任务

●蜂群成员通信拓扑动态可变,且仅需临近通信能力

●可保证蜂群成员间运动的一致性

●蜂群无需领航者,鲁棒性强

●系统算法适用于任意数量无人机成员

●可应用于二维平面编队和三维立体编队

润科通用研发的无人机蜂群协同控制与自主避障技术基于Matlab/Simulink进行算法建模,算法在数字环境下进行充分仿真验证,保证算法的有效性与鲁棒性。基于Matlab/Simulink得到的算法模型可以通过代码自动生成的方式自动生成C、C++等形式的实时代码,并将其应用于半物理仿真及真实飞控计算机中。

无人机蜂群协同控制与自主避障技术包括三个核心功能:蜂群构型控制、蜂群自主避障、蜂群任务分配。

1.无人机蜂群编队构型控制

无人机蜂群编队构型控制算法以图论为理论基础,以编队成员趋近、同速、避撞为基

本原则,实现编队构型的一致性控制。编队构型控制分两种方式:固定构型编队;空间自由编队。

1.1.固定构型编队

当无人机成员数量较少时,一般选择固定构型编队,包括:线型构型(一字构型);人字形构型;三角形构型;钻石型等。此外,可以根据需求进行任意编队构型的定制开发。

示例

下图为线型构型编队的示意图。编队包含7个无人机成员,仿真开始时,各个成员处于随机分配的位置,仿真开始后首先形成编队构型,然后在后续的飞行中保持编队构型。

图1 线型构型编队平面飞行轨迹显示

图2 编队构型形成图3 编队构型保持

1.2.空间自由编队

空间自由编队模式下,无人机更成员间的相对位置关系根据指定的势函数确定,稳定编队构型形成后,成员间以正三角形(二维空间编队)或正四面体(三维空间编队)为基本单元组成整体。在空间自由编队模式下,编队成员间的通信拓扑是动态变化,无人机仅对其周围一定范围内的成员具有通信能力,而无需全局通信能力,对通信系统友好,因此具有很强的适应性。

图4 形成稳定编队构型后的相对位置示意图(平面)

示例——二维蜂群仿真

下图给出蜂群成员为50的二维平面蜂群仿真结果。图中蓝色曲线为无人机蜂群飞行轨迹,黑色透明圈是所标注时刻仿真曲线剖面,箭头所指为局部放大图,红色曲线为蜂群整体导航指令。初始时刻蜂群成员位置随机给定,随着仿真进行蜂群构型逐渐形成,经过60s 后形成稳定构型并在后续的时间中保持构型。

初始时刻

T = 80

初始时刻

T = 20

初始时刻

T = 0

初始时刻

T = 40

初始时刻

T = 60

图5平面蜂群编队构型

示例——三维大蜂群仿真

下面给出蜂群成员数量为200时的仿真结果。蜂群构型的形成和稳定保持过程与前一示例基本相同,不再详细给出。

初始时刻

T = 80

图6三维空间蜂群编队构型

2.无人机蜂群自主避障

无人机蜂群自主避障功能实现蜂群整体对各类动静态障碍的规避,蜂群在该指令控制下实现蜂群整体运动趋势的改变,如控制蜂群按指定航路点飞低目的地,并在飞行过程蜂群能够规避障碍区域或敌方单位。无人机蜂群自主避障基于势函数方法设计,蜂群不进行显式的航路规划,而是将障碍区域/敌方单位设置为斥力源,当蜂群靠近斥力源时将生成偏离指令,制导蜂群避障。

示例——动态静态障碍

下图给出包含动态和静态障碍区域的蜂群避障仿真结果。图中蓝色曲线为蜂群飞行轨迹,黑色圆圈为静态障碍区域,红色曲线为蜂群飞行指令,绿色为动态障碍区域中心运动轨迹,绿色透明圆为某一时刻动态障碍区所在位置。由图可见,无人机蜂群在跟踪指令的过程中,能够保持蜂群构型,并成功规避动态与静态障碍物。动态仿真过程参见如下视频内容,由视频可见,在运动到航线最右侧时,由于动态障碍速度过快,当蜂群编队与其相遇时,规避动作使队形冲散,且有部分蜂群成员进入动态障碍区,该部分体现出针对不同环境条件,需要进行避障算法参数的调整,以平衡蜂群构型保持倾向和避障倾向。

图7无人机蜂群障碍规避

3.无人机蜂群任务分配

无人机蜂群可以分解为若干小蜂群分别执行不同的任务。不同的任务由体量不等的小蜂群执行,小蜂群中成员数量由任务分配系统根据任务特性自动分配。此外,蜂群成员允许为异构的,不同成员具有独立的功能,每个任务需要具有不同功能的成员机协同完成。

