文档库 最新最全的文档下载
当前位置:文档库 › 空间定位几何基础原理

空间定位几何基础原理

空间定位几何基础原理
空间定位几何基础原理

计算几何基础知识整理

计算几何基础知识整理 一、序言 计算机的出现使得很多原本十分繁琐的工作得以大幅度简化,但是也有一些在人们直观看来很容易的问题却需要拿出一套并不简单的通用解决方案,比如几何问题。作为计算机科学的一个分支,计算几何主要研究解决几何问题的算法。在现代工程和数学领域,计算几何在图形学、机器人技术、超大规模集成电路设计和统计等诸多领域有着十分重要的应用。在本文中,我们将对计算几何常用的基本算法做一个全面的介绍,希望对您了解并应用计算几何的知识解决问题起到帮助。 二、本基础目录 本文整理的计算几何基本概念和常用算法包括如下内容: 1. 矢量的概念 2. 矢量加减法 3. 矢量叉积 4. 折线段的拐向判断 5. 判断点是否在线段上 6. 判断两线段是否相交 7. 判断线段和直线是否相交 8. 判断矩形是否包含点 9. 判断线段、折线、多边形是否在矩形中 10. 判断矩形是否在矩形中 11. 判断圆是否在矩形中 12. 判断点是否在多边形中 13. 判断线段是否在多边形内 14. 判断折线是否在多边形内 15. 判断多边形是否在多边形内 16. 判断矩形是否在多边形内 17. 判断圆是否在多边形内 18. 判断点是否在圆内 19. 判断线段、折线、矩形、多边形是否在圆内 20. 判断圆是否在圆内 21. 计算点到线段的最近点 22. 计算点到折线、矩形、多边形的最近点 23. 计算点到圆的最近距离及交点坐标 24. 计算两条共线的线段的交点 25. 计算线段或直线与线段的交点 26. 求线段或直线与折线、矩形、多边形的交点 27. 求线段或直线与圆的交点 28. 凸包的概念 29. 凸包的求法 三、算法介绍 1.矢量的概念: 如果一条线段的端点是有次序之分的,我们把这种线段成为有向线段(directed

GPS测量基本原理

1> 概述 测量学中有测距交会确定点位的方法。与其相似,无线电导航定位系统、卫星激光测距定位系统,其定位原理也是利用测距交会的原理定位。 就无线电导航定位来说,设想在地面上有三个无线电发射台,其坐标为已知,用户接收机在某一时刻采用无线电测距的方法分别测得了接收机至三个发射台的距离d1,d2,d3。只需以三个发射台为球心,以d1,d2,d3为半径作出三个定位球面,即可交会出用户接收机的空间位置。如果只有两个无线电发射台的话,则可根据用户接收机的概略位置交会出接收机的平面位置。这种无线电导航定位系统是迄今为止仍在使用的飞机船舶的的中导航定位方法。 近代卫星大地测量中的卫星激光测距定位也是应用了测距交会定位的原理和方法。虽然用于测距的卫星(表面安装有激光反射镜)是在不停的运动中,但总可以利用固定于地面上三个已知点上的卫星激光测距仪同时测定某一时刻至卫星的距离d1,d2,d3,应用测距交会的原理便可确定该时刻卫星的空间位置。如此,可以确定三可以上卫星的空间位置。如果第四个地面点上(坐标未知)也有一台卫星测距仪同时参与了测定改点到三颗卫星的空间距离,则利用所测定的三个空间距离可交会出该地面点的空间位置。 将无线电信号发射台从地面搬到卫星上,组成一颗卫星导航定位系统,应用无线电测距交会的原理,便可利用三个以上地面已知点(控制站)交会处卫星的位置,反之利用三颗以上的卫星的已知空间位置又可交会出地面未知点(用户接收机)的位置。这便是GPS卫星定位的基本原理。 GPS卫星发射测距信号和导航电文,导航电文中含有卫星的位置信息。用户用GPS接收机在某一时刻同时接收三个以上的GPS卫星信号,测量出测站点(接收机天线中心)P至三颗以上GPS卫星的距离并解算出该时刻GPS卫星的空间位置坐标,据此利用距离交会法解算出测站P的位置坐标,如下图所示,设在时刻t i在在测站P用GPS接收机同时测出P点至三颗GPS卫星的距离ρ1,ρ2,ρ3,通过GPS电文解释出该时刻三颗GPS卫星的三维坐标分别为(Xi,Yi,Zi),j=1,2,3。用距离交会的方法求解出P点的三维坐标(X,Y,Z)的观测方程为

GIS算法的计算几何基础

GIS算法的计算几何基础 矢量的概念: 如果一条线段的端点是有次序之分的,我们把这种线段成为有向线段(directed segment)。 如果有向线段p1p2的起点p1在坐标原点,我们可以把它称为矢量(vector)p2。 矢量加减法: 设二维矢量P = ( x1, y1 ),Q = ( x2 , y2 ), 则矢量加法定义为: P + Q = ( x1 + x2 , y1 + y2 ), 矢量减法定义为: P - Q = ( x1 - x2 , y1 - y2 )。 显然有性质 P + Q = Q + P,P - Q = - ( Q - P )。 矢量叉积: 计算矢量叉积是与直线和线段相关算法的核心部分。 设矢量P = ( x1, y1 ),Q = ( x2, y2 ), 则矢量叉积定义为由(0,0)、p1、p2和p1+p2所组成的平行四边形的带符号的面积, 即:P × Q = x1*y2 - x2*y1,其结果是一个标量。 显然有性质P × Q = - ( Q × P ) 和P × ( - Q ) = - ( P × Q )。 两点的加减法就是矢量相加减,而点的乘法则看作矢量叉积。 叉积的一个非常重要性质是可以通过它的符号判断两矢量相互之间的顺逆时针关系: 若P × Q > 0 , 则P在Q的顺时针方向。 若P × Q < 0 , 则P在Q的逆时针方向。 若P × Q = 0 , 则P与Q共线,但可能同向也可能反向。 折线段的拐向判断: 折线段的拐向判断方法可以直接由矢量叉积的性质推出。 对于有公共端点的线段p0p1和p1p2,通过计算(p2 - p0) × (p1 - p0)的符号便可以确定折线段的拐向: 若(p2 - p0) × (p1 - p0) > 0,则p0p1在p1点拐向右侧后得到p1p2。 若(p2 - p0) × (p1 - p0) < 0,则p0p1在p1点拐向左侧后得到p1p2。

