文档库 最新最全的文档下载
当前位置:文档库 › 荧光素及中性红染料间能量转移机理研究及其分析应用

荧光素及中性红染料间能量转移机理研究及其分析应用

荧光素及中性红染料间能量转移机理研究及其分析应用
荧光素及中性红染料间能量转移机理研究及其分析应用

河北大学

硕士学位论文

荧光素及中性红染料间能量转移机理研究及其分析应用

姓名:张彦青

申请学位级别:硕士

专业:分析化学

指导教师:刘保生

20090601

常用抗体标记荧光染料的特性及其应用

常用抗体标记荧光染料的特性及其应用 1、FITC:激发波长488nm,最大发射波长525nm。 1)其标记的抗体适用于所有配备488nm氩离子激光器的流式细胞仪; 2)在流式细胞仪的FL1通道检测; 3)可用于荧光显微镜技术 4)荧光强度易受PH值影响,PH值降低时其荧光强度减弱。 2、Alexa Fluor 488:激发波长488nm,最大发射波长519nm。 1)其标记的抗体适用于所有配备488nm氩离子激光器的流式细胞仪; 2)在流式细胞仪的FL1通道检测; 3)具有超乎寻常的光稳定性,非常适用于荧光显微镜技术; 4)在较宽的PH值范围内保持稳定(PH4~10)。 3、Cy3:激发波长488nm,最大发射波长570nm。 1)其标记的抗体适用于所有配备488nm氩离子激光器的流式细胞仪; 2)在流式细胞仪的FL2通道检测; 3)适用于荧光显微镜技术; 4)为小分子染料,非常适合需小分子染料的流式细胞术,荧光强度低于P E。 4、Cy5:激发波长633/635nm,最大发射波长670nm。 1)其标记的抗体适用于所有配备633nm氩离子激光器的流式细胞仪; 2)在流式细胞仪的FL4通道检测;

3)适用于荧光显微镜技术; 4)同样为小分子染料,非常适合需小分子染料的流式细胞术,荧光强度低于APC。 5)与单核和粒细胞非特异性结合多,易出现假阳性结果。 5、PE:激发波长488nm,最大发射波长575nm。 1)其标记的抗体适用于所有配备488nm氩离子激光器的流式细胞仪; 2)在流式细胞仪的FL2通道检测; 3)其荧光泯灭性强,不适用于传统的荧光显微镜技术,但适用于激光共聚焦显微镜技术。 6、PE-TR:激发波长488nm,最大发射波长615nm。 1)在Beckman Coulter流式细胞仪的FL3通道检测; 2)可适用于小功率激光器的流式细胞仪,也可使用于大功率激光器的大流式细胞仪。 7、PE-Alexa Fluor 610:激发波长488nm,最大发射波长628nm。 1)在Beckman Coulter流式细胞仪的FL3通道检测; 2)荧光强度高; 3)可适用于小功率激光器的流式细胞仪,也可使用于大功率激光器的大流式细胞仪。 8、PE-Alexa Fluor 647:激发波长488nm,最大发射波长668nm。 1)在Beckman Coulter流式细胞仪的FL4通道检测,BD细胞仪FL3通道检测; 2)不易湮灭;

1荧光共振能量转移 原理 如果两个荧光团相距在1~10 nm之间,且一个

1.荧光共振能量转移 原理 如果两个荧光团相距在1~10 nm之间,且一个荧光团的发射光谱与另一个荧光团的吸收光谱有重叠,当供体被入射光激发时,可通过偶极-偶极耦合作用将其能量以非辐射方式传递给受体分子,供体分子衰变到基态而不发射荧光,受体分子由基态跃迁到激发态,再衰变到基态同时发射荧光。这一过程称为荧光共振能量转移(fluorescence resonance energy transfer,FRET)。 优点 1.适用于活细胞和固定细胞的各类分子, 2.灵敏度和分辨率高,并能清晰成像, 3.准确度高,操作简便 4.最直观地提供蛋白质相互作用的定位和定量信息, 缺点 首先,FRET对空间构想改变十分敏感,其测量范围在1~10 nm,但如果待测蛋白原本就相当接近, FRET信号已经达到最大值,此时一些刺激引起的微小的构想改变就可能无法引起FRET信号的很大改变; 其次,存在光漂白作用, FRET需要起始激发光激发D,这时就很难避免对A的间接激发,这样的交叉激发降低了分析的灵敏性; 第三,存在其他一些本底荧光的干扰; 另外,起始激发光可能会破坏一些光敏的组织和细胞,产生光毒性。这些缺点很大程度上限制了FRET的进一步发展。

2.蛋白质双杂交技术 原理 以与调控SUC2基因有关的两个蛋白质Snf1和Snf2为模型, 将前者与Gal4的DB结构域融合, 另外一个与Gal4的AD结构域的酸性区域融合。由DB和AD形成的融合蛋白现在一般分别称之为“诱饵”(bait)和“猎物”或靶蛋白(prey or target protein)。如果在Snf1和Snf2之间存在相互作用, 那么分别位于这两个融合蛋白上的DB和AD就能重新形成有活性的转录激活因子, 从而激活相应基因的转录与表达。这个被激活的、能显示“诱饵”和“猎物”相互作用的基因称之为报道基因(reporter gene)。通过对报道基因表达产物的检测, 反过来可判别作为“诱饵”和“猎物”的两个蛋白质之间是否存在相互作用。 酵母双杂交系统的优点及局限 双杂交系统的另一个重要的元件是报道株。报道株指经改造的、含报道基因(reporter gene)的重组质粒的宿主细胞。最常用的是酵母细胞,酵母细胞作为报道株的酵母双杂交系统具有许多优点: 〈1〉易于转化、便于回收扩增质粒。〈2〉具有可直接进行选择的标记基因和特征性报道基因。〈3〉酵母的内源性蛋白不易同来源于哺乳动物的蛋白结合。一般编码一个蛋白的基因融合到明确的转录调控因子的DNA-结合结构域(如GAL4-bd,LexA-bd);另一个基因融合到转录激活结构域(如GAL4-ad,VP16)。激活结构域融合基因转入表达结合结构域融合基因的酵母细胞系中,蛋白间的作用使得转录因子重建导致相邻的报道

