文档库 最新最全的文档下载
当前位置:文档库 › 立体几何知识点总结_典型方法总结

立体几何知识点总结_典型方法总结

立体几何知识点总结_典型方法总结
立体几何知识点总结_典型方法总结

数学必修(二)知识梳理与解题方法分析

第一章《空间几何体》

一、本章总知识结构

二、各节内容分析

1、1空间几何体的结构

1、本节知识结构

1、2空间几何体三视图与直观图

1、本节知识结构

1、3 空间几何体的表面积与体积

1、本节知识结构

三、高考考点解析

本部分内容在高考中主要考查以下两个方面的内容:

1、多面体的体积(表面积)问题;

2、点到平面的距离(多面体的一个顶点到多面体一个面的距离)问题—“等体积代换法”。

(一)多面体的体积(表面积)问题

1. 在四棱锥P -ABCD 中,底面就是边长为2的菱形,∠DAB =60ο,对角线AC 与BD 相交于点O,PO ⊥平面ABCD,PB 与平面ABCD 所成的角为60ο

.

(1)求四棱锥P -ABCD 的体积;

【解】(1)在四棱锥P-ABCD 中,由PO ⊥平面ABCD,得 ∠PBO 就是PB 与平面ABCD 所成的角,∠PBO=60°、 在Rt △AOB 中BO=ABsin30°=1,由PO ⊥BO, 于就是,PO=BOtan60°=3,

而底面菱形的面积为23、 ∴四棱锥P-ABCD 的体积V=

3

1

×23×3=2、

2.如图,长方体ABCD-1111D C B A 中,E 、P 分别就是BC 、11A D 的中点,M 、N 分别就是AE 、1CD 的中点,1AD=AA ,a =AB=2,a (Ⅲ)求三棱锥P -DEN 的体积。 【解】 (Ⅲ)1111

24

NEP ECD P S S BC CD ?=

=?矩形 222

15444

a a a a =

??+= 作1DQ CD ⊥,交1CD 于Q ,由11A D ⊥面11CDD C 得11AC DQ ⊥ ∴DQ ⊥面11BCD A ∴在1Rt CDD ?中,1122

55

CD DD a a DQ a CD a ??=

==

∴13P DEN D ENP NEP V V S DQ --?==

?2152345

a a =?316a =。 (二)点到平面的距离问题—“等体积代换法”。

1 如图,四面体ABCD 中,O 、E 分别就是BD 、BC 的中点,

2, 2.CA CB CD BD AB AD ======

(III)求点E 到平面ACD 的距离。

【解】 (III) 设点E 到平面ACD 的距离为.h

E ACD A CDE V V --=Q ,

∴ 11

.33

ACD CDE h S AO S ??=g g g

ACD

?中,

2,2,CA CD AD ===

2212722().222

ACD S ?∴=??-=

而2133

1,2,242

CDE AO S ?==

??= C

A

D

B

O

E

3

1.21

2.77

CDE

ACD

AO S h S ???

∴=

=

=

∴点E 到平面ACD 的距离为

21.7

2.如图,已知正三棱柱111ABC A B C -的侧棱长与底面边长为1,M 就是底面BC 边上的中点,N 就是侧棱1CC 上的点,且12CN C N =。

(Ⅱ)求点1B 到平面AMN 的距离。 【解】(Ⅱ)过1B 在面11BCC B 内作直线

1B H MN ⊥,H 为垂足。又AM ⊥平面11BCC B ,所以AM ⊥1B H 。于就是1B H ⊥平面AMN ,

故1B H 即为1B 到平面AMN 的距离。在11R B HM ?中,1B H =

1B M 151

sin 115

B MH =

?-=。故点1B 到平面AMN 的距离为1。

3 如图,已知三棱锥O ABC -的侧棱OA OB OC 、、两两垂直,且OA=1,OB=OC=2,E 就是OC 的中点。 (1)求O 点到面ABC 的距离;

