文档库 最新最全的文档下载
当前位置:文档库 › NASATM-2004-213268 Water-Based Pressure Sensitive Paint

NASATM-2004-213268 Water-Based Pressure Sensitive Paint

NASATM-2004-213268 Water-Based Pressure Sensitive Paint
NASATM-2004-213268 Water-Based Pressure Sensitive Paint

NASA/TM-2004-213268

Water-Based Pressure Sensitive Paint Donald M. Oglesby and JoAnne L. Ingram

Swales Aerospace

Jeffrey D. Jordan, A. Neal Watkins, and Bradley D. Leighty

Langley Research Center, Hampton, Virginia

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:?TECHNICAL PUBLICATION. Reports of completed research or a major significant phase

of research that present the results of NASA

programs and include extensive data or

theoretical analysis. Includes compilations of

significant scientific and technical data and

information deemed to be of continuing

reference value. NASA counterpart of peer-

reviewed formal professional papers, but having

less stringent limitations on manuscript length

and extent of graphic presentations.

?TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of

specialized interest, e.g., quick release reports,

working papers, and bibliographies that contain

minimal annotation. Does not contain extensive

analysis.

?CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored

contractors and grantees.

?CONFERENCE PUBLICATION. Collected papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or co-sponsored by NASA.

?SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA

programs, projects, and missions, often

concerned with subjects having substantial

public interest.

?TECHNICAL TRANSLATION. English-language translations of foreign scientific and

technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results ... even providing videos.

For more information about the NASA STI Program Office, see the following:

?Access the NASA STI Program Home Page at https://www.wendangku.net/doc/373658450.html,

?E-mail your question via the Internet to

help@https://www.wendangku.net/doc/373658450.html,

?Fax your question to the NASA STI Help Desk at (301) 621-0134

?Phone the NASA STI Help Desk at

(301) 621-0390

?Write to:

NASA STI Help Desk

NASA Center for AeroSpace Information

7121 Standard Drive

Hanover, MD 21076-1320

National Aeronautics and Space Administration Langley Research Center

Hampton, Virginia 23681-2199

October 2004

NASA/TM-2004-213268

Water-Based Pressure Sensitive Paint

Donald M. Oglesby and JoAnne L. Ingram Swales Aerospace

Jeffrey D. Jordan, A. Neal Watkins, and Bradley D. Leighty Langley Research Center, Hampton, Virginia

The use of trad emarks or names of manufacturers in the report is for accurate reporting and d oes not constitute an official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information (CASI)National Technical Information Service (NTIS) 7121 Standard Drive5285 Port Royal Road Hanover, MD 21076-1320Springfield, VA 22161-2171

Abstract

Preparation and performance of a water-based pressure sensitive paint (PSP) is described. A water emulsion of an ox ygen permeable polymer and a platinum porphyrin type luminescent compound were dispersed in a water matrix to produce a PSP that performs well without the use of volatile, toxic solvents. The primary advantages of this PSP are reduced contamination of wind tunnels in which it is used, lower health risk to its users, and easier cleanup and disposal. This also represents a cost reduction by eliminating the need for elaborate ventilation and user protection during application. The water-based PSP described has all the characteristics associated with water-based paints (low toxicity, very low volatile organic chemicals, and easy water cleanup) but also has high performance as a global pressure sensor for PSP measurements in wind tunnels. The use of a water-based PSP virtually eliminates the tox ic fumes associated with the application of PSPs to a model in wind tunnels.

Introduction

PSP measurements provide a means for the recovery of g lobal surface pressure distributions on aerodynamic test articles of interest. The PSP is applied by spray application to the model. Most often this is done in the test section of the wind tunnel. This requires the implementation of temporary exhaust ventilation, cleanup with toxic organic solvents, and respiratory protection from organic vapors. Because wind tunnel test sections are not designed for easy removal of toxic vapors, the levels of such materials in both the test section and the wind tunnel building can exceed allowed Occupational Safety and Health Administration (OSHA) levels, even with temporary exhaust fans. The use of water as the primary paint sol-vent drastically reduces the presence of these volatile organic chemicals (VOCs). For this rea-son water-based paints are being used wherever possible, both in consumer and industrial applica-tions. The need for a water-based PSP was the basis for work presented here.

PSPs all contain a luminescent compound that is quenched by oxygen (luminescence is reduced by the presence of oxygen), an oxygen permeable binder (polymer), and solvents. Under the appro-priate illumination, the intensity of the lumines-cence emission from the PSP is inversely propor-tional to the oxyg en concentration, and hence pressure at the surface. The interested reader is directed to several excellent reviews (refs. 1–7) for a more detailed description of the measure-ment science. In g eneral, PSP measurements require a paint, illumination (i.e., excitation) source(s), scientific-g rade CCD camera(s), and optical filters for spectral discrimination between excitation and emission lig ht. Imag es are cap-tured by a PC and imag e processing is typically performed on a separate platform. In operation, luminescence intensity data can be acquired in either time-averag ed or time-resolved mode. In the more widely employed “intensity method,”images of the painted surface acquired prior to (or immediately following) wind tunnel operation (wind off) are alig ned and ratioed with imag es acquired at run conditions (wind on). The result-ing intensity-ratio images are converted into pres-sure using either a priori calibration data (deter-mined using a pressure/temperature-controlled apparatus in the laboratory), or by applying an in situ calibration using a small population of pres-sure taps to compensate for PSP temperature sensitivity and photodegradation (refs. 8–19).

Because the polymers used in water-based paints are emulsion polymers (polymers dispersed in water), an oxyg en permeable, emulsion poly-mer had to be synthesized. The resulting emul-sion polymer, combined with pigment, water, and other components, leads to a hig h performance, water-based PSP.

Materials and Method

In order to prepare a water-based PS P it was necessary to produce a water-dispersed emulsion of a polymer that has good oxygen permeability. The polymer chosen was poly-1,1,1-trifluoroethylmethacrylate-co-isobutylmethacrylate at a 1:1 mole ratio (FEM). The emulsion polymer of FEM was then used in the preparation of a water-based PSP. Synthesis of Polymer Emulsion (Latex)

Materials

?deionized water

?sodium lauryl sulfate

?1,1,1-trifluoroethylmethacrylate ?isobutylmethacrylate (IBM)

?nitrogen for purging the reaction mixture and maintaining an inert atmosphere during polymerization

?ferrous sulfate heptahydrate solution

(0.3 g/200 ml)

?sodium persulfate

?sodium metabisulfite (0.20 g)