分子生物学常用荧光核酸染料

由于只需简单温和的物理方法(光照)激发和检测,荧光染料是研究生物学微观世界特别是核酸时最常用的示踪工具之一。这里的荧光核酸染料主要指能特异结合核酸并改变发光特性的化合物,DNA电泳后检测凝胶的EB大概是最为人熟知的荧光核酸染料吧。除了染胶,荧光核酸染料还可用于荧光原位杂交中作为常见的复染剂,它们能以非共价键的方式与DNA/RNA结合从而显示原位杂交中的细胞背景信息。根据它们能否穿透细胞膜进入活细胞体内,还可分为两大类:通透性核酸染料和非通透性核酸染料。生物通在此简单比较一下在分子生物学实验和细胞学实验中常用的荧光染料。 分子生物学常用荧光核酸染料 荧光核酸染料在分子生物学最常见的应用无疑是电泳凝胶染色,以及定量PCR。 EB EB(溴化乙锭)本身在紫外下不发光,能与单链、双链甚至三链DNA高效结合并发出明亮的橙色荧光。因其廉价且灵敏度高,一直是琼脂糖核酸电泳最常用的荧光染料。EB的使用非常简单方便,电泳结束后染色可获得最佳效果,也可以在制胶时加入进行前染。前染有利于节约时间,但是易出现条带变形拖尾等问题。EB-DNA结合物会导致染料的光漂白和DNA单链断裂,且具有潜在的诱变作用。虽说以前的实验室里总会有个别做起实验来“精神可嘉,行为可怕”的家伙,一时找不到手套他们敢徒手拿EB胶,但大多数人对EB还是“敬而远之”的,没事谁都不愿靠近实验室里跑胶、看胶那一块地方。偏偏对于搞分子生物学的人来说,跑胶就像吃饭一样平常,于是大家只能硬着头皮天天和EB打交道,盼望EB的替代品早点出现在实验室。生物通在此简单回顾一下这几年纷纷登场的EB替代品。 SYBR系列染料 说到EB的替代物,首先想到的是Invitrogen旗下Molecular Probes专利持有的SYBR系列。自1993年SYBR核酸染料推出以来,就因其灵敏度和易用性而迅速大受欢迎,成为明星产品之一。这一系列包括4种染料:SYBR Safe、SYBR Gold、SYBR Green I和SYBR Green II。

荧光共振能量转移技术的基本原理和应用

荧光共振能量转移技术的基 本原理和应用 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

荧光共振能量转移技术的基本原理和应用荧光共振能量转移(fluorescence resonance energy transfer,FRET)作为一种高效的光学“分子尺”,在生物大分子相互作用、免疫分析、核酸检测等方面有广泛的应用。在分子生物学领域,该技术可用于研究活细胞生理条件下研究蛋白质-蛋白质间相互作用。蛋白质-蛋白质间相互作用在整个细胞生命过程中占有重要地位,由于细胞内各种组分极其复杂,因此一些传统研究蛋白质-蛋白质间相互作用的方法如酵母双杂交、免疫沉淀等可能会丢失某些重要的信息,无法正确地反映在当时活细胞生理条件下蛋白质-蛋白质间相互作用的动态变化过程。FRET技术是近来发展的一项新技术,为在活细胞生理条件下对蛋白质-蛋白质间相互作用进行实时的动态研究提供了便利。 荧光共振能量转移是指两个荧光发色基团在足够靠近时,当供体分子吸收一定频率的光子后被激发到更高的电子能态,在该电子回到基态前,通过偶极子相互作用,实现了能量向邻近的受体分子转移(即发生能量共振转移)。FRET是一种非辐射能量跃迁,通过分子间的电偶极相互作用,将供体激发态能量转移到受体激发态的过程,使供体荧光强度降低,而受体可以发射更强于本身的特征荧光(敏化荧光),也可以不发荧光(荧光猝灭),同时也伴随着荧光寿命的相应缩短或延长。能量转移的效率和供体的发射光谱与受体的吸收光谱的重叠程度、供体与受体的跃迁偶极的相对取向、供体与受体之间的距离等因素有关。作为共振能量转移供、受体对,荧光物质必须满足以下条件: ①受、供体的激发光要足够分得开;②供体的发光光谱与受体的激发光谱要重叠。 人们已经利用生物体自身的荧光或者将有机荧光染料标记到所研究的对象上,成功地应用于核酸检测、蛋白质结构、功能分析、免疫分析及细胞器结构功能检测等诸多方面。(传统有机荧光染料吸收光谱窄,发射光谱常常伴有拖尾,这样会影响供体发射光谱与受体吸收光谱的重叠程度,而且供、受体发射光谱产生相互干扰。相对于传统有机荧光染料分子,量子点的发射光谱很窄而且不拖尾,减少了供体与受体发射光谱的重叠,避免了相互间的干扰;由于量