工件的定位教案

教学首页设计

教学过程授课思路和教学方法 教学内容和教师活动学生活动 Ⅰ、复习引入 用锥柄连接式车床专用夹具加工支架 (参照书P127图6-2) 车床夹具定位实例 (参照书P129图6-3) 回顾: ⑴、夹具的组成; ⑵、夹具的作用。 Ⅱ、讲授新课 一、定位和基准的基本概念 (结合书P129图6-3讲解) 1、工件的定位 【师】:使用夹具对工件进行加工时,必须按照加工工艺的要求把工件放在夹具中,使工件在夹紧之前相对于机床和刀具有一个正确的确定位置,这个过程称为工件的定位。 【强调】:(1)、工件的定位是靠工件上某些表面和夹具中的定位元件(或装置)相接触来实现的。 (2)、工件的定位必须使一批工件逐次放入夹具中都能占有同一位置。 2、定位基准 【师】:所谓定位基准是指工件与夹具定位 元件工作表面相接触的表面。 【扩展】: (1)、当工件的定位基准确定后,工件上其他部分的位置也随之确定。 (2)、定位基准可以是点、线、面,但作为基准的点和线往往由某些具体表面体现出来的。 二、工件的定位原理 1、六点定位规则 自由度 【过渡】:空间内自由的物体可能具有的运动? 【总结归纳】:任何一个工件在夹具中未定位前,都可以看成在空间直角坐标系中的自由物体。一个物体在三维空间中具有的运动包括沿三个坐标轴的移动和转动。分别是三个移动自由度: 和三个转动自由度:共六个自由度。?如下图所示: 看图想 问题,回忆 上次课内 容 【学生思 考】:怎样 保证在切 削加工过 程中,使工 件的各个 加工表面 的尺寸,形 状及位置 精度符合 规定要 求?----必 须使工件 在机床或 夹具中占 有一个确 定的位置。 【提问】: 如何保证 同一批工 件在夹具 中占有一 致的正确 加工位置 呢?根据 学生作答 情况 引出定 位的概念 【学生讨 论】:空间 内自由的 物体可能 具有的运 动?学生 首先 介绍定位 的目的让 学生明白 此次课程 的作用 通过 对熟悉的 知识类比 掌握与之 有关的陌 生知识促 使学生带 着问题有 目的地参 与课堂教 学活动。

第五章 GPS卫星定位基本原理

5.1 概述 测距交会确定点:无线电导航定位系统卫星激光测距定位系统 无线电导航定位:三已知点三维定位,两个已知点平面定位. 卫星大地测量中的卫星激光测距定位。利用地面上三个已知点上的卫星激光测距仪同时测定某一时刻至卫星的空间距离,从而来确定卫星的空间位置。 卫星定位的基本原理: 依据测距的原理:伪距法定位,载波相位测量定位,以及差分GPS定位。 根据待定点的状态分为:静态定位(绝对定位)和动态定位(至少有一台接收机处于运动状态)和相对定位。 利用测距码或载波相位均可进行静态定位,实际为减少误差,可利用载波相位观测值的各种线性组合(即差分)作为观测值,获得两点之间高精度的GPS基线向量(即坐标差)。 5.2伪距测量 伪距测量:由卫星发射的测距码信号到达GPS接收机的传播时间乘以光速所得出的量测距离。由于卫星钟、接收机钟的误差以及无线电信号经过电离层和对流层中的延迟,实际测出距离ρ'与卫星到接收机的几何距离ρ有一定差值,因此

一般称量测出的距离为伪距。C/A 码伪距,P 码伪距。伪距法定位测量定位精度不高(P 码定位误差约为10m ,C/A 码定位误差为20-30m ),但因其具有定位速度快,是GPS 定位系统中进行导航定位的基本方法。作为载波相位测量中解决整波数不确定(模糊度)的辅助资料。 5.2.1 伪距测量 伪距测量的基本原理: 为什么采用码相关技术来确定伪距? GPS 卫星发射的测距码是按照一定规律排列的,在一个周期内,每个码对应某一特定的时间。应该说识别出每个码的形状特征,即用每个码的某一标志即可推算出时延值τ进行伪距测量。但实际上每个码在产生过程中都带有随机误差,并且信号经过长距离传送后也会产生变形。所以根据码的某一标志来推算时延值τ就会产生很大的误差。因此采用码相关技术,在自相关系数MAX R =')(τ的情况下来确定信号的传播时间τ。由于测距码和信号在产生的过程中不可避免地带有误差,而且测距码在传播过程中还有变形,因而自相关系数往往不可能达到“1”,只能在自相关系数为最大的情况下确定伪距,此时基本对齐。 dt t t a t a T R T )()(1)(τττ'-?+-='?