【解】(1)取BC 的中点D,连AD 、OD 。

OB OC

=Q ,则OD BC AD BC ⊥⊥、,

∴BC ⊥面OAD 。过O 点作OH ⊥AD 于H, 则OH ⊥面ABC,OH 的长就就是所要求的距离。

22BC =,222OD OC CD =-=。

OA OB OA OC ⊥⊥Q ,,

∴OA ⊥面OBC,则OA OD ⊥。

223AD OA OD =+=,在直角三角形OAD 中,有26

3

OA OD OH AD ?=

==。

(另解:由112

363

O ABC ABC V S OH OA OB OC -??=

?=??=知:63OH =) 第二章 《点、直线、平面之间的位置关系》

一、本章的知识结构

二、各节内容分析

2、1空间中点、直线、平面之间的位置关系 1、本节知识结构

2、内容归

纳总结

(1)四个公理

公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

符号语言:,,,A l B l A B l ααα∈∈∈∈ ? ∈且。

公理2:过不在一条直线上的三点,有且只有一个平面。 三个推论:① ② ③

它给出了确定一个平面的依据。

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(两个平面的交线)。

符号语言:,,P P l P l αβαβ∈∈?=∈I 且。

公理4:(平行线的传递性)平行与同一直线的两条直线互相平行。 符号语言://,////a l b l a b ?且。

(2)空间中直线与直线之间的位置关系

1、概念 异面直线及夹角:把不在任何一个平面内的两条直线叫做异面直线

已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的角(或直角)叫异面直线,a b 所成的夹角。(易知:夹角范围090θ<≤?)

定理:空间中如果一个角的两边分别与另一个角的两边分别平行,那么这两个角相等或互补。(注意:会画两个角互补的图形)

2、位置关系:????

???

?相交直线:_______________________________;共面直线平行直线:_______________________________;异面直线:_________________________________________.

(3)空间中直线与平面之间的位置关系

直线与平面的位置关系有三种: 1.23//l l A l ααα???

=????

??

I 直线在平面内:.直线与平面相交:直线在平面外.直线与平面平行:

(4)空间中平面与平面之间的位置关系

平面与平面之间的位置关系有两种: 1.//2.l αβ

αβ??=?

I 两个平面平行:两个平面相交:

2、2 直线、平面平行的判定及其性质

1、本节知识结构

2、内容归纳总结

(1)四个定理

定理定理内容符号表示

分析解决问题的常用方法

直线与平面平行的判定

平面外的一条直

线与平面内的一条直

线平行,则该直线与此

平面平行。

,,//

//

a b a b

a

αα

α

??

?

在已知平面内“找出”

一条直线与已知直线平行

就可以判定直线与平面平

行。即将“空间问题”转化

为“平面问题”

平面与平面平行的判定

一个平面内的两

条相交直线与另一个

平面平行,则这两个平

面平行。

,,

,//,//

//

a b

a b P a b

ββ

αα

βα

??

=

?

I

判定的关键:在一个已

知平面内“找出”两条相交

直线与另一平面平行。即将

“面面平行问题”转化为

“线面平行问题”

直线与平面平行的性质

一条直线与一个

平面平行,则过这条直

线的任一平面与此平

面的交线与该直线平

行。

//,,

//

a a b

a b

αβαβ

?=

?

I

平面与平面平行的性质

如果两个平行平

面同时与第三个平面

相交,那么它们的交线

平行。

//,,

//

a

b a b

αβαγ

βγ

=

=?

I

I

(2)定理之间的关系及其转化

两平面平行问题常转化为直线与直线平行,而直线与平面平行又可转化为直线与直线平行,所以在解题时应注意“转化思想”的运用。这种转化实质上就就是:将“高维问题”转化为“低维问题”,将“空间问题”转化为“平面问题”。

2、3 直线、平面平垂直的判定及其性质

1、本节知识结构

2、内容归纳总结

(一)基本概念

1、直线与平面垂直:如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α垂直,记作lα⊥。直线l叫做平面α的垂线,平面α叫做直线l的垂面。直线与平面的公共点P叫做垂足。

2、直线与平面所成的角:

角的取值范围:090

θ<

3、二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

二面角的记法:

二面角的取值范围:0180

θ<

两个平面垂直:直二面角。

(二)四个定理

(三)定理之间的关系及其转化:

两平面垂直问题常转化为直线与直线垂直,而直线与平面垂直又可转化为直线与直线垂直,所以在解题时应注意从“高维”到“低维” 的转化,即“空间问题”到“平面问题”的转化。

三、高考考点解析

第一部分、三类角(异面直线所成的夹角、直线与平面所成的角、二面角)的求解问题

(一)异面直线所成的夹角与异面直线的公垂线

1.异面直线所成的夹角就是本部分的重点与难点更就是高考的考点。

异面直线所成的角的大小就是刻划空间两条异面直线的相关位置的一个量,掌握好概念就是解题的关键,其思维方法就是把两条异面直线所成的角通过“平移法”转化为“平面角”,然后证明这个角就就是所求的角,再利用三角形解出所求的角(简言之:①“转化角”、②“证明”、③“求角”)。以上三个步骤“转化角”就是求解的关键,因为转化的过程往往就就是求解的过程——其目的就就是将“空间问题”转化为“平面问题(角问题)”。