?70-percent tertiary butyl hydroperoxide ?hydroquinone

Procedure

The apparatus shown in figure 1 was assem-bled and 43 g of water was placed in the 250 ml 3-neck flask. To allow purge nitrogen to escape, a small strip of paper was placed between the stopper and the ground glass fitting of the reaction vessel side arm opening. The long needle for purging the reaction flask was adjusted so that it was below the water level, and the water was purged with nitrogen for at least 10 min. Mixed and added to the separatory funnel were 23.0 g trifluoroethylmethacrylate and 19.4 g isobutylmethacrylate. The monomers were purged with nitrogen for at least 5 min. S odium lauryl sulfate (0.4 g) was added to the water in the reaction flask and the purge needle was raised above the surface of the liquid. The stirring speed was adjusted to a level just below that which caused bubbles to rise into the side arms. After purging the monomer mixture for at least 5 min, about half the monomer mixture was added drop-wise to the reaction mixture. The temperature of the reaction flask was adjusted to 90 °C. Ferrous sulfate solution (0.8 g) was added to the reaction mixture and sodium persulfate (0.2 g) was added to the solution. When making additions to the reaction mixture, the component was rinsed into the reaction flask using a small stream of deionized water from a wash bottle. S odium metabisulfite (0.2 g) was added and rinsed down, then 2 drops of tert-butyl hydroperoxide were added. Dropwise addition of the monomer mix-ture was continued until it had all been added to the reaction vessel. The addition of the second half of the monomer took about 10 min. The nitrogen purge of the separatory funnel was dis-continued. The nitrogen purge of the headspace above the reaction mixture was continued. The mixture was allowed to react with vigorous stir-ring at 90 °C for 30 min. It was necessary to adjust the rate of stirring during the reaction to prevent the contents of the flask from being forced up into the flask necks. The temperature controller was reset to 25 °C and the flask was removed from the heating mantle. It was allowed to cool to below 40 °C. The latex was filtered through a #140 (106 μm) wire mesh filter. It was then transferred to a glass jar, a few crystals of hydroquinone were added, and the jar was sealed tightly.

Preparation of Water-Based PSP Materials

?propylene glycol

?Dowanol

?Byk 346

?DuPont TriPure R-706 TiO2

?Lubrizol 2062

?latex of poly-1,1,1-trifluoroethylmethacrylate-co-isobutylmethacrylate

?water (6.00 g)

?N-methylpyrrolidone (NMP)

?platinum tetra(pentafluorophenyl)porphyrin (PtTFPP)

?glassware

?overhead power blender with appropriate Cowles blade

Procedure

Weighed into a tared container of the appro-priate size were 3.00 g Dowanol, 1.85 g propylene glycol, and 0.60 g Byk. The mixture was stirred, then TiO2 was added and blended at low speed (grind) for 25 min using a Cowles blade. Dowanol (6.00 g) and Lubrizol (0.60 g) were weighed into a separate beaker. FEM latex (60.0 g) and water (6.00 g) were weighed into another beaker. NMP (6.0 g) was weighed into a third beaker. PtTFPP (90.8 mg) was weighed and dissolved in the NMP. The NMP/PtTFPP solu-tion was slowly added to the Dowanol/Lubrizol mixture with stirring. This mixture was then added to the FEM latex/water mixture. The latex mixture was added to the grind mixture and blended at moderate speed for 5 min or until thorough blending occurred.

The final paint mixture was filtered through a 106 μm wire screen and transferred to a container and sealed.

Application of Paint to a Model

Paint performance was evaluated in a low speed wind tunnel. The paint was applied using a Paasche Type UT air brush and 40 psi air pressure in a paint spray booth. The model taps were con-tinuously purged with air to prevent clogging. The test article was a “Lockman Wing,” 15.2-cm semispan, 10.2-cm chord, NACA-0012 airfoil with a sweep angle of 20°. The model was equipped with 41 pressure taps in three chordwise rows. The paint was air cured for 10 minutes and then gently heated with a hot air gun to anneal the polymer. This annealing procedure gave better adhesion and made cracking of the cured paint less likely. The model was then allowed to air cure for 24 hr. The paint was wet sanded with 1500 grit paper before installing in the test sec-tion. The average roughness was 5 μin.

Tunnel Test Conditions

The wind tunnel was a low speed (maximum speed 160 mph), closed-cycle with a 10-in. by 12-in. test section. For this test the wind speed was 160 mph and the angle of attack was 20°.

Results

The water-based paint is easily applied by spraying. When properly applied, the cured paint was smooth without tack. When applied on alu-minum surfaces no primer was required; however, adhesion to stainless steel was poor and the use of a self-etching primer was necessary for acceptable adhesion. It was found that the water-based PSP was very sensitive to surface contamination of the test object. The slightest presence of oil or silicone caused the paint to not coalesce or to “fisheye.” It was found that the best cleaning procedure was wet sanding (2000 grit paper) with a detergent solution. Water-based paints typically are slow to cure and this one is no exception. It required 24 hr at room temperature to sufficiently cure for testing. Although curing of water-based paints continues for several weeks, no change in the performance of the paint was observed during the test period. The paint may be wet sanded to remove any rough spots caused by dust particles, or to achieve a desired smoothness. After wet sanding with 1500 grit paper it had a typical roughness of less than 5 μin.

Performance of the water-based PSP (WBPSP) was essentially the same as that for a solvent-based PSP using FEM/IBM as the binder. A typi-cal response or calibration curve is shown in figure 2. A typical pressure sensitivity at atmo-spheric pressure is 6.2 percent/psia, or a slope of 0.91 for a plot of I o/I versus P/P o. The temperature sensitivity is typically 1.4 percent/°C. Although there is a slight

bending over of the Stern-Volmer plot, response over a typical wind tunnel pressure test range is essentially linear.

Global pressure images of the test model are shown in figures 3(a) and (b), and the correlations between the taps and the pressure as measured from the PSP are shown in figures 4(a) and (b).

Concluding Remarks

The combination of an oxygen permeable polymer and a platinum porphyrin-type lumines-cent compound in a water matrix to give a PSP that performs well without the use of volatile, toxic solvents represents an important contribu-tion to PSP paint options. The primary advan-tages of a water-based PSP are reduced contami-nation of wind tunnels in which it is used, lower health risk to its users, and easier cleanup and disposal. This also represents a cost reduction by eliminating the need for elaborate ventilation and user protection during application. References

1.Peterson, J. I; and Fitzgerald, V. F.: N ew

Technique of Surface Flow Visualization Based on Oxygen Quenching of Fluorescence. Rev. Sci.

Instrum., vol. 51, no. 5, May 1980, pp. 133–136. 2.Crites, B. C.: Measurement Techniques—Pressure

Sensitive Paint Technique. Lecture Series 1993-05, von Karman Institute for Fluid Dynamics, 1993.

3.McLachlan, B. G.; and Bell, J. H.: Pressure-

Sensitive Paint in Aerodynamic Testing.

Experimental Thermal and Fluid Science, vol. 10, 1995a, pp. 470–485.

4.McLachlan, B. G.; Kavandi, J. L.; Callis, J. B.;

Gouterman, M.; Green, E.; and Khalil, G.: Surface Pressure Field Mapping Using Luminescent Coatings. Experiments in Fluids, vol. 14, 1993a, pp. 33–41.

5.Kavandi, J.; Callis, J. B.; Gouterman, M. P.; Khalil,

G.; Wright, D.; Green, E.; Burns, D.; and

McLachlan, B.: Luminescent Barometry in Wind

Tunnels. Rev. Sci. Instrum., vol. 61, no. 11, 1990, pp. 3340–3347.

6.Morris, M. J.: Aerodynamic Applications of

Pressure Sensitive Paint. AIAA J., 31 (3), March 1993, pp. 419–421.

7.Liu, T.; Campbell, B.; Burns, S.; and Sullivan, J.:

Temperature- and Pressure-Sensitive Luminescent Paints in Aerodynamics. Appl. Mech. Rev., vol. 50, no. 4, 1997a, pp. 227–246.

