文档库 最新最全的文档下载
当前位置:文档库 › 航空航天概论要点2.

航空航天概论要点2.

航空航天概论要点2.
航空航天概论要点2.

航空航天概论要点(正式稿)

第一章航空航天发展概况

1.1 航空航天基本概念

航空:载人或不载人的飞行器在地球大气层中的航行运动。航空按其使用方向有军用航空和民用航空之分。军用航空泛指用于军事目的的一切航空活动,主要包括作战、侦察、运输、警戒、训练和联络救生等。民用航空泛指利用各类航空器为国民经济服务的非军事性飞行活动。民用航空分为商业航空和通用航空两大类。航天是指载人或不载人的航天器在地球大气层之外的航行活动,又称空间飞行或者宇宙航行。航天实际上又有军用和民用之分。

1.2 飞行器的分类、构成与功用

在地球大气层内、外飞行的器械称为飞行器。在大气层内飞行的飞行器称为航空器。

1.3 航空航天发展概况

1783年6月5日,法国的蒙哥尔费兄弟用麻布制成的热气球完成了成功的升空表演。

1852年,法国人H.吉法尔在气球上安装了一台功率约为2237W的蒸汽机,用来带动一个三叶螺旋桨,使其成为第一个可以操纵的气球,这就是最早的飞艇。

1903年12月17日,弟弟奥维尔·莱特,驾驶“飞行者”1号进行了试飞,当天共飞行了4次,其中最长的一次在接近1min的时间里飞行了260m的距离。这是人类历史上第一次持续而有控制的动力飞行。

1947年10月14日,美国X-1研究机,首次突破了“声障”。

火箭之父:俄国的K.齐奥尔科夫斯基

1957年10月4日,世界上第一颗人造地球卫星从苏联的领土上成功发射。

1969年7月20日,“阿波罗”11号飞船首次把两名航天员N.阿姆斯特朗和A.奥尔德林送上了月球表面。

1986年1月28日,“挑战者”号发射升空不久即爆炸,7名航天员全部罹难。

2003年美国当地时间2月1日,载有7名航天员的“哥伦比亚”号航天飞机结束任务返回地球,在着陆前16分钟发生意外,航天飞机解体坠毁,机上航天员全部罹难。

1.4 我国的航空航天工业

新中国自行设计并研制成功的第一架飞机是歼教1。

我国自行设计制造并投入成批生产和大量装备部队的第一种飞机是初教6。

我国第一架喷气式战斗机是歼5型飞机,是一种高亚声速歼击机。

歼6飞机是我国第一代超声速战斗机,可达1.4倍声速。

我国第二代超声速战斗机包括歼7和歼8系列。

歼8系列飞机的研制成功,标志着我国的军用航空工业进入了一个自行研究、自行设计

和自行制造的新阶段。

歼10战斗机是我国自行研制的具有完全自主知识产权的第三代战斗机,实现了我国战斗机从第二代向第三代的历史性跨越。

“北京”1号是新中国自行研制的第一架轻型旅客机。由北京航空航天大学的前身北京航空学院的师生设计、生产。

2007年2月26日,国务院正式批准我国大飞机国家重大专项立项实施,标志着我国大型民用客机和大型运输机进入工程研制阶段。

1970年4月24日21时35分,我国第一枚运载火箭“长征”1号携带着中国的第一颗人造地球卫星,从我国酒泉卫星发射场发射升空,10分钟后,卫星顺利进入轨道。

1970年4月24日,我国成功发射第一颗人造地球卫星“东方红”1号。

我国的气象卫星称为“风云”系列。

我国成功研制和发射了“北斗”导航定位卫星。

2003年10月15日,“长征”2号F运载火箭,托着我国第一艘载人飞船“神州”5号胜利升空。我国第一位航天员杨利伟。

2005年10月12日上午9时,搭载费俊龙和聂海胜两名中国航天员的“神州”6号飞船在酒泉卫星发射中心发射升空。

2007年10月24日18时05分,“嫦娥”1号月球探测卫星从西昌发射中心由“长征”3号甲运载火箭成功发射。

2008年9月25日21时10分“神州”7号飞船发射,在轨期间,中国航天员翟志刚在搭档刘伯明和景海鹏的协助下首次出仓进行太空行走,飞船飞行到第31圈时,成功释放伴飞小卫星。

第二章飞行环境及飞行原理

2.1 飞行环境

飞行环境包括大气飞行环境和空间飞行环境。根据大气中温度随高度的变化,可将大气层划分为对流层、平流层、中间层、热层和散逸层5个层次。

不计,即把气体看成连续的介质。

大气的粘性是空气在流动过程中表现出的一种物理性质,也叫做大气的内摩擦力。大气的粘性,主要是气体分子作不规则运动的结果。

对于像空气这种内摩擦系数很小的流体,当物体在空气中的运动速度不是很大时,粘性的作用也就不很明显,此时,可以采用理想流体模型来做理论分析。通常把不考虑粘性的流体(即流体的内摩擦系数趋于零的流体),称为理想流体或无粘流体。

当气流的速度较小时,压强的变化量较小,其密度的变化也很小,因此在研究大气低速流动的有关问题时,可以不考虑大气可压缩性的影响。但当大气流动的速度较高时,由于可压缩性的影响,使得大气以超声速流过飞行器表面时与低速流过飞行器表面时有很大的差别,在某些方面甚至还会发生质的变化。就必须考虑大气的可压缩性(气体的可压缩性是指当气体的压强改变时其密度和体积改变的性质)。

声速是指声波在物体中传播的速度。声速的大小和传播介质有关。在对流层中,气温随高度增加而降低,声速也随着降低。

马赫数Ma ,衡量空气被压缩程度的大小。a v Ma =,v 表示在一定高度上,飞行器的飞行速度,a 表示该处的声速。

根据Ma 的大小,可以把飞行器的飞行速度划分为如下区域:

为高超声速飞行

为超声速飞行

为跨声速飞行为亚声速飞行

为低速飞行

0.5Ma 5.0Ma 3.1 1.3Ma 85.00.85Ma 4.04.0Ma >≤<≤<≤<≤

2.2 流动气体的基本规律

相对运动原理:“空气流动,物体不动”和“空气静止,物体运动”产生的空气动力效果完全一样。只要物体和空气之间有相对运动,就会在物体上产生空气动力。

可压缩流体沿管道流动的连续性方程:常数====ΛΛ333222111A v A v A v ρρρ 不可压缩流体沿管道流动的连续性方程:常数====ΛΛ332211A v A v A v (A 为所取截面的面积)

不可压理想流体的伯努利方程:动压静压,常数,总压====+222

121v p v p ρρ 低速气流的流动特点:(此时近似认为不可压缩)121212,,,p p v v A A <><不变则有ρ ; 反之121212,,,p p v v A A ><>不变则有ρ 。

高速气流的流动特点:12121212,,,p p v v A A ><><ρρ则有;

反之12121212,,,p p v v A A <><>ρρ则有。

拉瓦尔喷管是使气流由亚声速加速成超音速的一种

先收缩后扩张的管道,当然要想变为超音速,对气流还

必须的是沿气流方向有一定压力差。

2.3 飞机上的空气动力作用及原理

翼弦与相对气流速度v之间的夹角α叫“迎角”。

假设翼型有一个不大的迎角α,当气流流到翼型的前缘时,气流分成上下两股分别流经翼型的上下翼面。由于翼型的作用,当气流流过上翼面时流动通道变窄,气流速度增大,压强降低,并低于前方气流的大气压;而气流流过下翼面时,由于翼型前端上仰,气流受到阻拦,且流动通道扩大,气流速度减小,压强增大,并高于前方气流的大气压。因此,在上下翼面之间就形成了一个压强差,从而产生了一个向上的升力Y。

失速现象:随着迎角的增大,升力也会随着增大,但当迎角增大到一定程度时,气流就会从机翼前缘开始分离,尾部出现很大的涡流区。此时,升力会突然下降,而阻力却迅速增大,这种现象称为“失速”。失速刚刚出现时的迎角叫“临界迎角”。所以飞机飞行时迎角最好不要接近或大于临界迎角。

影响飞机升力的因素

1.机翼面积的影响

2.相对速度的影响

3.空气密度的影响

4.机翼剖面形状的影响

5.迎角的影响

增升措施

1.改变机翼剖面形状,增大机翼弯度;

2.增大机翼面积;

3.改变气流的流动状态,控制机翼上的附面层,延缓气流分离。

低速飞机上的阻力按其产生的原因不同可分为摩擦阻力、压强阻力、诱导阻力和干扰阻力。

1.摩擦阻力

摩擦阻力的大小,取决于空气的粘性、飞机表面的状况、附面层中气流的流动情况和同气流接触的飞机表面积的大小。空气的粘性越大,飞机表面越粗糙,飞机的表面积越大,则摩擦阻力越大。为了减小摩擦阻力,应在这些方面采取必要的措施。另外,用层流翼型代替古典翼型,使紊流层尽量后移,对减小摩擦阻力也是有益的。