荧光共振能量转移(FRET)技术在生物研究探究中的运用资料精

荧光共振能量转移(FRET)技术在生物研究中的应用 高裕锋分析化学B200425012 摘要:简要综述了荧光共振能量转移(FRET)技术在生物研究中的一些应用。核酸的结构、DNA测序、核酸杂交、蛋白质结构和蛋白质相互作用等的研究是生命科学研究重要组成部分,相关工作一直备受关注,而FRET技术被广泛应用于相关领域研究中,并取得了较突出的结果。 关键词:荧光共振能量转移(FRET),核酸结构,DNA测序,核酸杂交,蛋白质结构,蛋白质相互作用。 生命科学被誉为21世纪的科学,为了揭示生命的奥妙,人们投入了大量的工作。其中对于核酸和蛋白质的研究备受关注,大量的新技术与新方法被用于该领域的研究中。荧光共振能量转移技术是一项经典的荧光技术,但是随着荧光成像技术的发展,二者相互结合,成为了生命科学领域的一个重要研究手段[1,2]。本文简单介绍了基于FRET原理的新技术在生物研究中的一些应用。 一、FRET基本原理[3] FRET现象是Perrin在20世纪初首先发现的,1948年,Foster[4,5]创立了理论原理。FRET 指荧光能量给体与受体间通过偶极-偶极耦合作用以非辐射方式转移能量的过程,又称为长距离能量转移。产生FRET的条件(图1)主要有三个:(1)给体与受体间在合适的距离(1~10 nm);(2)给体的发射光谱与受体的吸收光谱有一定的重叠,这是能量匹配的条件;(3)给体与受体的偶极具一定的空间取向,这是偶极-偶极耦合作用的条件。 图1 产生FRET条件示意图

FRET 的效率用E 表示,E 用式(1)计算:其中R 0为Foster 距离,表示某一给定给体与受 60660R E R R =+ (1) 240D DA R const n J κφ?=???? (2) 体间能量转移效率为50%时的距离;R 为给体与受体的实际距离。R 0可由式(2)计算:其中κ2 是方向因素,n 是溶剂的反射系数,φD 是供体探针结合到蛋白的量子效率, J DA 是供体发射波长和受体吸收波长的交叠系数。 由式(2)可看出R 0对于给定的给-受体是一个特征值,因此,式(1)中E 值与 R 的关系紧密,这也成为了FRET 用于测定分子间或基团间距离的重要理论依据。 E 值可由以下几种方式测定:用荧光强度表征( E=1- I DA / I D ,I DA 表示A 存在时D 的荧光强度);用量子产率表征( E=1-φDA /φD );用荧光寿命表征(E=1-τDA /τD )。这表示研究FRET 可以通过不同的实验设备,既可以用普通光谱仪测定其荧光强度、量子产率,也可以用时间分辨仪测定其荧光寿命。 随着成像技术的发展,用显微成像的方法可更直观地观测FRET 地发生。 二、FRET 探针 FRET 需要两个探针,即荧光给体与荧光受体,要求是给体的发射光谱与受体的吸收光谱有一定交叠,而与受体的发射光谱尽量无交叠。 常用的探针主要有三种:荧光蛋白、传统有机染料和镧系染料。 荧光蛋白[6]是一类能发射荧光的 天然蛋白及其突变体,常见的有绿色荧光蛋白(GFP )、蓝色荧光蛋白(BFP )、 青色荧光蛋白(CFP )和黄色荧光蛋白(YFP )等。不同蛋白的吸收和发射波长不同,可 根据需要组成不同的探针对。荧光蛋白的突出优点是自身为生物分子,可有效地与目标分子融 合,更易于在生物环境中使用,且其种类多,可满足不同光谱需要。其缺陷是分子体积大, 空间分辨率较低,且可能与目标分子作用产生化学发光,需要较长地时间来确定荧光形式, 不利于动力学研究。为克服这些缺陷,常使用荧光蛋白与其他染料联用或用其他染料对来研究。 传统有机染料是指一些具有特征吸收和发射光谱地有机化合物组成地染料对。常见的有荧光素、罗丹明类化合物和 青色染料Cy3、Cy5等。该类染料分子体积较小,种类较多且大部分为商品化的分子探针染料,因此应用较为广泛。 镧系染料[7]一般与有机染料联用分 别作为FRET 的给-受体,其主要优点是:测量量可

常用荧光染料的激发和发射波长

常用荧光染料的激发和发射波长 Fluorescent Dye (荧光染料)Excitation (激发波长, nm ) Emission (发射波长, nm ) Cy2 489 506 GFP(Red Shifted) 488 507 YO-PRO -1 491 509 YOYO -1 491 509 Calcein 494 517 FITC 494 518 FluorX 494 519 Alexa 488 490 520 Rhodamine 110 496 520 ABI,5-FAM 494 522 Oregon Green 500 503 522 Oregon Green 488 496 524 RlboGreen 500 525 Rhodamine Green 502 527 Rhodamine123 507 529 Magnesium Green 506 531 Calcium Green 506 533 TO-PRO -1 514 533 TOTO-1 514 533 ABI,JOE 520 548 BODIPY 530/550 530 550 Dil 549 565 BODIPYR 542 568 BODIPY558/568 558 568 BODIPY564/570 564 570 Cy3 550 570 Alexa 546 555 570 TRITC 547 572 Magnesium Orange 550 575 Phycoerythrin,R & B 565 575 Rhodamine Phalloidin 550 575 Calcium Orange 549 576 Pyronin Y 555 580 Rhodamine B 罗丹明555 580 ABI,TAMRA 560 582 Rhodamine Red 570 590 581 596