1. 如图所示,AF 、DE 分别就是O e 、1O e 的直径,AD 与两圆所在的平面均垂直,8AD =、BC 就是O e 的直径,

6AB AC ==,//OE AD 。

(II)求直线BD 与EF 所成的角。

【解】(II)第一步:将“问题”转化为求“平面角”问题

根据定义与题设,我们只能从两条异面直线的四个顶点出发作其中一条直线的平行线,此题我们只能从点D 作符合条件的直线。

连结DO,则∠ODB 即为所求的角。 第二步:证明∠ODB 就就是所求的角

在平面ADEF 中,DE//AF,且DE=AF,所以四边形ODEF 为平行四边形 所以DO//EF

所以根据定义,∠ODB 就就是所求的角。 第三步:求角

由题设可知:底面ABCD 为正方形

∵ DA ⊥平面ABCD BC ?平面ABCD ∴ DA ⊥BC 又 ∵AF ⊥BC ∴ BC ⊥平面ADO

∴ DO ⊥BC ∴ △DOB 为直角三角形 ∴ 在Rt △ODB,10BD = 82DO =

∴ 82cos 10ODB ∠=

(或用反三角函数表示为:82arccos 10

) 2.在四棱锥P -ABCD 中,底面就是边长为2的菱形,∠DAB =60ο,对角线AC 与BD 相交于点O,PO ⊥平面ABCD,PB 与平面ABCD 所成的角为60ο.

(2)若E 就是PB 的中点,求异面直线DE 与PA 所成角的大小(结果用反三角函数值表示).

【解】(2)取AB 的中点F,连接EF 、DF 、 由E 就是PB 的中点,得EF ∥PA,

∴∠FED 就是异面直线DE 与PA 所成角(或它的补角)。 在Rt △AOB 中AO=ABcos30°=3=OP,

于就是,在等腰Rt △POA 中,PA=6,则EF=

2

6

、 在正△ABD 与正△PBD 中,DE=DF=3、 cos ∠FED=3

4621=DE EF

=42

∴异面直线DE 与PA 所成角的大小就是arccos

4

2

、 3. 如图,四面体ABCD 中,O 、E 分别就是BD 、BC 的中点,

2, 2.CA CB CD BD AB AD ======

(II)求异面直线AB 与CD 所成角的大小; 【解】 本小题主要考查直线与平面的位置关系、异面直线所成的角以及点到平面的距离基本知识,考查空间想象能力、逻辑思维能力与运算能力。

方法一:(II) 取AC 的中点M,连结OM 、ME 、OE,由E 为BC 的中点知ME ∥AB,OE ∥DC

∴直线OE 与EM 所成的锐角就就是异面直线AB

与CD 所成的角 在OME ?中,121,1,222

EM AB OE DC =

=== OM Q 就是直角AOC ?斜边AC 上的中

线,1

1,2

OM AC ∴=

= 2cos ,4OEM ∴∠= C

A

D

B

O

E

A

B

C

A 1

V B 1

C 1

∴异面直线AB 与CD 所成角的大小为2arccos

.4

4. 如图,已知三棱锥O ABC -的侧棱OA OB OC 、、两两垂直,且OA=1,OB=OC=2,E 就是OC 的中点。

(2)求异面直线BE 与AC 所成的角;

【解】(2)取OA 的中点M,连EM 、BM,则EM ∥AC,∠

BEM 就是异面直线BE 与AC 所成的角。 求得:2215522EM AC BE OB OE =

==+=,,22172

BM OM OB =+=。 2222cos 25BE ME BM BEM BE ME +-∠==?, ∴2

arccos 5

BEM ∠=。

2、 异面直线的公垂线问题

异面直线的公垂线问题也就是高考的考点之一。

与两条异面直线都垂直相交的直线叫做两条异面直线的公垂线、任何两条确定的异面直线都存在唯一的公垂线段、

1.如图,在直三棱柱111ABC A B C -中,,AB BC D =、E 分别为1BB 、1AC 的中点。 (I)证明:ED 为异面直线1BB 与1AC 的公垂线; 【解】 (Ⅰ)设O 为AC 中点,连接EO ,BO ,则EO ∥=12

C 1C , 又C 1C ∥=B 1B ,所以EO ∥=DB ,EOB

D 为平行四边形,ED ∥O B. ∵AB =BC ,∴BO ⊥AC ,

又平面ABC ⊥平面ACC 1A 1, BO ?面ABC , 故BO ⊥平面ACC 1A 1,

∴ED ⊥平面ACC 1A 1, ED ⊥AC 1, ED ⊥CC 1, ∴ED ⊥BB 1,ED 为异面直线AC 1与BB 1的公垂线.