2.压差阻力

为了减小飞机的压差阻力,应尽量减小飞机的最大迎风面积,并对飞机的各部件进行整流,做成流线型,有些部件如活塞式发动机的机头应安装整流罩。

3.诱导阻力

诱导阻力与机翼的平面形状、翼剖面形状、展弦比等有关。可以通过增大展弦比,选择适当的平面形状(如椭圆形的机翼平面形状),增加“翼梢小翼”等来减小诱导阻力。

4.干扰阻力

干扰阻力和飞机不同部件之间的相对位置有关,因此,在设计时要妥善地考虑和安排各部件的相对位置,必要时在这些部件之间加装流线型的整流片,使连接处圆滑过渡,尽量避免旋涡的产生。

2.4 高速飞行的特点

激波实际上是受到强烈压缩的一层薄薄的空气。

正激波是指其波面与气流方向接近于垂直的激波。

斜激波是指波面沿气流方向倾斜的激波。(P95图)

由激波阻滞气流的产生的阻力叫做激波阻力,简称波阻。

某些超声速飞机的机身、机翼等部分的前缘设计成尖锐的形状,就是为了减小激波强度,进而减小激波阻力。

与临界速度相对应的马赫数就叫做“临界马赫数”,用Ma临界表示。当飞机的飞行速度超过临Ma临界时,机翼上就会出现一个局部超声速区,并在那里产生一个正激波。这个正激波是由于局部产生的,所以叫“局部激波”。(临界速度是气流的速度,当气流以此速度从前缘爬升到机翼最高点时,刚好加速到声速)

局部激波和波阻的产生,是出现“声障”问题的根本原因。

飞机气动布局的类型:(P98图)

按机翼和机身的连接位置分:上单翼、中单翼、下单翼;

按机翼弦平面有无上反角分:上反翼、无上反翼、下反翼;

按立尾的数量分:单立尾、双立尾、V形尾;

按纵向气动布局分:正常式、鸭式、无尾式

超声速飞机的翼型特点:大都采用相对厚度小的对称翼型或接近对称的翼型。

波阻较小的翼型有:双弧形、菱形、楔形、双菱形

超声速飞机的机翼平面形状和布局型式(7种)

①后掠机翼②三角形机翼③小展弦比机翼

④变后掠机翼⑤边条机翼⑥“鸭”式飞机⑦无尾式布局

超声速飞机和低、亚声速飞机的外形区别

1.低、亚声速飞机机翼的展弦比较大,梢根比也较大;超声速飞机机翼相反。

2.低速飞机常采用无后掠角或小后掠角的梯形直机翼,亚声速飞机的后掠角一般也比较小(小于35°),而超声速飞机一般为大后掠机翼或三角形机翼。

3.低、亚声速飞机的机翼翼型一般为圆头尖尾型,前缘半径较大,相对厚度也比较大(0.1~0.12);而超声速飞机机翼翼型头部为小圆头或尖头(前缘半径比较小),相对厚度比较小(0.05)。

4.低、亚声速飞机机翼的展长一般大于机身的长度,机身长细比较小,一般为5~7之间,机身头部半径比较大,前部机身比较短,有一个大而突出的驾驶舱;而超声速飞机机身的长度大于翼展的长度,机身比较细长,机身长细比一般大于8,机身头部较尖,驾驶舱与机身融合成一体,成流线形。

飞机在超声速飞行时,在飞机上形成的激波,传到地面上形成如同雷鸣般的爆炸声,这就是所谓的“声爆”现象。

由气动加热引起的危险(结构强度和刚度降低,飞机气动外形受到破坏,危及飞行安全)障碍就称为“热障”。所以“热障”实际上是空气动力加热造成的。

2.5 飞机的飞行性能及稳定性和操作性

飞机的飞行性能一般包括飞行速度、航程、升限、起飞着陆性能和机动性能等。

飞行速度,对军用飞机来说一般指的是最大平飞速度,而对民用飞机来说一般指的是巡航速度。

航程是指在载油量一定的情况下,飞机以巡航速度(不进行空中加油)所能飞越的最远距离。

飞机的静升限是指飞机能作水平直线飞行的最大高度。

飞机的起飞过程:地面滑跑、离地、爬升;

飞机的着陆过程:下滑、拉平、平飞减速、飘落、滑跑

所谓飞机的稳定性,是指在飞行过程中,如果飞机受到某种扰动而偏离原来的平衡状态,在扰动消失以后,不经飞行员操纵,飞机能自动恢复到原来平衡状态的特性。

飞机的纵向稳定性主要取决于飞机重心的位置,只有当飞机的重心位于焦点前面时,飞机才是纵向稳定的。

飞机主要靠垂直尾翼的作用来保证方向稳定性。

飞机的横侧向稳定性主要是由机翼上反角、机翼后掠角和垂直尾翼的作用产生的。

飞机的操纵性是指驾驶员通过操纵设备(如驾驶杆、脚蹬和气动舵面等)来改变飞机飞行状态的能力。

直升机的布局:单旋翼直升机、共轴式双旋翼直升机、纵列式双旋翼直升机、横列式双旋翼直升机、带翼式直升机。(P124图)

直升机的操纵系统

1.总距操纵(总桨距——油门操纵):控制升降;

2.变距操纵:实现纵向(包括俯仰)及横向(包括滚转)运动(前后左右);

3.脚操纵(航向操纵):转向。

2.7 航天器飞行原理

开普勒(Kepler)三大定律

第一定律(椭圆定律):所有行星绕太阳的运行轨道都是椭圆,而太阳则位于椭圆的一个焦点上。

第二定律(面积定律):在相等的时间内,行星与太阳的连线所扫过的面积相等。

第三定律(调和定律):行星运动周期的平方与行星至太阳的平均距离的立方成正比,即行星公转的周期只和半长轴有关。

轨道要素

1.轨道半长轴a

2.轨道偏心率e

3.轨道倾角i

4.升交点赤经Ω

5.近地点幅角ω

6.过近地点时刻t

卫星轨道:圆轨道和椭圆轨道、顺行轨道和逆行轨道、地球同步轨道、太阳同步轨道、极轨道、回归轨道(理解)

“嫦娥”1号卫星经历了在地球轨道、地月转移轨道和环月轨道的漫长征程,于07年11月7日正式进入工作轨道,成为月球的一颗卫星。

第三章飞行器的动力系统

3.1 发动机的分类与特点

航空航天发动机的分类

3.2 活塞式航空发电机

活塞发动机的工作原理

四个行程:进气行程、压缩行程、膨胀行程、排气行程(P149)

3.3 空气喷气发动机

空气喷气发动机的主要性能参数

1.推力:发动机的推力是作用在发动机内外表面上压力的合力,其单位为N

2.单位推力:每单位流量的空气(单位为kg/s)进入发动机所产生的推力

3.推重比:发动机推力(地面最大工作状态下)和其结构重量之比。

4.单位耗油率:产生单位推力(1 N)每小时所消耗的燃油量,其单位为kg/(N.h)。

燃气涡轮发动机

涡轮喷气发动机的工作过程如下:空气首先由进气道进入发动机,空气流速降低,压力升高。当气流经过压气机后,空气压力可提高几倍到数十倍。具有较高压力的空气进入燃烧室,与从喷嘴喷出的燃料充分混合,经点火后燃烧,燃料的化学能转换为内能,此后,燃烧产生的高温高压气体驱动涡轮工作,高速旋转的涡轮产生机械能,带动压气机和其他附件工作。涡轮出口燃气直接在喷管中膨胀,使燃气可用能量转变为高速喷流的动能而产生反作用力。

1.进气道系统。进气道是发动机的进气通道,它的主要作用是整理进入发动机的气流,消除旋涡,保证在各种工作状态下都能供给发动机所需要的空气量。

2.压气机。压气机的作用是提高进入发动机燃烧室的空气压力。

3.燃烧室。燃烧室是燃料与从压气机出来的高压空气混合燃烧的地方,燃料的化学能转变为内能。涡流器的作用是使空气产生旋涡,以便与燃料均匀混合,并在适当部位形成点

火源。

4.涡轮。涡轮的功用是将燃料室出口的高温、高压气体的能量转变为机械能。

5.加力燃烧室。在不改变压气机和涡轮工作状态的情况下,加力燃烧室可有效地增加发动机的推力。

6.尾喷管。尾喷管是发动机的排气系统。

涡轮螺桨发动机是一种主要由螺旋桨提供拉力和燃气提供少量推力的燃气涡轮发动机。

涡轮风扇发动机,又叫做内外涵发动机。其中外股气流与内股气流流量之比称为涵道比。它在亚声速飞行时有较好的经济性,也就是说,在燃油量一定的情况下,推力却有所增加,因此发动机的效率有所提高。因此,民用涡轮风扇发动机的发展趋势:高涵道比、高涡轮前温度和高增压比。