示例

下图为无人机蜂群执行三个任务的示意图。

无人机自主控制专刊

第32卷第10期2015年10月 控制理论与应用 Control Theory&Applications V ol.32No.10 Oct.2015“无人机自主控制”专刊 前言 无人机自主控制是当今无人系统领域的研究热点,且近几年已经发展成为无人机技术领域的一个关键研究领域.由于执行任务环境的高度动态化、不确定性以及飞行任务的复杂性,自主飞行控制能力的提高是目前无人机系统技术发展的重要目标. 近年来,在国家科技部、国家自然科学基金委员会、总装备部、总参谋部、空军装备部、海军装备部、二炮等支持下,我国学者从无人机自主控制的基础理论、关键技术、工程应用特别是国防应用、产业化推广等多个层面展开全面系统研究,并取得了很多高水平成果.通过理论和方法上研究的突破,为无人机系统的自主化、综合化和智能化提供了重要技术支撑,也推动了无人机应用的蓬勃发展. 为了进一步推动无人机自主控制技术及应用发展,为广大从事无人机自主控制研究的广大科技工作者集中搭建一个平台,在《控制理论与应用》主编、编委和编辑们的大力支持下,我们发起并组织出版了“无人机自主控制”专刊,得到了无人机自主控制领域广大专家和学者的热切关注,来稿涉及固定翼无人机、四旋翼无人机、无人直升机、高超声速无人飞行器以及新概念无人机等,稿件主题涵盖了无人机自主控制从顶层到底层的所有领域.经过严格的多轮评审,最终录用了35篇稿件,无论稿件数量和质量都超过了预期,来稿反映了国内无人机自主控制领域的最新研究进展和最新成果.所录用论文的作者均为国内无人机自主控制领域的专家与学者,他们或在理论上有所创新,或对国家重大工程中有显著贡献,或在理论与工程实践的结合中成果突出. 在《控制理论与应用》编委会和编辑部的大力支持下,我们将这些最新成果分两期出版,本期是“无人机自主控制”专刊的第1期,包含了18篇稿件. 在本期论文中,谭建豪、王耀南等综述了旋翼飞行机器人的结构演变及关键技术、作业机构集成技术,从动力学建模及动力学特性分析、动态运动约束/力约束下的协调规划、非结构环境下的运动和作业控制、面向任务动态操作的环境感知、面向任务的实验系统构建与实验验证五个方面初步构建旋翼飞行机器人自主作业理论体系;孙洪飞等设计了一种高超声速再入飞行器的鲁棒自适应控制器;段海滨等提出了一种基于鸽群行为机制的多无人机自主编队控制方法;范国梁及其合作者针对水上无人机在高海况下的着水问题,提出了一种自主着水控制系统设计方案;霍伟等针对微型无人直升机在狭窄空间中的轨迹跟踪问题,设计了一种可以限制直升机位置和速度的跟踪控制器;董娜等设计了一种基于新型滑模控制方法的轨迹跟踪控制器;蔡晨晓及其合作者基于奇异摄动的思想设计了四旋翼无人机非线性轨迹跟踪控制器;宗群等系统阐述了自制小型四旋翼无人机的设计过程;刘一莎等针对四旋翼飞行器参数不确定性和外部干扰敏感的问题,提出了一种基于自抗扰控制器的控制系统设计方法;吴庆宪及其合作者设计了一种针对输入饱和与姿态受限的四旋翼无人机反步姿态控制器;祝小平等基于线性自抗扰控制理论设计了包含内环姿态控制和外环轨迹控制的全包线飞行控制器;鲜斌及其合作者针对小型无人直升机存在的参数不确定性问题,基于浸入–不变集理论,设计了一种新型的自适应控制器,并进行了实验验证;孙长银等研究了有向图下具有非线性和干扰的无人机群的分布式合围控制问题,并通过仿真结果验证了控制协议的有效性;周锐及其合作者提出了一种精确、具有可扩展性并且适用于任意通信频率的航迹融合算法;陈宗基等提出了多无人机空中加油的三维最优会合航路规划算法;魏瑞轩等提出了一种城市密集不规则障碍空间无人机航路规划方法,并进行了仿真对比实验分析;周绍磊等基于无人机自身状态与邻居状态的相对局部信息构建了分布式编队控制器,同时还建立了集散式多无人机协同搜索结构体系. 最后,对《控制理论与应用》编委们和编辑部提供的这次组织“无人机自主控制”专刊的宝贵机会和辛苦工作表示由衷感谢,对广大投稿作者的大力支持表示衷心感谢,也非常感谢投身或关注我国无人机自主控制技术研究的广大读者们! 北京航空航天大学段海滨教授 中航工业沈阳飞机设计研究所范彦铭研究员 中国工程院李明院士

无人机控制系统核心硬件

2.1 ARM-Cortex M4架构 ARM-Cortex M4 架构: 无人机控制系统可以采用基于ARM系统架构的嵌入式处理器来实现,本次 重点基于ARM-Cortex M4架构的无人机飞控系统。 ARM是32位嵌入式微处理器的行业领先提供商,到目前为止,已推出各 种各样基于通用体系结构的处理器,这些处理器具有高性能和行业领先的功效,而且系统成本也有所降低。 基于ARMv7架构以上的Cortex系列主要分为A(应用处理器)、R(实时 处理器)、M(微控制器)三大应用系列。其中Cortex-M系列处理器主要是针 对微控制器领域开发的,在该领域中,既需进行快速且具有高确定性的中断管理,又需将逻辑门数和功耗控制在最低。Cortex-M处理器是一系列可向上兼容 的高能效、易于使用的处理器,这些处理器旨在帮助开发人员满足将来的嵌入 式应用的需要。这些需要包括以更低的成本提供更多功能、不断增加连接、改 善代码重用和提高能效 ARM-Cortex 的特点: 更低的功耗:以更低的 MHz 或更短的活动时段运行,基于架构的睡眠模式支持,比 8/16 位设备的工作方式更智能、睡眠时间更长 更小的代码(更低的硅成本):高密度指令集,比 8/16 位设备每字节完 成更多操作,更小的 RAM、ROM 或闪存要求 易于使用:多个供应商之间的全球标准,代码兼容性,统一的工具和操作 系统支持 更有竞争力的产品:Powerful Cortex-M processor,每MHz 提供更高的

?Cortex-M4是一个32位处理器内核 ?内部的数据路径是32位的,寄存器是32位的,存储器接口也是32 位的 ?采用哈佛架构 ?小端模式和大端模式都是支持的 ?Thumb指令集与32位性能相结合的高密度代码 ?针对成本敏感的设备Cortex-M4处理器实现紧耦合的系统组件,降低处理器的面积,减少开发成本 ?ROM系统更新的代码重载的能力 ?该处理器可提供卓越的电源效率 ?饱和算法进行信号处理 ?硬件除法和快速数字信号处理为导向的乘法累加 ?集成超低功耗的睡眠模式和一个可选的深度睡眠模式 ?快速执行代码会使用较慢的处理器时钟,或者增加睡眠模式的时间?为平台的安全性和稳固性,集成了MPU(存储器保护单元) ?Cortex-M4内部还附赠了好多调试组件,用于在硬件水平上支持调试操作,如指令断点,数据观察点等 ?有独立的指令总线和数据总线,可以让取指与数据访问并行不悖 2.1.3 基于ARM Cortex-M4 内核的微控制器 ARM Cortex-M4内核是微控制器的中央处理单元(CPU),配合外围设备模块和组件,形成完整的基于Cortex-M4的微控制器。在芯片制造商得到Cortex-M4处理器内核的使用授权后,它们可以将Cortex-M4内核用在自己的硅片设计中,添加存储器,外设,I/O以及其它功能块。不同厂家设计出的单片机会有不同的配置,包括存储器容量、类型、外设等都各具特色。由于基于统一的内核架构,事实上本书后面所介绍的飞控软件和算法虽然已ST的 STM32F407为基础,它们是很容易移植到其他公司的同内核平台芯片上的,很多与外设无关的代码部分不需要任何改变即可移到其他平台上,仅需要关注外围设备相关部分的驱动代码。 ?飞思卡尔(现并入恩智浦)基于ARM Cortex M4内核的Kinetis K60微控制器系列。Kinetis微控制器组合产品由多个基于ARM@CortexTM_M4内核且引脚、外设和软件均兼容的微控制器系列产品组成。 ?ST基于ARM Cortex-M4内核的STM32 F4微控制器系列,具有高达 168MHz的主频,以及在此主频工作下的基准测试功耗为38.6mA