2如图,已知平面111A B C 平行于三棱锥V ABC -的底面ABC,等边△1AB C 所在的平面与底面ABC 垂直,且

B

A

C

C 1

B 1

A 1

D E A

B C

D

E

A 1

B 1

C 1

O

F

立体几何知识点总结

立体几何知识点总结

立体几何知识点总结 1、 多面体(棱柱、棱锥)的结构特征 (1)棱柱: ①定义:有两个面互相平行,其余各面都是 四边形,并且每相邻两个四边形的 公共边都互相平行,由这些面所围 成的几何体叫做棱柱。 棱柱斜棱柱直棱柱正棱柱; 四棱柱平行六面体直平行六面体 长方体正底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是正多边形 侧棱垂直于底面 侧棱不垂直于底面

棱长都相等 四棱柱正方体。 ②性质:Ⅰ、侧面都是平行四边形;Ⅱ、两底面是全等多边形; Ⅲ、平行于底面的截面和底面全等;对角面是平行四边形; Ⅳ、长方体一条对角线长的平方等于一个顶点上三条棱的长的平方和。 (2)棱锥: ①定义:有一个面是多边形,其余各面是有 一个公共顶点的三角形,由这些面 围成的几何体叫做棱锥; 正棱锥:底面是正多边形,并且顶点在底面内的射影是底面中心,这样的棱锥叫做正棱锥; ②性质: Ⅰ、平行于底面的截面和底面相似, 截面的边长和底面的对应边边长的比 等于截得的棱锥的高与原棱锥的高的 比; 它们面积的比等于截得的棱锥的高与 原棱锥的高的平方比;

截得的棱锥的体积与原棱锥的体积的 比等于截得的棱锥的高与原棱锥的高 的立方比; Ⅱ、正棱锥性质:各侧面都是全等的等腰三 角形;通过四个直角三角形POH Rt ?,POB Rt ?, PBH Rt ?,BOH Rt ?实现边,高,斜高间的换算 2、 旋转体(圆柱、圆锥、球)的结构特征 A B C D O H P

(2)性质: ①任意截面是圆面(经过球心的平面,截得 的圆叫大圆,不经 过球心的平面截得 的圆叫 小圆) ②球心和截面圆心的连线垂直于截面,并且 2d 2 =,其中R为球半径,r为截 r- R 面半径,d为球心的到截面的距离。 3、柱体、锥体、球体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。

立体几何复习知识点汇总(全)

立体几何知识点汇总(全) 1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a、b异面,a平行于平面α,b与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一.点.向这个平面所引的垂线段和斜线段) ⑦b a,是夹在两平行平面间的线段,若 a,的位置关系为相交或平行或异面. a=,则b b ⑧异面直线判定定理:过平面外一点与平 面内一点的直线和平面内不经过该点的直线是

异面直线.(不在任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 (直线与直线所成角]90,0[??∈θ)(向量与向量所成角])180,0[οο∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能 叫1L 与2L 平行的平面) 3. 直线与平面平行、直线与平面垂直. (1). 空间直线与平面位置分三种:相交、平行、在平面内. (2). 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行?线面平行”) [注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) ③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑥直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交) (3). 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行?线线

知识点-立体几何知识点常见结论汇总

知识点-立体几何知识点常见结论汇总

————————————————————————————————作者:————————————————————————————————日期: 2

O A B C D E F 垂 立体几何高考知识点和解题思想汇总 补充:三角形内心、外心、重心、垂心知识 四心的概念介绍: (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 若P 为ABC ?所在平面外一点, O 是点P 在 ABC ?内的射影,则: ①若PA PB PC ==或PA 、PB 、PC 与 所成角均相等, 则O 为ABC ?的外心; ②若P 到ABC ?的三边的距离相等, 则O 为△ABC 的内心; ③若PA 、PB 、PC 两两互相垂直, 或,PA BC PB AC ⊥⊥则O 为ABC ?的垂心. 常见空间几何体定义: 1 .棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱,这两个面为底面,其他面为侧面。 棱柱具有下列性质: 1)棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等; 2)棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形。 3)直棱柱的侧棱长与高相等;直棱柱的侧面及经过不相邻的两条侧棱的截面都是矩形。 棱柱的分类: 斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱。 直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。直棱柱的各个侧面都是矩形; 正棱柱:底面是正多边形的直棱柱叫做正棱柱。正棱柱的各个侧面都是全等的矩形。 平行六面体:底面是平行四边形的棱柱。 直平行六面体:侧棱垂直于底面的平行六面体叫直平行六面体。 长方体:底面是矩形的直棱柱叫做长方体 2 .棱锥:有一个面是多边形 ,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.(1) 如果一个棱锥的底面是正多边形,且顶点与底面中心的连线垂直于底面,这样的棱锥称为正棱锥.正棱锥具有性质:①正棱锥的顶点和底面中心的连线即为高线;②正棱锥的侧面是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做这个正棱锥的斜高. (2) 底边长和侧棱长都相等的三棱锥叫做正四面体. A B C O 外 I K H E F D A B C M 内 A B C D E F G 重

用向量方法解立体几何题(老师用)

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线 l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角l αβ--的平面角α=arccos |||| a b a b

法二、设12,,n n 是二面角l αβ --的两个半平面的法向量, 其方向一个指向内侧,另一个指向外侧,则二面角l α β --的平面角α=12 12arccos |||| n n n n 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ== 法二、设A O α ⊥于O,利用A O α ⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||A O . (2)求异面直线的距离 法一、找平面β使b β?且a β ,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别 为异面直线a 、b 的方向向量,求n (n a ⊥ ,n b ⊥ ),则 异面直线a 、b 的距离|| |||cos ||| AB n d AB n θ== (此方法移植 于点面距离的求法).