涡轮轴发动机。涡轮轴发动机是现代直升机的主要动力,它的组成部分和工作过程与涡轮螺桨发动机很相似,所不同的是燃气的可用能量几乎全部转变成涡轮的轴功率。

冲压喷气发动机。它们没有专门的压气机,是靠飞行器高速飞行时的相对气流进入发动机进气道后减速,将动能转变为压力能,是空气静压提高的一种空气喷气发动机。它通常由进气道(扩压器)、燃烧室和尾喷管三部分组成。特点:构造简单,质量轻,推重比大,成本低,高速飞行状态下(Ma>2),经济性好、耗油率低。

涡轮喷气发动机的工作状态:起飞状态、最大状态、额定状态、巡航状态、慢车状态(P165)

3.4 火箭发动机

火箭发动机特点:不仅自带燃烧剂,而且自带氧化剂,它既能在大气层内工作,也可在大气层外的真空中工作。

火箭发动机的主要性能参数:推力、冲量和总冲、比冲

液体火箭发动机的组成和工作原理——推进剂输送系统

挤压式输送系统是利用高压气体(压强为25~30MPa)经减压阀减压(将压力降至3.5~5.5MPa)后,进入氧化剂箱和燃烧剂箱。

泵式运送系统是利用涡轮泵提高来自贮箱的推进剂的压强,使推进剂按规定的流量和压强进入燃烧室。推进剂贮箱压强低,结构质量较轻,但系统结构复杂,一般用于推力大、工作时间长的火箭发动机。

液体火箭发动机的主要优点是比冲高,推力范围大,能反复起动,较易控制推力的大小,工作时间较长,在航天器的推进系统中应用较多,但不宜长期存放在贮箱中。采用预包装技术,可以很大程度上克服液体火箭发动机作战使用性能差的缺点。

固体火箭发动机的优缺点

优点

1.结构比较简单,无复杂的推进剂输送系统和强制冷却系统,除推力向量控制机构外无其他活动部件,可靠性较高;

2.装有固体火箭发动机的导弹操作简单,发射准备工作和本身启动比液体火箭发动机方便。

3.固体推进剂性能稳定,可以使装填状态下的固体火箭发动机在发射阵地上长期贮存,适合战略使用要求。

缺点

1.固体推进剂能量比液体推进剂低,比冲较小;

2.装药的初始温度对燃烧室的压力和工作时间影响很大,且发动机工作时间较短。

第四章飞行器机载设备

机载设备是各种测量传感器、各类显示仪表和显示器、导航系统、雷达系统、通讯系统、自动控制系统、电源电气系统等设备和系统的统称。机载设备将飞行器的各个组成部分连接起来,相当于飞行器的大脑、神经和指挥系统。它能帮助飞行员安全地、及时地、可靠地、精确地操纵飞行器;保障飞行器的各项任务功能、战术技术性能的实现;自动地完成预定的飞行任务(如自动导航,自动着陆等);完成某些飞行员无法完成的操纵任务(如高难度的特技飞行动作、危险状态自动攻击等)。

4.1 传感器、飞行器仪表与显示系统

飞行状态参数包括线运动参数和角运动参数。线运动参数包括飞行高度、速度和线加速度;角运动参数包括姿态角、姿态角速度和姿态角加速度。

飞行高度的测量

绝对高度——距实际海平面的垂直距离;

相对高度——距选定的参考面(如起飞OR着陆的机场地平面)的垂直距离;

真实高度——距飞行器正下方地面的垂直距离;

标准气压高度——距国际标准气压基准平面的垂直距离。

P189,P191气压是高度表及气压式空速表的原理

陀螺仪:定轴性、进动性

P198陀螺地平仪原理

机械仪表。

优点:结构相对简单,显示清晰;

缺点:部件间存在摩擦影响显示精度;寿命短、易受振动、冲击的影响;在低亮度环境中需要照明;不易实现综合显示。

电子显示系统优点:

1.显示灵活多样,形象逼真,显示形式有字符、图形、表格等,并可以用彩色显示。

2.容易实现综合显示,所以减少了仪表数量,使仪表板布局简洁,便于观察;

3.由于消除了机械仪表因摩擦、振动等引起的附加误差,显示精度显著提高。

4.采用固态器件,寿命长,可靠性高;

5.随着集成化程度的提高,重量不断减轻,价格不断下降。

显示系统发展趋势:

彩色液晶显示器:重量轻、体积小、低功耗、高清晰度和高可靠性→大屏幕全景显示器→语音进行指令控制

4.2 飞行器导航系统

导航是把航空器、航天器、火箭和导弹等运动体从一个地方引导到目的地的过程。

目前常用的飞行器导航方式有:无线电导航、惯性导航、卫星导航、图像匹配导航和天文导航等。

无线电导航系统(P205~208)

1.测向无线电导航系统——全向信标系统

2.测距无线电导航系统

3.测距差无线电导航系统

4.测速无线电导航

惯性导航系统:平台式惯性导航系统、捷联式惯性导航系统(P210)

卫星导航系统:GPS系统共有24颗导航卫星,21颗主星3颗备份

图像匹配导航系统:

原理:预先将飞行器经过的地域,通过大气测量、航空摄影、卫星摄影或已有的地形图等方法将地形数据(主要是地形位置和高度数据)制做成数字化地图,储存在飞行器的计算机中。

图像匹配导航可以分为地形匹配导航和景象匹配导航两种。

4.3 飞行器飞行控制系统

电传操纵系统是将飞行员的操纵动作通过微型操纵杆转变为电指令信号,由电缆传输到信号处理系统处理后,再控制执行机构输出力和位移,操纵气动舵面来驾驶飞行器。

目前主要采用余度技术提高电传操纵系统的可靠性。余度技术就是指在同一架飞行器上并列着三套(或四套)相同(或相似)的电传操纵装置,通过计算机软件把它们组合在一起,形成几个操纵通道。几套装置同时工作,互相监测,发现故障自动隔离有故障的通道,其余通道继续正常工作,仍能保持原有的操纵性能,提高了系统的可靠性。

自动驾驶仪包括敏感元件、综合放大装置、执行装置三个部分。另外自动驾驶系统还包括人工操纵指令输入装置。

第五章飞行器的构造

5.1 对飞行器结构的一般要求和常用的结构材料

飞行器结构就是飞行器各受力部件和支撑构件的总称。

对飞行器结构的一般要求:

1.空气动力要求

2.重量和强度、刚度的要求

3.使用维护要求

4.工艺和经济性要求

飞行器结构采用的主要材料

1.铝镁合金类

2.合金钢类e.g.钛合金

3.复合材料

5.2 航空器的构造

飞艇的构造:

根据构形不同分为纯浮力式、浮力和气动升力混合式以及浮力和旋翼混合式三种类型。

从结构形式上看,有软式、半硬式和硬式三种,这三种区别主要在于气囊的构造。

飞机的基本构造:

常规飞机由机身、机翼、尾翼、起落架、动力装置等五大部件组成。

机翼的基本受力构件包括纵向(沿翼展方向)骨架、横向(沿气流方向或垂直于翼梁方向)骨架和蒙皮。纵向骨架有翼梁、纵墙和桁条,横向骨架有普通翼肋和加强翼肋。

机翼的典型构造形式(P237):蒙皮骨架式、整体壁板式和夹层式

起落架在飞机上的布局形式(P241~242精读):后三点式、前三点式、自行车式

5.3 航天器的构造

保障系统在一般航天器上是类似的——生命保障系统(P244)

载人飞船一般由轨道舱(又称指挥舱)、服务舱、对接舱、应急舱和乘员返回舱等组成。乘员返回舱是飞船的核心部分,是整个飞船的控制中心。

空天飞机是一种能在普通跑道上起飞和降落的飞行器,它能在大气层中飞行也能在外层空间轨道上飞行。

5.4 火箭和导弹的构造

运载火箭的组合方式:串联型、并联型、混合型

有翼导弹的基本组成(P257):战斗部系统、动力系统、制导系统、弹体

弹道导弹的控制方式(P262~P263):燃气舵、摆动发动机、摆动喷管、固定式姿态控制发动机、二次喷射技术

多弹头弹道导弹的弹头控制方式:集束式多弹头、分导式多弹头、机动式多弹头

└┐..┌┘────╮

╭┴──┤├╮

│oo││●

╰─┬─╯│

HAPPY 牛YEAR

本资料由北京航空航天大学软件学院学生归纳整理,任何人都可以进行拷贝和打印,但请勿公开发表,请勿随意修改作品,尤其是不要篡改资料整理集体o(∩_∩)o…

法律顾问:

刘俊昊

鸣谢:

杨颖同学无私提供出自己的航概书籍;

陈博同学提出的一些错误;

胡松同学花费自己大量时间进行修订;

如有任何问题,请联系buaa.