空中幽灵-浅析各国有人机无人机编队及协同作战能力发展

在达索公司最新公布的宣传片之中,首次出现了阵风战斗机和神经元无人作战飞机进行编队飞行的镜头,显现了法国在有人战斗机/无人作战飞机协同作战能力上取得了突破。 新世纪以来,各国都在大力加强无人作战飞机与有人作战飞机以至无人作战飞机之间的协同作战,两者的结合将形成强大的作战能力,起到1+1》2的效果,这也是为什么法国要进行阵风和神经元无人作战飞机编队飞行的根本原因。 目前各发达国家在无人作战飞机的发展上取得了比较大的突破,以X-47B、神经元为代表无人作战飞机采用了隐身、高速宽带数据链、小体积制导武器等新技术、新设备和新武器,态势感知能力、突防作战能力、信息传递和获取能力成倍提高,可以说是未来战争上一把新锐的利剑。

以X-47B为代表,标志着发达国家在隐身无人作战飞机方面取得了长足进步 无人作战飞机的编队和协同作战能力不足 不过无人作战飞机仍旧有自己的缺点,那就是智能化水平仍旧不 足,目前多以单机的方式执行作战任务,编队及协同作战能力尚未完全 具备,由于无人机的起飞重量、探测系统、载荷比有人作战飞机仍旧有 差距,例如目前最大的X-47B无人作战飞机也只能配备大约2吨左右的 载荷,这与有人作战飞机相比还是有较大的差距,因此在攻击作战能力 方面与有人作战飞机仍旧有差距。 在这种情况下,各国提出了蜂群概念就是让多架无人作战飞机能 够协同作战,这样多架无人机组成的编队能够充分的利用各架飞机的资 源,发挥整体的作战能力,其效能显然要大于各自为战的无人机,2004 年美国波音公司利用X-45无人机首次进行了双机编队飞行,2012年美 国利用全球鹰无人机成功的进行了无人机空中加油试验,标志着无人机 在编队飞行及协同方面取得突破性进展,不过从现在来看,各国在无人 机编队及协同方面的技术还不成熟,在编队队形、航迹规划、信息交换 等方面还有许多难关需要突破。距离实用推广还需要时日。

无人机飞行控制方法概述

2017-10-08 GaryLiu 于四川绵阳 无人机的飞行控制是无人机研究领域主要问题之一。在飞行过程中会受到各种干扰,如传感器的噪音与漂移、强风与乱气流、载重量变化及倾角过大引起的模型变动等等。这些都会严重影响飞行器的飞行品质,因此无人机的控制技术便显得尤为重要。传统的控制方法主要集中于姿态和高度的控制,除此之外还有一些用来控制速度、位置、航向、3D轨迹跟踪控制。多旋翼无人机的控制方法可以总结为以下三个主要的方面。 1.线性飞行控制方法 常规的飞行器控制方法以及早期的对飞行器控制的尝试都是建立在线性飞行控制理论上的,这其中就有诸如PID、H∞、LQR以及增益调度法。 1)PID PID控制属于传统控制方法,是目前最成功、用的最广泛的控制方法之一。其控制方法简单,无需前期建模工作,参数物理意义明确,适用于飞行精度要求不高的控制。 2)H∞ H∞属于鲁棒控制的方法。经典的控制理论并不要求被控对象的精确数学模型来解决多输入多输出非线性系统问题。现代控制理论可以定量地解决多输入多输出非线性系统问题,但完全依赖于描述被控对象的动态特性的数学模型。鲁棒控制可以很好解决因干扰等因素引起的建模误差问题,但它的计算量非常大,依赖于高性能的处理器,同时,由于是频域设计方法,调参也相对困难。 3)LQR LQR是被运用来控制无人机的比较成功的方法之一,其对象是能用状态空间表达式表示的线性系统,目标函数是状态变量或控制变量的二次函数的积分。而且Matlab软件的使用为LQR的控制方法提供了良好的仿真条件,更为工程实现提供了便利。 4)增益调度法 增益调度(Gain scheduling)即在系统运行时,调度变量的变化导致控制器的参数随着改变,根据调度变量使系统以不同的控制规律在不同的区域内运行,以解决系统非线性的问题。该算法由两大部分组成,第一部分主要完成事件驱动,实现参数调整。如果系统的运行情况改变,则可通过该部分来识别并切换模态;第二部分为误差驱动,其控制功能由选定的模态来实现。该控制方法在旋翼无人机的垂直起降、定点悬停及路径跟踪等控制上有着优异的性能。 2.基于学习的飞行控制方法 基于学习的飞行控制方法的特点就是无需了解飞行器的动力学模型,只要一些飞行试验和飞行数据。其中研究最热门的有模糊控制方法、基于人体学习的方法以及神经网络法。 1)模糊控制方法(Fuzzy logic) 模糊控制是解决模型不确定性的方法之一,在模型未知的情况下来实现对无人机的控制。 2)基于人体学习的方法(Human-based learning) 美国MIT的科研人员为了寻找能更好地控制小型无人飞行器的控制方法,从参加军事演习进行特技飞行的飞机中采集数据,分析飞行员对不同情况下飞机的操作,从而更好地理解无人机的输入序列和反馈机制。这种方法已经被运用到小型无人机的自主飞行中。 3)神经网络法(Neural networks)