8.Donovan, J. F.; Morris, M. J.; Pal, A.; Benne,

M. E.; and Crites, R. C.: Data Analysis Tech-niques for Pressure- and Temperature-Sensitive Paint. AIAA Paper 93-0176, 1993.

9.Abdel-Aziz, Y. I.; and Karara, H. M.: Direct

Linear Transformation From Comparator Coor-dinates Into Object Space Coordinates in Close-Range Photogrammetry. Paper presented at Close Range Photography Symposium (Urbana, Illinois), Jan. 1971, pp. 1–18.

10.Le Sant, Y.; Deleglise, B.; and Mebarki, Y.: An

Automatic Image Alignment Method Applied to Pressure Sensitive Paint Measurements. ONERA, TP N o. 1997-162, ICIASF ’97 B International Congress on Instrumentation in Aerospace Simulation Facilities, 17th, Pacific Grove, CA, Sept. 29–Oct. 2, 1997, Record; Piscataway, N J, Institute of Electrical and Electronics Engineers, Inc., 1997, pp. 57–65.

11.Shanmugasundaram, R.; and Samareh-

Abolhassani, J.: Pressure Sensitive Paint Image Registration Using Modified Scatter Data Interpolation. Flow Visualization VII; Proceedings of the 7th International Symposium on Flow Visualization, Seattle, WA, Sept. 11–14, 1995;

New York, Begell House, Inc., 1995, pp. 812–817.

12.Weaver, W. L.; Jordan, J. D.; Dale, G. A.; and

Navarra, K. R.: Data Analysis Methods for the De-velopment and Deployment of Pressure Sensitive Paints. AIAA Paper 99-0565, 1999.

13.Ardasheva, M. M.; Nevsky, L. B.; and Pervushin,

G. E.: Method of Pressure Distribution Measure-

ment With the Indicating Coating. J. App. Mech.

& Tech. Phys., vol. 26, no. 4, 1985, pp. 469–474.

14.Andreev, A.; Bukov, A.; Ipatov, M.; Kabin, S.;

N ushtaev, P.; Orlov, A.; Mosharov, V.;

Radchenko, V.; Pestsly, V.; and Fonov, S.: Pressure Field Investigation by LPS Technology on the Aerospacecraft Model Buran in the TsAGI Wind Tunnel T-112. Preprint N o. 75, TsAGI, Moscow, 1993.

15.Andreev, A. O.; Bykov, A. P.; Ipatov, W. M.;

Kabin, S. V.; N ushtaev, P. D.; Orlov, A. A.;

Mosharov, P. E.; Radchenko, V. N.; Pesetsky, V. A.; and Fonov, S. D.: Pressure Fields Investiga-tion by LPS Technology on the Aerospace-craft Model. J. Phys. III France 4 (1994), pp. 2317–2337.

16.Bell, J. H.; and McLachlan, B. G.: Image Regi-

stration for Pressure-Sensitive Paint Applications.

Experiments in Fluids, vol. 22, no. 1, Nov. 1996, pp. 78–86.17.Bell, J. H.; and McLachlan, B. G.: Image Registra-

tion for Luminescent Paint Sensors. AIAA Paper 93-0178, 1993.

18.Bosnyakov, S.; Bykov, A.; Coulech, V.; Fonov, S.;

Morozov, A.; Moskalik, V.; Moskalik, L.; Orlov,

A.; Radchenko, V.; and Tarassov, N.: Blade

Deformation and PSP Measurements on a Large Scale Rotor by Video-Metric System. Proceedings of 17th International Congress on Instrumentation in Aerospace Simulation Facilities (ICIASF), Monterey, CA, 1997.

19.Ruyten, W.: Toward an Integrated Optical Data

System for Wind Tunnel Testing. AIAA Paper 99-0181, AIAA, Aerospace Sciences Meeting and Exhibit, 37th, Reno, NV, Jan. 11–14, 1999.

Reaction vessel N2 inlet

Temperature controller

Heating mantle

Reaction vessel

Monomer N2 purge

Monomer

Stirring motor

Figure 1. Apparatus for synthesizing FEM emulsion polymer.

1.51.41.31.21.11.0.9.8.7.6.5.4.3.

2.10

12

345

67Air pressure, psia

89101112131415

I r e f /I

Figure 2. Pressure (P) response curves at different temperatures (T) for water-based PSP.

1.0

.5

(a) Ratio of run image to pre–wind-off image.

1.0

.5

(b) Ratio of run image to post–wind-off image.

Figure 3. Global pressure distribution.

.51.020*********

420520*********

Pixel

(a) Image ratio based on using pre–wind-off image.

.51.020*********

420520*********

Pixel

(b) Image ratio based on using post–wind-off image.Figure 4. Correlation between taps and PSP pressure data.

常用的英语自我介绍(完整版)

常用的英语自我介绍 常用的英语自我介绍 第一篇: 常用的英语自我介绍tout le monde bon, jappelle xxx, le m le, 21, linstitut de grands 4 tudiants de langues trang res, tudie ette ann e suis des sp ialit s anglaises, 2 fran ais dext rieur, par langlais sp ialis 6 niveaux, bient t apr s dipl m dann e obtiendrai la liene, est honor aujourdhui pour pouvoir beauoup partiiper ette heure dintervieer, jaurai la onfiane, don pourrai ertainement avoir la bonne apparene, remerierai de moi ette oasion.第二篇: 常用的英语自我介绍的模板以下就为大家提供一篇英语自我介绍的模板,供参考: m name is xxx . i am from xxx . there are xxx people in m famil. m father orks in a puter pan. he is a puter engineer. m mother orks in a international trade pan. she is also a bus oman. i have a older sister and a ounger brother. m sister is a junior in national taian universit. she majors in english. m brother is an elementar shool student. he is 8 ears old. m name is xxx. there are 5 people in m famil. m father is a hemistr teaher. he teahes hemistr in senior high shool. m mother is an english teaher. she teahes english in the universit. i have a ounger brother, he is a junior high shool

胜任力素质分级指标

胜任力素质分级指标

————————————————————————————————作者:————————————————————————————————日期: ?

胜任力分级素质词典(通用素质部分) 第一部分词典介绍 该分级素质词典是世界范围内迄今为止经透彻研究后最好的胜任力素质词典。它集二十多年素质研究之精华,在世界范围内的上乘、杰出者身上得到过验证,其有效性经历过多种经验式素质模式的不断确认。各素质的级别经不断修改,变得越来越明晰、越来越可靠、越来越有效。其中,所有的素质都已通过最严格的研究测试和专业标准测试。每一核心素质都在许多企业组织的管理者评估过程中得到了可靠地鉴别表现证实。 收录在该词典里的通用核心素质,标准系列共有18个素质,通常被用来推导出一个人的素质模式:即每一行为事件访谈都会用这18个素质进行分析。而真正透彻研究的模式往往皆包括这18个为一组的素质(也许以18个素质的改进版为一组)