婴幼儿能力发展个

婴幼儿能力发展(第7个月) 手腹爬行——锻炼宝宝身体平衡协调性,发展运动综合能力。这个月龄仍是宝宝爬行的关键期,尽管宝宝的爬行姿势不是很标准,但是宝宝还是很积极的练习爬行,家长可以帮助宝宝把胸部离开床面,并给宝宝向前的力量,同时用玩具吸引宝宝爬行、够取,逐渐宝宝的爬行能力。 扶站——锻炼宝宝下肢力量,为站立和走路做准备。育婴师指导家长扶住宝宝的腋下,让宝宝练习站立,并学着迈步,但每次时间不宜过长,每次3-5分钟,每日2-3次,7个月的宝宝重 捏取——锻炼宝宝手指的灵活性。给宝宝准备一些小物体,如花生米、小糖豆等,让他练习用拇指和其他手指捏取,每日数次,以增加捏取的准确性。家长要给宝宝多提供手指锻炼的机会,更好促进手眼脑协调能力。提示:在本环节中,家长要谨防孩子吧小物品放入口中。 对击玩具——锻炼双手主动合作能力及手指的控制力。让宝宝学会倒手、拿起、放下,有利于宝宝对自己手的控制,但要经过反复的锻炼,也可以让宝宝双手各拿一个玩具对击,以锻炼宝宝双手的主动合作能力以及对手的控制力,一般宝宝要到9-10个月以后才能很好的控制自己的双 发音——锻炼宝宝的发音,培养语言表达能力。引导宝宝多与人说话,让他多发音,如叫爸爸、妈妈、奶奶等,以扩大他的发音范围,0-1岁是宝宝形体语言的关键期,因此让宝宝学会形体语言来表达自己的愿望,增加宝宝对语言的理解。 行为语言——锻炼宝宝的行为语言、表达能力。让宝宝用形体语言来表达自己的需要,比如让宝宝用行为语言表示谢谢、再见、亲亲等,家长对宝宝的表达要积极的反应,以增加宝宝的表 视觉寻找有效——锻炼宝宝的观察记忆力,激发探索兴趣。让宝宝在爬行的基础上,玩寻找东西的游戏,先将有趣的玩具,让他玩一会,然后当着宝宝的面,把东西藏在身后或用布盖起来,然后让宝宝找,找到后一定要给予鼓励,或让宝宝找爸爸妈妈在哪里等,在玩的过程中,训练宝 语言动作能力——锻炼宝宝行为语言能力,发展社会性。宝宝对自己熟悉的人能表现出明显的交往愿望,在家长提示下,可以配合语言完成一些简单动作,如再见、欢迎等。 交往——锻炼宝宝的交往能力,发展社会性。育婴师建议家长要为宝宝多提供与人交往的机 用杯子喝水——锻炼宝宝口腔协调能力,培养自理能力。建议家长让宝宝学会用杯子喝水,以锻炼宝宝口腔肌肉的协调能力,同时注意宝宝辅助食品的准备,这对宝宝语言表达能力非常重要。

航概复习知识要点

航空航天概论要点 第一章航空航天发展概况 1.1 航空航天基本概念 航空:载人或不载人的飞行器在地球大气层中的航行运动。航空按其使用方向有军用航空和民用航空之分。军用航空泛指用于军事目的的一切航空活动,主要包括作战、侦察、运输、警戒、训练和联络救生等。民用航空泛指利用各类航空器为国民经济服务的非军事性飞行活动。民用航空分为商业航空和通用航空两大类。航天是指载人或不载人的航天器在地球大气层之外的航行活动,又称空间飞行或者宇宙航行。航天实际上又有军用和民用之分。 1.2 飞行器的分类、构成与功用 在地球大气层内、外飞行的器械称为飞行器。在大气层内飞行的飞行器称为航空器。 1.3 航空航天发展概况 1783年6月5日,法国的蒙哥尔费兄弟用麻布制成的热气球完成了成功的升空表演。

1852年,法国人H.吉法尔在气球上安装了一台功率约为2237W的蒸汽机,用来带动一个三叶螺旋桨,使其成为第一个可以操纵的气球,这就是最早的飞艇。 1903年12月17日,弟弟奥维尔·莱特,驾驶“飞行者”1号进行了试飞,当天共飞行了4次,其中最长的一次在接近1min的时间里飞行了260m的距离。这是人类历史上第一次持续而有控制的动力飞行。 1947年10月14日,美国X-1研究机,首次突破了“声障”。 火箭之父:俄国的K.齐奥尔科夫斯基 1957年10月4日,世界上第一颗人造地球卫星从苏联的领土上成功发射。 1969年7月20日,“阿波罗”11号飞船首次把两名航天员N.阿姆斯特朗和A.奥尔德林送上了月球表面。 1986年1月28日,“挑战者”号发射升空不久即爆炸,7名航天员全部罹难。 2003年美国当地时间2月1日,载有7名航天员的“哥伦比亚”号航天飞机结束任务返回地球,在着陆前16分钟发生意外,航天飞机解体坠毁,机上航天员全部罹难。 1.4 我国的航空航天工业 新中国自行设计并研制成功的第一架飞机是歼教1。 我国自行设计制造并投入成批生产和大量装备部队的第一种飞机是初教6。 我国第一架喷气式战斗机是歼5型飞机,是一种高亚声速歼击机。 歼6飞机是我国第一代超声速战斗机,可达1.4倍声速。 我国第二代超声速战斗机包括歼7和歼8系列。 歼8系列飞机的研制成功,标志着我国的军用航空工业进入了一个自行研究、自行设计

航空航天概论论文

航空发动机未来发展的智能化 院系:机电工程学院 班级:****** 学号:****** 姓名:******

摘要:航空航天业的发展离不开航空发动机的发展,而纵观历史,航空发动机的发展历史并不算久远但是其发展速度却是很迅速的。从最早的活塞式发动机到现在的喷气式发动机,发动机技术的发展大大促进了航空飞行器的发展。早期的飞机飞行的速度并不是很快,主要是受制于发动机的技术,但是今天的飞机不仅飞行速度惊人,而且飞行的安全系数也更高了。现在的航空发动机技术虽然已经很先进,但是还没有到达最高点,也就是说现在的发动机技术还有很大的提升空间。预计未来的发动机会向更加智能的方向发展,包括智能节油技术,智能修复技术等等。 关键词:发动机安全系数智能技术历史前景 一.引言: 航空航天的发展离不开航空发动机发展的支持,发动机对于飞机而言就像心脏对于我们人类一样重要,离开了发动机,飞机就成为了空壳,没有任何用处,所以发动机才是飞行器的核心,发展飞行器虽然要求各方面的技术均衡发展,但是就目前的发展状况来看,发动机技术的发展速度明显落后于其他各方面技术的发展,故发动机的技术在某一个层面上也代表了航空工业的发展现状。从飞机诞生到其被用于战争,世界各国都意识到了飞机将带给世界的巨大影响,于是纷纷开始发展航空飞行器,于是一个更深层面的技术发展拉开了帷幕,它就是发动机的技术研究。 二.航空发动机的发展历史 1.活塞式发动机的发展 很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。 世界上首架飞机是由美国莱特兄弟制造出来的。在当时大多数人认为飞机依靠自身动力的飞行完全不可能,而莱特兄弟确不相信这种结论,从1900年至1902年他们兄弟进行1000多次滑翔试飞,终于在1903年制造出了第一架依靠自身动力进行载人飞行的飞机“飞行者”1号,并且获得试飞成功。他们因此于1909年

法拉第电磁感应定律及应用

电磁感应定律的应用(一) 知识点1、感生电动势 例题1、一匀强磁场,磁场方向垂直纸面,规定向里的方向为正。在磁场中有一细金属圆环,线圈平面位于纸面内,如图甲所示。现令磁感应强度B 随时间t 变化,先按图乙中所示的Oa 图象变化,后来又按图象bc 和cd 变化,令E 1、E 2、E 3分别表示这三段变化过程中感应电动势的大小,I 1,I 2,I 3分别表示对应的感应电流,则( BD ) A .E 1>E 2,I 1沿逆时针方向,I 2沿顺时针方向 B .E 10)那么在t 为多大时,金属棒开始移动? 2 212211,L L k mgR t mg R L kL L kt μμ==? ? 知识点2、动生电动势 例题.如图所示,空间存在两个磁场,磁感应强度大小均为,方向相反且垂直纸面,、为其边界,OO ′为其对称轴。一导线折成边长为的正方形闭合回路,回路在纸面内以恒定速度向右运动,当运动到关于OO ′对称的位置时( ACD ) A .穿过回路的磁通量为零 B .回路中感应电动势大小为2B C .回路中感应电流的方向为顺时针方向 D .回路中边与边所受安培力方向相同 练习1、如图,电阻r =5Ω的金属棒ab 放在水平光滑平行导轨PQMN 上(导轨足够长),ab 棒与导轨垂直放置,导轨间间距L =30cm ,导轨上接有一电阻R =10Ω,整个导轨置于竖直向下的磁感强度B =的匀强磁场中,其余电阻均不计。现使ab 棒以速度v =2.0m/s 向右作匀速直线运动,试求: (1)ab 棒中的电流方向及ab 棒两端的电压U ab ; (2)ab 棒所受的安培力大小F ab 和方向。 练习2.如图所示,平行于y 轴的导体棒以速度v 向右匀速直线运动,经过半径为R 、磁感应强度为 B 的圆形匀强磁场区域,导体棒中的感应电动势ε与导体棒位置x 关系的图像是( A ) 知识点3、动生中的图像描绘 例题、匀强磁场磁感应强度 B= T ,磁场宽度L=3rn ,一正方形金属框边长ab=l =1m ,每边电阻r=Ω,金属框以v =10m/s 的速度匀速穿过磁场区,其平面始终保持与磁感线方向垂直,如图所示,求: (1)画出金属框穿过磁场区的过程中,金属框内感应电流的I-t 图线 (2)画出ab 两端电压的U-t 图线