工件定位的基本原理

工件定位的基本原理 教学环节教学内容 教学方法 说明 引入新课课前提问: 1、三轴数控铣床一般指哪三个轴 ¥ 2、多轴数控机床(例如五轴加工中心)一般有哪些轴 答案: 1、X、Y、Z三个轴。 2、X、Y、Z(三个直线轴)和A、B、C(三个旋轴) 通过对熟 悉的知识 类比掌握 与之有关 的陌生知 识 讲授新课, 讲 \授新课 [一、工件的定位: 指工件在机床或夹具中取得一个正确的加工位置的过程。 例如:机床在装配时,其主轴箱、滑板及其上的工件,均须精确地安装在相应的位置上; 机械加工时,刀具必须精确地安装在主轴头上,其回转中心必须与主轴中心线重合;模 具也一样,其零部件均须精确地安装在以冲模上下座板或者是塑料模的定动模板的相应 位置上。 定位的目的是使工件在夹具中相对于机床、刀具占有确定的正确位置,并且应用夹具定 位工件,还能使同一批工件在夹具中的加工位置一致性好。 二、自由度 一个物体在三维空间中可能具有的运动。 例如:工件有六个自由度,分别是:三个移动自由度:,三个转动自由度:。 如图1所示: 图1 ) 三、六点定位原理 用一个支承点限制工件的一个自由度,用六个合理分布的支承点限制工件的 六个自由度,使工件在机床或夹具中取得一个正确的加工位置,即为工件的六点定位原 理。如果工件的六个自由度用六个支承点与工件接触使其完全消除,则该工件在空间的 位置就完全确定了。如下图所示: , 首先介绍 定位的目 的,让学生 明白此次 课程的作 用 通过图例 联系物体 的运动掌 握自由度 的概念 ` 通过挂图, 让学生更 加形象的 理解六点 定位原理

讲> 授新课 ¥ 讲授 新 、课 图2 四、工件定位的几种情况 完全定位:工件的六个自由度需要完全被限制的定位情况。 不完全定位:工件的六个自由度不需要完全被限制的定位情况。 欠定位:工件应该被限制的自由度而没有被限制的定位情况。 过定位:工件某个自由度被限制了两次或两次以上而出现的重复定位现象。 1、完全定位 工件的六个自由度全部被限制的定位,称为完全定位。当工件在x、y、z三个坐标方向 上均有尺寸要求或位置精度要求时,一般采用这种定位方式。见图3所示。 ' 图3 1、平面支承2、短圆柱销3、侧挡销 2、不完全定位 根据工件的加工要求,并不需要限制工件的全部自由度,这样的定位,称为不完全定位。 见图4所示。 图4 … 通过实物 定位销和 V型铁让 学生理解 其限制的 自由度 通过车细 长轴实例 讲述过定 位与不完 全定位 — 通过插齿 机上的夹 具掌握过 定位的应 用场合。 、

AGPS定位基本原理浅析

AGPS定位基本原理浅析 位置服务已经成为越来越热的一门技术,也将成为以后所有移动设备(智能手机、掌上电脑等)的标配。随着人们对BLS(Based Location Serices,基于位置的服务)需求的飞速增长,无线定位技术也越来越得到重视。AGPS(Assisted GPS,A-GPS,网络辅助GPS)定位技术结合了GPS定位和蜂窝基站定位的优势,借助蜂窝网络的数据传输功能,可以达到很高的定位精度和很快的定位速度,在移动设备尤其是手机中被越来越广泛的使用。本文以GSM网络辅助GPS定位为例对AGPS的定位原理进行简单介绍。 AGPS定位基本机制 根据定位媒介来分,定位技术基本包含基于GPS的定位和基于蜂窝基站的定位两类(阅读本文前,建议先阅读《GPS定位基本原理浅析》和《GSM蜂窝基站定位基本原理浅析》两篇文章)。GPS定位以其高精度得到更多的关注,但是其弱点也很明显:一是硬件初始化(首次搜索卫星)时间较长,需要几分钟至十几分钟;二是GPS卫星信号穿透力若,容易受到建筑物、树木等的阻挡而影响定位精度。AGPS定位技术通过网络的辅助,成功的解决或缓解了这两个问题。对于辅助网络,有多种可能性,以GSM蜂窝网络为例,一般是通过GPRS网络进行辅助。 如上图所示,直接通过GPS信号从GPS获取定位所需的信息,这是传统GPS定位的基本机制。AGPS 中,通过蜂窝基站的辅助来解决或缓解上文提到的两个问题: 对于第一个问题,首次搜星慢的问题,根据《GPS定位基本原理浅析》一文的介绍,我们知道是因为GPS卫星接收器需要进行全频段搜索以寻找GPS卫星而导致的。在AGPS中,通过从蜂窝网络下载当前地区的可用卫星信息(包含当地区可用的卫星频段、方位、仰角等信息),从而避免了全频段大范围搜索,使首次搜星速度大大提高,时间由原来的几分钟减小到几秒钟。