无人机主要部件

1、首先介绍的是无人机的大脑——飞控 无人机飞行控制系统是指能够稳定无人机飞行姿态,并能控制无人机自主或半自主飞行的控制系统,是无人机的大脑,也是区别于航模的最主要标志,简称飞控。飞控的作用就是通过飞控板上的陀螺仪,对四轴飞行状态进行快速调整(都是瞬间的事,不要妄想用人肉完成)。如发现右边力量大,向左倾斜,那么就减弱右边电流输出,电机变慢、升力变小,自然就不再向左倾斜。如果没有飞控系统,四轴飞行器就会因为安装、外界干扰、零件之间的不一致等原因形成飞行力量不平衡,后果就是左右、上下地胡乱翻滚,根本无法飞行。 工作过程大致如下:飞控系统实时采集各传感器测量的飞行状态数据、接收无线电测控终端传输的由地面测控站上行信道送来的控制命令及数据,经计算处理,输出控制指令给执行机构,实现对无人机中各种飞行模态的控制和对任务设备的管理与控制;同时将无人机的状态数据及发动机、机载电源系统、任务设备的工作状态参数实时传送给机载无线电数据终端,经无线电下行信道发送回地面测控站。飞控系统的硬件主要包括:主控制模块、信号调理及接口模块、数据采集模块以及舵机驱动模块等。 2、为传感器增稳的——云台 稳定平台,对于任务设备来说太重要了,是用来给相机增稳的部分,几千米的高度上误差个几分几秒就能差出去几十米。它主要通过传感器感知机身的动作,通过电机驱动让相机保持原来的位置,抵消机身晃动或者震动的影响。云台主要考察几个性能:增稳精度、兼容性(一款云台能适配几款相机和镜头)和转动范围(分为俯仰、横滚和旋转三个轴),如果遇到变焦相机,就更加考验云台的增稳精度了,因为经过长距离的变焦,一点点轻微的震动都会让画面抖动得很厉害。 现时的航拍云台主要由无刷电机驱动,在水平、横滚、俯仰三个轴向对相机进行增稳,可搭载的摄影器材从小摄像头到GoPro,再到微单/无反相机,甚至全画幅单反以及专业级电影机都可以。摄影器材越大,云台就越大,相应的机架也就越大。

无人机飞行路线控制系统设计

无人机飞行路线控制系统设计 由于无人机是通过无线遥控的方式完成自动飞行和执行各种任务,具有安全零伤亡、低能耗、重复利用率高、控制方便等优点,因此得到了各个国家、各行各业的高度重视和广泛应用。尤其以美国为代表,无论是在军事、民用、环境保护还是科学研究中,都将无人机的使用发挥到淋漓尽致,其拥有全球最先进的“捕食者”和“全球鹰”战斗无人机、监测鸟类的“大乌鸦”无人机、民用用途的“伊哈纳”无人机等等。我国在无人机研制方面也取得了一定的成就,拥有技术卓越的“翔龙”和“暗箭”高空高速无人侦查机、多用途的“黔中”无人机、探测海洋的“天骄”无人机、中继通讯的“蜜蜂”无人机等等。在未来,随着现代化工业技术、信息技术、自动化技术、航天技术等高新技术的迅速发展,无人机技术将日趋成熟,性能日益完善,为此将拥有更为广阔的应用前景。为确保无人机能够有效地完成各种飞行任务,研发者开发了各种技术方式的飞行控制系统,完成对无人机的起飞、飞行控制、着陆以及相应目标任务等操作的控制。飞行路线控制是飞行控制系统中最基础也是最核心的功能控制部分,其它所有的飞行任务控制都是飞行路线控制的基础之上实现。目前对于无人机飞行路线的控制已有各种各样方式的系统,但大多数系统都存在一定缺陷,如有些系统操作过于繁杂,不够智能化;有些系统只能在视距范围遥 控无人机,严重限制了无人机的使用;有些系统过于专用化,不能适用于大多数类型的无人机;有些比较完善的系统,造价又过于昂贵,等等一系列问题。针对以上存在的这些问题,本课题提出了一种成本低、

遥控距离远、智能化、高效化、适用性广的无人机飞行路线控制系统设计方案。该系统方案包括两大部分,一部分是操作人员所处的地面监控系统,一部分是无人机端的受控系统,实现的机制主要是无人机不断地将自身的定位信息实时地传送给地面控制系统,地面控制系统将无人机位置信息通过电子地图可视化显示给操作人员,操作人员结合本次飞行任务,采用灵活的鼠标绘制方式在地图上绘制预定的飞行路线,地面控制系统对绘制路线进行自动处理生成可用的路线控制信息帧并发送给无人机受控系统,无人机受控系统接收到位置控制信息帧,不断结合实时的方位信息得到飞行控制信息,从而遥控无人机按照预定路线飞行。此外,为方便用户以后对历史数据的查看,以分析总结得到一些有价值的信息,地面监控系统还包含了对预定路线和无人机历史飞行路线的存储、查询和在地图中回放功能。基于GIS技术的地面监控系统的具体实现是在Windows操作系统上,采用Visual Basic作为系统开发环境并结合MSComm串口通信技术、Mapx二次开发组件技术、Winsock网络接口技术以及Access数据库技术完成软件设计,实现与无人机受控系统的无线通信、GIS系统操作和监控、历史数据存储和重现等,其中实验区域的电子地图采用Mapinfo Professional开发软件绘制完成,并创新性地设计并绘制了画面简洁的带高层信息的二点三维矢量地图,而对于绘制路线的优化和提取处理采用了垂距比值法和最小R值法。无人机端使用BDS-2/GPS双卫星系统对无人机实时位置进行高精度的定位,采用双串口单片机进行运算控制处理,实时的飞行控制信息采用了几何空间算法得到,另外采

