文档库 最新最全的文档下载
当前位置:文档库 › 激光焊接工艺详解

激光焊接工艺详解

激光焊接工艺详解
激光焊接工艺详解

激光焊接工艺详解

随着科学技术的发展,近年来出现了激光焊接。那么什么是激光焊接呢?激光焊接的特点与优点又有哪些呢?

下图是激光焊接的工作原理:

首先,什么是激光?世界上的第一个激光束于1960年利用闪光灯泡激发红宝石晶粒所产生,因受限于晶体的热容量,只能产生很短暂的脉冲光束且频率很低。虽然瞬间脉冲峰值能量可高达106瓦,但仍属于低能量输出.

激光技术采用偏光镜反射激光产生的光束使其集中在聚焦装置中产生巨大能量的光束,假如焦点靠近工件,工件就会在几毫秒内熔化和蒸发,这一效应可用于焊接工艺高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。激光焊接设备的关键是大功率激光器,主要有两大类,一类是固体激光器,又称Nd:YAG 激光器。Nd(钕)是一种稀土族元素,YAG代表钇铝柘榴石,晶体结构与红宝石相似。Nd:YAG激光器波长为1.06μm,主要优点是产生的光束可以通过光纤传送,因此可以省往复杂的光束传送系统,适用于柔性制造系统或远程加工,通常用于焊接精度要求比较高的工件。汽车产业常用输出功率为3-4千瓦的Nd:YAG激光器。另一类是气体激光器,又称CO2激光器,分子气体作工作介质,产生均匀为10.6μm的红外激光,可以连续工作并输出很高的功率,标准激光功率在2-5千瓦之间。

与其它传统焊接技术相比,激光焊接的主要优点是:

1、速度快、深度大、变形小。

2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。

3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。

4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。

5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。

6、可焊接难以接近的部位,施行非接触远间隔焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。

7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。

但是,激光焊接也存在着一定的局限性:

1、要求焊件装配精度高,且要求光束在工件上的位置不能有明显偏移。这是由于激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定位精度达不到要求,很轻易造成焊接缺陷。

2、激光器及其相关系统的成本较高,一次性投资较大。

激光焊接的工艺参数

1功率密度

功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在 104~106W/cm2。?

2激光脉冲波形

激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。?

3激光脉冲宽度

脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。

4离焦量对焊接质量的影响

因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离焦平面与焊接平面距离相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。负离焦时,可获得更大的熔深,这与熔池的形成过程有关。

激光焊接的应用领域

激光焊接在制造行业、粉末冶金领域、汽车工业、电子工业以及其他领域都有广泛的应用。

激光焊接在汽车制造业的发展现状,缩减如下:

目前,德国大众汽车公司在AudiA6、GolfA4、Passat等品牌的车顶均采用激光焊接,宝马、通用公司在车架顶部也采用激光焊接,德国奔驰公司则采用激光焊接传动部件。

除了激光焊接,其他激光技术也得到了广泛应用:大众、通用、奔驰、日产公司应用了激光技术切割覆盖件,菲亚特和丰田公司应用激光涂覆发动机排气阀,大众公司则对发动机凸轮轴进行激光表面硬化处理。

从目前国内的情况来看,国际品牌的国产化车型:帕萨特、波罗、途安、奥迪、东风标致、福克斯等都已经采用激光焊接技术,其中一汽大众奥迪A6顶盖和宝来后盖采用激光焊接,速腾和途安的车身激光焊缝长度分别达到30、40m。此外,国内自主汽车品牌的华晨、奇瑞、吉利汽车也相继在其新车型上应用激光焊接技术。

改善和发展激光焊接的新技术

随着时代的进步,激光焊接的技术也在不断发展中,以下几项技术有助扩展激光焊接的应用范围及提高激光焊接自动控制水平。

1填充焊丝激光焊

激光焊接一般不填充焊丝,但对焊件装配间隙要求很高,实际生产中有时很难保证,限制了其应用范围。采用填丝激光焊,可大大降低对装配间隙的要求。例如板厚 2mm的铝合金板,如不采用填充焊丝,板材间隙必须为零才能获得良好的成形,如采用φ1.6mm的焊丝做为填充金属,即使间隙增至1.0mm,也可保证焊缝良好的成形。此外,填充焊丝还可以调整化学成分或进行厚板多层焊。?

2光束旋转激光焊

使激光束旋转进行焊接的方法,也可大大降低焊件装配以及光束对中的要求。例如在2mm厚高强合金钢板对接时,允许对缝装配间隙从0.14mm增大到 0.25mm;而对4mm厚的板,则从0.23mm增大到0.30mm。光束中心与焊缝中心的对准允许误差从0.25mm增加至0.5mm。

3激光焊接质量在线检测与控制

利用等离子体的光、声、电荷信号对激光焊接过程进行检测,近年来已成为国内外研究的热点,少数研究成果已达到了闭环控制的程度。

内容来源网络,由深圳机械展收集整理!

更多相关内容,就在深圳机械展!