工件定位原理及机床夹具设计

第三模块工件定位原理及机床夹具设计 习题及答案 一、填空题 1.工件装夹的实质,就是在机床上对工件进行()和()。 2.工件装夹的目的,则是通过()和()而使工件在加工过程中始终保持其正确 的加工位置,以保证达到该工序所规定的技术要求。 3.按工件在加工过程中实现定位的方式来分,常见的工件的装夹方法可归纳为两类: ()、()。 4.工件在夹具中定位的目的,就是要使()在夹具中占有一致的正确加工位置。 5.工件直接装入夹具,依靠工件上的()与夹具的()相接触,而占有正确 的相对位置,不再需要找正便可将工件夹紧。 6.专用机床夹具主要适用于生产批量(),()相对稳定的场合。 7.工件相对于刀具的位置取决于()的正确位置和()的正确位置。 8.用专用夹具装夹进行加工时,一般都采用()加工,所以,为了预先调整刀具 的位置,在夹具上设有确定刀具位置或引导刀具方向的()。 9.工件在定位时应该采取的定位支承点数目,或者说,工件在定位时应该被限制的自由度 数目,完全由工件在该工序的()所确定。 10.工件用平面定位时,常用的定位元件有各种形式的()和()。 11.工件用外圆柱面定位时,常用的定位元件是()和()。 12.可调支承主要用于(),而又以()。 13.辅助支承只能起提高()的()作用,而决不能允许它破坏基本支 承应起的主要定位作用。 14.由于一对定位副存在()和(),从而使定位基准相对于限位基准发生位 置移动,产生基准位移误差。 15.工件定位时,几个定位支承点重复限制同一个自由度的现象,称为(). 16.按某一种工件的某道工序的加工要求,由一套预先制造好的标准元件拼装成的“专用夹 具”称为()夹具。 17.V形块定位元件适用于工件以()面定位。 18.定位误差由两部分组成,即基准位置误差和()误差。 19.在使用圆偏心轮夹紧工件时能保证自锁,则应使圆偏心轮上任意一点的 () 角都小于该点工作时的()角。 20.分度装置可分为()装置和直线分度装置两大类。 21.机床夹具的动力夹紧装置由()、中间传力机构和()所组成。 22.套类零件采用心轴定位时,长心轴限制了()个自由度;短心轴限制了()个自 由度。 23.钻套按其结构型式可分为()钻套、()钻套、快换钻套和非标准钻套四种。 24.几个定位元件重复限制同一个自由度的定位,是()。 25.多点联动夹紧机构中必须有()元件。 26.由于工件定位所造成的加工面相对其()的位置误差,称为定位误差。———————————————————————————————————————

GPS定位原理介绍习题及答案解析(完整版)

14 全球定位系统(GPS)定位原理简介 一、填空题: 1、GPS接收机基本观测值有伪距观测值、载波相位观测值。 2、GPS接收机按用途分,可分为导航型接收机、测地型接收机、授时型接收机和姿态测量型接收机。其中测地型接收机,按载波频率又可分为单频接收机、双频接收机。 3、GPS接收机主要由GPS接收机天线、GPS接收机主机和电源三部分组成。 4、GPS定位是利用空间测距交会定点原理。 5、全球定位系统(GPS)主要由空间卫星部分、地面监控部分和用户设备三部分组成。 6、GPS卫星星座由 24颗卫星组成。其中21颗工作卫星, 3 颗备用卫星。工作卫星分布在 6 个近圆形的轨道面内,每个轨道上有 4 颗卫星。GPS工作卫星距离地面的平均高度是20200km。 7、地面监控部分按功能可分为监测站、主控站和注入站三种。 8、GPS接收机接收的卫星信号有:伪距观测值和载波相位观测值及卫星广播星历。 9、根据测距原理,GPS卫星定位方法有伪距定位法、载波相位测量定位和 G PS 差分定位。对于待定点位,根据接收机运动状态可分为静态定位和动态定位。根据获取定位结果的时间可分为实时定位和非实时定位。 10、在两个测站上分别安置接收机,同步观测相同的卫星,以确定两点间相对位置的定位方法称为相对定位。 11、载波相位相对定位普遍采用将相位观测值进行线性组合的方法。具体方法有三种,即单差法、双差法和三差法。 12、GPS差分定位系统由基准站、流动站和无线电通信链三部分组成。 13、GPS测量实施过程与常规测量一样包括方案设计、外业测量和内业数据处理三部分。 二、名词解释: 1、伪距单点定位----利用GPS接收机在某一时刻测定的四颗以上GPS卫星伪距及从卫星导航电文中获得的卫星位置,采用距离交会法求定天线所在的三维坐标. 2、载波相位相对定位----用两台GPS接收机,分别安置在测线两端(该测线称为基线),固定不动,同步接收GPS卫星信号。利用相同卫星的相位观测值进行解算,求定基线端点在WGS一84坐标系中的相对位置或基线向量。当其中一个端点坐标已知,则可推算另一个待定点的坐标。 3、整周跳变----当GPS接收机在跟踪卫星进行载波相位测量过程中,若因某种原因引起对卫星跟踪短暂失锁,如卫星和接收机天线之间视线方向有阻挡物或接收机受到外界电磁干扰等,将造成载波相位整周观测值的意外丢失现象。这种现象称为整周跳变。 4、静态定位---进行GPS定位时,接收机的天线始终处于静止状态,用GPS测定相对于地球不运动的点位。GPS接收机安置在该点上,接收数分钟乃至更长时间,以确定其三维坐标,又称为绝对定位。 5、动态定位----进行GPS定位时,接收机的天线始终处于运动过程中,动态定位

计算几何常用函数

目录 ㈠点的基本运算 1. 平面上两点之间距离 1 2. 判断两点是否重合 1 3. 矢量叉乘 1 4. 矢量点乘 2 5. 判断点是否在线段上 2 6. 求一点饶某点旋转后的坐标 2 7. 求矢量夹角 2 ㈡线段及直线的基本运算 1. 点与线段的关系 3 2. 求点到线段所在直线垂线的垂足 4 3. 点到线段的最近点 4 4. 点到线段所在直线的距离 4 5. 点到折线集的最近距离 4 6. 判断圆是否在多边形内 5 7. 求矢量夹角余弦 5 8. 求线段之间的夹角 5 9. 判断线段是否相交 6 10.判断线段是否相交但不交在端点处 6 11.求线段所在直线的方程 6 12.求直线的斜率 7 13.求直线的倾斜角 7 14.求点关于某直线的对称点 7 15.判断两条直线是否相交及求直线交点 7 16.判断线段是否相交,如果相交返回交点 7 ㈢多边形常用算法模块 1. 判断多边形是否简单多边形 8 2. 检查多边形顶点的凸凹性 9 3. 判断多边形是否凸多边形 9 4. 求多边形面积 9 5. 判断多边形顶点的排列方向,方法一 10 6. 判断多边形顶点的排列方向,方法二 10 7. 射线法判断点是否在多边形内 10 8. 判断点是否在凸多边形内 11 9. 寻找点集的graham算法 12 10.寻找点集凸包的卷包裹法 13 11.判断线段是否在多边形内 14 12.求简单多边形的重心 15 13.求凸多边形的重心 17 14.求肯定在给定多边形内的一个点 17 15.求从多边形外一点出发到该多边形的切线 18