立体几何知识点总结(全)

必修2 第一章 空间几何体知识点总结 一.空间几何体的三视图 正视图:光线从几何体的前面向后面正投影得到的投影图;反映了物体的高度和长度 侧视图:光线从几何体的左面向右面正投影得到的投影图;反映了物体的高度和宽度 俯视图:光线从几何体的上面向下面正投影得到的投影图。反映了物体的长度和宽度 三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等” 二.空间几何体的直观图 斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使'''x O y ∠=450 (或1350 ) ③画对应图形 在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘ 轴,且长度保持不变; 在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘ 轴,且长度变为原来的一半; 直观图与原图形的面积关系:4 2S ?=原图形直观图S 三.空间几何体的表面积与体积 ⑴圆柱侧面积;l r S ??=π2侧面 ⑵圆锥侧面积:l r S ??=π侧面 ⑶圆台侧面积:l R l r S ??+??=ππ侧面 h S V ?=柱体h S V ?= 3 1锥体() 1 3 V h S S S S =+?+下下 台体上上 球的表面积和体积 32 3 44R V R S ππ= =球球,. 正三棱锥是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥。 正四面体是每个面都是全等的等边三角形的三棱锥。 第二章 点、直线、平面之间的位置关系知识点总结 一. 平面基本性质即三条公理 公理1 公理2 公理3 图形语言 文字 语言 如果一条直线上的两点在 一个平面内,那么这条直线 在此平面内. 过不在一条直线上的三点,有且只有一个平面. 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 符号 语言 ,,A l B l l A B ααα∈∈????∈∈? ,,,,A B C A B C α ?不共线确定平面 ,l P P P l αβαβ=?∈∈??∈? 作用 判断线在面内 确定一个平面 证明多点共线 公理2的三条推论: 推论1 经过一条直线和这条直线外的一点,有且只有一个平面; 推论2 经过两条相交直线,有且只有一个平面; 推论3 经过两条平行直线,有且只有一个平面. 二.直线与直线的位置关系 共面直线: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线:不同在任何一个平面内,没有公共点。(既不平行,也不相交) 三.直线与平面的位置关系有三种情况: 在平面内——有无数个公共点 . 符号 a α 相交——有且只有一个公共点 符号 a ∩α= A 平行——没有公共点 符号 a ∥α 说明:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示 1.直线和平面平行的判定 (1)定义:直线和平面没有公共点,则称直线平行于平面; (2)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 简记为:线线平行,则线面平行。 符号: ////a b a a b ααα ?? ?????? 2.直线和平面平行的性质定理: 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 简记为:线面平行,则线线平行. 符号: a a a b b α βαβ??=? ???? 3.直线与平面垂直 ⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。 ⑵判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

空间向量与立体几何知识点

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

高考立体几何知识点总结(详细)

收集整理:宋氏资料 2016-1-1 2016 高考立体几何知识点总结 一、空间几何体 (一)空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个 面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线 称为旋转体的轴。 (二)几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 1.2棱柱的分类 图1-1 棱柱 底面是四边形 棱柱四棱柱底面是平行四边形侧棱垂直于底面底面是矩形底面是正方形平行六面体直平行六面体长方体 棱长都相等 正四棱柱正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 1.3棱柱的面积和体积公式 S直棱柱侧(c 是底周长,h 是 ch 高) S 直棱柱表面= c·h+ 2S 底 V 棱柱= S 底·h 2 、棱锥的结构特征 2.1 棱锥的定义 (1)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成 的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心, 这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 Ⅰ、平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到

底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积: 1 S正棱椎ch (c为底周长,h'为斜高) ' 2 P 体积: 1 V棱椎Sh(S为底面积,h 为高) 3 D C O H 正四面体: A B 2 对于棱长为a正四面体的问题可将它补成一个边长为 a 的正方体问题。 2 2 对棱间的距离为 a 2 (正方体的边长) 6 正四面体的高 a 3 ( 2 3 l 正方体体对角线 ) 正四面体的体积为 2 12 a 3 ( 1 V正方体4V V ) 小三棱锥正方体 3 正四面体的中心到底面与顶点的距离之比为1:3( 1 6 l 1 正方体体对角线:l 2 正方体体对角线 ) 3 、棱台的结构特征 1.4棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。 1.5正棱台的结构特征 (1)各侧棱相等,各侧面都是全等的等腰梯形; (2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点。 4 、圆柱的结构特征 2.3圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。 2.4圆柱的性质 (1)上、下底及平行于底面的截面都是等圆; (2)过轴的截面(轴截面)是全等的矩形。 2.5圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。 2.6圆柱的面积和体积公式 S 圆柱侧面= 2π·r·h (r 为底面半径,h 为圆柱的高) S 2