激光焊接机怎样选型

激光焊接机怎样选型 激光焊接设备是激光材料加工技术应用的重要方面之一,东莞奥信激光激光焊接机主要分为脉冲激光焊接和连续激光焊接两种。 脉冲激光主要用于1 m m厚度以内薄壁金属材料的点焊和缝焊,其焊接过程属于热传导型,即激光辐射加热工件表面,再通过热传导向材料内部扩散,通过控制激光脉冲的波形、宽度、峰值功率和重复频率等参数,使工件之间形成良好的连接。在3 C产品外壳、锂电池、电子元器件、模具补焊等行业有着大量的应用。脉冲激光焊接最大的优点是工件整体温升很小,热影响范围小,工件变形小。 连续激光焊接机大部分都是高功率激光器,功率在500瓦以上,一般1mm以上的板

材都应该使用这种激光器。其焊接机理是基于小孔效应的深熔焊,深宽比大,可达到5:1以上,焊接速度快,热变形小。在机械、汽车、船舶等行业有着广泛的应用。还有一部分小功率连续激光器,功率在几十到几百瓦之间,它们在塑料焊接及激光钎焊这些行业使用得比较多。 1、激光器工作原理 1.1、YAG激光器的工作原理 激光电源首先把脉冲氙灯点着,通过激光电源对氙灯脉冲放电,形成一定频率,一定脉宽的光波,该光波经过聚光腔辐射到Nd 3+:YAG激光晶体上,激发Nd 3+:YAG激光晶体发光,再经过激光谐振腔谐振之后,发出波长为1064nm脉冲激光,该脉冲激光经过扩束、反射、(或经光纤传输)聚焦后打在所要焊接的物体上;在PLC或工业PC机的控制下,移动数控工作台,从而完成焊接。焊接时所需要的脉冲激光的频率、脉宽、波形、工作台速度、移动方向均可用单片机、PLC或工业PC机来控制,通过对激光的频率、脉宽的不同设定可调节控制脉冲激光的能量。

激光焊接的工作原理及其主要工艺参数(精)

激光焊接的工作原理及其主要工艺参数 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。 2.3.受激吸收 受激辐射的反过程就是受激吸收。处于低能级E1的一个原子,在频率为的辐射场作用下吸收一个能量为hν的光子,并跃迁至高能级E2,这种过程称为受激吸收。自发辐射是不相干的,受激辐射是相干的。 由受激辐射和自发辐射的相干性可知,相干辐射的光子简并度很大。普通光源在红外和可见光波段实际上是非相干光源。如果能够创造这样一种情况:使得腔内某一特定模式的ρ很大,而其他所有模式的都很小,就能够在这一特定模式内形成很高的光子简并度,使相干

透明塑料的激光焊接

透明塑料的激光焊接 在许多工业应用中,热塑性元件的激光焊接已经成为一项标准的加工方式。当使用二极管激光器、Nd:YAG激光器或光纤激光器时,标准的操作是在重合处进行投射式激光焊接。聚焦激光辐射穿透上层透明的塑料,被下层材料吸收,吸收的辐射能在表面转化成热能,由于热能的传导,就在上层形成接点。 原色或者有色的塑料在近红外波段的吸收较低。炭黑是一种树脂添加剂,它可以在很广的波段(从可见到红外)有效提高塑料对激光的吸收率。然而,如果使用了炭黑,塑料就只能做成深色,无法做成透明的塑料元件。 由英国剑桥焊接研究所(TWI)开发的Clearweld工艺使得透明或者有色塑料能够有效地吸收近红外光。它采用了特殊的近红外吸收材料作为元件表面的涂层,或者作为添加剂掺入下层的树脂中。这些材料在可见光范围内的吸收较小,在近红外区(800~1100 nm)的吸收较大。目前,在最大的吸收波长附近,具有各种不同的窄吸收带宽的吸收材料,它们可以被用来调整塑料的光学特性,以便适应各种常见的近红外激光器。除了取决于所使用的激光波长,最佳的吸收材料还取决于具体应用上的要求,比如加工参数、材料特性和目标元件所需的颜色。 Clearweld涂层工艺 带有吸收范围在940~1100 nm吸收剂的涂层为低粘性、基于溶剂的液体物质,被应用于各种配料系统中。典型的溶剂是乙醇和丙酮。涂层的用量以纳升/平方毫米(nL/mm2)为单位。溶剂可作为载体,挥发得很快,从而在塑料表面形成一层吸收材料薄膜。通常,干燥时间在1至7秒。也可以使用辅助干燥的方法,例如使用红外线灯对零件的预加热或者后加热,令溶剂的挥发更为迅速。涂层过程可以与焊接过程分开进行。 当涂层应用到材料表面时,一个均匀的吸收剂薄层就沉积在材料的表面。在激光辐射以前,干燥后的涂层在可见波段有些许颜色。进行焊接时,激光辐射被涂层吸收,同时被转化成热能。由于热传导,临近于涂层的表面材料被加热而熔化,固化后就形成了焊点。在加热的过程中,吸收剂分解,涂层就完全失去了可见波段的颜色(见图1)。 添加剂