荧光共振能量转移

FRET技术研究PEDF和目标蛋白 之间在小鼠神经元(神经胶质细胞)的 相互作用 一、FRET技术基本原理 荧光共振能量转移是指两个荧光发色基团在足够靠近时,当供体分子吸收一定频率的光子后被激发到更高的电子能态,在该电子回到基态前,通过偶极子相互作用,实现了能量向邻近的受体分子转移(即发生能量共振转移)。FRET是一种非辐射能量跃迁,通过分子间的电偶极相互作用,将供体激发态能量转移到受体激发态的过程,使供体荧光强度降低,而受体可以发射更强于本身的特征荧光(敏化荧光),也可以不发荧光(荧光猝灭),同时也伴随着荧光寿命的相应缩短或延长。能量转移的效率和供体的发射光谱与受体的吸收光谱的重叠程度、供体与受体的跃迁偶极的相对取向、供体与受体之间的距离等因素有关。作为共振能量转移供、受体对,荧光物质必须满足以下条件: ①受、供体的激发光要足够分得开; ②供体的发光光谱与受体的激发光谱要重叠。 人们已经利用生物体自身的荧光或者将有机荧光染料标记到所研究的对象上,成功地应用于核酸检测、蛋白质结构、功能分析、免疫分析及细胞器结构功能检测等诸多方面。(传统有机荧光染料吸收光谱窄,发射光谱常常伴有拖尾,这样会影响供体发射光谱与受体吸收光谱的重叠程度,而且供、受体发射光谱产生相互干扰。最新的一些报道将发光量子点用于共振能量转移研究,克服了有机荧光染料的不足之处。相对于传统有机荧光染料分子,量子点的发射光谱很窄而且不拖尾,减少了供体与受体发射光谱的重叠,避免了相互间的干扰;由于量子点具有较宽的光谱激发范围,当它作为能量供体时,可以更自由地选择激发波长,可以最大限度地避免对能量受体的直接激发;通过改变量子点的组成或尺寸,可以使其发射可见光区任一波长的光,也就是说它可以为吸收光谱在可见区的任一生色团作能量供体,并且保证了供体发射波长与受体吸收波长的良好重叠,增加了共振能量转移效率。) 以GFP的两个突变体CFP(cyan fluorescent protein)、YFP(yellow fluorescent protein)为例简要说明其原理:CFP的发射光谱与YFP的吸收光谱有相当的重叠,当它们足够接近时,用CFP的吸收波长激发,CFP的发色基团将会把能量高效率地共振转移至YFP的发色基团上,所以CFP的发射荧光将减弱或消失,主要发射将是YFP的荧光。两个发色基团之间的能量转换效率与它们之间的空间距离的6次方成反比,对空间位置的改变非常灵敏。例如要研究两种蛋白质a和b间的相互作用,可以根据FRET原理构 建融合蛋白,这种融合蛋白由三部分组成:CFP(cyan fluorescent protein)、蛋白 质b、YFP(yellow fluorescent protein)。用CFP吸收波长433nm作为激发波长,实验灵巧设计,使当蛋白质a与b没有发生相互作用时,CFP与YFP相距很远不能发生荧光共振能量转移,因而检测到的是CFP的发射波长为476nm的荧光;但当蛋白质a与b

关于荧光染(资料集合)

关于荧光染料(资料集合) ●人肉眼对光源波长的颜色感觉 红色770-622 nm 橙色622~597 nm 黄色597~577 nm 绿色577~492 nm 蓝靛色492~455nm 紫色455~350nm ●理想的荧光染料一般具有以下几个特点: 1.具有高的光子产量,信号强度高; 2.对激发光有较强的吸收,降低背景信号; 3.激发光谱与发射光谱之间距离较大,减少背景信号的干扰; 4.易与被标记的抗原、抗体或其他生物物质结合而不影响被标记物的特异性; 5.稳定性好,不易受光、温度、PH、标本抗凝剂和固定剂的影响。 ●染料在生物化学中最早的应用是直接对切片进行染色,然后进行观察。随着生物技术、计算机技术以及荧光光谱测定技术的不断发展,许多染料尤其是荧光染料在细胞检测、肿瘤基因蛋白分析、毒物分析、临床医疗诊断等方面得到了广泛的应用。 荧光染料泛指吸收某一波长的光波后能发射出另一大于吸收光波长的光波的物质。利用荧光染料进行抗体标记分析在现代生物免疫学领域中应用广泛,并逐步显示出明显的优越性。 下面简要介绍应用于标记抗体的荧光染料及其种类: 1.荧光素类染料,包括异硫氰酸荧光素(FITC)、羟基荧光素(FAM)、四氯荧光素(TET)等及其类似物。这是一类具有较多苯环的化合物。应用最广泛的是FITC(如图为FITC标记的组织荧光图),在488nm 处由氩离子激光激发,发射525nm的蓝绿色荧光。FITC能够与各种抗体蛋白结合,并在碱性溶液中稳定呈现蓝绿色荧光。 2.罗丹明类染料,包括红色罗丹明(RBITC)、四甲基罗丹明(TAMRA)、罗丹明B(TRITC)等。TRITC在550nm处被激发可发射出570nm的黄色荧光。 3.Cy系列菁染料,菁染料通常有两个杂环体系组成,包括Cy2、Cy3、Cy3B、Cy3.5、Cy5、Cy5.5、Cy7及其类似物。 4.Alexa系列染料,它是由MolecularProbes开发的系列荧光染料。其激发光和发射光光谱覆盖大部分可见光和部分红外线光谱区域,应用广泛。以高亮度、稳定性、仪器兼容性、多种颜色、pH值不敏

荧光染料

荧光染料简介 荧光定义 荧光染料会发出荧光,所谓荧光是指物质分子吸收紫外光后发出的可见光荧光以及吸收波长较短的可见光后发出的波长较长的可见光荧光。 荧光发生机理 每个分子具有一系列严格的分立能级,室温下物质分子大部分处于"基态",当这些物质在光的照射下吸收光能后,进入新的状态,称为"激发态"。处于"激发态"的分子是不稳定的,它可以通过以10-9-10-7秒的极短时间内发射光量子回到基态。这一过程称为荧光发射, 也就是发光。 激发光谱和发射光谱 任何发荧光的物质分子都具有两个特征光谱--激发光谱和荧光发射光谱。 在测定时,用以激发荧光的吸收光谱,一般称为荧光物质的激发光谱,它是指相对于不同激发波长的辐射所引起物质发射某一波长荧光的光谱。 荧光发射光谱简称为发射光谱,是指某一波长激发光引起物质发射不同波长荧光的光谱。 荧光效率和荧光强度 分子能产生荧光必须具备两个重要的条件,一是物质的分子必须具有吸收一定频率光能的基团--生色团,二是必须具有能产生一定光量子的荧光团。 而物质发射荧光的能力用荧光效率表示。荧光效率为荧光团发射荧光的光量子数与生色团吸收的光量子数的比值称。 荧光效率往往小于1。如罗丹明B的乙醇溶液的荧光效率为0.97;荧光素的水溶液的荧光强度为0.65,荧光效率与物质结构有关,还与所处的环境紧密相关。而对于某种荧光 物质在特定的环境下它的荧光效率是固定的。 在一定范围内,激发光越强,荧光也越强。即荧光强度(发射荧光的光量子数)等于吸收光强度乘以荧光效率。 提高荧光强度的根本方法 选择适当强度的光源作为荧光物质的激发光源,和选择适合于被检荧光物质选择性吸收的光谱滤光片作为激发滤光片,是提高荧光强度的根本方法。许多染料的最大吸收峰并不是 紫外光,而是在400nm-500nm的蓝绿光,所以紫外光不是这些染料的最佳激发光源,可 见光才是这些染料的最佳光源。 常用荧光色素波长