高中数学“立体几何初步”教学研究

专题讲座 高中数学“立体几何初步”教学研究 袁京生北京市朝阳区教育研究中心 一、“立体几何初步”教学内容的整体把握 (一)“立体几何初步”内容的背景分析 1.从立体几何发展的历程看立体几何课程 (1)不同学段几何学习的特点 一个学生从小学的数学课中就接触到了空间图形,由于知识和年龄的限制,他们对空间图形的认识方法主要是大量的观察、操作,对空间图形形成一定的感性认识. 在初中,课程安排了简单几何体的概念及体积公式,三视图的基本知识,正方体的截面、展开问题,建立了长方体模型概念,已初步具有平面几何基础知识及推理论证能力, 总体上看,初中学生对空间图形的认识主要是直观感知,操作确认,但平面几何的学习又呈现出思辨论证等理性的特征. 总之,高中以前的学生对空间图形的认识主要是对图形的整体形象的直观感知,操作确认,这种基于直观和操作的认知的优点是简便、直观,不需要更多的知识作基础,但不足也是很明显的,即不能对空间图形及其内部的元素关系进行深入的分析,不能产生对空间图形本质的认识. 当学生进入高中以后,教材对空间图形的有了专门的介绍:立体几何.从历次的立体几何教材看,无论教材怎样变化,高中立体几何的最终目标都是要从学生可接受的理论高度来认识空间图形.除了传统的综合几何外,近几年的高中《大纲》或《课程标准》还引入了空间向量,空间向量进入几何,使几何有了更多代数的味道,因此现行的高中几何不完全是欧式几何. 当我们回顾大学的几何学习时,容易发现,大学的几何学习正是沿着几何代数化的方向展开,无论《空间解析几何》、《高等几何》、《微分几何》等无不是通过代数的手段对几何进行研究,通过代数的形式呈现几何结论. (2)几何研究方法的发展

高中数学立体几何知识点总结(详细)

高中数学立体几何知识点总结 一 、空间几何体 (一) 空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各 个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二) 几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 棱柱的分类 棱柱 四棱柱 平行六面体直平行六面体 长方体正四棱柱 正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 棱长都相等 底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是四边形

1.3 棱柱的面积和体积公式 ch S =直棱柱侧(c 是底周长,h 是高) S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h 2 、棱锥的结构特征 2.1 棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积: 1 '2 S ch = 正棱椎(c 为底周长,'h 为斜高) 体积:1 3 V Sh = 棱椎(S 为底面积,h 为高) 正四面体: 对于棱长为a 正四面体的问题可将它补成一个边长为 a 2 2 的正方体问题。 A B C D P O H

高考立体几何知识点总结

高考立体几何知识点总结 一 、空间几何体 (一) 空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二) 几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四 边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成 的几何体叫 做棱柱。 1.2 棱柱的分类 棱柱 四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 1.3 棱柱的面积和体积公式 ch S 直棱柱侧(c 是底周长,h 是 高) S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h 2 、棱锥的结构特征 2.1 棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的底面是四边形 底面是平行四边形 侧棱垂直于底面 底面是矩形 底面是正方形 棱长都相等 图1-1 棱柱

高考立体几何知识点总结(详细)

收集整理:宋氏资料 2016-1-1 2016高考立体几何知识点总结 一 、空间几何体 (一) 空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的 面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二) 几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 1.2 棱柱的分类 棱柱 四棱柱平行六面体 直平行 六面体长方体 正四棱柱正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 1.3 棱柱的面积和体积公式 ch S 直棱柱侧(c 是底周长,h 是高) S 直棱柱表面 = c·h+ 2S 底 V 棱柱 = S 底 ·h? 2 、棱锥的结构特征 2.1 棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面 棱长都相等 底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是四边形 图1-1 棱柱

所围成的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积:1 '2 S ch = 正棱椎(c 为底周长,'h 为斜高) 体积:1 3 V Sh = 棱椎(S 为底面积,h 为高) 正四面体: 对于棱长为a 正四面体的问题可将它补成一个边长为 a 2 2 的正方体问题。 对棱间的距离为 a 2 (正方体的边长) 正四面体的高 a 6(正方体体对角线l 3 2 =) 正四面体的体积为 32a (正方体小三棱锥正方体V V V 3 1 4=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2 1 61= ) 3 、棱台的结构特征 3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。 3.2 正棱台的结构特征 (1)各侧棱相等,各侧面都是全等的等腰梯形; (2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点。 4 、圆柱的结构特征 A B C D P O H