关于无人机飞行控制系统的全面解析

关于无人机飞行控制系统的全面解析 飞控的大脑:微控制器在四轴飞行器的飞控主板上,需要用到的芯片并不多。目前的玩具级飞行器还只是简单地在空中飞行或停留,只要能够接收到遥控器发送过来的指令,控制四个马达带动桨翼,基本上就可以实现飞行或悬停的功能。意法半导体高级市场工程师介绍,无人机/多轴飞行器主要部件包括飞行控制以及遥控器两部分。其中飞行控制包括电调/马达控制、飞机姿态控制以及云台控制等。目前主流的电调控制方式主要分成BLDC方波控制以及FOC正弦波控制。 高通和英特尔推的飞控主芯片CES上我们看到了高通和英特尔展示了功能更为丰富的多轴飞行器,他们采用了比微控制器(MCU)更为强大的CPU或是ARM Cortex-A系列处理器作为飞控主芯片。例如,高通CES上展示的Snapdragon Cargo无人机是基于高通Snapdragon芯片开发出来的飞行控制器,它有无线通信、传感器集成和空间定位等功能。Intel CEO Brian Krzanich也亲自在CES上演示了他们的无人机。这款无人机采用了RealSense技术,能够建起3D地图和感知周围环境,它可以像一只蝙蝠一样飞行,能主动避免障碍物。英特尔的无人机是与一家德国工业无人机厂商Ascending Technologies合作开发,内置了高达6个英特的RealSense3D摄像头,以及采用了四核的英特尔凌动(Atom)处理器的PCI-express定制卡,来处理距离远近与传感器的实时信息,以及如何避免近距离的障碍物。这两家公司在CES展示如此强大功能的无人机,一是看好无人机的市场,二是美国即将推出相关法规,对无人机的飞行将有严格的管控。 多轴无人机的EMS/传感器某无人机方案商总经理认为,目前业内的玩具级飞行器,虽然大部分从三轴升级到了六轴MEMS,但通常采用的都是消费类产品如平板或手机上较常用的价格敏感型型号。在专业航拍以及专为航模发烧友开发的中高端无人机上,则会用到质量更为价格更高的传感器,以保障无人机更为稳定、安全的飞行。这些MEMS传感器主要用来实现飞行器的平稳控制和辅助导航。飞行器之所以能悬停,可以做航拍,是因为MEMS传感器可以检测飞行器在飞行过程中的俯仰角和滚转角变化,在检测到角度变化

无人机集群协同作战(郑兴港著)分析

超级设想之无人机集群协同作战 03022014513 郑兴港 摘要:在未来信息化战场上,无人机将会被越来越广泛地用于执行各种杀伤性的作战任务,在高度信息化的战场前景下,无人机作战模式也将出现转变,由单机自主的作战模式转变为机群对机群和机群对地面/水面目标攻击的作战模式。 无人机集群协同作战需要重点解决的关键问题包括大规模无人机管理与控制、多无人机自主编队飞行、集群感知与态势共享、集群突防与攻击、集群作战任务控制站等。 无人机集群形成规模优势,具有极佳的战场生存能力和任务完成能力,可以用来完成在复杂对抗环境下的协同搜索、协同干扰、协同攻击、协同察/打、集群对抗等任务。 关键词:无人机;作战用途;战术运用;多无人机协同作战;无人机集群作战。 一、无人机集群协同作战的需求及要求 随着科技的发展,近一二十年来大量新型武器系统相继装备各国部队,对过去和现行的战术及战术体系产生了巨大的冲击。同时随着计算机、人工智能、自动驾驶和信号处理等高新技术的发展以及各种新设备的成功研制,在当今信息化作战条件下,无人机作为一种新型多用途武器装备,它能完成侦察监视、接力通信、对地对海攻击、空战、火炮校射、电子对抗、飞行训练、科学实验等多种任务,在现代体系对抗战争中的作用越来越突出。 在未来信息化战场上,无人机将会被越来越广泛地用于执行各种杀伤性的作战任务,在高度信息化的战场前景下,无人机作战模式也将出现转变,由单机自主的作战模式转变为机群对机群和机群对地面/水面目标攻击的作战模式。多无人机协同作战势必要求友机之间通过信息数据链的共享,进行统一决策,协调分工。由此,对无人机战斗群也提出了新的要求:一

国外无人机自主飞行控制研究

2004年3月第26卷 第3期 系统工程与电子技术Systems Engineering and Electronics Mar .2004 Vol .26 No .3     收稿日期:2002-09-06;修回日期:2003-01-15。 作者简介:唐强(1978-),男,博士研究生,主要研究方向为飞行控制,智能控制。  文章编号:1001-506X (2004)03-0418-05 国外无人机自主飞行控制研究 唐 强1 ,朱志强 1,2 ,王建元 1,2 (1.西北工业大学自动控制系,陕西西安710072;2.飞行自动控制研究所,陕西西安710065) 摘 要:无人机自主飞行控制的研究属于飞行控制的前沿问题,其目的是实现无人机的自主飞行控制、决策和管理。由于其高度的复杂性和智能性,在理论和工程实际上尚处于起步阶段。结合近年来国外的发展状况和一些主要的研究成果,对无人机的自主飞行控制的研究进行了概述。首先介绍了自主控制的概念,然后分别探讨了无人机自主飞行控制中几个相关的关键问题,主要包括飞行中规划与重规划,自主飞行控制的分层结构,以及无人机自主着陆等问题,最后对未来的发展方向和面临的挑战进行了展望。 关键词:无人机;自主飞行控制;规划;分层结构;自主着陆中图分类号:V249.1 文献标识码:A Survey of foreign researches on autonomous flight control for unmanned aerial vehicles TANG Qiang 1,ZHU Zhi -qiang 1,2,WANG Jian -yuan 1,2 (1.Depar tment of Automatic C ontr ol ,Nort hw este rn Polytechnical Uni ver sity ,Xi 'an 710072,C hina ; 2.Flight Automatic Contr ol Re searc h Ins titute ,Xi 'an 710065,China ) A bstract :The stud y on autonomous flight control of un manned aerial vehicles (UAVs )is a frontier problem of flight control .Its goal is to realize the autonomous flight control ,decision making and management for UAVs .Because of its huge complexit y and high intelligence ,it is still in the early stage .The foreign researches and their res ults in this field are overviewed .In the first place ,the concept of auton omous control is introduced .Then several related key issues are discussed respectivel y ,including the in -flight plan -ning and re -planning problems ,the hierarchical structure of control s ystems ,and the autonomous landing of UAVs .Finally ,the re -searh areas are proposed to address development tendency and challenges . Key wo rds :un man ned aerial vehicles (UAVs );autonomous flight con trol ;plannin g ;hierarchical structure ;autonomous landing 1 引 言 随着应用的需要和航空技术的发展,近年来世界范围内掀起了对无人机(unmanned aerial vehicles ,UAVs )的研究热潮,美国、英国、法国、德国、以色列、澳大利亚等国都针对这个领域投入了相当的研究力量。究其原因,用无人机替代有人驾驶飞机可以降低生产成本,便于运输、维修和保养,而且不用考虑人的生理和心理承受极限。未来无人机在军事和民事上都有广泛的应用前景。在军事领域,采用无人机进行作战和侦察,可以减少人员的伤亡,还能具有超高过载的机动能力,有利于攻击和摆脱威胁。在民用领域,无人机可以完成资源勘测、灾情侦察、通信中继、环境监测等繁重重复或具有一定危险的任务。 无人机概念的产生由来已久。美国是现今世界上最主要的无人机生产研制国,在其庞大航空工业力量的支持下,积累了相当丰富的关于无人机系统功能、结构和部件上的技术经 验,研制出了“全球鹰”、“捕食者”等先进的无人飞行系统,而 且还有大量的在研型号和项目。即使这样,各国学术界和工业界也认识到在复杂不确定的环境条件下,现有的无人机系统一旦缺乏人的控制决策干预,往往不能顺利完成任务。针对以上现状,很自然可以提出这样一个问题,即如何最大程度地给无人机这种机器系统赋予智能,实现其自主飞行控制、决策和管理,从而在某些领域取代有人驾驶飞机的作用。在传统的控制方式下,无人机的控制可以由与其一起混合编队的有人飞机利用近距离通信链实现;也可以通过远距离的地面或空中指挥平台进行控制;还可以利用卫星通信控制。但是上述方法都是通过外界数据通信链对无人机进行控制,在恶劣的条件下,一旦通信链不再可靠和畅通,后果将不堪预料。所以对于复杂环境下工作的无人机,必然要求其具有较强的自主飞行决策控制能力,以适应未来的需要。 2 自主控制的概念 自主控制问题的提起常常与智能机器人的控制联系紧