流式细胞所用试剂配置及荧光特性

、流式细胞术常用试剂 1、10%NaN 3:将 10gNaN3 溶解于 100ml 蒸馏水中,室温保存;活体实验或在辣根过氧化 酶反应中可不使用 NaN 3。 2、 3% BSA/PBS : 100ml PBS 中加入 3g BSA ,使之溶解,再加入 0.2ml 10%的 NaN 3。 3、500mmol/L EDTA :将 186g EDTA?Na 2?2H 2O 溶解于 400ml 蒸馏水中,用 NaOH 将 PH 调 至 8.0 ,补充蒸馏水至 500ml ,分装,高压灭菌,室温保存。 4g 多聚甲醛溶于100ml PBS ,加入数滴 NaOH ,在通 PH 至 7.4,使用前新鲜配制。 5、消化液: 0.25%胰蛋白酶(用培养液或 PBS 配制)或 0.25%胰蛋白酶与 0.02% EDTA 的 混合液。 6、红细胞裂解液: NH 4CI 4.16g , KHCO 3 0.5g , EDTA?2Na 0.02g ,溶于 100ml 水中,调 PH 至 7.2,补充蒸馏水至 500ml , 4 度储存,使用时需恢复至室温。 7、流式细胞抗体稀释剂: 0.1mmol/L PBS 液(PH 7.4)+ 1 % BSA + 0.1% Na 2N 3。 8、常用细胞破膜 剂: PBS 液(PH 7.4) + 1% FBS (或 BSA ) + 0.1% NaN 3+ 0.1% saponin (Sigma 的效果不错) 。 9、流式细胞染色洗涤液:含 2%的 BSA 、 0.1%NaN3 的 PBS (PH 7.4)。 10、PI 染液(保存液,10务用于细胞周期和凋亡检测):10mg PI 溶于10ml PBS ,加入2mg 无DNA 酶的RNA 酶,4度保存备用。应用时,10倍稀释,每管加 0.3ml ?0.5ml PI 染液。 11、Hanks 液的配制(BSS ,主要用于培养液、稀释剂和细胞清洗液,不能单独作为细胞、 组织培养液) 原液 A NaCl 160g MgSO 4?7H 2O 2g KCl 8g MgCl?6H 2O 2g CaCl 2 2.8g 溶于 1000ml 双蒸水 原液 B 1) N a 2HPO 4?12H 2O 3.04g KH 2PO 4 1.2g 葡萄糖 20.0g 溶于 800ml 双蒸水 2) 0.4%酚红溶液:取酚红 0.4g 置玻璃研钵中,逐滴加入 0.1N NaOH 并研磨,直至完全溶 解,约加入 0.1N NaOH 10ml 。将溶解的酚红吸入 100ml 量瓶中,用双蒸水洗下研钵中残留 的酚红4、4%多聚甲醛:在磁力搅拌下,将 风柜中于 60 度加热,使其溶解,调整

常用染料的激发与发射

常用染料的激发与发射 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

常用荧光染料的激发和发射波长

荧光染料的使用 吖啶橙:吖啶橙是最经典的灵敏的荧光染料,它可对细胞中的DNA和RNA同时染色而显示不同颜色的荧光,DNA呈绿色荧光,RNA呈橙红色荧光。EB:染色DNA和RNA 荧光素双醋酸酯(FDA):FAD本身无荧光,无极性,可透过完整的原生质膜。一旦进入原生质体后,由于受到酯酶分解而产生具有荧光的极性物质荧光素。它不能自由出入原生质膜,因此有活力的细胞能产生荧光,无活力的原生质体不能分解FAD无荧光产生。 5mgFDA溶于1ml丙酮中,避光4℃下贮存,使用时取贮存液加入L甘露醇中.使用时,使最终浓度为%。荧光染料Ho33342和若丹明123:活细胞双荧光染色观察细胞核和线粒体。一般的生物染料不能穿透细胞膜,只有当细胞被固定后改变了细胞膜的通透性,染料才

能进入细胞内。但有些活体染料能进入活细胞,并对细胞不产生毒性作用。荧光染料Ho33342和若丹明123都是活体染料。Ho33342能与细胞中DNA进行特异的结合,若丹明123能与线粒体进行特异的结合。采用两种荧光染料的混合染液可对一个活细胞的核和线粒体同时染色。 荧光组化实验中应注意的几个问题:1.每种荧光染料,均有自己的最适PH值,此时荧光最强。当pH改变时,不仅荧光强度减弱,而且波长将有所改变,因此荧光检测时要在一定的PH值的缓冲液中进行。2.一放荧光染色在20℃以下时荧光比较稳定,温度升高常出现温度猝灭。3.在荧光观察中,常因激发光的增强而使样品荧光很快衰竭,造成观察和照相困难。为此最好用能量小的长波长光进行观察,需照相时再适当增强激发光。4.一般荧光染液的浓度在万分之一以下,甚至亿万分之一,也能使标本着色。在一定的限度内,荧光强度可随荧光素的浓度增加而增强,但超过限度,荧光强度反而下降, 这是由于荧光分子间的缔合而使自身荧光猝灭所致。