锂离子电池工艺流程

锂离子电池工艺流程 正极混料 ●原料的掺和: (1)粘合剂的溶解(按标准浓度)及热处理。 (2)钴酸锂和导电剂球磨:使粉料初步混合,钴酸锂和导电剂粘合在一起,提高团聚作用和的导电性。配成浆料后不会单独分布于粘合剂中,球磨时间一般为2小时左右;为避免混入杂质,通常使用玛瑙球作为球磨介子。 ●干粉的分散、浸湿: (1)原理:固体粉末放置在空气中,随着时间的推移,将会吸附部分空气在固体的表面上,液体粘合剂加入后,液体与气体开始争夺固体表面;如果固体与气体吸附力比与液体的吸附力强,液体不能浸湿固体;如果固体与液体吸附力比与气体的吸附力强,液体可以浸湿固体,将气体挤出。 当润湿角≤90度,固体浸湿。 当润湿角>90度,固体不浸湿。 正极材料中的所有组员都能被粘合剂溶液浸湿,所以正极粉料分散相对容易。 (2)分散方法对分散的影响: A、静置法(时间长,效果差,但不损伤材料的原

有结构); B、搅拌法;自转或自转加公转(时间短,效果佳,但有可能损伤个别 材料的自身结构)。 1、搅拌桨对分散速度的影响。搅拌桨大致包括蛇形、蝶形、球形、桨形、齿轮形等。一般蛇形、蝶形、桨型搅拌桨用来对付分散难度大的材料或配料的初始阶段;球形、齿轮形用于分散难度较低的状态,效果佳。 2、搅拌速度对分散速度的影响。一般说来搅拌速度越高,分散速度越快,但对材料自身结构和对设备的损伤就越大。 3、浓度对分散速度的影响。通常情况下浆料浓度越小,分散速度越快,但太稀将导致材料的浪费和浆料沉淀的加重。 4、浓度对粘结强度的影响。浓度越大,柔制强度越大,粘接强度 越大;浓度越低,粘接强度越小。 5、真空度对分散速度的影响。高真空度有利于材料缝隙和表面的气体排出,降低液体吸附难度;材料在完全失重或重力减小的情况下分散均匀的难度将大大降低。

激光复合焊应用说明

激光复合焊应用说明 大族激光科技产业集团股份有限公司 https://www.wendangku.net/doc/3314076050.html,

目录 1激光电弧复合焊设备说明 (3) 2激光电弧复合焊原理 (3) 3操作说明 (4) 4基本焊接工艺说明 (5)

1激光电弧复合焊设备说明 激光电弧复合焊设备主要由以下部分组成,包括:激光器、弧焊机及送丝机、机器人(机床)及控制器、复合焊接头等,如下图所示。弧焊机和激光器与机器人(机床)控制器相连形成一个整体。 2激光电弧复合焊原理 在激光电弧复合焊接过程中,焊丝、激光束、母材及焊接方向之间的关系如下图所示: 激光电弧复合焊原理图 在上图中,d1为焦点与工件的距离;d2为焊丝与激光光斑中心的距离(光丝距离),为保证焊接质量,需调整上述两参数;d3为电极与母材表面之间的距离,决定了焊丝的干伸长度。 d1值的大小决定了激光照射在母材表面光斑的大小,影响焊接的深度,同时与激光焊接时表面成型及飞渐情况有关。 d2距离的大小决定了电弧熔池与激光熔池两者之间的关系,为了得到最佳

的焊接效率及表面成形,特别是在进行全透焊接时,控制d2的大小很重要。 d3距离过大一方面会使送丝变得不稳定,另一方面会使电弧过长,易产生电弧摆动,出现烧边现象,使得焊接过程不稳定;过小则焊接电弧太短,易形成短路。一般控制d3约15mm,在焊接过程中所通过焊接电源的弧长修正进行微调,从而保证焊接的稳定性。 焊接方向为前送丝,即电弧在前,激光在后(铝合金焊接相反),焊接方向与焊缝成型及间隙适应性有关,同时前送丝可减少焊接烟尘对未焊接头的污染(吹气方向决定)。 送丝角度约45度,角度对弧焊的深度有一定的影响,相对小角度而言,大角度可获得较大的熔深。 在进行确定材料的焊接时,首先需确定激光焊接深度的参数及电弧稳定焊接的参数,特别是电弧焊接的参数,因为电弧稳定与否直接影响焊缝的外观。根据不同的工艺需求,还需确定激光与电弧熔池之间的位置关系,即d2的大小。d2确定的是激光与电弧之间相互作用的效果,如下图所示: d2约为2mm时(图C),激光与电弧相互作用的效果最为明显,即电弧对母材的加热更有利于激光的吸收,同时电弧对激光等离子云起到一定的抑制效果,可增加激光的熔深,而激光对电弧又可起到一定的引导作用,使电弧更加稳定。所以激光与电弧不是简单的叠加,而是相互作用,合适的距离可使激光与电弧的作用最为明显,从而获得最大的熔深。 3操作说明 本司采用的弧焊机为福尼斯TPS系列焊机,与自熔焊接相比,复合焊操作主要是增加了弧焊机、送丝机、复合焊接头的操作。 弧焊机的操作详见《RCU5000i操作说明》。 送丝机的操作详见《送丝机操作说明》。 复合焊接头由激光焊接头和弧焊枪组合而成,见下图:

焊接工艺评定指导书

焊接工艺评定指导书(2) 工程名称指导书编号HP002 母材钢号Q420D 规格40 供货状态生产厂舞钢焊接材料生产厂牌号类型烘干温度(℃×h )备注焊条 焊丝ER55-D2-Ti ?1.2焊剂或气体CO2 焊接方法SMAW 焊接位置H 焊接设备型号电源极性DC 预热温度120 层间温度120~150 后热温度(℃)及时间(min)350×120热后处理消氢处理 接头尺寸及坡口图焊接顺序图 焊接工艺参数道次 焊接 方法 焊条或焊丝焊剂 或保 护气 保护气 流量 (L/mi n) 焊接 电流 (A) 焊接 电压 (V) 焊接 速度 (cm /s) 热输 入 (KJ/ cm) 备 注牌号? (mm ) 1~ SMA W ER55 -D2-T i 1.2 25 220~ 260 22~2 8 0.60~ 0.65 11 技术措施 焊前清理砂轮打磨层间清理钢丝砂轮或刷背面清根背面衬板 其他: 编制日期年月日审核日期年月日

焊接工艺评定记录表(2) 共页第页 工程名称指导书编号HP002 焊接方法SMAW 焊接位置H 设备型号NBC-500 电源及极性DC 母材钢号Q420D 类别Ⅲ生产厂 母材规程δ=40mm 热处理状态 接头尺寸及施焊道次顺序 焊接材料 焊 条 牌号类型 生产厂批号 烘干温度(℃) 时间(min) 焊 丝 牌号ER55-D2-Ti规格(mm) ?1.2 生产厂常州华通批号958121 焊 接 或 气 体 牌号CO2规格(mm) 生产厂 烘干温度(℃) 时间(min) 施焊工艺参数记录 道次焊接方 法 焊条(焊丝) 直径(mm) 保护气体流 量 (L/min) 电流 (A) 电压 (V) 速度 (cm/min) 热输入 (kJ/cm) 备注 1~2 SMAW?1.230 250 30 39.6 11.4 3~10 SMAW?1.230 250 30 38.1 11.8 11~42 SMAW?1.230 280 35 48.2 12.2 43~50 SMAW?1.230 250 30 40 11.3 施焊环境室外环境温度相对湿度% 预热温度200 层间温度230 后热温度350 时间2h 后热处理保温被保温 技术措施焊前清理砂轮打磨层间清理钢丝砂轮或刷背面清根背面衬板 其他无 焊工姓名康利伟资格代号级别施焊日期11年6月3 日记录雷建华日期11年5 月22日审核日期年月日

激光焊缝跟踪系统机器人用技术手册

Meta Vision Systems 机器人用激光焊缝 跟踪系统 技术手册 原作者:Jonathan Moore 翻译:Dr. Lin Sanbao (林三宝博士)

前言 尽管我们在编写这个手册时已经尽了最大努力,但是我们不接受任何由通过使用或者错误使用本手册中的信息,或者可能包含在本手册中的错误,而引发的责任和义务。本手册所提供的信息只是用于培训的目的。 英文版权所有 ? Meta Vision Systems 2000。 中文版版权所有? 中国哈尔滨AWPT-RDC联合实验室 所有权力保留,未经允许,不得以任何形式复制本手册或本手册中的任何部分。 联系方式: Meta Vision Systems Ltd. Oakfield House Oakfield Industrial Estate Eynsham Oxfordshire OX8 1TH UNITED KINGDOM Tel: +44 (0) 1865 887900 Fax: +44 (0) 1865 887901 Email: support@https://www.wendangku.net/doc/3314076050.html, 中国地区: 地址:珠海市九洲大道兰埔白石路105号二楼西 邮编:519000 电话:0756 --- 8509695、8508516、6680610、6602419、6626464 传真:0756 --- 8500745 联系人:魏占静 电邮:jbw@https://www.wendangku.net/doc/3314076050.html, wzj0756@https://www.wendangku.net/doc/3314076050.html, 网址:https://www.wendangku.net/doc/3314076050.html,

目录 1.概述 (3) 1.1传感头 (3) 1.2控制系统 (3) 1.3应用 (3) 1.4典型应用 (4) 1.5焊缝类型 (4) 2.传感器 (9) 2.1激光的安全性 (9) 2.2规格 (9) 2.3MT 产品系列的规格 (11) 2.4传感器的物理规格 (12) 2.5焊缝的特征尺寸 (12) 3.控制系统 (14) 3.1MTF – Finder(MTF 定位控制系统) (14) 3.2MTR (15) 3.3MTR Integrated(集成型MTR系统) (16) 3.4MTX-HS (16) 4.软件的主要特征 (18) 4.1焊缝定义 (18) 4.2间隙测量 (18) 4.3真实路径(True Path) (18) 4.4搜索 (18) 4.5体积&高度错边测量 (19) 4.6交替式激光器 (19) 4.7示教跟踪(Teach Track) (20) 5.配置和可选项 (21) 5.1应用概述 (21) 5.2硬件和软件可选项 (22)