16.判断多边形的核是否存在 19 ㈣圆的基本运算 1 .点是否在圆内 20 2 .求不共线的三点所确定的圆 21 ㈤矩形的基本运算 1.已知矩形三点坐标,求第4点坐标 22 ㈥常用算法的描述 22 ㈦补充 1.两圆关系: 24 2.判断圆是否在矩形内: 24 3.点到平面的距离: 25 4.点是否在直线同侧: 25 5.镜面反射线: 25 6.矩形包含: 26 7.两圆交点: 27 8.两圆公共面积: 28 9. 圆和直线关系: 29 10. 内切圆: 30 11. 求切点: 31 12. 线段的左右旋: 31 13.公式: 32 代码: /* 需要包含的头文件 */ #include /* 常用的常量定义 */ const double INF = 1E200 const double EP = 1E-10 const int MAXV = 300 const double PI = 3.14159265 /* 基本几何结构 */ struct POINT { double x; double y; POINT(double a=0, double b=0) { x=a; y=b;} //constructo

工件的定位教案

---------------------考试---------------------------学资学习网---------------------押题------------------------------

教学首页设计

授课思路和教教学过程 学方法 学生活动教学内容和教师活动 看图想Ⅰ、复习引入问题,回忆用锥柄连接式车床专用夹具加工支架内课上次6-2)(参照书P127图容思学生【车床夹具定位实例:怎样考】)(参照书P129图6-3 切证在保首先:回顾过削加工程中,使工⑴、夹具的组成;介绍定位个各件的夹具的作用。⑵、面表加工Ⅱ、讲授新课的尺寸,形的目的让置及位状定位和基准的基本概念一、 合符精度6-3图讲解)(结合书P129学生明白要规定1、工件的定位必求?----使用夹具对工件进行加工时,必须按照加工工艺的要:】【师件须使工此次课程或机床在求把工件放在夹具中,使工件在夹紧之前相对于机床和刀具有一占中夹具个正确的确定位置,这个过程称为工件 【强调:)(1定的位置。:的定位。确个有一的作用、工件的定位是靠工件上某些表面和夹具中的】 提问】【定位元件(或装置)相接触来实现的。通过证何保如工件的定位必须使一批工件逐次放入夹具中都能占有(2、)工批同一同一位置。具件在夹对熟悉的一占有中2、定位基准确正致的所谓定位基准是指工件与夹具定位】【师:知识类比置位加工元件工作表面相接触的表面。据呢?根】扩展:【答生作学掌握与之情况工件上其他部分的位置也1(当工件的定位基准确定后,、)定引出随之确定。位的概念有关的陌、定位基准可以是点、线、面,但作为基准的点

工件的定位与定位基准的 选择

工件的定位与定位基准的选择 工件的定位与定位基准的选择 机械加工中,为了保证工件的位置精度和用调整法获得尺寸精度时,工件相对于机床与刀具必须占有一正确位置,即工件必须定位。而工件装夹定位的方式有:直接找正、划线找正和用夹具装夹三种方式,下面我们讨论工件在夹具中的定位问题。 工件在夹具中的定位涉及到定位原理、定位误差、夹具上采用的定位元件和工件上选用的定位基准等几方面的问题,有关定位误差的计算和定位元件的选用在夹具设计一章讲授,这里只介绍定位原理和定位基准的选择。 一、定位原理 1.六点定则 工件在夹具中的定位的目的,是要使同一工序中的所有工件,加工时按加工要求在夹具中占有一致的正确位置(不考虑定位误差的影响)。怎样才能各个工件按加工要求在夹具中保持一致的正确位置呢?要弄清楚这个问题,我们先来讨论与定位相反的问题,工件放置在夹具中的位置可能有哪些变化?如果消除了这些可能的位置变化,那么工件也就定了位。任一工件在夹具中未定位前,可以看成空间直角坐标系中的

自由物体,它可以沿三个坐标轴平行方向放在任意位置,即具有沿三个坐标轴移动的自由度X,Y,Z;同样,工件沿三个坐标轴转角方向的位置也是可以任意放置的,即具有绕三个坐标轴转动的自由度X,Y,Z。因此,要使工件在夹具中占有一致的正确位置,就必须限制工件的X,Y,Z;X,Y,Z六个自由度。。 图2-16工件的六个自由度 为了限制工件的自由度,在夹具中通常用一个支承点限制工件一个自由度,这样用合理布置的六个支承点限制工件的六个自由度,使工件的位置完全确定,称为“六点定位规则”,简称“六点定则”。 例如用…… 使用六点定则时,六个支承点的分布必须合理,否则不能有效地限制工件的六个自由度。 在具体的夹具结构中,所谓定位支承是以定位元件来体现的,如上例中长方体的定位以六个支承钉代替六个支承点(图