第二部分通用素质(按英文字母顺序排列) 1.成就导向(ACH): 希望工作杰出或超出优秀标准。其标准可以是某个人自己过去的业绩(力求改进之);或一种客观衡量标准(只论结果);或比其他人做得更好(即竞争性);或某人自己设定的挑战性目标;或任何人从未做过的事(改革性)。因此一种独特的成就也可定为ACH。(是否考虑要满足并超过既定目标?为达所期好处肯冒一定风险?) 这种人: 1)要把工作做好:努力把工作做好或做对。也许有对浪费或低效率的受搓感(即抱怨所浪费的时间、表示想做得更好),却没有带来具体任何改进。 2)自创杰出衡量标准:面对他人强加的杰出标准,采用自己具体衡量结果的方法。也许表现为专注于某些新的或更确切的方法以达到管理目标。(那种对结果或业绩优秀衡量 标准有自然兴趣者需具体分析)。 3)业绩有改善:对某系统或自己个人工作方法作出具体改变以改进业绩(即把某事做得更好、更快、更省、更有效;改善其质量、客户满意度、精神面貌、收益),而没有预先 设定任何具体目标。(业绩的改进应该是明显的且可测量的。即使结果尚不知道或改进率低于所期望的,仍要计分。) 4)为达到有难度的目标而努力:“有难度”即仅有百分之50的机会达到目标、有百分之50的可能失败。其努力肯定是超常的,却又不时不实际或不可能的。或者,以最初某 基线业绩表现对照投入努力后的更高业绩表现:即“在我接手时,工作效率为20%,现在提高到了85%。”(如果目标不太难也不知达到与否,可作为2级计算分析?作为于传统标准相竞争的证据。如果计为4级,那么一个人同样的行为或事件便不宜计为3。) 5)有做成本-效益分析:在仔细计算过投入和产出的基础上做决定、定先后或选定目标:对潜在利润、投资盈利率或成本效益分析做详细明确考虑。家对商业结果做分析。(计 算分析时,这人应:1)具体提到过成本和2)效益和3)基于成本效益考虑的决定。 6)明知有风险仍一往无前:为提高效益调动最大资源和/或时间(明知不一定成功),(即改进业绩,达到一个有大难度的目标,等)。如计算分析时为6级,应注意计算低级的 ACH作为证据以充分抓住访谈者ACH的深度及广度。 2.演绎思维(AT): 喜把事物拆分成小块小块来理解,或用步步推进的方法对事物进行解剖。演义思维包括对问题、局势等系统地、组织结构地理解;进而对不同特性或方面进行系统比较;理性地制定出先后对策;确定时间秩序,因果关系或如果这样?便会那样的关系。(这人是否理解因果关系链?) 这种人: 1)拆分问题:把问题拆分成一系列小任务或活动,不强调其价值。列小项目时没有特别轻重缓急排列或先后秩序排列。 2)可见基本关系:把问题拆分成小块。用一个链把个小块联系起来:A导致B;可分为两部分:正面和反面。根据重要性把各任务列出轻重缓急来。 3)可见多重关系:把问题拆分成小块。划分出多重因果链来:事件的几个潜在原因,行为的几个必然结果,或事件的多方因果关系链(A导致B导致C导致D)。对一 个问题或局势的诸多方面分析其相互关系。对障碍有前瞻性、提前考虑该进行的步骤。(如对访谈者所拆分的问题或局势的复杂性把握不准,可简单地计算为2级)。 4)作出复杂的计划或分析:采用几种分析技巧把复杂的问题拆分成各种组成部分。再利用几种分析技巧确定出几个解决方案并权衡其利弊。(4级者不仅仅是问题的线性拆分, 而是多重原因?引导因素导致一个以上的解决方案)。

等级保护基础知识

等级保护基础知识 1.等级保护分为哪几级?哪些系统属于这些等级?这些等级都有哪些要求? 回答:1-5级 第一级,信息系统受到破坏后,会对公民、法人和其他组织的合法权益造成损害,但不损害国家安全、社会秩序和公共利益。不需要备案,也没人管。 第二级,信息系统受到破坏后,会对公民、法人和其他组织的合法权益产生严重损害,或者对社会秩序和公共利益造成损害,但不损害国家安全。需要备案,必须至少测评一次。典型客户有:地级市委办局(处级)、小国企、二甲医院、普通高校、普教 第三级,信息系统受到破坏后,会对社会秩序和公共利益造成严重损害,或者对国家安全造成损害。需要备案,至少每年测评一次,每年都会在安全检查的范围内。典型单位有:厅局级以上单位、金融、运营商、大国企、三甲医院、部属高

校、公共平台、有大量(10万以上)会员信息的网站等。 第四级,信息系统受到破坏后,会对社会秩序和公共利益造成特别严重损害,或者对国家安全造成严重损害。特别重要的才有,省里一般很少,比如人民银行网站、12306等都是四级。 第五级,信息系统受到破坏后,会对国家安全造成特别严重损害。没有制定出对第五级的要求,所以也没有系统是五级,这个级别是预留的。 2.如何确定系统等级? 系统等级是通过该系统被破坏后造成的影响决定的,跟系统的安全防护程度、连不连互联网没关系,是看系统被破坏后,破坏的是他们本单位的利益还是公共利益(所以某化妆品网站里存储了大量的会员信息,这个如果遭到破坏,损失的就是公共利益)还是国家安全(这个一般很少见),然后破坏程度是一般、严重还是非常严重。当然具体等级的时候,可以根据

上级主管部门的要求和行业属性进行参考。 3.等级保护有哪些相关标准,作用是什么?国务院147号令:首先提出分等级对信息系统进行保护的概念,提出了既不要不保护,也不要过保护,而是要分等级保护。GB17859,国家针对等级保护的一个强制标准,对等级保护的关键技术提出要求。《基本要求》针对等级保护技术和管理共10个方面要满足的内容做出具体的要求。《实施指南》规定了等级保护项目实施的流程。 《定级指南》规定了一个系统应该如何完成定级。 《测评准则》规定了测评中心进行测评的时候应该如何操作。 网络安全法草案规定了国家实行等级保护制度是法律要求。 第十七条国家实行网络安全等级保护制度。网络运营者应当按照网络安全等级保护制度的要求,履行下列安全保护义务,

英语作文自我介绍

英语作文自我介绍 ! My name is Chen Danqing. My English name is Joy. I'm 14 years old. I'm a happy girl. I have a happy family. My father and my mother are both office workers. They're busy. But at weekends, they always cook nice food for me. I'm happy in the family. I love my parents and they love me very much. I'm a student at Dongzhou Middle School. It is very big and beautiful. There are many classroom buildings and office buildings. Besides the buildings, there is a big playground. After school, there are lots of boys playing basketball on it. I think they are happy. There are a lot of flowers and trees in my school. They are beautiful. I like my school. In my school, I have many friends. All my friends are polite and helpful. My friends are all nice to me. They can make me happy. So I like playing with them. My hobbies are listening to music and reading. I like pop music very much. I dislike sports because I'm not strong. It's hard for have a happy family, a beautiful school and many nice friends. I enjoy every day. am a name is Sheng am a pupil in Pingjiang school in like play table tennis very much,and I like swimming, go to school five days every week. My school is not far from my home,and it is a nice are 3000 teachers and 7000 students in my are 300 classes in my English teacher is tall, my PE teacher is tall, love them a to my school. , everybody! Do you know me ? My name is Liang Qikun. My English name is Jenny. I am from China . I am ten years old . I am a clever girl . I have short black hair , big black eyes , big ears , a small nose and a small mouth . I am not very tall and not very thin . My hobby is reading books . My favourite sport is adventuring. I can play the piano very well . This is me. , My mame is Ada. I am 11 years old. I am a quiet girl. I study in Lin Pu Primary School. My favourite food is ice cream. It’s sour. My favourite teacher is art teacher. My favourite class is art class. My favourite animal is squirrels. My favourite drink is juice. My favourite fruit is strawberries, because it’s am helpful at home. I can sweep the floor, cook the meals, clean the bedroom, water the flowers, empty the trash, set the table, make the bed, do the dishes, wash the clothes and put away the clothes. ,everyone!My name is a 15 years old girl. I live in the beautiful city of an active,lovely and clever the school,my favourite subject is someone thinks its difficult to study I like belive that if you try your best,everything can be done also like sports very as,