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理及其主要工艺参数摘要:焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊, 电子束焊,激光焊等多种,本文详细介绍了激光焊接的工作原理与工艺参数,还讨论了激光焊接技术在现代工业中的应用,并与其他焊接方法进行对比。研究表明激光焊接技术将逐步得到广泛应用。 关键词:焊接技术;激光焊接;工作原理;工艺参数。 1. 引言 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,

焊接公差标准gb19804

焊接结构的一般尺寸公差和形位公差: 《焊接结构的一般尺寸公差和形位公差(GB/T 19804-2005)(ISO 13920:1996)》等同采用了国际标准ISO 13920:1996,为了保证标准的适用性及协调性,本标准在等同转化ISO 13920的过程中,结合我国的实际情况做了必要的处理。《焊接结构的一般尺寸公差和形位公差(GB/T 19804-2005)(ISO 13920:1996)》由中国机械工业联合会提出。本标准由全国焊接标准化技术委员会归口。本标准负责起草单位:哈尔滨焊接研究所。本标准主要起草人:朴东光。 《焊接结构的一般尺寸公差和形位公差(GB/T 19804-2005)(ISO 13920:1996)》由中国标准出版社出版。 焊接标准汇编:工艺、质量安全和试验方法卷: 《焊接标准汇编:工艺、质量安全和试验方法卷》是2011年11月中国质检出版社、中国标准出版社联合出版的图书,作者是中国质检出版社第五编辑室。 内容简介: 钢产量是衡量一个国家综合经济实力的重要指标之一,也是我国工业化进程中的支柱产业。钢材产量的快速升高拉动了我国焊材产业的强劲发展。这不仅使我国成为世界上头号钢铁和焊材生产大国,也成为头号钢铁和焊材消费大国。 为满足机械工程、船舶、工程建设、航空航天、石油化工等行业企事业单位需求,我社特组织编辑出版《焊接标准汇编》,共分为两

卷:材料卷和工艺、质量安全和试验方法卷。本卷是工艺、质量安全和试验方法卷。本卷汇集了截至2011年6月底批准发布的焊接工艺与质量安全标准,包括焊接工艺、焊接质量与安全标准、试验方法标准,共有国家标准48项。 本汇编收集国家标准的属性已在本目录上标明(GB或GBlT),年号用四位数字表示。鉴于部分国家标准是在国家标准清理整顿前出版的,现尚未修订,故属性以本目录上标明的为准(标准正文“引用标准”中标准的属性请读者注意查对)。 目录: 一、焊接工艺 GB/T 985.1-2008 气焊、焊条电弧焊、气体保护焊和高能束焊的推荐坡口 GB/T 985.2-2008 埋弧焊的推荐坡口 GB/T 985.3-2008 铝及铝合金气体保护焊的推荐坡口 GB/T 985.4-2008 复合钢的推荐坡口 GB/T 5185-2005 焊接及相关工艺方法代号 GB/T 15169-2003 钢熔化焊焊工技能评定 GB/T 15829-2008 软钎剂分类与性能要求 GB/T 16672-1996 焊缝--工作位置倾角和转角的定义 GB/T 18591-2001 焊接预热温度、道间温度及预热维持温度的测量指南 GB/T 19419-2003 焊接管理任务与职责

激光焊接的工艺参数及特性分析讲解

激光焊接的工艺参数及特性分析 一、激光焊接的工艺参数:1、功率密度。功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/cm2。2、激光脉冲波形。激光脉冲波形在激光焊接 一、激光焊接的工艺参数: 1、功率密度。功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/cm2。 2、激光脉冲波形。激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。 3、激光脉冲宽度。脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。 4、离焦量对焊接质量的影响。激光焊接通常需要一定的离焦,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离做文章一相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。负离焦时,可获得更大的熔深,这与熔池的形成过程有关。实验表明,激光加热50~200us材料开始熔化,形成液相金属并出现问分汽化,形成市压蒸汽,并以极高的速度喷射,发出耀眼的白光。与此同时,高浓度汽体使液相金属运动至熔池边缘,在熔池中心形成凹陷。当负离焦时,材料内部功率密度比表面还高,易形成更强的熔化、汽化,使光能向材料更深处传递。所以在实际应用中,当要求熔深较大时,采用负离焦;焊接薄材料时,宜用正离焦。 二、激光焊接工艺方法: 1、片与片间的焊接。包括对焊、端焊、中心穿透熔化焊、中心穿孔熔化焊等4种工艺方法。

焊接工艺评定作业指导书

焊接工艺评定作业指导 书 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

1.总则 焊接工艺评定是产品正式焊接前应进行的试验工作,解决在具体条件下焊接工艺问题,是制定工艺技术文件的依据。规定了焊接工艺评定的具体操作程序,是焊接工艺评定的指导性文件。 2.定义 2.1焊接:通过加热、加压或两者并用,并且用或不用填充材料使焊件间达到原子结 合的一种加工工艺方法。 2.2焊接工艺评定:是在正式产品焊接前通过试验、预测焊接接头可焊性。若试验的 接头性能不合格,可以改变焊接工艺,直到评定合格为止,以解决在具体条件下 实施焊接工艺问题。 3.工作程序 3.1工作程序流程图 委托书 生产部制作车间 委托焊接、划线 焊接研究窒网架结构车间试验加工试件 3.2凡属下列条件均需进行焊接工艺评定: 甲方制作标准中规定;