荧光共振能量转移技术的基本原理和应用

荧光共振能量转移技术的基本原理和应用荧光共振能量转移(fluorescence resonance energy transfer,FRET)作为一种高效的光学“分子尺”,在生物大分子相互作用、免疫分析、核酸检测等方面有广泛的应用。在分子生物学领域,该技术可用于研究活细胞生理条件下研究蛋白质-蛋白质间相互作用。蛋白质-蛋白质间相互作用在整个细胞生命过程中占有重要地位,由于细胞内各种组分极其复杂,因此一些传统研究蛋白质-蛋白质间相互作用的方法如酵母双杂交、免疫沉淀等可能会丢失某些重要的信息,无法正确地反映在当时活细胞生理条件下蛋白质-蛋白质间相互作用的动态变化过程。FRET技术是近来发展的一项新技术,为在活细胞生理条件下对蛋白质-蛋白质间相互作用进行实时的动态研究提供了便利。 荧光共振能量转移是指两个荧光发色基团在足够靠近时,当供体分子吸收一定频率的光子后被激发到更高的电子能态,在该电子回到基态前,通过偶极子相互作用,实现了能量向邻近的受体分子转移(即发生能量共振转移)。FRET是一种非辐射能量跃迁,通过分子间的电偶极相互作用,将供体激发态能量转移到受体激发态的过程,使供体荧光强度降低,而受体可以发射更强于本身的特征荧光(敏化荧光),也可以不发荧光(荧光猝灭),同时也伴随着荧光寿命的相应缩短或延长。能量转移的效率和供体的发射光谱与受体的吸收光谱的重叠程度、供体与受体的跃迁偶极的相对取向、供体与受体之间的距离等因素有关。作为共振能量转移供、受体对,荧光物质必须满足以下条件: ①受、供体的激发光要足够分得开;②供体的发光光谱与受体的激发光谱要重叠。 人们已经利用生物体自身的荧光或者将有机荧光染料标记到所研究的对象上,成功地应用于核酸检测、蛋白质结构、功能分析、免疫分析及细胞器结构功能检测等诸多方面。(传统有机荧光染料吸收光谱窄,发射光谱常常伴有拖尾,这样会影响供体发射光谱与受体吸收光谱的重叠程度,而且供、受体发射光谱产生相互干扰。相对于传统有机荧光染料分子,量子点的发射光谱很窄而且不拖尾,减少了供体与受体发射光谱的重叠,避免了相互间的干扰;由于量子点具有较宽的光谱激发范围,当它作为能量供体时,可以更自由地选择激发波长,可以最大限度地避免对能量受体的直接激发;通过改变量子点的组成或尺寸,可以使其发射可见光区任一波长的光,也就是说它可以为吸收光谱在可见区的任一生色团作能量供体,并且保证了供体发射波长与受体吸收波长的良好重叠,增加了共振能量转移效率。)

荧光漂白恢复_荧光共振能量转移和荧光相关光谱检测的技术特点

ZHONGGUO YIXUEZHUANGBEI 于 淼① 高 建① [文章编号] 1672-8270(2009)06-0008-02 [中图分类号] R 197 [文献标识码] B Characteristics of application and technology on FRAP , FRET and FCS/Yu Miao , Gao Jian//China Medical Equipment,2009,6(6):8-9. [Abstract] Fluorescence recovery after photobleaching (FRAP), fluorescence resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) are three experimental techniques based on the fluorescence analysis that are commonly used to study molecular interaction. In this article, we will discuss and compare the application and technical specifications for FRAP , FRET and FCS.[Key words] FRAP; FRET; FCS; Fluorescence Analysis [First-author's address] Laboratory Center, China Medical University, Shenyang 110001, China. 荧光漂白恢复、荧光共振能量转移和荧光相关光谱检测的技术特点 [摘要] 荧光漂白恢复(FRAP)、荧光共振能量转移(FRET)和荧光相关光谱(FCS)是三种以荧光为基础的检测技术,常用来研究分子间相互作用。对三种技术的特点做以比较和讨论。 [关键词] 荧光漂白恢复;荧光共振能量转移;荧光相关光谱;荧光检测 作者简介 于淼,女,(1980- ),硕士,助教。现就职于中国医科大学实验技术中心,主要从事激光扫描共聚焦显微镜工作。 FRAP:经荧光素标记的某一区域被光照射后,荧光物质的光化学结构被破坏,荧光强度下降,但随之此处荧光强度会逐渐恢复,荧光强度与恢复强弱及快慢代表周围分子扩散的速率或分子运动速度[1]。 FRET:受激态荧光素(供体)将其能量向另一个荧光素(受体)传递,使后者被激发,这一过程称荧光能量共振转移。测定FRET程度的参数,包括供体淬灭、受体发射、供体荧光寿命、供体荧光去极化等[2]。 FCS:是一种通过检测微区内(共焦体积)分子 的荧光信息(强度、波动、波长等)来分析样品特性的检测 技术,类似于传统的荧光分光光度计,主要用于液态样品的成份分析[3]。 以上三种技术的主要参数有: 扩散率:测量扩散的速率,通常表现在分子和分子络合物的扩散系数。 多组分扩散:用来检测和区别单个和多组分之间扩散的能力。 运动分量:检测能够自由扩散的组分。 ①中国医科大学实验技术中心 辽宁 沈阳 110001