计算几何与图形学有关的几种常用算法

算法系列之九:计算几何与图形学有关的几种常用算法(一) 分类:算法系列2011-12-18 23:13 8182人阅读评论(41) 收藏举报 我的专业是计算机辅助设计(CAD),算是一半机械一半软件,《计算机图形学》是必修课,也是我最喜欢的课程。热衷于用代码摆平一切的我几乎将这本教科书上的每种算法都实现了一遍,这种重复劳动虽然意义不大,但是收获很多,特别是丢弃了多年的数学又重新回到了脑袋中,算是最大的收获吧。尽管已经毕业多年了,但是每次回顾这些算法的代码,都觉得内心十分澎湃,如果换成现在的我,恐怕再也不会有动力去做这些事情了。 在学习《计算机图形学》之前,总觉得很多东西高深莫测,但实际掌握了之后,却发现其中了无神秘可言,就如同被原始人像神一样崇拜的火却被现代人叼在嘴上玩弄一样的感觉。图形学的基础之一就是计算几何,但是没有理论数学那么高深莫测,它很有实践性,有时候甚至可以简单到匪夷所思。计算几何是随着计算机和CAD的应用而诞生的一门新兴学科,在国外被称为“计算机辅助几何设计(Computer Aided Geometric Design,CAGD)”。“算法系列”接下来的几篇文章就会介绍一些图形学中常见的计算几何算法(顺便晒晒我的旧代码),都是一些图形学中的基础算法,需要一些图形学的知识和数学知识,但是都不难。不信?那就来看看到底有多难。 本文是第一篇,主要是一些图形学常用的计算几何方法,涉及到向量、点线关系以及点与多边形关系求解等数学知识,还有一些平面几何的基本原理。事先声明一下,文中涉及的算法实现都是着眼于解释原理以及揭示算法实质的目的,在算法效率和可读性二者的考量上,更注重可读性,有时候为了提高可读性会刻意采取“效率不高”的代码形式,实际工程中使用的代码肯定更紧凑更高效,但是算法原理都是一样的,请读者们对此有正确的认识。 一、判断点是否在矩形内 计算机图形学和数学到底有什么关系?我们先来看几个例子,增加一些感性认识。首先是判断一个点是否在矩形内的算法,这是一个很简单的算法,但是

(整理)工件的定位原理及方法简介

工件以一面两孔定位时,为什么要用一个圆柱销和一个菱形销且菱形销怎么是限制一个自由度? 一个零件有六个自由度,平移四向、上下两向、旋转两向。 一销可消除平移四向、旋转一向和向下移动三个自由度,再加一销会产生过定位问题,所以,改用菱形销,只留一个向上的自由度。 自由度有计算公式,点、线接触为高付,面接触为低付。 平面自由度计算公式F=3n-(2p+3q), n为自由构件数目(不含支架),p为低副数,q为高副数目 数控机床上工件定位的原理 在机械加工过程中为确保加工精度,在数控机床上加工零件时,必须先使工件在机床上占据一个正确的位置,即定位,然后将其夹紧。这种定位与夹紧的过程称为工件的装夹。用于装夹工件的工艺装备就是机床夹具。 1 工件定位的基本原理 六点定位厦理 工件在空问具有六个自由度,即沿x、y、z三个直角坐标轴方向的移动自由度和绕这三个坐标轴的转动自由度因此,要完全确定工件的位置,就必须消除这六个自由度,通常用六个支承点(即定位元件)来限制关键的六个自由度,其中每一个支承点限制相应的一个自由度,在如y平面上,不在同一直线上的三个支承点限制了工件的王、于三个自由度,这个平面称为主基准面;在平面上沿长度方向布置的两个支承点限制了工件的拿两个自由度,这个平面称为导向平面;工件在xoz乎面上,被一个支承点限制了,一个自由度,这个平面称为止动平面。 工件的六个自由度综上所述,若要使工件在央具中获得唯一确定的位置.就需要在夹具上合理设置相当于定位元件的六个支承点.使工件的定位基准与定位元件紧贴接触,即可消除工件的所有六个自由度.这就是工件的六苣定位原理。工件的六点定位(2)六点定位原理的应用 六点定位原理对于任何形状工件的定位都是适用的,如果违背这个原理,工件在央具中的位置就不能完全确定。然而.用工件六点定位原理进行定位时,必须根据具体加工要求灵活运用.工件形状不同t定位表面不同,定位点的分布情况会各不相同,宗旨是使用最简单的定位方法,使工件在夹具中迅速获得正确的位置。

计算几何实验报告

1.计算几何实验报告 2.实验目的 用VC 语言实现任意多边形的Delaunay完全三角剖分算法。 3.实验内容 在计算机三维曲面造型,有限元计算和模式识别等领域里,经常要解决平面多边形的三角剖分问题。一方面三角剖分解决了几何数据存储的一致性;另一方面三角形是平面域的单纯形,具有许多特性和优点,是解决许多问题的基础,处理上也比较简单,例如可以很好的拟合复杂边界等。Delaunay 三角剖分具有三角剖分最小内角为最大”的性质,能够进行任意多连通域有限网格的自动生成。 令P = { P1 , P2 , ?, PN}为平面域(R2 ) 上N 个离散点的集合,尽管有多种方法实现点集P 的三角剖分,但是俄国科学家Delaunay 在1934 年证明:必定存在且仅存在一种三角剖分(一般称为Delaunay 三角剖分) 算法,使得所有三角形的最小内角之和最大。因此,Delaunay 三角剖分能够尽可能地避免病态三角形的出现。一般情况下,一个完整的Voronoi 图有多个Voronoi 多边形组成,第i 个Voronoi 多边形的数学表达形式如下: Vi = {x ∈R2 : ‖x - Pi ‖≤‖x - Pi ‖,j = 1 , ?,n ;j ≠i} (1) 式中,i = 1 ,2 , ?,N , ‖x - Pi ‖表示平面域上点x 和节点Pi 之间的欧式距离。从(1) 式可知,Voronoi 多边形Vi 内任意点x 到节点Pi 的距离比到点集P 中任何其他节点的距离更近,因此Vi 由节点Pi 和每个相邻节点的垂直平分线所形成的开式半平面的交集组成,故Vi 必为凸多边形。一般情况下, Voronoi 图的一个顶点同时属于三个Voronoi 多边形,每个Voronoi 多边形内有且仅有 一个节点。连接三个共点的Voronoi 多边形分别对应的三个节点则形成一个Delaunay 三角形,所有这样的三角形的集合就是著名的Delaunay 三角剖分。图l 给出了8 个节点的Delaunay 三角剖分及其对偶的Voronoi 图。Delaunay 三角剖分的一个重要性质就是所谓的“空圆盘”性质:对于任意的Delaunay 三角形,其开式圆盘(即该三角形外接圆的内部区域) 不包含其他任何节点,所有Delaunay三角形互不重叠,且完整地覆盖整个问题域。 4.算法原理 在实际问题中,任何二维图形总是有一个外环和若干个内环组成,并且任意两个环之间不会重叠。对于自相交多边形或者有重叠的非自相交多边形,均可以将它们分解成若干个无重叠多边形。 整个算法如F : 令多边形的边数为N ,第K 条边的起点序号为L Kl ,终点序号为L K2 ,此时不再有内环和外环的概念的区分。 (1) 若N = 3 ,则该多边形本身是一个三角形,剖分结束;否则令K= 1 ,转入(1) ; (2) 令K= K+ 1 ,若L K2不在有向线段L1l L l2 之左,转入(2) ;否则转入(3) ;