文科立体几何知识点方法总结高三复习

立体几何知识点整理(文科) 一.直线和平面的三种位置关系: 1. 线面平行 l 符号表示: 2. 线面相交 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。 方法二:用面面平行实现。 方法 用线 直实 现。 若α α⊥ ⊥m l,,则m l//。 方法四:用向量方法: 若向量和向量共线且l、m不重合,则m l//。 2.线面平行: 方法一:用线线平行实现。 方法二:用面面平行实现。 方法三:用平面法向量实现。 若n为平面α的一个法向量,l n⊥且α ? l,则 α // l。 3.面面平行: 方法一:用线线平行实现。 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l 方法二:用线面平行实现。 三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 方法二:用面面垂直实现。 2. 面面垂直: 方法一:用线面垂直实现。 方法二:计算所成二面角为直角。 3.线线垂直: 方法一:用线面垂直 实现。 方法二:三垂线定理及其逆定理。 方法三:用向量方法: 若向量和向量的数量积为0,则m l⊥。 三.夹角问题。 (一)异面直线所成的角: (1) 范围:] 90 , 0(? ? (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: (计算结果可能是其补角 ) θ c b a l

方法二:向量法。转化为向量的夹角 (计算结果可能是其补角): (二) 线面角 (1)定义:直线l 上任取一点P (交点除外),作PO ⊥α于O,连结AO ,则AO 为斜线PA 在面α内的射影,PAO ∠(图中θ)为直线l 与面α所成的角。 (2)范围:]90,0[?? 当?=0θ时,α?l 或α//l 当?=90θ时,α⊥l (3)求法: 方法一:定义法。 步骤1:作出线面角,并证明。 步骤2:解三角形,求出线面角。 (三) 二面角及其平面角 (1)定义:在棱l 上取一点P ,两个半平面内分别作l 的垂线(射线)m 、n ,则射线m 和n 的夹角θ为二面角α—l —β的平面角。 (2)范围:]180,0[?? (3)求法: 方法一:定义法。 步骤1:作出二面角的平面角(三垂线定理),并证明。 步骤2:解三角形,求出二面角的平面角。 方法二:截面法。 步骤1:如图,若平面POA 同时垂直于平面βα和,则交线(射线)AP 和AO 的夹角就是二面角。 步骤2:解三角形,求出二面角。 方法三:坐标法(计算结果可能与二面角互补)。 步骤一:计算121212 cos n n n n n n ?= ? 步骤二:判断θ与12n n 的关系,可能相等或者互补。 四.距离问题。 1.点面距。 方法一:几何法。 步骤1:过点P 作PO ⊥α于O ,线段PO 即为所求。 步骤2:计算线段PO 的长度。(直接解三角形;等体积法和等面积法;换点法) 2.线面距、面面距均可转化为点面距。 3.异面直线之间的距离 方法一:转化为线面距离。 如图,m 和n 为两条异面直线,α?n 且α//m , 则异面直线m 和n 之间的距离可转化为直线m 与平面α之间的距离。 方法二:直接计算公垂线段的长度。 方法三:公式法。 如图,AD 是异面直线m 和n 的公垂线段, '//m m ,则异面直线m 和n 之间的距离为: 高考题典例 考点1 点到平面的距离例1如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点.(Ⅰ)求证:1AB ⊥平面1A BD ;(Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离.考点2 异面直线的距离 A B C D O F

高考中常见的立体几何题型和解题方法

高考中常见的立体几何题型和解题方法 黔江中学高三数学教师:付 超 高考立体几何试题一般共有2——3道(选择、填空题1——2道, 解答题1道), 共计总分18——23分左右,考查的知识点在20个以内. 选择填空题考核立几中的 逻辑推理型问题, 而解答题着重考查立几中的计算型问题, 当然, 二者均应以正 确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多 一点思考,少一点计算”的方向发展.从历年的考题变化看, 以简单几何体为载体 的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过 程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与 距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行 与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能, 通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平 行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能 力和空间想象能力. 2. 判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平 面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交, 那 么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过 程中均可直接作为性质定理引用。 4.空间角和距离是空间图形中最基本的数量关系,空间角主要研究射影以 及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角 和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解 决. 空间角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系 进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线 所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π?????? ,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π].对于空间角的计算,总是通过一定 的手段将其转化为一个平面内的角,并把 它置于一个平面图形,而且是一个三