荧光共振能量转移技术的基本原理和应用

荧光共振能量转移技术的基本原理和应用 荧光共振能量转移(fluorescence resonance energy transfer,FRET)作为一种高效的光学“分子尺”,在生物大分子相互作用、免疫分析、核酸检测等方面有广泛的应用。在分子生物学领域,该技术可用于研究活细胞生理条件下研究蛋白质-蛋白质间相互作用。蛋白质-蛋白质间相互作用在整个细胞生命过程中占有重要地位,由于细胞内各种组分极其复杂,因此一些传统研究蛋白质-蛋白质间相互作用的方法如酵母双杂交、免疫沉淀等可能会丢失某些重要的信息,无法正确地反映在当时活细胞生理条件下蛋白质-蛋白质间相互作用的动态变化过程。FRET技术是近来发展的一项新技术,为在活细胞生理条件下对蛋白质-蛋白质间相互作用进行实时的动态研究提供了便利。 一、FRET技术基本原理 荧光共振能量转移是指两个荧光发色基团在足够靠近时,当供体分子吸收一定频率的光子后被激发到更高的电子能态,在该电子回到基态前,通过偶极子相互作用,实现了能量向邻近的受体分子转移(即发生能量共振转移)。FRET是一种非辐射能量跃迁,通过分子间的电偶极相互作用,将供体激发态能量转移到受体激发态的过程,使供体荧光强度降低,而受体可以发射更强于本身的特征荧光(敏化荧光),也可以不发荧光(荧光猝灭),同时也伴随着荧光寿命的相应缩短或延长。能量转移的效率和供体的发射光谱与受体的吸收光谱的重叠程度、供体与受体的跃迁偶极的相对取向、供体与受体之间的距离等因素有关。作为共振能量转移供、受体对,荧光物质必须满足以下条件: ①受、供体的激发光要足够分得开; ②供体的发光光谱与受体的激发光谱要重叠。 人们已经利用生物体自身的荧光或者将有机荧光染料标记到所研究的对象上,成功地应用于核酸检测、蛋白质结构、功能分析、免疫分析及细胞器结构功能检测等诸多方面。(传统有机荧光染料吸收光谱窄,发射光谱常常伴有拖尾,这样会影响供体发射光谱与受体吸收光谱的重叠程度,而且供、受体发射光谱产生相互干扰。最新的一些报道将发光量子点用于共振能量转移研究,克服了有机荧光染料的不足之处。

荧光染料基础知识大全

荧光染料基础知识大全 益阳纺织染整团队今天 荧光显微镜技术的基本原理是借助荧光剂让细胞成分呈现高度具体的可视化效果,比如在目的蛋白后面连一个通用的荧光蛋白—GFP。在组织样本中,目的基因无法进行克隆,则需要用免疫荧光染色等其他技术手段来观察目的蛋白。为此,就需要利用抗体,这些抗体连接各种不同的荧光染料,直接或间接地与相应的靶结构相结合。此外,借助荧光染料,荧光显微镜技术不只局限于蛋白质,它还可以对核酸、聚糖等其他结构进行染色,即便钙离子等非生物物质也可以检测出来。 1免疫荧光 (IF) 在荧光显微镜技术中,可以通过两种方式观察到你的目的蛋白:利用内源荧光信号,即通过克隆手段,用遗传学方法将荧光蛋白与目的蛋白相连;或利用荧光标记的抗体特异性结合目的蛋白。 有些生物学问题采用第二种方法会更有用或更有必要。比如,组织学样品无法使用荧光蛋白,因为通常来说,标本都是从无法保存荧光蛋白的生物体中获取。此外,当有一个有功能的抗体可用时,免疫荧光法会比荧光蛋白技术快很多,因为后者必须先克隆目的基因再将DNA转染到适当的细胞中。 荧光蛋白的另一项劣势在于其本身属于蛋白质。因此,细胞内的这些荧光蛋白具有特定的蛋白质特性,其会导致附着的目的蛋白质发生功能紊乱或出现误释的情况。然而,荧光蛋白技术仍然是观察活细胞的首选方法。 免疫荧光法利用了抗体可以和相应抗原特异性结合的这个特性,对此它还有两种不同的表现形式。最简单的方式是使用可与目的蛋白相结合的荧光标记抗体。这种方法被称为“直接免疫荧光法”。 在很多情况下,我们可以利用两种不同特性的抗体。第一种抗体可以结合目的蛋白,但其本身并未进行荧光标记(一抗)。第二种抗体本身就携带荧光染料(二抗),并且可以特异性结合一抗。这种方法被称为“间接免疫荧光法”。 这种方法存在诸多优势。一方面,它会产生放大效应,因为不只一个二抗可以与一抗相结合。另一方面,没有必要始终用荧光染料标记目的蛋白的每个抗体,但可以使用市售荧光标记的二抗。免疫荧光中广泛使用的荧光染料包括FITC、TRITC 或一些Alexa Fluor?染料,下文均有提及。 2FITC 和TRITC 异硫氰酸荧光素(FITC) 是一种有机荧光染料,目前,这种荧光染料仍用于免疫荧光和流式细胞术中。在495/517 nm 处,该染料会产生激发/发射峰值,并可借助异硫氰酸盐反应基团与不同抗体结合,该基团可以和蛋白质上的氨基、巯基、咪唑、酪氨酰、羰基等基团相结合。 而它的基本成分——荧光素,其摩尔质量为332 g/mol,常被用作荧光示踪剂。FITC(389 g/mol) 是用于荧光显微镜技术的首批染料,且其被当成Alexa Fluor?488 等后续荧光染料的发端。该染料的荧光活性取决于它的大共轭芳香电子系统,而该系统受蓝色光谱中的光所激发。