三角形等级的判定

学习英语的十大原则(一)简单原则 学习英语:从简单的开始 运用英语:简单-好、更简单-更好、最简单-最好 上大学的时侯,英语老师让我们大量阅读英语。有些同学就借来原著,第一页看下来就有20几个生词,第二页还有20几个……到了第五页已不知道第一页所云;到了第十页已不知道前九页讲的是什么。阅读变得异常艰难和单调,体会不到有任何收获,读英语原著变成了查英语词典、记忆生词的过程,变成个苦差事。因此很少有人能坚持下去,就放弃了。其中有人又做了第二次努力,结果还是放弃。原因何在?我想它违背了"循序渐进"的常理。 所谓"循序渐进"就要求你从"简单"开始。学习、使用英语都要遵守简单原则。当年,我碰巧是从英语简易读物开始的。现在,书店里有好多套把原著简写成的"简易读物"。我先读那些用500~800词简写成的读物,后来又读用800~1500词简写成的读物,再后来就读用1500~2500词简写的作品……我能读进去,因为我读懂了;读懂的感觉特别好。当一个人有了成就感时自信心就诞生了,并越来越强,也就产生了更大的兴趣。外国的英语文学作品仿佛带我走进了一个不同的国家,一个不同的文化,一个不同的生活,结识了一些不同的朋友。在走入另样的文化、生活、人物,风俗的过程中就产生了一种强烈的神往,一种强烈的欲望。每时每刻都想读! 只有从简单的开始,才容易入门,才容易产生"兴趣",才容易把事情进行下去。英语阅读应遵守"简单原则",听、说、写都应从最简单的开始,因为简单原则有巨大的优点: 1、造就成就感,培养自信。 2、增加兴趣。 3、语言朗朗上口。 4、易于学以致用。 但是很多中国学生对简单的语言往往不屑一顾,只求理解而不去尝试着使用自己学到的东西。中国学生在学英语中最喜欢追求一个字--"难"。尽管学了很多难的东西,却不会"用"。而事实上,简单的东西如能灵活、准确地使用才是真正重要的。比如从口语来说,人们并不是看一个人会说多么难的单词,关键在于看他能否熟练运用最简单的单词、句型、语法来表达情感、思想。英语国家人们日常生活的交流是通过有限数量的单词和简单的句型来完成的。 Plain English(简洁英语)在英语国家已成为趋势:即在说或写英文时都力求简单。而中国学生尽管学了很多难词,复杂的结构,但就连用简单词和结构来表达思想都做不到;有时用了很大的词,一方面不妥,再者也很难让别人明白。其实当你透彻理解英语中的"

如何用英语做自我介绍

如何用英语做自我介绍 在现在的社会,越来越多的机会让我们接触到了写英文自我介绍。以下是小编为您整理的如何用英语做自我介绍相关资料,欢迎阅读! 如何用英语做自我介绍 It is really my honor to have this opportunity for an interview, I hope I can make a good performance today. I'm confident that I can succeed. Now I will introduce myself briefly I am 26 years old, born in Shandong province . I was graduated from Qingdao university. my major is I got my bachelor degree after my graduation in the year of XX. I spend most of my time on study,I have passed CET4/6 . and I have acquired basic knowledge of my major during my school time. In July XX, I began work for a small private company as a technical support engineer in QingDao I'm capable of more responsibilities, so I decided to change my job. And in August XX,I left Qingdao to Beijing and worked for a foreign enterprise as a automation

水土保持各种分级标准表及指标

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 土壤侵蚀强度分级标准表(SL190-96) 重计算之。 土壤侵蚀程度分级指标*

* 注:在判别侵蚀程度时,根据风险最小原则,应将该评价单元判别为较高级别的侵蚀程度。 风蚀强度分级表* 注:在判别侵蚀程度时,根据风险最小原则,应将该评价单元判别为较高级别的侵蚀程度。 风蚀沙漠化程度分级指标*

* 注:在判别侵蚀程度时,根据风险最小原则,应将该评价单元判别为较高级别的侵蚀程度。 土壤盐渍化分级指标 石漠化程度评价表 降水酸度(酸雨)分级标准

注:降水酸度是用降水pH 值的年平均值表示。降水酸度的计算方法是,将一年中每次降水的pH 值换算H+浓度后,再以雨量加权求其平均值,得到pH 年均值。以氢离子浓度来划分降水酸度等级。 土壤侵蚀敏感性影响的分级 各因素权重确定专家调查表 注:Xi 为影响因子i 对土壤侵蚀的相对重要性,可通过专家调查方法得到。当因子i 对土壤侵蚀重要性为比较重要时,Xi 为 1;当因子i 对土壤侵蚀重要性为明显重要时,Xi 为3;当因子i 对土壤侵蚀重要性为绝对重要时,Xi 为5。 沙漠化敏感性分级指标

临界水位深度 注:土地盐渍化敏感性是指旱地灌溉土壤发生盐渍化的可能性。在盐渍化敏感性评价中,首先应用地下水临界深度(即在一年中蒸发最强烈季节不致引起土壤表层开始积盐的最浅地下水埋藏深度),划分敏感与不敏感地区。 盐渍化敏感性评价 注:运用蒸发量、降雨量、地下水矿化度与地形指标划分等级。 石漠化敏感性评价指标 注:石漠化敏感性主要根据其是否为喀斯特地形及其坡度与植被覆盖度来确定的。 生态系统对酸沉降的相对敏感性分级指标