结构钢材系首次使用; 焊条、焊丝、焊剂的型号改变; 焊接方法改变,或由于焊接设备的改变而引起焊接参数的改变。 3.2.1焊接工艺需改变: a. 双面焊、对接焊改为单面焊; b. 单面对接电弧焊增加或去掉垫板,埋弧焊的单面焊反面成型; c.坡口型式改变、变更钢板厚度,要求焊透的T型接头。 3.2.2需要预热、后热或焊后要做热处理。 3.3技术员在正式产品施焊之前分别向制作车间、焊研室下达焊接工艺委托书(具体 项目见附页)。 3.4工艺试验的钢材和焊接材料,应于工程上所用材料相同。 3.4.1工艺试验一般以对接接头为主,试验前应根据钢材的可焊性和设计要求拟 定试件的焊接工艺、焊后处理、检验程序和质量要求。 3.4.2要求焊透的T型接头,宜用与实际构件刚度相当的试件进行试验。 3.4.3工艺试验应包括现场作业中遇到的各种焊接位置,当现场有妨碍焊接操作 的障碍时,还应做模拟障碍的焊接试验。 3.5制作车间:配料员据委托书配出工艺评定所用材料的规格、尺寸、经划线、切割 等各工序加工完毕后转至焊研室。 3.6试样的加工与评定 3.6.1工艺试板的焊接应由持焊工合格证的焊工施焊。

激光焊接工艺实践课程学习指南讲解

《激光焊接工艺实践》课程学习指南 一、课程资源导航 二、学前要求 学习本课程需要有一定的预备基础知识,需要配置一台计算机,对计算机具体要求如下: (一) 必备基础 学习本课程的学习者必须具备一定的基础: 1.会熟练使用计算机,如常用操作系统Windows XP或者Linux,还有常用软件如PowerPoint、Word等; 2.一定的激光加工技术和工程材料学知识。 (二) 软硬件环境 1.硬件环境:

三、学习目标与要求 课程设置是基于光机电应用技术专业职业岗位能力的培养需要,要求学生通过视频课件、动画和现场实训操作等多种学习资源,掌握激光焊接原理、工艺特点和应用领域。通过本课程学习,学生不仅应该掌握激光焊接加工的基础理论,更要培养、锻炼实际动手操作能力,从而使其在掌握专业知识的基础上获得所需要的职业技能。具体要求如下: ?了解激光焊接工艺的过程和机理; ?学习根据材料特点和焊接工艺要求来选择合适的激光焊接设备; ?针对不同激光焊接设备,学会选择合适的激光焊接参数并能够对设备进行调试、维护; ?针对不同激光焊接过程,学会分析影响焊接质量的因素和解决的措施; ?学习激光焊接的安全操作常识和正确的操作规范。 四、学习路径 1.学习模式 在校学生学习方式:课堂学习+操作实训+网络辅助+标准化试题库考试 网络学习方式:教材自学+按课件学习+网上导学+实训实验+标准化试题库考试2.课程知识学习路径 按知识点渐进式学习:先导课程为激光加工原理、工程材料学等。 3.推荐书籍和参考 (1)郑启光,邵丹编著,激光加工工艺与设备,北京:机械工业出版社,2009,10;(2)刘其斌编著,激光加工技术及其应用,北京:冶金工业出版社,2007;(3)蒙大桥,张友寿,何建军等译,材料激光工艺过程,北京:机械工业出版社,2012,9; (4)现代激光焊接技术,陈彦宾,科学出版社,2010,,10; (5)激光焊接与切割质量控制,陈武柱,机械工业出版社,2010。 五、考核标准 学生学习考核标准请参见本课程资源“考核方案”

激光焊接工艺参数

激光焊接原理与主要工艺参数 1.激光焊接原理 激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于104~105 W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107 W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。 其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。 用于齿轮焊接和冶金薄板焊接用的激光焊接机主要涉及激光深熔焊接。下面重点介绍激光深熔焊接的原理。 激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达2500 0C左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。上述过程的所有这一切发生得如此快,使焊接速度很容易达到每分钟数米。 2. 激光深熔焊接的主要工艺参数 1)激光功率。激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。只有当工件上的激光