远程无人机控制系统的制作技术

本技术公开了一种远程无人机控制系统,包括无人机组和远程控制中心,所述无人机组包括若干架无人机,每架所述无人机包括第二无线通讯模块、智能监控器、自动驾驶装置和航拍装置,所述智能监控器通过无线传输线路与遥控器连接,所述的遥控器用于控制无人机,包括遥控器本体和安装在遥控器本体上的无线传输模块,所述远程控制中心包括第一无线通讯模块、任务分配模块、信号处理模块和初始化模块。本技术不仅能够同时控制多架无人机,智能化程度高,而且航拍所得到的图像质量较好。 技术要求 1.一种远程无人机控制系统,其特征在于:包括无人机组和远程控制中心,所述无人机组包括若干架无人机,每架所述无人机包括第二无线通讯模块、智能监控器、自动驾驶装 置和航拍装置; 所述第二无线通讯模块用于向远程控制中心发送实时飞行数据,接收并回复远程控制中 心发送的测试命令,并发送命令至所述自动驾驶装置和所述航拍装置; 所述自动驾驶装置用于接收第二无线通讯模块发送的任务命令并驱动所述无人机执行飞 行任务;

所述智能监控器通过无线传输线路与遥控器连接,所述的遥控器用于控制无人机,包括遥控器本体和安装在遥控器本体上的无线传输模块,其每隔一段时间就会往将所接收到的数据包向外界发送; 所述航拍装置一方面根据所述第二无线通讯模块接收到的航拍指令进行图像采集和处理,另一方面通过所述第二无线通讯模块向所述远程控制中心发送航拍图片信息; 所述远程控制中心包括第一无线通讯模块、任务分配模块、信号处理模块和初始化模块,所述第一无线通讯模块用于向所述第二无线通讯模块发送测试命令和任务命令,接收所述第二无线通讯模块发送实时飞行数据; 所述任务分配模块用于用户输入每一架无人机任务命令并通过第一无线通讯模块发送至对应的无人机; 所述信号处理模块用于对所述第一无线通讯模块接收的实时飞行数据进行处理得到无人机执行命令并将执行命令和任务命令比对; 所述初始化模块用于对第一无线通讯模块、任务分配模块和信号处理模块进行初始化; 所述航拍装置包括图像采集模块、图像编码模块、图像压缩模块、图像存储模块和微控制模块,所述图像采集模块采集视频信号,所述视频信号为一系列模拟图像的集合,所述图像编码模块对所述模拟图像进行编码转化为数字图像,所述图像压缩模块对所述数字图像进行编码压缩后形成压缩图像传送给所述图像存储模块进行存储,所述微控制模块控制所述图像采集模块采集所述视频信号,协调控制所述图像编码模块进行图像编码,所述图像压缩模块进行图像压缩,所述图像存储模块对所述压缩图像进行存储; 所述微控制模块与所述无线通信装置电连接,接收所述拍摄指令,从所述图像存储模块中提取存储的所述压缩图像并通过所述第二无线通讯模块发送给所述第一无线通讯模块。 2.根据权利要求1所述的一种远程无人机控制系统,其特征在于:所述智能监控器包括相对独立的控制器和信号切换器,二者之间通过RS485通讯端口进行通讯,所述控制器可控制8台带有摄像机的云台,所述信号切换器装有红外遥控接收器件,所述遥控器通过有线或无线方式和远程控制中心连接。

小型无人机飞控系统介绍与工作原理

飞控系统是无人机的核心控制装置,相当于无人机的大脑,是否装有飞控系统也是无人机区别于普通航空模型的重要标志。在经历了早期的遥控飞行后,目前其导航控制方式已经发展为自主飞行和智能飞行。导航方式的改变对飞行控制计算机的精度提出了更高的要求;随着小型无人机执行任务复杂程度的增加,对飞控计算机运算速度的要求也更高;而小型化的要求对飞控计算机的功耗和体积也提出了很高的要求。高精度不仅要求计算机的控制精度高,而且要求能够运行复杂的控制算法,小型化则要求无人机的体积小,机动性好,进而要求控制计算机的体积越小越好。 在众多处理器芯片中,最适合小型飞控计算机CPU的芯片当属TI公司的TMS320LF2407,其运算速度以及众多的外围接口电路很适合用来完成对小型无人机的实时控制功能。它采用哈佛结构、多级流水线操作,对数据和指令同时进行读取,片内自带资源包括16路10位A /D转换器且带自动排序功能,保证最多16路有转换在同一转换期间进行,而不会增加CPU 的开销;40路可单独编程或复用的通用输入/输出通道;5个外部中断;集成的串行通信接口(SCI),可使其具备与系统内其他控制器进行异步(RS 485)通信的能力;16位同步串行外围接口(SPI)能方便地用来与其他的外围设备通信;还提供看门狗定时器模块(WDT)和CAN通信模块。 飞控系统组成模块 飞控系统实时采集各传感器测量的飞行状态数据、接收无线电测控终端传输的由地面测控站上行信道送来的控制命令及数据,经计算处理,输出控制指令给执行机构,实现对无人机中各种飞行模态的控制和对任务设备的管理与控制;同时将无人机的状态数据及发动机、机载电源系统、任务设备的工作状态参数实时传送给机载无线电数据终端,经无线电下行信道发送回地面测控站。按照功能划分,该飞控系统的硬件包括:主控制模块、信号调理及接口模块、数据采集模块以及舵机驱动模块等。 模块功能 各个功能模块组合在一起,构成飞行控制系统的核心,而主控制模块是飞控系统核心,它与信号调理模块、接口模块和舵机驱动模块相组合,在只需要修改软件和简单改动外围电路的基础上可以满足一系列小型无人机的飞行控制和飞行管理功能要求,从而实现一次开发,多型号使用,降低系统开发成本的目的。系统主要完成如下功能: (1)完成多路模拟信号的高精度采集,包括陀螺信号、航向信号、舵偏角信号、发动机转速、缸温信号、动静压传感器信号、电源电压信号等。由于CPU自带A/D的精度和通道数有限,所以使用了另外的数据采集电路,其片选和控制信号是通过EPLD中译码电路产生的。