基本知识介绍_电压等级的划分及电压等级的选择--转载

基本知识介绍 ———电压等级的划分及电压等级的选择 汤继东 1.电压等级的划分 1.1中低压电压等级 低压系统标称电压见表1。 表1 低压系统标称电压(V) 50HZ 我国标准I EC推荐标准 60HZ 220/380230/400120/240(单相三线)277/488 380/660400/690347/600 1000600 在低压系统中,国外有的采用240/415V,如果采用I EC推荐标准230/400V系统,对于我国及使用240/415V的国家来说,在过渡期内,只要调一下电力变压器的接头即可,而电气设备也不必作改动,完全能适应新系统的要求。 中压系统的标称电压见表2。 表2 交流50HZ(60HZ)系统标 称电压及设备的最高电压 系统标称电压(kV) 系列1系列2 设备的最高电压(kV) 3 3.3 3.6 6 6.67.2 101112 1517.5 202224 3336 3540.2 表2的数据是根据I EC60038给出的数据,我国采用系列1的参数,对于33kV与35kV级,I EC正考虑制定一个统一标准。 设备的最高电压实际上规定为设备的额定电压,这里所讲的“设备”,不是指电动机,电动机的额定电压应与系统电压一致,例如在3k V、6k V及10k V 系统中,所用电动机的额定电压也分别为3k V、6k V 及10k V。这里所指“设备”为成套开关柜、熔断器、电压及电流互感器及各种开关设备而言,设备的最高电压或额定工作电压与标称电压系列2相比,一般不高出10%(约为9%),与标称电压系列1相比,一般不高出20%。 不论中压还是低压,在我国尚有些电压等级亟需尽快普及与推广。例如,在中压系统中,20kV电压等级应用得不够普遍,笔者认为,作为中压配电, 20kV比10k V优越。由于20kV比10k V电压高一倍,输出同样功率,线路有功损耗只为10kV线路的1/4。在同样的线路电压损失下,输送同样的功率20kV比10k V电压输送距离高出1倍,或者输送距离一样情况下,20kV比10k V输送容量增加一倍。 目前推行使用20kV电压系统,不论从技术还是从设备上皆不存在问题,传输电缆有专用此电压等级用的12/20(24)kV级电缆,至于成套中压柜,额定电压35k V级早已成熟。生产20kV系统用的额定电压24k V的成套开关柜更无问题,由于20k V 系统尚无普及,与此相适的额定电压24k V成套开关柜生产厂家很少,但可采用40.5kV开关壳体,作为过渡阶段使用,完全能满足使用要求,不过外形体积大了一些罢了。 目前采用660V级标称电压,更没有技术及设 信息技术  电气工程应用2009.245

中国煤炭分类、煤质指标的分级

煤质指标的分级 中国煤炭分类 (2008-06-19 10:04:30)

??中国煤炭分类: 首先按煤的挥发分,将所有煤分为褐煤、烟煤和无烟煤; 对于褐煤和无烟煤,再分别按其煤化程度和工业利用的特点分为2个和3个小类; 烟煤部分按挥发分>10%~20%、>20%~28%、28%~37和>37%的四个阶段分为低、中、中高及高挥发分烟煤。 关于烟煤粘结性,则按粘结指数G区分:0~5为不粘结和微粘结煤;>5~20为弱粘结煤;>20~50为中等偏弱粘结煤;>50~65为中等偏强粘结煤;>65则为强粘结煤。对于强粘结煤,又把其中胶质层最大厚度Y>25mm或奥亚膨胀度b>150%(对于Vdaf>28%的烟煤,b>220%)的煤分为特强粘结煤。 在煤类的命名上,考虑到新旧分类的延续性,仍保留气煤、肥煤、焦煤、瘦煤、贫煤、弱粘煤、不粘煤和长焰煤8个煤类。 ????在烟煤类中,对G>85的煤需再测定胶质层最大厚度Y值或奥亚膨胀度B值来区分肥煤、气肥煤与其它烟煤类的界限。当Y值大于25mm时,如Vdaf>37%,则划分为气肥煤。如Vdaf<37%,则划分为肥煤。如Y值<25mm,则按其Vdaf值的大小而划分为相应的其它煤类。如Vdaf>37%,则应划分为气煤类,如Vdaf>28%-37%,则应划分为1/3焦煤,如Vdaf在于28%以下,则应划分为焦煤类。 ????这里需要指出的是,对G值大于100的煤来说,尤其是矿井或煤层若干样品的平均G值在100以上时,则一般可不测Y值而确定为肥煤或气肥煤类。 ????在我国的煤类分类国标中还规定,对G值大于85的烟煤,如果不测Y值,也可用奥亚膨胀度B值(%)来确定肥煤、气煤与其它煤类的界限,即对Vdaf<28%的煤,暂定b值>150%的为肥煤;对Vdaf>28%的煤,暂定b值>220%的为肥煤(当Vdaf值<37%时)或气肥煤(当Vdaf值>37%时)。当按b值划分的煤类与按Y值划分的煤类有矛盾时,则以Y值确定的煤类为准。因而在确定新分类的强粘结性煤的牌号时,可只测Y值而暂不测b值。 (中国煤煤分类国家标准表)

美标与国标压力等级划分知识

压力等级划分知识 压力等级划分 我们通常所用的PN,CLass,都是压力的一种表示方法,所不同的是,它们所代表承受的压力对应参照温度不同,PN欧洲体系是指在120℃下所对应的压力,而CLass美标是指在425.5℃下所对应的压力。所以在工程互换中不能只单纯的进行压力换算,如CLass300#单纯用压力换算应是2.1MPa,但如果考虑到使用温度的话,它所对应的压力就升高了,根据材料的温度耐压试验测定相当于5.0MPa。 阀门的体系有2种:一种是德国(包括我国)为代表的以常温下(我国是100度、德国是1 20度)的许用工作压力为基准的“公称压力”体系。一种是美国为代表的以某个温度下的许用工作压力为代表的“温度压力体系” 美国的温度压力体系中,除150LB以260度为基准外,其他各级均以454度为基准。 150磅级(150psi=1MPa)的25号碳钢阀门在260度时候,许用应力为1MPa,而在常温下的许用应力要比1MPa大得多,大约是2.0MPa。 所以,一般说美标150LB对应的公称压力等级为2.0MPa,300LB对应的公称压力等级为5. 0MPa等等。 因此,不能随便按照压力变换公式来变换公称压力和温压等级。 PN是一个用数字表示的与压力有关的代号,是提供参考用的一个方便的圆整数,PN是近似于折合常温的耐压MPa数,是国内阀门通常所使用的公称压力。对碳钢阀体的控制阀,指在200℃以下应用时允许的最大工作压力;对铸铁阀体,指在120℃以下应用时允许的最大工作压力;对不锈钢阀体的控制阀,指在250℃以下应用时允许的最大工作压力。当工作温度升高时,阀体的耐压会降低。 美标阀门以磅级为表示公称压力,磅级是对于某一种金属的结合温度和压力的计算结果,他根据ANSI B16.34的标准来计算。磅级与公称压力不是一一对应的主要原因是磅级与公称压力的温度基准不同。我们通常使用软件来计算,但是也要懂得使用表格来查磅级。日本主要用K值表示压力等级。 对于气体的压力,在中国,我们一般更常用其质量单位“公斤”描述(而不是“斤”),单位kg。其对应的压强单位是“kg/cm2”,一公斤压力就是一公斤的力作用在一个平方厘米上。 同样,相对应于国外,对于气体的压力,常用的压强单位是“psi”,单位是“1 pound/inch2” 就是“磅/平方英寸”,英文全称为Pounds per square inch。但是更常用的是直接称呼其质量单位,即磅(LB.),实际这LB.就是前面提到的磅力。把所有的单位换成公制单位就可以算出: 1 psi=1磅/inch 2 ≈0.068bar,1 bar≈14.5psi≈0.1MPa,欧美等国家习惯使用psi作单位。

【自我介绍范文】如何用英语做自我介绍

如何用英语做自我介绍 That’s all. Thank you for giving me the chance. 自我介绍简单实用加分句 1、自我介绍 Can you give us a brief introduction of yourself?(面试官)给我们做个简单的自我介绍吧? I have come at your invitation for an interview. 我是应约来面试的。 I'm Steve, I come from New York. 我叫史蒂夫,来自纽约。 I was born on August 1st, 1989. 我出生于1989年8月1日。 2、学校专业 My major is English. 我主修英语专业。 I graduated from Columbia with a degree in law. 我毕业于哥伦比亚大学法律系。 3、面试官提问 Can you talk about your weaknesses and strengths? 你能谈谈你的优缺点吗? Can you tell us the biggest advantage of yourself?