法拉第电磁感应定律教案新人教版选修Word版

高二物理选修3-2《法拉第电磁感应定律》教案 目的要求 复习法拉第电磁感应定律及其应用。 知识要点 1.法拉第电磁感应定律 (1)电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即t k E ??Φ=,在国际单位制中可以证明其中的k =1,所以有t E ??Φ=。对于n 匝线圈有t n E ??Φ=。(平均值) 将均匀电阻丝做成的边长为l 的正方形线圈abcd 从匀强磁场中向右匀速拉出过程,仅ab 边上有感应电动势E =Blv ,ab 边相当于电源,另3边相当于外电路。ab 边两端的电压为3Blv /4,另3边每边两端的电压均为Blv /4。 将均匀电阻丝做成的边长为l 的正方形线圈abcd 放在匀强磁场 中,当磁感应强度均匀减小时,回路中有感应电动势产生,大小为E =l 2(ΔB /Δt ),这种情况下,每条边两端的电压U =E /4-I r = 0均为零。 (2)感应电流的电场线是封闭曲线,静电场的电场线是不封闭的,这一点和静电场不同。 (3)在导线切割磁感线产生感应电动势的情况下,由法拉第电磁感应定律可推导出感应电动势大小的表达式是:E=BLv sin α(α是B 与v 之间的夹角)。(瞬时值) 2.转动产生的感应电动势 ⑴转动轴与磁感线平行。如图,磁感应强度为B 的匀强磁场方向垂直于纸面向外,长L 的金属棒oa 以o 为轴在该平面内以角速度ω逆时针匀速转动。求金属棒中的感应电动势。在应用感应电动势的公式时,必须注意其中的速度v 应该指导线上各点的平均速度,在本题中 应该是金属棒中点的速度,因此有22 12L B L BL E ωω=?=。 ⑵线圈的转动轴与磁感线垂直。如图,矩形线圈的长、宽分 别为L 1、L 2,所围面积为S ,向右的匀强磁场的磁感应强度为B ,线圈绕图示的轴以角速度ω匀速转动。线圈的ab 、cd 两边切割磁 感线,产生的感应电动势相加可得E=BS ω。如果线圈由n 匝导线 绕制而成,则E=nBS ω。从图示位置开始计时,则感应电动势的瞬时值为e=nBS ωcos ωt 。该结论与线圈的形状和转动轴的具体 位置无关(但是轴必须与B 垂直)。 实际上,这就是交流发电机发出的交流电的瞬时电动势公式。 3.电磁感应中的能量守恒 只要有感应电流产生,电磁感应现象中总伴随着能量的转化。电磁感应的题目往往与能量守恒的知识相结合。这种综合是很重要的。要牢固树立起能量守恒的思想。 例题分析 例1:如图所示,长L 1宽L 2的矩形线圈电阻为R ,处于磁感 L 1 v c B l a b d l v a b d ω o a v b c L 1 L 2 ω

幼儿语言发展的关键期与培养

浅谈幼儿语言发展的关键期与培养 一、提供环境,培养幼儿说话的兴趣 语言是人与人之间交流沟通的工具,三岁是人一生中语言发展的关键期。那么如何培养小班幼儿的语言表达能力呢?这是值得我们深思的问题。提及语言教育,一般人会认为在幼儿阶段也就是讲讲故事,说说诗歌,每当与家长谈及这类话题,家长总是感到非常困惑,不知如何来教。经过长期的实践,我认为要让孩子的语言表达能力得到健康全面发展,应做到家园共育,共同培养。家园以及全社会共同为幼儿创设一个使幼儿想说、敢说、喜欢说、有机会说的良好环境对幼儿一生的语言发展是非常重要的《纲要》中也明确要求:“创造一个宽松、自由的语言交往环境,支持、鼓励、吸引幼儿与教师、同伴或其他人交谈,体验语言交流的乐趣。”从某种程度上说,环境就是教育,创设良好的语言交往环境,可以使幼儿的语言能力在游戏交往中得到进一步锻炼。在幼儿园的一日活动中,教师应积极为幼儿创设一个使幼儿想说,敢说,喜欢说,有机会说并能得到积极应答的环境。刚入园的小班幼儿,由于环境变化不易安静下来,有的胆怯、哭闹,有的甚至整天一言不发,这种情绪阻碍了语言的发展。因此,培养幼儿说话的兴趣,提供说话的机会和条件,使幼儿敢讲话、爱讲话、多讲话,才能在说话的过程中,进行培养和练习。当幼儿有了说的愿望时,就要为他们创造说的条件,让幼儿自由交谈,这样老师就不要去阻止他们去“说”,我们还可并有意识安排几个小朋友一起玩玩具、做游戏(幼儿有个体差异,教师就可酌情安排一些性格互补的幼儿,比如平日里爱说、爱表现的幼儿与平时沉默寡言的孩子可以结合一组),让他们在彼此协商、共同游戏中学习和发展语言。同时,在与幼儿进行交谈时,作为老师我们还要注意表现出对幼儿所谈问题的极大兴趣,这样就感染了幼儿,使幼儿感到语言交往是一大乐事,进一步激发他们学习的兴趣。另外对那些说话流畅、胆子大的幼儿,可让他们在集体面前起带动作用。如让他们给小朋友说儿歌、唱歌、讲故事等等。幼儿有了进步时应及时给予表扬。这样幼儿会在模仿老师和同伴过程中增强说的信心,讲起话来也就逐渐地准确流畅了。 二、在丰富多彩的教学活动中培养幼儿的语言表达能力

航空航天概论作业

《航空航天概论》作业 第一章:航空航天发展史 1、航天飞机是属于航空器还是航天器? 2、美国航空航天总署(NASA)用中国人名命名的月环山叫_________。 3、中国古代的孔明灯是________航空器的鼻祖。 4、第一个坐气球离开地面升入空中的人是哪个国家的? 5、巨型飞艇一次灾难性事故,它名叫_______。 6、重于空气的飞行器成功升空,得益于蒸汽机的出现。对吗? 7、第一次成功飞越英吉利海峡的人是________。 8、中国航空史上第一人叫_______。 9、二战后期,螺旋桨飞机最快速度达到了_______千米/小时。 10、涡轮喷气发动机是那个国家的工程师发明的? 11、第一种实用的喷气式战斗机是______。 12、第一次突破音障的人名叫________,他驾驶的飞机叫_______. 13、遇到“热障”的飞机叫________ 14、第三代战斗机的主要代表是_________ 15、隐形飞机的主要代表是________ 16、第四代战斗机的“4S”特性是指_______、_______、_______、_______。 17、柏林大空运的有名的运输机是_______。 18、驼峰航线要翻越的山脉是________。 19、第一种涡轮喷气发动机的客机是________。 20、“协和号”客机能够以几倍音速飞行? 21、目前世界上最大的客机是_______。 22、“中国空军美国航空志愿队”又名________。 23、新中国第一架飞机诞生在哪个城市? 24、中国第一种超音速战斗机是______。 25、洪都生产的“强五”飞机的总设计师是_______。 26、我国最强悍的武装直升机是______, 在哪个城市生产的? 27、历史上第一种弹道导弹是德国的______。 28、第一个宇航员是____年升空的,名叫_______。 29、人类第一次登上月球的年份是_____。宇航员是_______。 30、中国第一颗人造地球卫星是_______年升空的。 31、中国的“嫦娥之父”探月首席科学家是________。 32、中国第一位宇航员是_______。 33、中的月球车叫______。 34、美国航空航天总署的英文缩写是______。 35、第一架升空的航天飞机的名叫_______。 第二章飞行原理 36、在对流层层里,平均每升高100米,气温下降______度。 37、平流层也称为同温层,平均温度恒定在零下______度。 38、海平面的音速是_______米/秒。