三维计算几何

1.计算几何 1.1 注意 1. 注意舍入方式(0.5的舍入方向);防止输出-0. 2. 几何题注意多测试不对称数据. 3. 整数几何注意xmult和dmult是否会出界; 符点几何注意eps的使用. 4. 避免使用斜率;注意除数是否会为0. 5. 公式一定要化简后再代入. 6. 判断同一个2*PI域内两角度差应该是 abs(a1-a2)pi+pi-beta; 相等应该是 abs(a1-a2)pi+pi-eps; 7. 需要的话尽量使用atan2,注意:atan2(0,0)=0, atan2(1,0)=pi/2,atan2(-1,0)=-pi/2,atan2(0,1)=0,atan2(0,-1)=pi. 8. cross product = |u|*|v|*sin(a) dot product = |u|*|v|*cos(a) 9. (P1-P0)x(P2-P0)结果的意义: 正: 顺时针(0,pi)内 负: 逆时针(0,pi)内 0 : ,共线,夹角为0或pi 10. 误差限缺省使用1e-8! 1.2几何公式 三角形: 1. 半周长 P=(a+b+c)/2 2. 面积 S=aHa/2=absin(C)/2=sqrt(P(P-a)(P-b)(P-c)) 3. 中线 Ma=sqrt(2(b^2+c^2)-a^2)/2=sqrt(b^2+c^2+2bccos(A))/2 4. 角平分线 Ta=sqrt(bc((b+c)^2-a^2))/(b+c)=2bccos(A/2)/(b+c) 5. 高线 Ha=bsin(C)=csin(B)=sqrt(b^2-((a^2+b^2-c^2)/(2a))^2) 6. 内切圆半径 r=S/P=asin(B/2)sin(C/2)/sin((B+C)/2) =4Rsin(A/2)sin(B/2)sin(C/2)=sqrt((P-a)(P-b)(P-c)/P) =Ptan(A/2)tan(B/2)tan(C/2) 7. 外接圆半径 R=abc/(4S)=a/(2sin(A))=b/(2sin(B))=c/(2sin(C)) 四边形: D1,D2为对角线,M对角线中点连线,A为对角线夹角 1. a^2+b^2+c^2+d^2=D1^2+D2^2+4M^2 2. S=D1D2sin(A)/2 (以下对圆的内接四边形) 3. ac+bd=D1D2 4. S=sqrt((P-a)(P-b)(P-c)(P-d)),P为半周长 正n边形: R为外接圆半径,r为内切圆半径 1. 中心角 A=2PI/n

计算几何常用算法

计算几何常用算法 一、引言 计算机的出现使得很多原本十分繁琐的工作得以大幅度简化,但是也有一些在人们直观看来很容易的问题却需要拿出一套并不简单的通用解决方案,比如几何问题。 作为计算机科学的一个分支,计算几何主要研究解决几何问题的算法。在现代工程和数学领域,计算几何在图形学、机器人技术、超大规模集成电路设计和统计等诸 多领域有着十分重要的应用。在本文中,我们将对计算几何常用的基本算法做一个全面的介绍,希望对您了解并应用计算几何的知识解决问题起到帮助。 二、目录 本文整理的计算几何基本概念和常用算法包括如下内容: 矢量的概念 矢量加减法 矢量叉积 折线段的拐向判断 判断点是否在线段上 判断两线段是否相交 判断线段和直线是否相交 判断矩形是否包含点 判断线段、折线、多边形是否在矩形中 判断矩形是否在矩形中 判断圆是否在矩形中 判断点是否在多边形中 判断线段是否在多边形内 判断折线是否在多边形内 判断多边形是否在多边形内 判断矩形是否在多边形内 判断圆是否在多边形内 判断点是否在圆内 判断线段、折线、矩形、多边形是否在圆内 判断圆是否在圆内 计算点到线段的最近点 计算点到折线、矩形、多边形的最近点 计算点到圆的最近距离及交点坐标 计算两条共线的线段的交点 计算线段或直线与线段的交点 求线段或直线与折线、矩形、多边形的交点 求线段或直线与圆的交点 凸包的概念 凸包的求法