你能告诉我们你最大的优点是什么吗? What's your biggest weakness? 你最大的缺点是什么? 4、自我评价 I have the ability to stay focused in stressful situations. 我不怕困难 I can learn and grow in my field. 我学习能力强,又成长快 I can be counted on when the going gets tough. 共度难关,我是值得信赖的 5、优缺点回复 My strength is my flexibility to handle change. 我的优点就是能够灵活应对突发事件。 One of my biggest strengths is my communication skills. 我最大的优点就是沟通技巧。 Sometimes I'm reserved and enjoy staying and thinking all by myself. I think this may be my weakness. 有时候我沉默寡言,喜欢独处和思考。我觉得这可能是我的缺点。 6、工作经验 I finished school two years ago and immediately joined Midea Group. 两年前我毕业了就立即加入了美的集团。

水土保持各种分级标准表及指标

土壤侵蚀强度分级标准表(SL190-96) 土壤侵蚀程度分级指标* * 注:在判别侵蚀程度时,根据风险最小原则,应将该评价单元判别为较高级别的侵蚀程度 风蚀强度分级表* 注:在判别侵蚀程度时,根据风险最小原则,应将该评价单元判别为较高级别的侵蚀程度。

风蚀沙漠化程度分级指标* * 注:在判别侵蚀程度时,根据风险最小原则,应将该评价单元判别为较高级别的侵蚀程度。 土壤盐渍化分级指标 石漠化程度评价表

降水酸度(酸雨)分级标准 注:降水酸度是用降水pH值的年平均值表示。降水酸度的计算方法是,将一年中每次降水的pH 值换算H+浓度后,再以雨量加权求其平均值,得到pH年均值。以氢离子浓度来划分降水酸度等级。 土壤侵蚀敏感性影响的分级 各因素权重确定专家调查表 注:Xi为影响因子i对土壤侵蚀的相对重要性,可通过专家调查方法得到。当因子i对土壤侵蚀重要性为比较重要时,Xi为1;当因子i对土壤侵蚀重要性为明显重要时,Xi为3;当因子i对土壤侵蚀重要性为绝对重要时,Xi为5。 沙漠化敏感性分级指标

临界水位深度 注:土地盐渍化敏感性是指旱地灌溉土壤发生盐渍化的可能性。在盐渍化敏感性评价中,首先应用地下水临界深度(即在一年中蒸发最强烈季节不致引起土壤表层开始积盐的最浅地下水埋藏深度),划分敏感与不敏感地区。 盐渍化敏感性评价 注:运用蒸发量、降雨量、地下水矿化度与地形指标划分等级。 石漠化敏感性评价指标 注:石漠化敏感性主要根据其是否为喀斯特地形及其坡度与植被覆盖度来确定的。 生态系统对酸沉降的相对敏感性分级指标

注:1、生态系统对酸雨的敏感性,是整个生态系统对酸雨的反应程度,是指生态系统对酸雨间接影响的相对敏感性,即酸雨的间接影响使生态系统的结构和功能改变的相对难易程度,它主要依赖于与生态系统的结构和功能变化有关的土壤物理化学特性,与地区的气候、土壤、母质、植被及土地利用方式等自然条件都有关系。生态系统的敏感性特征可由生态系统的气候特性、土壤特性、地质特性以及植被与土地利用特性来综合描述。本标准选用周修萍建立的等权指标体系,该体系反映了亚热带生态系统的特点,对我国酸雨区基本适用。 2、P为降水量,PE为最大可蒸发量。 3、A组岩石:花岗岩、正长岩、花岗片麻岩(及其变质岩)和其他硅质岩、粗砂岩、正石英砾岩、去钙砂岩、某些第四纪砂/漂积物;B组岩石:砂岩、页岩、碎屑岩、高度变质长英岩到中性火成岩、不含游离碳酸盐的钙硅片麻岩、含游离碳酸盐的沉积岩、煤系、弱钙质岩、轻度中性盐到超基性火山岩、玻璃体火山岩、基性和超基性岩石、石灰砂岩、多数湖相漂积沉积物、泥石岩、灰泥岩、含大量化石的沉积物(及其同质变质地层)、石灰岩、白云石。 4、A组土壤:砖红壤、褐色砖红壤、黄棕壤(黄褐土)、暗棕壤、暗色草甸土、红壤、黄壤、黄红壤、褐红壤、棕红壤;B组土壤:褐土、棕壤、草甸土、灰色草甸土、棕色针叶林土、沼泽土、白浆土、黑钙土、黑色土灰土、栗钙土、淡栗钙土、暗栗钙土、草甸碱土、棕钙土、灰钙土、淡棕钙土、灰漠土、灰棕漠土、棕漠土、草甸盐土、沼泽盐土、干旱盐土、砂姜黑土、草甸黑土。 生物多样性保护重要地区评价 生物多样性保护重要地区评价 性保护重要地区 生态系统水源涵养重要性分级表 注:区域生态系统水源涵养的生态重要性在于整个区域对评价地区水资源的依赖程度及洪水调节作用。可以根据评价地区在对区域城市流域所处的地理位置,以及对整个流域水资源的贡献来评价。

怎样用英语做好自我介绍

怎样用英语做好自我介绍 关于如何用英语做面试自我介绍,如何用英语阐述你的观点,对吗?一定是的。 那可以告诉你,那些千篇一律的文章只会让人事面带微笑却在心里否定了你。 织梦好,好织梦第一,没有创意;第二,没有内涵;第三,没有理由让我看上你。 内容好吧,长话短说,我们来看看如何用英语在面试中突显自己,让自我鹤立鸡群从而赢得对方的青睐。 本文织梦等等,你一定会想,自我介绍还不简单?大家好,我的名字是什么。 非常荣幸参加今天的面试,非常感谢贵公司给我这次机会。 我哪里,我的专业是什么,我有几年的工作经验。 织梦好,好织梦非也。 如果是这样的,那你一定是去背教科书了。 内容英语面试的最关键是让对(摘于自我介绍大全::////-转载请保留此标记)方公司明白你为什么是这项工作的最佳人选。 你有什么优点?你有什么特点来符合这份工作。 而对于已经在简历上所呈现的信息,他们不感兴趣。 你想啊,既然看了简历,说明他们希望对你有更进一步的了解,不然叫你来干嘛?喝茶吗?因此,面试中英文自我介绍的好坏决定了