航空航天概论试卷

密★启用前 北京航空航天大学现代远程教育 201309学期《航空航天概论》试卷 ☆注意事项: 1、本考卷满分:100分;考试时间:90分钟;考试形式:闭卷; 2、考生务必将自己的姓名、学号、学习中心名称填写在试卷及答题纸密封 线内,答案写在答题纸上,写在考卷上的不记分; 3、答题完毕,将试卷和答题纸一起上交。 一、单项选择题(本大题共20小题,每小题2分,共40分) 1. 气球是一种轻于空气的航空器,它利用了物理学的()定律。 A.热力学 B.万有引力 C.浮力 D.伯努利 2. 苏特尔是个具有非凡才能的飞机设计师。他生于1921年,1943年毕业于华盛顿大学航空工程专业,进入波音后参加过波音707、727和737的设计。担纲设计波音747时年仅()岁。 A.55 B.46 C.47 D.44 3. 1985年1月7日,法国人()和美国人杰弗利斯乘氢气球首次飞越英吉利海峡。 A.罗齐尔 B.达兰德斯 C.布朗夏尔 D.吉法尔 4. 越南战争中产生了世界上第一种专用的武装直升机,贝尔公司在UH-1B/C的基础上开发的()。 A.AH-64“阿帕奇” B.AH-1“眼镜蛇” C.OH-6“印第安种小马” D.S-61“海王” 5. 美国人()是莱特兄弟之前最接近发明成功飞机的人。 A.贝尔 B.兰利 C.曼利 D.寇蒂斯 6. 1870年()战争中,巴黎守军曾用气球向城外运送信件和撤退人员。 A.法俄 B.普法 C.南北 D.英法 7. 我国嫦娥1号月球探测器将使用()火箭发射。 A.长征2号E B.长征2号F C.长征3号A D.长征3号B 8. 按运行轨道分人造地球卫星通常分成()类。 A.1 B.2 C.3 D.4 9. 定翼思想是19世纪初,英国航空之父()提出来的。 A.凯利 B.汉森 C.菲利普斯 D.斯特林费罗

幼2第六章_口头语言发展的关键期

幼二第六章口头语言发展的关键期 费县实验幼儿园王霞 教学内容: 1.我说不出来 2.我的眼睛会说话 教学目的: 帮助家长了解幼儿语言发展的特点,重视幼儿口头语言发展的关键期,掌握培养幼儿口头语言表达能力的方法。 教学重点: 引导家长了解并重视幼儿语言发展的关键期。 教学难点: 掌握培养幼儿口语表达能力的方法 教学方法: 讲解说理式、讨论式、案例分析法式、采访对话式 教学过程: 各位家长朋友上午好: 很高兴我们再次聚在这里共同讨论教育孩子的策略、交流教育孩子的方法、探讨需要解决的问题。今天我们探讨的话题是关于孩子口语发展关键期的问题。 一.案例引出课题:口头语言发展关键期的重要性 教师讲解:案例一[印度狼孩的故事] 案例二[二战时期迷失的日本兵的故事]

思考讨论: 通过这两个案例,您发现口头语言发展的关键期在一个人的成长中具有怎样重要的作用? 请家长交流意见和看法。 教师讲解分析:如果狼孩在在出生时不属于先天缺陷,则这一事例说明:人类的语言不是天赋的,语言的发展也并非天生的本能。所有这些都是后天发展的结果。特别是0——6岁,是人的语言发展极为重要的一个时期。因为在这个阶段,发音系统逐渐形成比较稳定的神经通络,就是语言发展的关键期,错过这个时期,会给人的发展带来无法挽回的损失,以后要重新改变,非常困难。而一个成人如果由于某种原因长期离开人类社会后,有重新返回时,因为不存在关键期的问题,还可以通过后天的训练得以弥补。这就从正反两个方面口头语言发展的关键期对孩子语言发展具有至关重要的作用。 口头语言发展的关键期:2——3岁是孩子学习口语的关键期,因为这个时候,随着生活范围的逐步扩大,孩子好奇、好问、好模仿,样样想尝试,对周围事物的兴趣特别高,学说话最快,是获得词汇的高潮时期。如果在这个年龄阶段,孩子口语发展遇到障碍,以后进行弥补将会出现很大困难。 美国医药学会的前会长大卫?奥门博士曾经说过,我们应该尽力培养出一种能力,让别人能够进入我们的脑海和心灵,能够在别人面前、在人群当中、在大众之前清晰地把自己的思想和意念传递给别人。在我们这样努力去做而不断进步时,便会发觉:真正的自我正在人们

航空航天概论复习重点知识点整理

第一章绪论 1?叙述航空航天的空间范围 航空航天是人类利用载人或不载人的飞行器在地球大气层中和大气层外的外层空间(太空)的航行行为的总称。其中,大气层中的活动称为航空,大气层外的活动称为航天。大气层的外缘距离地面的高度目前尚未完全确定,一般认为距地面90~100km是航空和航天范围的分界区域。 2?简述现代战斗机的分代和技术特点 发展史 特点:a.可垂直起降、对起降场地木有太多特殊要求,b.可在空中悬停,c.能沿任意方向飞行但速度比较低、航程相对较短; 工作原理:直升机以航空发动机驱动旋翼旋转作为升力和推进力来源,动能守恒要求,旋翼升力的获得 靠向下加速空气,因此对直升机而言由旋翼带动空气向下运动,每一片旋翼叶片都产生升力,这些升力 的合力就是直升机的升力。 4.试述航空飞行器的主要类别及其基本飞行原理 A. 轻于空气(浮空器):气球;飞艇。原理:靠空气静浮力升空。气球没有动力装置,升空后只能随风飘动或被系留在某一固定位置;飞艇装有发动机、螺旋桨、安定面和操纵面,可控制飞行方向和路线。 B. 重于空气:固定翼航空器(飞机+滑翔机);旋翼航空器(直升机+旋翼机);扑翼航空器(扑翼机)。原理:靠 空气动力克服自身重力升空。飞机由固定的机翼产生升力,装有提供拉力或推力的动力装置、固定机翼、控制飞行姿态的操纵面,滑翔机最大区别在于升空后不用动力而是靠自身重力在飞行方向的分力 向前滑翔(装有的小型发动机是为了在滑翔前获得初始高度);旋翼机由旋转的机翼产生升力,其旋翼木有动力驱动,由动力装置提供的拉力作用下前进时,迎面气流吹动旋翼像风车似地旋转来产生升力;直 升机的旋翼是由发动机驱动的,垂直和水平运动所需要的拉力都由旋翼产生;扑翼机(振翼机)像鸟类翅膀那样扑动的翼面产生升力和拉力。 5.简述火箭、导弹与航天器的发展史 6.航天器的主要类别 A. 无人航天器a人造卫星(科学卫星、应用卫星、技术试验卫星),b.空间平台,c.空间探测器(月球探测器、行星探测器); B. 载人航天器a载人飞船(卫星式、登月式),b.空间站,c.轨道间飞行器(轨道机动器、轨道转移器),d.航天飞机。 7.什么是空天飞机,其主要的关键技术是什么? 空天飞机即航空航天飞机,指以吸气式发动机和火箭发动机组合推进系统作为动力装置、能够像飞机在跑道上起降、在大气层内高超音速飞行,又能单级入轨运行的可载人飞行器。 主要的技术在于a动力装置,既不同于飞机又不同于火箭,是一种混合配置的动力装置,安装有涡轮喷气发动机、冲压发动机、火箭发动机;b.计算空气动力学分析,由于其速度变化幅度大、飞行高度变化广、飞行环境不同;c.发动机和机身一体化设计,在大气层中高速飞行时阻力剧增,外形需要高度流线化;d.防热结构和材料,空天飞机需多次进出大气层,有很强的气动加热,所以防热系统既要保持良好的气动外形,又要能长期重复使用且便于维护。

法拉第电磁感应定律的应用

法拉第电磁感应定律 2.确定目标 本节课讲解应用法拉第电磁感应定律计算感应电动势问题,会区别感应电动势平均值和瞬时值。 二 精讲精练 (一)回归教材、注重基础 例 (见教材练习题P21 T2)如图甲所示,匝数为100匝,电阻为5Ω的线圈(为表示线 圈的绕向图中只画了2匝)两端A 、B 与一个电压表相连,线圈内有指向纸内方向的磁场,线圈中的磁通量按图乙所示规律变化。 (1)求电压表的读数?确定电压表的正极应接在A 还是接在B ? (2)若在电压表两端并联一个阻值为20Ω的电阻R .求通过电阻R 的电流大小和 方向? ,面 时间内,匀强磁场平行于线圈轴线向右穿过,则该段时间线圈两12)t B --

变式3.如图所示,匀强磁场的磁感应强度方向竖直向上,大小为 B,用电阻率为ρ、横 截面积为S的导线做成的边长为L的正方形线框abcd水平放置,OO′为过ad、bc 两边中点的直线,线框全部都位于磁场中.现把线框右半部分固定不动,而把线框 左半部分以OO′为轴向上转动60°,如图中虚线所示。若转动后磁感应强度随时 间按kt 变化(k为常量),求: B B+ = (1)在0到t 0时间内通过导线横截面的电荷量? (2)t0时刻ab边受到的安培力? (三)真题检测,品味高考 1.(2014·新课标全国Ⅰ)如图 (a),线圈ab、cd绕在同一软铁芯上.在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示.已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是( )

2. (2012·福建)如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B 的匀 强磁场,在此区域内,沿水平面固定一半径为r 的圆环形光滑细玻璃管,环心0在区域中心。一质量为m 、带电量为q (q>0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动。已知磁感应强度大小B 随时间t 的变化关系如图乙所示(T0为已知量)。设小球在运动过程中电量保持不变,对原磁场的影响可忽略。当t=0T 到t=05.1T 这段时间内的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等.求:这段时间内,细管内涡旋电场的场强大小E 。 (四)拓展深挖、把握先机 拓展:如图甲所示,匝数为n 匝,电阻为r,半径为a 的线圈两端A 、B 与电容为C 的电容器 和电阻R 相连,线圈中的磁感应强度按图乙所示规律变化(取垂直纸面向内方向为正方向)。求: (1)流过电阻的电流大小为多少? (2)电容器的电量为多少? 三 总结归纳 1. 应用法拉第电磁感应定律计算感应电动势。 2. 会判断导体两端电势的高低。