浅析无人机航空摄影测量系统及应用

浅析无人机航空摄影测量系统及应用 发表时间:2017-10-26T19:53:11.473Z 来源:《建筑科技》2017年9期作者:舒永国 [导读] 发展低空无人飞行器航测遥感系统是提高测绘现势性的迫切需要,是做好应急救急工作的迫切需要,是构建数字中国、数字城市建设的迫切需要。基于此,本文主要对无人机航空摄影测量系统及应用进行分析探讨。 北京市自来水集团禹通市政工程有限公司北京 100089 摘要:测绘测量技术系统是应对自然灾害、有效处置突发事件、构建完善保障系统与加强防灾减灾工作建设的重要组成部分,也是目前的一个重要战略问题。发展低空无人飞行器航测遥感系统是提高测绘现势性的迫切需要,是做好应急救急工作的迫切需要,是构建数字中国、数字城市建设的迫切需要。基于此,本文主要对无人机航空摄影测量系统及应用进行分析探讨。 关键词:无人机;航空摄影;测量系统;应用 1、前言 航空数字摄影测量是基础地理信息采集的最有效手段之一。随着计算机技术的发展和微处理机的广泛应用,政府各部门对测绘资料的需求越来越大,对资料现势性要求越来越高,对资料所能包涵的信息容量越来越多。无人机航空摄影测量作为一种新型的测量方式不断呈现在大家的面前,伴随着高科技技术环境下测绘技术与测绘装备的快速发展,融合了无人机技术、航空摄影技术、移动测量技术、数字通信技术等一系列新兴技术形态的无人机航空摄影测量系统成为防灾减灾的重要手段,它建立起一整套综合应急测绘保障服务系统。 2、无人机航空摄影测量系统 目前,国内已经投入使用的无人机航空摄影测量系统有“华鹰”、“飞象”、“QuickEye”等。无人机航空摄影测量系统主要由硬件系统和软件系统组成。硬件系统包括机载系统和地面监控系统;软件系统则涵盖了航线设计、飞行控制、远程监控、航摄检查、数据预处理等五个主要的系统。 2.1硬件系统 2.1.1无人机机载系统 在整个无人机航空摄影测量系统构成中,无人机作为主要的系统搭载平台,是整个系统集成与融合的重要基础。这一硬件系统主要由无人机、数字摄影系统、导航与飞行控制系统、通信系统等部分构成。在该系统工作的过程中,整个系统会按照预先设定的航线进行相应的自主飞行,并且完成预先设定的航空摄影测量任务,同时实时地把飞机的速度、高度、飞行状态、气象状况等参数传输给地面控制系统。 2.1.2地面飞行监控系统 这一分支系统是影响飞行平台运行的重要因素,主要有电子计算机、飞行控制软件、电子通信控制介质和电台等设备。在飞行平台的运行过程中,地面飞行控制系统可以据无人机飞行控制系统发回的飞行参数信息,实时在地图上精确标定飞机的位置、飞行路线、轨迹、速度、高度和飞行姿态,使地面操作人员更容易掌握无人机的飞行状况。 2.2软件系统 2.2.1航线设计软件 航线设计在无人机航空摄影测量系统中扮演着十分重要的角色,其直接决定了整个系统工作的方向和精准度。这一分支系统作为信息采集的关键步骤,需要对于系统运行经过的作业范围、地形地貌特点、属性精度要求、摄影测量参数以及摄影测量的结果进行综合设定。航线设计软件需要对相关的工作参数进行综合设定,诸如计算行高、重叠度和地面分辨率等飞行参数,进而获得飞行所需的曝光点坐标、基线长度等参数。此外,航线设计软件还有一个十分重要的功能,那就是对于设计好的航线进行检查,诸如:航线走向、摄影基面、行高、地面分辨率和像片重叠度等。 2.2.2数据接受与预处理系统 这是无人机系统中最为重要的软件系统,也是无人机航空摄影测量系统室外作业的最后一步,直接影响到后续的图像数据处理质量。一般情况下,无人机航空摄影测量系统在影像获取过程中,由于受外界和内部因素的影响,可能降低获取的原始图像的质量。为避免原始图像后续处理的质量问题,在影像配准、拼接之前,必须对原始影像进行预处理。这一预处理的过程,先后涵盖了图像校正、图像增强等方面。 3、项目应用实践 3.1工程概况 井山水库位于抚河流域东乡河南港支流黎圩水上游,地处江西省抚州市东乡县黎圩镇内,坝址位于南港支流东乡县黎圩镇井山村上游河段1.0km狭谷段,坝址区距黎圩镇约5km,距东乡县县城约25km,控制流域面积25.2km2,正常蓄水位83.00m(黄海高程,下同),总库容2250×104m3,是一座灌溉、供水等综合效益的中型水利枢纽工程。 3.2外业测量 3.2.1航摄 航摄仪采用Sonya7R,焦距35mm,相幅大小为:7360×4192,像元分辨率为4.88um。本次无人机航摄分两个架次进行,由GPS领航数据计算相对飞行高度为724m,地面分辨率为0.09m,航摄面积约10km2。两个架次飞行质量和影像良好,影像清晰度较高,且照片色彩均匀,饱和度良好,能够表达真实的地物信息,可以满足1:2000成图要求。本次飞行航向重叠度为75%,旁向重叠度为50%。 3.2.2像控测量 像控点的布设应能够有效控制成图的范围,测区的四周及中心位置必须布设控制点,根据测区的情况,每个测区布设控制点20多个,且都设置为平高点。 3.2.3空中三角测量 本项目采用SVS软件进行空三加密,根据航空飞行及影像分布情况,将空三区域分为两个加密区域网采用自动与手动相结合的方式进行空三加密,即采用自动匹配进行像点量测,剔除粗差。人工调整直至连接点符合规范要求,保证在2/3个像素以内。加入外业像控点对本