激光焊接工艺详解

激光焊接工艺详解 随着科学技术的发展,近年来出现了激光焊接。那么什么是激光焊接呢?激光焊接的特点与优点又有哪些呢? 下图是激光焊接的工作原理: 首先,什么是激光?世界上的第一个激光束于1960年利用闪光灯泡激发红宝石晶粒所产生,因受限于晶体的热容量,只能产生很短暂的脉冲光束且频率很低。虽然瞬间脉冲峰值能量可高达106瓦,但仍属于低能量输出. 激光技术采用偏光镜反射激光产生的光束使其集中在聚焦装置中产生巨大能量的光束,假如焦点靠近工件,工件就会在几毫秒内熔化和蒸发,这一效应可用于焊接工艺高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。激光焊接设备的关键是大功率激光器,主要有两大类,一类是固体激光器,又称Nd:YAG 激光器。Nd(钕)是一种稀土族元素,YAG代表钇铝柘榴石,晶体结构与红宝石相似。Nd:YAG激光器波长为1.06μm,主要优点是产生的光束可以通过光纤传送,因此可以省往复杂的光束传送系统,适用于柔性制造系统或远程加工,通常用于焊接精度要求比较高的工件。汽车产业常用输出功率为3-4千瓦的Nd:YAG激光器。另一类是气体激光器,又称CO2激光器,分子气体作工作介质,产生均匀为10.6μm的红外激光,可以连续工作并输出很高的功率,标准激光功率在2-5千瓦之间。 与其它传统焊接技术相比,激光焊接的主要优点是: 1、速度快、深度大、变形小。 2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。 3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。 4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。 5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。 6、可焊接难以接近的部位,施行非接触远间隔焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。 7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。

大族激光价值分析完结篇

  补充: 此文又臭又长,慎入。 ---------------------------------------------------------------------------------------------------------------------------人的思维具有跳跃性,喜欢先入为主,又容易被锚定以及自我强化,想当然,冲动,以偏概全。文字记录能帮助细化推理过程,推敲结论的合理性,帮助理顺逻辑,能纠错完善思路,记录的过程可以连点成线,连线成面,提炼精要,避免盲人摸象。就以这篇大族激光的企业价值分析作为今年的阶段性小结,作为未来的起点。 分析具体思路囊括为五个大项(盈利的确定性,生意模式,企业价值创造经营态势,风险,其他补充)。其中盈利的确定性又分为: 商业价值,市场潜力及供需格局,竞争力,业绩增长驱动力,成本费用,产能外延,经验变量七个方面。 生意模式又分为: 经营存续,现金创造,经营周期(时间相关)三个方面。 (一)盈利的确定性 (1)商业价值潜在的巨大商业价值是盈利确定性的因素之一。必须认识到企业商业价值的大小需要结合特定的时代背景,一个尚且吃不饱穿不暖的社会,很难想象娱乐业有多大的商业价值。几乎所有的企业都可以归类到下面两大类: 一种是满足人的需求;一种是满足企业的需求(如提高生产效率等)。毫无疑问,激光行业属于第二类。激光的应用可以简单分为两类,一类是提高企业效率。 只要中国的手机产业链/新能源行业/太阳能/led等行业继续向前发展,一方面进入存量市场格局的行业硬件创新必然是未来的方向,另一方面充分竞争

的行业也必然会倒逼生产力提高。而激光行业必将在这个两个方面起到重要作用,加上本届政府经济发展的核心强调从量到质的转变(从以往摊大饼到重视生产力提高),激光行业目前阶段在中国大有可为。 有趣的是虽然大族激光营收从2012年到2016年增加了60%,但其市场份额从2012年到2016年市场份额是不断下降的,查看华工科技也发现了同样的趋势(不同之处是华工2016年激光营收较2012年只增长15%左右)。这一方面说明这几年国内激光市场高速增长吸引了众多企业的加入,激光行业呈现出比较分散的市场。另一方面也可能预示着随着竞争的白热化国内激光企业的行业洗牌可能就在不久的将来。 据一位从事超快激光器研究的业内朋友得知,这几年随着激光市场的景气,中低端市场激光设备已经有了价格战的味道,以紫外激光器为例,2013年左右紫外激光器价格大概一台20~30万人民币左右,到2017年一台紫外激光器价格已经下滑到5万人民币了,可见激光企业已经过了往年躺着就能赚钱的好日子了。如果说供不应求为供需格局的最佳组合(比如天齐,赣锋,亨通,福晶,巨石,隆基),其次需求增长,供应也在快速扩展也算是不错的格局(比如,新能源电池隔膜)。通过上述分析,激光行业随着需求增长,供应端也在不断扩大但多为中低端市场,供需模式介于供不应求和供应需求同步扩大之间。需要注意到两种截然不同的供需格局: 一种是巨大需求,但市场过于分散;另一种是行业中占据明显竞争优势,具有压倒性的占有率,但行业需求并不清晰。 前者要关注经验模式和特色上的创新(比如装修行业的过于分散痛点),或者整合能力强的企业;后者更需要关注教育市场扩大需求,打破天花板。从发达国家的情况来看,激光行业集中度非常高,这说明激光设备最终是可能形成较高的门槛的。根据optech的数据,德国通快在2015年占据了全球30%的激光加工市场份额,是激光加工的世界龙头,作为国内全领域龙头的大族激光未来在国内市场份额都有望进一步提高。 假如国内激光市场未来3年(到20年)总规模保持20%的复合增速,再假设大族激光的市场占有率提升到25%左右,那大族激光预期的营业规模大约为200亿左右。2017年预计公司营业收入在120亿左右,其中国内收入110亿,那根