立体几何知识点总结归纳

一、立体几何知识点归纳 第一章 空间几何体 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱 与棱的公共点叫做顶点。 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其 中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 1.棱柱 1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。 1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①???????? →???????→?? ?? 底面是正多形 棱垂直于底面 斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形 侧棱与底面边长相等 1.3①侧棱都相等,侧面是平行四边形; ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。 1.4长方体的性质: ①长方体一条对角线长的平方等于一个顶点上三条棱的

平方和;【如图】2222 11AC AB AD AA =++ ②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么 222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=; ③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则2 2 2 cos cos cos 2αβγ++=,2 2 2 sin sin sin 1αβγ++=. 1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.6面积、体积公式: 2S c h S c h S S h =?=?+=?直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高) 2.圆柱 2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形. 2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 2.4面积、体积公式: S 圆柱侧=2rh π;S 圆柱全=2 22rh r ππ+,V 圆柱=S 底h=2 r h π(其中r 为底面半径,h 为圆柱高) 3.棱锥 3.1棱锥——有一个面是多边形,其余各 面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 3.2棱锥的性质: ①平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比; ②正棱锥各侧棱相等,各侧面是全等的等腰三角形; ③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面边长一半,构成四个直角三角形。)(如上图:,,,SOB SOH SBH OBH 为直角三角形) 3.3侧面展开图:正n 棱锥的侧面展开图是有n 个全等的等腰三角形组成的。 侧面 母线 B

高中文科数学立体几何知识点总结

γm βα l l α β立体几何知识点整理(文科) 一. 直线和平面的三种位置关 系: 1. 线面平行 α l 符号表示: 2. 线面相交 α A l 符号表示: 3. 线在面内 α l 符号表示: 二. 平行关系: 1. 线线平行: 方法一:用线面平行实 现。 m l m l l ////??? ? ??=??βαβ α 方法二:用面面平行实现。 m l m l ////??? ? ?? =?=?βγαγβα 方法三:用线面垂直实现。 若αα⊥⊥m l ,,则m l //。 方法四:用向量方法: 若向量l 和向量m 共线且l 、m 不重合,则 m l //。 2. 线面平行: 方法一:用线线平行实现。 ααα////l l m m l ??? ? ?? ?? 方 法二:用面面平行实现。 αββα////l l ?? ?? ? 方法三:用平面法向量实现。 若n 为平面α的一个法向量, l n ⊥且α?l ,则α//l 。 3. 面面平行: 方法一:用线线平行实现。 β ααβ//',',' //'//????? ??? ??且相交且相交m l m l m m l l 方法二:用线面平行实现。 βαβαα //,////??? ? ?? ?且相交m l m l m l α n α l m'l'l α βm m β α l l m β α

三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 αα⊥???? ? ??? ?=?⊥⊥l AB AC A AB AC AB l AC l , 方法二:用面面垂直实现。 αββαβα⊥??? ? ?? ?⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 βαβα⊥?? ?? ?⊥l l 方法二:计算所成二面角为直角。 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥???? 方法三:用向量方法: 若向量l 和向量m 的数量积为0,则m l ⊥。 三. 夹角问题。 (一) 异面直线所成的角: (1) 范围:]90,0(?? (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: ab c b a 2cos 2 22-+=θ (计算结果可能是其补角) 方法二:向量法。转化为向量的夹角 (计算结果可能是其补角): AC AB AC AB ??= θcos (二) 线面角 (1)定义:直线l 上任取一点P (交点除外),作PO ⊥α于O,连结AO ,则AO 为斜线PA 在面α内的射影,PAO ∠(图中θ)为直线l 与面α所成的角。 A B C αl l β α m l β α m α l θ c b a A B C θn A O θ P αl A O P α

高中数学立体几何知识点总结

高中数学之立体几何 平面的基本性质 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理3 经过不在同一直线上的三个点,有且只有一个平面. 根据上面的公理,可得以下推论. 推论1 经过一条直线和这条直线外一点,有且只有一个平面. 推论2 经过两条相交直线,有且只有一个平面. 推论3 经过两条平行直线,有且只有一个平面. 空间线面的位置关系 共面平行—没有公共点 (1)直线与直线相交—有且只有一个公共点 异面(既不平行,又不相交) 直线在平面内—有无数个公共点 (2)直线和平面直线不在平面内平行—没有公共点 (直线在平面外) 相交—有且只有一公共点 (3)平面与平面相交—有一条公共直线(无数个公共点) 平行—没有公共点 异面直线的判定 证明两条直线是异面直线通常采用反证法. 有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”. 线面平行与垂直的判定 (1)两直线平行的判定 ①定义:在同一个平面内,且没有公共点的两条直线平行. ②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,aβ,α∩β=b,则a∥b. ③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c. ④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b ⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b ⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b. (2)两直线垂直的判定

相关文档
相关文档 最新文档