常见细胞核荧光染料

细胞核常用荧光染料有: 吖丫啶橙(Acridine Orange , AO )、溴化乙锭(Ethidium Bromide , EB )和碘化丙啶(Propidium Iodide , PI ) , DAPI 、Hoechst 染料、EthD III 、7-AAD 、RedDotl 、 2等等。 透膜的染料如下: AO :具有膜通透性,能透过细胞膜,将核 DNA 和RNA 分别染成绿色和红色,因此使细胞核呈绿色或黄绿色荧光。 EB : —种高度灵敏的荧光染色剂,在标准 302nm 处激发出橙红色信号。 DNA 的染色灵敏度要高于EB 和PI ,荧光强度比Hoechst 低,但光稳定性高于Hoechst Hoechst 染料:蓝色一类在显微观察中标记 DNA 的荧光染料,最常见的两种是 Hoechst33342和Hoechst33258。这两种染料都在紫外350nm 处被激发,在 461nm 处最大发射光附近发射青/蓝色荧光。与DAPI 相比,Hoechst33342加有乙基,具有更强的亲脂性,因此能更好的透过完整的细胞膜,并且细胞毒性更 小。 RedDot 1染料:红色,超强的细胞核选择性,其光谱相似于 Draq?5和Draq?7。RedDot?染料可被几种常见的激光激发并可在远红外区激发荧光。 RedDot? 的红色近红外荧光有效的与其他常用荧光探针区分开来。 不透膜的染料,如下: PI 作为红色荧光复染剂首选,PI 经常与Calcein-AM 或者FDA 等荧光探针合用,区分死/活细 EthD III 、7-AAD 、RedDot 2 :不能透过细胞膜,但能将坏死细胞区分开来;更适合凋亡坏死实验的检测; 细胞核荧光染料(PI DAPI Hoechst33342 ) 细胞核荧光染料PI 碘化丙啶(简称PI )是一种常用的细胞核荧光染色剂。它不能透过完整的细胞膜,但 PI 能透过凋亡中晚期的细胞和死细胞的膜 而将细胞核 染红,PI 在绿色光(540nm 波长)的激发下,会在600nm (红色光)处发出明亮的荧光,与细胞核中的DNA 结合的PI 发出的荧光,与未结合的PI 相比,强 度会增强 20-30 倍。40016Propidium iodide(PI)100mg40017Propidium iodide, 1.0mg/1mL solution in waterlOmL 碘化丙啶英文名: Propidium iodide, Propidium diiodide; PI 分子式:C27H34I2N4 分子量:668.39外观:红棕SF 末应用:DNA 染色染色原理: 碘化 丙啶(PI)是一种溴化乙啶的类似物,它在 嵌入双链DNA 后释放红色荧光。尽管PI 不能通过活细胞膜,但却能穿过破损的细胞膜而对核染色。 PI 经常被用来与 Calcein-AM 或者FDA 等荧光化合物一起使用,能同时对活细胞和死细胞染色。 光谱性质:PI-DNA 复合物的激发和发射波长分别为535nm 和615nm 。染色 过程:1.用PBS 或适当的缓冲液制备10?50小 的PI 溶液。a) 2.将1/10培养基体积的PI 溶液加入到细胞培养基中。b) 3 .在37 C 培养细胞10-20分 钟。4.用PBS 或合适的缓冲液洗涤细胞两次。 5.用535nm 激发波长,615nm 发射波长的滤光器的荧光显微镜观察细胞。 a)由于PI 可能具有致癌性, 请小心操作。b)也可以用1/10浓度的PI 缓冲液代替培养基。 保存条件:4C 避光保存 对人体有刺激性,请注意适当防护 DAPI 即4',6-二脒基-2-苯基吲哚(4',6-diamidino-2-phenylindole),是一种能够与DNA 中大部分A , T 碱基相互结合的荧光染料,常用与荧光显微镜观测。因为 DAPI :蓝色一种可以穿透细胞膜的蓝色荧光染料,其与 DNA 结合后可以产生比 DAPI 自身强20多倍的荧光,而与单链DNA 结合无荧光的增强。 DAPI 对双链 PI :不同通过活细胞膜,但却能穿过破损的细胞膜而对核染色。

单分子荧光共振能量转移技术

研究生光谱 技术与应用课程 作业 河南大学 单分子荧光共振能量转移技术 学生:郭爱宇 学号:104753120870 学院:物理与电子学院 年级专业:2012级光学工程 课程名称:光谱技术及应用

指导老师:郭立俊教授

单分子荧光共振能量转移技术 摘要:单分子荧光共振能量转移技术(single molecule fluorescence resonance energy transfer, smFRET) 通过检测单个分子内的荧光供体及受体间荧光能量转移的效率,来研究分子构象的变化。在单分子探测技术发展之前,大多数的分子实验是探测分子的综合平均效应(ensemble averages),这一平均效应掩盖了许多特殊的信息。单分子探测可以对体系中的单个分子进行研究,得到某一分子特性的分布状况,也可研究生物分子的动力学反应。介绍了近来单分子荧光共振能量转移技术的进展。 关键词:单分子;荧光共振能量转移;荧光基团 1 引言 光谱技术是研究生物分子最常用的方法之一。在单分子光谱(single molecule spectroscopy, SMS)探测技术发展以前,大多数的实验是探测分子的综合平均效应,得到的是由大量对象组成的一个整体所表现出的平均响应和平均值,这一平均效应掩盖了许多特殊的信息。而单分子探测可对体系中的单个分子进行研究,通过与时间相关过程的探测,能实时了解生物大分子构象变化的信息。2002年美国第46届生物物理年会表明单分子仍是生物物理学目前和今后重点发展的研究领域。主要的技术手段包括生物大分子荧光光谱,单分子荧光能量转移谱、与原子力显微镜结合进行单分子水平的分子间相互作用力的测量,以及可进行单分子操作的激光光钳,高时间分辨率的单分子轨迹追踪等[1]。由此可见,单分子荧光技术具有重要的地位。 标记在生物大分子上单个荧光基团的各种特性变化能够提供有关分子间相互作用、酶活性、反应动力学、构象动力学、分子运动自由度(molecular freedom of motion)及在化学和静电环境下活性改变的信息。近年,在动态结构生物学研究领域,用单分子荧光光谱技术研究生物分子构象变化的方法主要有两种:一是通过单分子荧光偏振的各向异性(single molecule fluorescence polarization anisotropy,smFPA)研究生物分子的构象动力学(conformational dynamics)和旋转运动(rotational motions)。另一个是单分子对荧光共振能量转移(single pair

相关文档
相关文档 最新文档