如何做好焊接工艺评定-评定的程序

如何做好焊接工艺评定-评定的程序 焊接工艺评定的程序是:编制和下达焊接工艺评定任务书—编制焊接工艺评定方案—焊制试件和检验试件—编制焊接工艺评定报告—根据焊接工艺评定报告编制焊接作业指导书(或称焊接工艺卡) 一、编制和下达焊接工艺评定任务书 任务书的主要作用是下达评定任务,因此,其主要的内容应为:评定目的、评定指标、评定项目和承担评定任务的部门及人员的资质条件等。 (一)评定指标的确定 根据规程和钢材的理论基础知识(焊接性)等,确定各项技术指标。按照《焊接工艺评定规程》 DL/T869的规定,要求焊缝金属的化学成分和力学性能(强度、塑性、韧性等指标)应与母材相当或不低于母材相应规定值的下限。 (二)评定项目的确定 根据工程的实际工作情况要求,按规程适用范围做好项目的相关覆盖,确定好评定项目。 焊接工艺评定的项目确定应从以下几方面来考虑: 1.钢材 焊接工程应用的钢材品种和规格繁多,如每种均进行“评定”,不但复杂且数量很多,为减少评定数量,且又能取得可靠的工艺,将钢材按其化学成分、冶金性能、焊后热处理条件、力学性能、规格、设计和使用条件等因素综合考虑.划分成类级别进行评定。按规程要求可以进行替代覆盖。 (1)钢材类级别划分 电力工业火力发电厂常用钢材按类级别划分,它们的划分方法是:按用途划分成A、B、C 等三个类别,而级别则以力学性能、化学成分和组织类型综合划分为I、Ⅱ、Ⅲ三个级别。几个规程钢材类别划法已统一,具体是: 1)碳素钢及普通低合金钢为一类,代号为“A”。其级别为: 碳素钢(含碳量≤0.35%)代号为:A I。 普通低合金钢(6 s≤400MPa)代号为:AⅡ。

工业强基工程实施指南

附件2 工业强基工程实施指南(2016-2020年) 为贯彻落实《中国制造2025》,组织实施好工业强基工程,夯实工业基础,提升工业发展的质量和效益,推进制造强国建设,特制订本指南。 一、背景 工业基础主要包括核心基础零部件(元器件)、关键基础材料、先进基础工艺和产业技术基础(简称“四基”),直接决定着产品的性能和质量,是工业整体素质和核心竞争力的根本体现,是制造强国建设的重要基础和支撑条件。 经过多年发展,我国工业总体实力迈上新台阶,已经成为具有重要影响力的工业大国,形成了门类较为齐全、能够满足整机和系统一般需求的工业基础体系。但是,核心基础零部件(元器件)、关键基础材料严重依赖进口,产品质量和可靠性难以满足需要;先进基础工艺应用程度不高,共性技术缺失;产业技术基础体系不完善,试验验证、计量检测、信息服务等能力薄弱。工业基础能力不强,严重影响主机、成套设备和整机产品的性能质量和品牌信誉,制约我国工业创新发展和转型升级,已成为制造强国建设的瓶颈。未来5-10年,提升工业基础能力,夯实工业发展基础迫在眉睫。 工业强基是《中国制造2025》的核心任务,决定制造强国战略的成败,是一项长期性、战略性、复杂性的系统工程,必须

加强顶层设计,制定推进计划,明确重点任务,完善政策措施,整合各方资源,组织推动全社会齐心协力,抓紧抓实,长期坚持,务求抓出实效。 二、总体要求 (一)基本原则 落实制造强国建设战略部署,围绕《中国制造2025》十大重点领域高端突破和传统产业转型升级重大需求,坚持“问题导向、重点突破、产需结合、协同创新”,以企业为主体,应用为牵引,创新为动力,质量为核心,聚焦五大任务,开展重点领域“一揽子”突破行动,实施重点产品“一条龙”应用计划,建设一批产业技术基础平台,培育一批专精特新“小巨人”企业,推动“四基”领域军民融合发展,着力构建市场化的“四基”发展推进机制,为建设制造强国奠定坚实基础。 ——坚持问题导向。围绕重点工程和重大装备产业链瓶颈,从问题出发,分析和研究工业“四基”的薄弱环节,针对共性领域和突出问题分类施策。 ——坚持重点突破。依托重点工程、重大项目和骨干企业,区分轻重缓急,点线面结合,有序推进,集中资源突破一批需求迫切、基础条件好、带动作用强的基础产品和技术。 ——坚持产需结合。瞄准整机和系统的发展趋势,加强需求侧激励,推动基础与整机企业系统紧密结合,推动基础发展与产业应用良性互动。 ——坚持协同创新。统筹各类创新资源,促进整机系统企业、

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理 焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊,电子束焊,激光焊等多种,研究表明激光焊接技术将逐步得到广泛应用。 1. 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。 2.3.受激吸收 受激辐射的反过程就是受激吸收。处于低能级E1的一个原子,在频率为的辐射场作用下吸收一个能量为hν的光子,并跃迁至高能级E2,这种过程称为受激吸收。自发辐射是不相干的,受激辐射是相干的。 由受激辐射和自发辐射的相干性可知,相干辐射的光子简并度很大。普通光源在红外和

相关文档
相关文档 最新文档