无人机数据传输系统-手册

1.概论: 无人机,即无人驾驶的飞机。是指在飞机上没有驾驶员,只是由程序控制自动飞行或者由人在地面或母机上进行遥控的飞机。它装有自动驾驶仪、程序控制系统、遥控与遥测系统、自动导航系统、自动着陆系统等,通过这些系统可以实现远距离飞行并得以控制。无人机与有人驾驶的飞机相比而言,重量轻、体积小、造价低、隐蔽性好,特别宜于执行危险性大的任务,因此被广泛应用。 二、无人机的特点及技术要求 无人机没有飞行员,其飞行任务的完成是由无人飞行器、地面控制站和发射器组成的无人机系统在地面指挥小组的控制一下实现的。据此,无人机具有以下特点: (1)结构简单。没有常规驾驶舱,无人机结构尺寸比有人驾驶飞机小得多。有一种无尾无人机在结构上比常规飞机缩小40%以上。重量减轻,体积变小,有利于提高飞行性能和降低研制难度。 (2)安全性强。无人机在操纵人员培训和执行任务时对人员具有高度的安全性,保护有生力量和稀缺的人力资源。可以用来执行危险性大的任务。 (3)性能提高。无人机在设计时不用考虑飞行员的因素。许多受到人生理和心理所限的技术都可在无人机上使用,从而突破了有人在机的危险,保证了飞行的安全性。 (4)一机多用,稍作改进后发展为轻型近距离对地攻击机。

(5)采用成熟的发动机和主要机载设备,以减少研制风险与经费投入,加快研制进度。联合研制以减小投资风险、解决经费不足有利于扩大出口及扬长技术与设备优势。 (6)研制综合训练系统。技术要求有: (1)信息技术包括信息的收集和融合,信息的评估和表达,防御性的信息战、自动目标确定和识别等; (2)设备组成包括低成本结构、小型化及模块化电子设备、低可见性天线、小型精确武器、可储存的高性能发动机及电动作动器等; (3)性能实现包括先进的低可见性和维护性技术、任务管理和规划、组合模拟和训练环境等。 三、无人机系统按照功能划分,主要包括四部分: (1)飞行器系统 包括空中和地面两大部分。空中部分包括:无人机、机载电子设备和辅助设备等,主要完成飞行任务。地面部分包括:飞行器定位系统、飞行器控制系统、导航系统以及发射回收系统,主要完成对飞行器的遥控、遥测和导航任务,空中与地面系统通过数据链路建立起紧密联系。 (2)数据链系统 包括:遥控、遥测、跟踪测量设备、信息传输设备、数据中继设备等用以指挥操纵飞机飞行,并将飞机的状态参数及侦察信息数据传到控制站。 (3)任务设备系统 包括:为完成各种任务而需要在飞机上装载的任务设备。

多无人机协同任务规划(A题)

2016年全国研究生数学建模竞赛A题 多无人机协同任务规划 无人机(Unmanned Aerial Vehicle,UAV)是一种具备自主飞行和独立执行任务能力的新型作战平台,不仅能够执行军事侦察、监视、搜索、目标指向等非攻击性任务,而且还能够执行对地攻击和目标轰炸等作战任务。随着无人机技术的快速发展,越来越多的无人机将应用在未来战场。 某无人机作战部队现配属有P01~P07等7个无人机基地,各基地均配备一定数量的FY系列无人机(各基地具体坐标、配备的无人机类型及数量见附件1,位置示意图见附件2)。其中FY-1型无人机主要担任目标侦察和目标指示,FY-2型无人机主要担任通信中继,FY-3型无人机用于对地攻击。FY-1型无人机的巡航飞行速度为200km/h,最长巡航时间为10h,巡航飞行高度为1500m;FY-2型、FY-3型无人机的巡航飞行速度为300km/h,最长巡航时间为8h,巡航飞行高度为5000m。受燃料限制,无人机在飞行过程中尽可能减少转弯、爬升、俯冲等机动动作,一般来说,机动时消耗的燃料是巡航的2~4倍。最小转弯半径70m。 FY-1型无人机可加载S-1、S-2、S-3三种载荷。其中载荷S-1系成像传感器,采用广域搜索模式对目标进行成像,传感器的成像带宽为2km(附件3对成像传感器工作原理提供了一个非常简洁的说明,对性能参数进行了一些限定,若干简化亦有助于本赛题的讨论);载荷S-2系光学传感器,为达到一定的目标识别精度,对地面目标拍照时要求距目标的距离不超过7.5km,可瞬时完成拍照任务;载荷S-3系目标指示器,为制导炸弹提供目标指示时要求距被攻击目标的距离不超过15km。由于各种技术条件的限制,该系列无人机每次只能加载S-1、S-2、S-3三种载荷中的一种。为保证侦察效果,对每一个目标需安排S-1、S-2两种不同载荷各自至少侦察一次,两种不同载荷对同一目标的侦察间隔时间不超过4小时。 为保证执行侦察任务的无人机与地面控制中心的联系,需安排专门的FY-2型无人机担任通信中继任务,通信中继无人机与执行侦察任务的无人机的通信距离限定在50km范围内。通信中继无人机正常工作状态下可随时保持与地面控制中心的通信。 FY-3型无人机可携带6枚D-1或D-2两种型号的炸弹。其中D-1炸弹系某种类型的“灵巧”炸弹,采用抛投方式对地攻击,即投放后炸弹以飞机投弹时的速

相关文档