三、算法介绍 矢量的概念: 如果一条线段的端点是有次序之分的,我们把这种线段成为有向线段(directed segment)。如果有向线段p1p2的起点p1在坐标原点,我们可以把它称为矢量(vector)p2。 矢量加减法: 设二维矢量P = ( x1,y1 ) ,Q = ( x2 , y2 ) 则矢量加法定义为:P + Q = ( x1 + x2 , y1 + y2 ) 同样的,矢量减法定义为:P - Q = ( x1 - x2 , y1 - y2 )。 显然有性质P + Q = Q + P P - Q = - ( Q -P )。 矢量叉积: 计算矢量叉积是与直线和线段相关算法的核心部分。设矢量P =(x1,y1),Q = (x2,y2),则矢量叉积定义为由(0,0)、p1、p2和p1+p2所组成的平行四边形的带符号的面积 即:P×Q = x1*y2 - x2*y1,其结果是一个标量。 显然有性质P×Q = - (Q×P)和P×( -Q ) = - ( P×Q)。一般在不加说明的情况下,本文下述算法中所有的点都看作矢量,两点的加减法就是矢量相加减,而点的乘法则看作矢量叉积。叉积的一个非常重要性质是可以通过它的符号判断两矢量相互之间的顺逆时针关系: 若P ×Q > 0 , 则P在Q的顺时针方向。若P ×Q < 0 , 则P在Q的逆时针方向。若P ×Q = 0 , 则P与Q共线,但可能同向也可能反向。 折线段的拐向判断: 折线段的拐向判断方法可以直接由矢量叉积的性质推出。对于有公共端点的线段p0p1和p1p2,通过计算(p2 - p0) ×(p1 - p0)的符号便可以确定折线段的拐向: 若(p2 - p0) ×(p1 - p0) > 0,则p0p1在p1点拐向右侧后得到p1p2。 若(p2 - p0) ×(p1 - p0) < 0,则p0p1在p1点拐向左侧后得到p1p2。 若(p2 - p0) ×(p1 - p0) = 0,则p0、p1、p2三点共线。 具体情况可参照下图: 判断点是否在线段上: 设点为Q,线段为P1P2 ,判断点Q在该线段上的依据是:( Q - P1 ) ×( P2 - P1 ) = 0 且Q 在以P1,P2为对角顶点的矩形内。前者保证Q点在直线P1P2上,后者是保证Q点不在线段P1P2的延长线或反向延长线上,对于这一步骤的判断可以用以下过程实现: ON-SEGMENT(pi,pj,pk) if min(xi,xj)<=xk<=max(xi,xj) and min(yi,yj)<=yk<=max(yi,yj) then return true; else return false; 特别要注意的是,由于需要考虑水平线段和垂直线段两种特殊情况,min(xi,xj)<=xk<=max(xi,xj)和min(yi,yj)<=yk<=max(yi,yj)两个条件必须同时满足才能返回真值。

GPS卫星定位基本原理

GPS卫星定位基本原理 本单元教学重点和难点 1、伪距测量的原理及其相应的技术; 2、载波相位测量的原理及其相应的技术; 3、绝对定位和相对定位的方法。 教学目标 1、熟悉伪距测量的原理及其相应的技术; 2、熟悉载波相位测量的原理及其相应的技术; 3、了解GPS绝对定位、相对定位和差分定位的含义; 4、了解三种定位的区别和相应的方法。 学习指导 本章介绍GPS测量原理,内容包括:GPS定位方法分类、GPS 观测量、动态绝对定位、静态绝对定位、动态相对定位、静态相对定位以及差分定位。教学目的是使学生掌握GPS定位的基本原理,为学习GPS测量误差、GPS接收机选购与检验、GPS网的设计、GPS 选点、观测和数据处理打下理论基础。 本章内容的特点是概念多、理论多、公式多,不涉及技能训练。学习时重点掌握GPS定位的基本原理、GPS定位方法分类、GPS观测量、绝对定位、精度衰减因子、整周未知数、整周跳等基本概念,测码伪距动态绝对定位和测相伪距动态绝对定位、静态绝对定位、相对定位、RTK、网络RTK等基本原理。对于教材中的公式推导过程不要求掌握,但对公式推导的结论应当理解并熟练掌握。如观测方程和定位精度评价公式,应能结合误差传播定律从中看出影响定位精度的各种因素,并能通过以后章节学习,掌握相应的测量方法、减弱

各种误差影响以提高测量精度的措施。 本章主要介绍GPS 卫星定位的基本原理与定位方法分类;GPS 定位所依据的伪距观测量;在测码伪距观测量和测相伪距观测量的基础上,讨论了静态和动态绝对定位原理以及相对定位和差分定位原理。 GPS 定位原理概述 1. GPS 定位原理 测量学中的交会法测量里有一种测距交会确定点位的方法。与其相似,GPS 的定位原理就是利用空间分布的卫星以及卫星与地面点的距离交会得出地面点位置。简言之,GPS 定位原理是一种空间的距离交会原理。 设想在地面待定位置上安置GPS 接收机,同一时刻接收4颗以上GPS 卫星发射的信号。通过一定的方法测定这4颗以上卫星在此瞬间的位置以及它们分别至该接收机的距离,据此利用距离交会法解算出测站P 的位置及接收机钟差δt 。 图3-1 GPS 定位原理 如图3-1,设时刻i t 在测站点P 用GPS 接收机同时测得P 点至四颗GPS 卫星S 1、S 2、S 3、S 4的距离1ρ、2ρ、3ρ、ρ4,通过GPS 电文解译出四颗GPS 卫星的三维坐标() 4,3,2,1,,,=j Z Y X j j j ,用距离交会的方法求解P 点的三维坐标()Z Y X ,,的观测方程为: ()()()()()()()()()()()()???????????+-+-+-= +-+-+-= +-+-+-= +-+-+-=t c Z Z Y Y X X t c Z Z Y Y X X t c Z Z Y Y X X t c Z Z Y Y X X δρδρδρδρ24242424232323232222222221212121

相关文档