法拉第电磁感应定律教学设计及教学反思

《法拉第电磁感应定律》教学设计及教学反思 通榆蒙校林万生 一、教学目标 (一)知识和能力目标 1、知道感应电动势的概念,会区分Φ、ΔΦ、的物理意义。 2、理解法拉第电磁感应定律的内容和数学表达式,会推导公式知道适用范围并能应 用解答有关的简单问题。 3、通过学生对实验的观察、分析、思考,找出规律,培养学生的逻辑思维能力,观 察、分析、总结规律的能力。 (二)过程与方法目标 1.教师通过回顾上节内容引入感应电动势,通过演示实验,指导学生观察分析,总结规律。5 2.学生积极思考认真比较,理解感应电动势的存在,通过观察实验现象的分析讨论,总结影响感应电动势大小的因素。5 3.教师用类比法区分Φ、ΔΦ、的物理意义和它们与感应电动势的关系。2 4.讲解法拉第电磁感应定律的内容和推导数学表达式。 (三)情感、态度、价值观目标 1.通过使用类比让学生找到适合自己的记忆法,多方面提高自己的能力。 2.通过演示、推导让学生知道把抽象具体化,化难为简。 3.课后让学生体会科学家的探究精神。 二、教学重点 1. 区分Φ、ΔΦ、?Ф/?t的物理意义的理解; 2. 法拉第电磁感应定律的建立过程以及对公式E=?Ф/?t的理解。 三、教学难点 1. 区分Φ、ΔΦ、?Ф/?t的物理意义的理解; 2. 法拉第电磁感应定律的建立过程以及对公式E=?Ф/?t的理解。 四、教学准备 准备实验仪器:灵敏电流计、电流计、条形磁铁、蹄形磁铁、螺线管、铁芯、学生电源、 单匝线圈、滑动变阻器、开关、导线若干。 五、教学过程 (一)引入新课 教师和学生一起回顾第一节中的三个实验。在这三个实验中,闭合电路中都产生了感 应电流,则电路中必须要有电源,电源提供了电动势,从而产生电流。在电磁感应现象中产 生的电动势叫做感应电动势。那么感应电动势的大小跟哪些因素有关呢?本节课我们就来共 同研究这个问题。

口头语言发展的关键期——幼儿期

口头语言发展的关键期——幼儿期 语言不仅是与人交流的工具,同时也是一个生产丰富心灵的工具,维果斯基做过这样的比喻,我们从事物质劳动生产需要好的生产工具,如果我们的教育是从事精神的生产,也是需要强大的生产工具,而对于教育来说,最强大的生产工具是语言,因为人类文化文明,社会传统规则习惯都凝结在语言里,因此,只有让孩子发展丰富的口头语言能力,才有益于孩子心灵的成熟智力的进步。 口头语言能力是在幼儿期处于发展的关键期,发展规律是大约在七、八个月开始能听懂得别人讲话,在十二个月左右开始冒出来他第一个词,在一岁半儿童掌握的词汇量大约是五十个词,到三岁时儿童大约能使用一千个左右的词,在六岁或者六岁之前,有些孩子词汇量就可以发展到四千左右,所以三到六岁之间孩子的词汇量每天都在以三到四个词的速度增长,是词汇量飞速发展的时期。 那么在语法上,在幼儿期孩子从简单的主谓宾的句子,过渡到有复杂的转折词,更复杂的句子结果,在语言使用上,儿童从对话的语言过渡到独白语言,比如,当刚入幼儿园的时候,晚上回到家,妈妈们如果想知道这一天的生活,如果想问他说给妈妈讲一讲今天一天你都干了什么这个孩子是回答不出来的,因为他没有独白语言的能力,所以,你只能用对话的语言,说今天吃饭了没有吃了,吃的什么饭大米饭,有没有菜有,你问一句他回答一句。这是这个阶段年龄的孩子说话特点,是不是很多妈妈都会觉得孩子怎么那么没用了,连这些都不会说,现在不要奇怪了,所有的处于这样年龄阶段的孩子都这样的。 在三到六岁过程中,幼儿语言从对话的语言发展到独白的语言,他能过完整去讲述一件事情了,并且从别人听不懂到别人能听懂,这是巨大变化,要事先这个变化,必须给孩子提供足够多口语活动机会。 所以,我们要用大量的经典的童话故事,去丰富孩子心灵,这些故事不但具有语言教育的价值,同事也具有精神生产的价值,比如小马过河,会让孩子懂得什么是相对性,会让孩子觉得什么事情都要亲自去尝试,小红帽的故事让孩子懂得做什么事情前要小心,要事先想到后果;三只小猪的故事会让孩子懂得做事情不能偷懒,要努力才能有好的生活…… 因此,给孩子多多讲述故事,让孩子喜欢听、喜欢说、喜欢读、最后喜欢上写!!

《航空航天概论》课程教学大纲

《航空航天概论》课程教学大纲 课程编号:B2F050110 课程中文名称:航空航天概论 课程英文名称:Introduction to Aeronautics and Astronautics 开课学期:秋/春季 学分/学时:2.0/24+10° 先修课程: 建议后续课程: 适用专业/开课对象:所有专业/全校1年级本科生 团队负责人:杨超贾玉红责任教授:执笔人:贾玉红核准院长: 一、课程的性质、目的和任务 《航空航天概论》是各专业一年级学生的必修课程,主要向学生介绍航空航天技术所涉及学科的基本知识、基本原理及其发展概况。本课以飞行器(航空器和航天器)为中心,分别介绍了飞行原理、动力系统、机载设备、构造以及地面设备等方面的初步知识、原理和技术,并尽量反映上述学科的最新成就和发展动态。 通过该课程的学习,学生应对航空航天技术所涉及学科的基本知识、基本原理有一个全面和系统的了解,培养学生爱航空航天、学航空航天、投身于航空航天的兴趣和爱好,进一步培养学生的航空航天工程意识,提升国际视野,并为后继课程的学习打下基础。 本课程重点支持以下毕业要求指标点: 1.1掌握飞行器设计的基本理论、基本知识 1.2飞行器设计的基本能力 1.3熟悉航空航天飞行器设计的方针、政策和法规 1.4熟悉航空航天的理论前沿、应用前景和发展动态,具备创新意识 1.5良好的思想品德、社会公德和职业道德的能力 二、课程内容、基本要求及学时分配 第一章航空航天发展概况(6学时)

1. 航空航天的基本概念(掌握) 2. 飞行器的分类、组成与功用(掌握) 3. 航空航天发展概况(掌握) 4. 我国的航空航天工业(掌握) 5. 航空航天技术现状及未来发展趋势(了解) 重点支持毕业要求指标点1.3,1.4,1.5 第二章飞行环境和飞行原理(8学时) 1. 飞行环境(了解) 2. 流动气体的基本规律(掌握) 3. 飞机上的空气动力作用及原理(掌握) 4. 高速飞行的特点(掌握) 5. 飞机的飞行性能,操纵性和稳定性(掌握) 6. 直升机的飞行原理(掌握) 7. 航天器的飞行原理(了解) 重点支持毕业要求指标点1.1,1.2 第三章飞行器动力系统(3学时) 1. 发动机的分类及特点(了解) 2. 活塞式航空发动机(掌握) 3. 空气喷气发动机(掌握) 4. 火箭发动机(掌握) 5. 组合发动机(了解) 6. 非常规推进系统(了解) 重点支持毕业要求指标点1.1,1.2 第四章飞行器机载设备(3学时) 1. 传感器、飞行器仪表与显示系统(掌握) 2. 飞行器导航系统(掌握) 3. 飞行器自动控制系统(掌握) 4. 其他机载设备(了解) 重点支持毕业要求指标点1.1,1.2 第五章飞行器的构造(4学时) 1. 对飞行器结构的一般要求和常用的结构材料(了解) 2. 航空器的构造(掌握) 3. 航天器的构造(掌握) 4. 火箭和导弹的构造(了解) 5. 地面设施和保障系统(了解) 重点支持毕业要求指标点1.1,1.2

航空航天概论

第1章航空航天发展史 1.1 世界航空发展简史 1.1.1 远古的神话与传说 1.1.2 气球和飞艇的出现与发展 1.1.3 飞机的诞生 1.2 世界航天发展简史 1.3 中国航空发展史 1.3.1 中国古代航空技术的萌芽 1.3.2 中国近代航空业的发展 1.3.3 中国现代航空工业的建立和发展 第2章奋进中的中国航空航天 2.1 中国航空航天工业发展的现状 2.1.1 市场经济环境中的航空航天企业 2.1.2 中国航空航天的主要成就 2.1.3 主要航空航天企业介绍 2.2 中国航空航天工业的典型杰出人物 2.2.1中国“起飞”第一人——冯如 2.2.2中国火箭奠基人——钱学森 2.2.3 中国强击机总体设计第一人——陆孝彭2.2.4杰出人物的精神实质