你的成败。 本文织梦有一次上课时我让学员做自我简介,他想申请销售的工作。 他说:内容’请问,这些话对你的工作有帮助吗?显然没有。 大家记住,在自我介绍中,所有的语句和用词都必须为你的申请职位服务,来突然你的特点。 再以销售为例。 想想做销售的特性是什么?激情,自我激励,沟通性,耐心等等。 那么,在介绍中就必须包含这些词汇。 最重要的是还必须要用例子来支持你的观点。 什么例子显现你的激情?什么例子显现你的沟通性?本文织梦比如:';,,-;':',,…我做事有效率。 当我做一个项目时,我考虑很周到并且按时完工。 比如,我总是对报告进行二度确认。 我做事有条理。 在我上一份工作中,我是管理人员,我有许多事情要做,所以我自己列了一个做事提纲并且按事情的轻重缓急来安排时间。 我学习能力很强。 在大学前我不懂电脑,对我来说,起初很困难,但我用功学习电脑并且得到了高分,所以现在对电脑驾轻就熟。 我认为,工作中的问题是有挑战性的,但我可以解决。

传染病预警级别、分级标准、判定标准41221

我国已有的传染病预警级别、分级标准、判定标准 一、预警级别划分 《国家突发公共事件总体应急预案》、《国家安全生产事故灾难应急预案》将事故响应等级分为特别重大事故(Ⅰ级)、重大事故(Ⅱ级)、较大事故(Ⅲ级)和一般事故(Ⅳ级)四级。按照突发事件的严重性、紧急程度和可能波及的范围分级预警,预警级别由低到高,预警级别分级方法及预警颜色如下: Ⅳ级,可能死亡1~2人的一般事故,预警颜色为蓝色; Ⅲ级,可能死亡3~9人的较大事故,预警颜色为黄色; Ⅱ级,可能死亡10~29人的重大事故,预警颜色为橙色; Ⅰ级,可能死亡30人以上的特别重大事故,预警颜色为红色。 根据事态发展情况和采取措施的效果,预警可以升级、降级或消除。 二、群体性不明原因疾病分级标准 Ⅰ级特别重大群体性不明原因疾病事件:在一定时间内,发生涉及两个及以上省份的群体性不明原因疾病,并有扩散趋势;或由国务院卫生行政部门认定的相应级别的群体性不明原因疾病事件Ⅱ级重大群体性不明原因疾病事件:一定时间内,在我市多个县(市)发生群体性不明原因疾病;或由省级卫生行政部门认定的相应级别的群体性不明原因疾病事件。 Ⅲ级较大群体性不明原因疾病事件:一定时间内,在我市一个县(市)行政区域内发生群体性不明原因疾病;或由地市级卫生行政部门认定的相应级别的群体性不明原因疾病事件。 三、鼠疫 预警级别分级 (特别重大鼠疫疫情(Ⅰ级)、重大鼠疫疫情(Ⅱ级)为Ⅰ级 预警,较大鼠疫疫情(Ⅲ级)为II级预警,一般鼠疫疫情(Ⅳ

级)为Ⅲ级预警,动物间鼠疫疫情达到下列强度时为IV级预警:局部地区出现动物鼠疫暴发流行,且波及到县级以上城市;或动物鼠疫发生在交通便利、人口稠密地区,对人群构成严重威胁。

皮草等级知识

适用范围 本标准规定了水貂皮剥取加工技术要求,质量标准、检验方法、检验规则、仓储保管及包装运输。 本标准适用于水貂皮剥取加工、购销、交接检验质量。 定义 1 生皮 peltry 水貂经剥皮加工、干燥处理后但未经鞣制的皮张。 2 正季节皮 the skin in season 产于11月下旬至12月中旬,毛被、毛质、板质自然成熟之皮。 3 皮形完整form whole 0fskin 按标准楦板和规定皮形上楦,唇、眼、耳、鼻、尾、后腿齐全的筒皮。 4 毛色纯正clear color 毛被颜色,符合色型特征。 5 板质良好nice hide 皮板柔韧、富有弹性,油性好,色泽清白、无明显色素。 6 伤残damaged 影响毛质、板质的各种磨损。 7 毛锋勾曲hair top crOoked 针毛尖端勾曲。 8 撑拉过大 stretched 上楦时将皮张强行拉长,致使毛绒空疏。 9 自咬伤damaged 因患自咬病,致使皮板残缺破损。 10 擦伤rubbed 水貂与笼、舍磨擦,造成毛绒伤损。 11 疤痕scar 患疮疖、疱疹处,板质硬结,毛绒发育不良。 12 破洞hole 皮板上的孔洞。 13 白撮毛white spot hair 毛被上有小面积白色针、绒毛。 14 受闷脱毛shed hair 15 流针飞绒 hair slip 16 焦板皮singe skin 17 灰白绒cotton 标准色水貂皮的绒毛呈灰白色获灰色 18 缠结毛matted hair 针绒毛缠结,呈束状、毡状。 19 色型color type

依毛被基色分归类型(国产水貂皮色型主要有:标准色、银蓝色、米黄色、咖啡色、蓝宝石、黑十字、铁灰和白色等) 。 20 开裆不正irregular crotching 没按开裆线(见补充件)挑开后裆的皮。 21 秃裆bald crotch 裆部针毛磨损。 22 陈皮shopworn skin 储存时间超过一年的生皮。 23 皮形部整form unusual of skin 未使用标准楦板、按统一规定皮形上楦的皮。 24 污染皮stained skin 饲养、生产加工过程中,所造成的各种毛绒污染。 25 非季节死亡皮 the skin in unseason 非正常季节剥皮死亡的水貂皮。 26 春季淘汰皮breeders 配种后宰剥的皮。 27 毛绒空疏thin hair 28 杂花色皮mixed colour 除特殊类型(如十字貂皮)外,两种色型混合的皮。 技术要求 1、质量标准 1.1 水貂皮品质等级,见表1。 表1 水貂皮品质等级标准 级别品质要求 一级 正季节皮,皮形完整,毛绒平齐,灵活,贸色纯正,光亮,背腹基本一致,针绒毛长度比例适中,针毛覆盖绒毛好,板质良好,无伤残 二级 正季节皮,皮形完整,毛绒品质和板质略差于一级皮标准,或具有一级皮质量,可带下列伤残、缺陷之一者:1.针毛轻微勾曲或加工撑拉过大 2.自咬伤、擦伤、小疤痕、破洞或白撮毛集中一处,面积不超过2cm2 3.皮身有破口,总长度不超过2cm 三级 正季节皮,皮形较完整,毛绒品质和板质略差于二级皮标准;或具有二级皮质量,可带下列伤残、缺陷之一者: 1.毛锋勾曲较重或严重撑拉过大 2.自咬伤、擦伤、小疤痕、破洞或白撮毛集中一处,

做一个完整的英语自我介绍

做一个完整的英语自我介绍 英语面试自我介绍对于找工作的人,都有对英语面试自我介绍的担心,而英语面试最令人头痛。面试气氛总是紧张的,一紧张就容易出错,中文“台词”都会结巴,何况英语!下面小编为你带来做一个完整的英语自我介绍的内容,希望你们喜欢。 关于做一个完整的英语自我介绍篇一 Good morning. I am very glad to be here for this interview. First let me introduce myself. My name is Li Shuai, my English name is Jacky li. bachelor degree or above, majored in physics and Technology University of Electronic Science and technology. I am cheerful, willing and have broad interests, like basketball, reading, especially in engineering such as software programming, web design, hardware design. For example, in the past four years, I have completed two websites: one is the website of our school, and the other is China 20xx doctor forum website. In addition, I am interested in the C + + programming language, and wrote some applications. In July last year, I completed my graduation design,

相关文档