2.3 中国独特的航空航天文化和民族精神 2.3.1 新中国给中国航空航天工业的起飞带来了曙光 2.3.2 自力更生、奋发图强的民族精神支撑了中国的航空航天工业 2.3.3 改革开放使中国的航空航天工业发展带来了新的生机 2.4 投身中国航空航天事业的职业准备 2.4.1 热爱祖国、为国争光的坚定信念 2.4.2 勇于登攀、敢于超越的进取意识 2.4.3 科学求实、严肃认真的工作作风 2.4.4 同舟共济、团结协作的大局观念 2.4.5 淡泊名利、默默奉献的崇高品质 第3章飞行原理 3.1 飞机的空气动力 3.1.1 流动气体的基本规律 3.1.2 升力的产生和增升装置 3.1.3 飞行的阻力及减阻措施 3.2 飞行操纵 3.2.1 飞机的重心和机体轴 3.2.2 飞机的稳定性 3.2.3 飞机的操纵原理

法拉第电磁感应定律及其应用

法拉第电磁感应定律及其应用 1. (法拉第电磁感应定律的应用)(优质试题·北京卷)如图所示,匀强磁场中有两个导体圆环a、b,磁场方向与圆环所在平面垂直。磁感应强度B随时间均匀增大。两圆环半径之比为2∶1,圆环中产生的感应电动势分别为E a和E b,不考虑两圆环间的相互影响。下列说法正确的是() A.E a∶E b=4∶1,感应电流均沿逆时针方向 B.E a∶E b=4∶1,感应电流均沿顺时针方向 C.E a∶E b=2∶1,感应电流均沿逆时针方向 D.E a∶E b=2∶1,感应电流均沿顺时针方向 ,感应电流产生的磁场方向垂直圆环所在平面向里,由右手定则知,两圆环中电流均沿顺时针方向。圆环的半径之比为2∶1,则面积之比为4∶1,据法拉第电磁感应定律得E=为定值,故E a∶E b=4∶1,故选项B正确。 2.

(法拉第电磁感应定律的应用)如图所示,在水平面内固定着U形光滑金属导轨,轨道间距为50 cm,金属导体棒ab质量为0.1 kg,电阻为0.2 Ω,横放在导轨上,电阻R的阻值是0.8 Ω(导轨其余部分电阻不计)。现加上竖直向下的磁感应强度为0.2 T的匀强磁场。用水平向右的恒力F=0.1 N拉动ab,使其从静止开始运动,则() A.导体棒ab开始运动后,电阻R中的电流方向是从P流向M B.导体棒ab运动的最大速度为10 m/s C.导体棒ab开始运动后,a、b两点的电势差逐渐增加到1 V后保持不变 D.导体棒ab开始运动后任一时刻,F的功率总等于导体棒ab和电阻R的发热功率之和 R中的感应电流方向是从M流向P,A错;当金属导体棒受力平衡时,其速度将达到最大值,由F=BIl,I= 可得 总总 ,代入数据解得v m=10 m/s,B对;感应电动势的最大值E m=1 V,a、b F= 总 两点的电势差为路端电压,最大值小于1 V,C错;在达到最大速度以前,F所做的功一部分转化为内能,另一部分转化为导体棒的动能,D错。 3.(法拉第电磁感应定律的应用)(优质试题·海南文昌中学期中)关于电磁感应,下列说法正确的是() A.穿过回路的磁通量越大,则产生的感应电动势越大

电磁感应定律的应用教案

电磁感应定律应用 【学习目标】 1.了解感生电动势和动生电动势的概念及不同。 2.了解感生电动势和动生电动势产生的原因。 3.能用动生电动势和感生电动势的公式进行分析和计算。 【要点梳理】 知识点一、感生电动势和动生电动势 由于引起磁通量的变化的原因不同感应电动势产生的机理也不同,一般分为两种:一种是磁场不变,导体运动引起的磁通量的变化而产生的感应电动势,这种电动势称作动生电动势,另外一种是导体不动,由于磁场变化引起磁通量的变化而产生的电动势称作感生电动势。 1.感应电场 19世纪60年代,英国物理学家麦克斯韦在他的电磁场理论中指出,变化的磁场会在周围空间激发一种电场,我们把这种电场叫做感应电场。 静止的电荷激发的电场叫静电场,静电场的电场线是由正电荷发出,到负电荷终止,电场线不闭合,而感应电场是一种涡旋电场,电场线是封闭的,如图所示,如果空间存在闭合导体,导体中的自由电荷就会在电场力的作用下定向移动,而产生感应电流,或者说导体中产生感应电动势。 要点诠释:感应电场是产生感应电流或感应电动势的原因,感应电场的方向也可以由楞次定律来判断。感应电流的方向与感应电场的方向相同。 2.感生电动势 (1)产生:磁场变化时会在空间激发电场,闭合导体中的自由电子在电场力的作用下定向运动,产生感应电流,即产生了感应电动势。 (2)定义:由感生电场产生的感应电动势成为感生电动势。 (3)感生电场方向判断:右手螺旋定则。 3、感生电动势的产生 由感应电场使导体产生的电动势叫做感生电动势,感生电动势在电路中的作用就是充当电源,其电路是内电路,当它和外电路连接后就会对外电路供电。 变化的磁场在闭合导体所在的空间产生电场,导体内自由电荷在电场力作用下产生感应电流,或者说产生感应电动势。其中感应电场就相当于电源内部所谓的非静电力,对电荷产生作用。例如磁场变化时产生的感应电动势为cos B E nS t ?θ?= . 知识点二、洛伦兹力与动生电动势 导体切割磁感线时会产生感应电动势,该电动势产生的机理是什么呢?导体切割磁感线产生的感应电动势与哪些因素有关?他是如何将其他形式的能转化为电能的? 1、动生电动势

北航《航空航天概论》第一章 课堂笔记(1)

北航《航空航天概论》第一章课堂笔记(1) 一、主要知识点掌握程度 了解航空航天发展概况.掌握航空器、航天器的分类,航空器、航天器发展过程中具有里程碑的重要事件,航空发动机及火箭发动机原理,飞行器升空原理、复合材料和飞机的仪表等内容。 二、知识点整理 (一)气球飞艇 1、载人气球的诞生 热气球在中国已有悠久的历史,称为天灯或孔明灯,知名学者李约瑟也指出,西元1241年蒙古人曾经在李格尼兹(Liegnitz)战役中使用热气球过龙形天灯传递信号。法国的孟格菲兄弟于1783年才向空中释放欧洲第一个内充热空气的气球。法国的罗伯特兄弟是最先乘充满氢气的气球飞上天空的。在世界很多不同的国家,气球也会用来作庆祝大日子来临时的点缀。很多地方的街道上都可以看到不同颜色的各种气球。在一些开幕的仪式中,人们会刺破气球,象征着那开幕的重要时刻,也能凝聚气氛。 2.发展历程 十八世纪,法国造纸商蒙戈菲尔兄弟因受碎纸屑在火炉中不断升起的启发,用纸袋聚热气作实验,使纸袋能够随着气流不断上升。1783年6月4日,蒙戈菲尔兄弟在里昂安诺内广场做公开表演,一个圆周为110英尺的模拟气球升起,这个气球用糊纸的布制成,布的接缝用扣子扣住。兄弟俩用稻草和木材在气球下面点火,气球慢慢升了起来,飘然飞行了1.5英里。乘坐蒙戈菲尔兄弟制造的气球的第一批乘客是一只公鸡、一只山羊还有一只丑小鸭。同年9月19日,在巴黎凡尔赛宫前,蒙戈菲尔兄弟为国王、王后、宫廷大臣及13万巴黎市民进行了热气球的升空表演。同年11月21日下午,蒙戈菲尔兄弟又在巴黎穆埃特堡进行了世界上第一次载人空中航行,热气球飞行了二十五分钟,在飞越半个巴黎之后降落在意大利广场附近。这次飞行比莱特兄弟的飞机飞行整整早了120年。二战以后,高新技术使球皮材料以及致热燃料得到普及,热气球成为不受地点约束、操作简单方便的公众体育项目。八十年代,热气球引入中国。1982年美国著名刊物《福布斯》杂志创始人福布斯先生驾驶热气球、摩托车旅游来到中国,自延安到北京,完成了驾驶热气球飞临世界每个国家的愿望。热气球作为一个体育项目正日趋普及,它曾创造了上升34668米高度的记录。1978年8月11日至17日,“双鹰Ⅲ号”成功飞越了大西洋,1981年“双鹰Ⅴ号”又成功跨越太平洋。现在全世界有20000多个的热气球在飞行。我国目前已有100多个球,成功地举办了第一届、第二届北京国际热气球邀请赛、泰山国际热气球邀请赛等大型比赛活动、99'

相关文档