文档库 最新最全的文档下载
当前位置:文档库 › 高等数学( 北大版)习题6.1

高等数学( 北大版)习题6.1

高等数学( 北大版)习题6.1
高等数学( 北大版)习题6.1

习题

6.1

2

2

1/2

222222

2

2

1

2

2

2

2

2

2

1.(1)(2)

ln(4);20, 4.

(2)();.

(3)ln()ln(1);0, 1.(4)arcsin arccos

(0,0);||,||.

(5)ln();1z x y x x y x y x x y z x y x y z y x y y x y x y z a b x a y b a

b

z x y x y -=+-+--+-≥-<=-≠=-+--><=+>>≤≤=

++≤确定下列函数的定义域并且画出定义域的的图形

:2

2

22

,0.

(6)arcsin()1,0.

x y z x y x y xy +>=+++≤≥

122

2

3442.(1){(,)|0,0};(2){(,)|||1,|1|2};(3){(,)|,};1(4){(,)|sin 0}.1{(sin

)|0}{(0,)|E x y x y E x y x y E x y y x x y E x y y x x

E x x y x

=>>=<-<=≥≥=≠≠?=≠?指出下列集合中哪些集合在中是开集,哪些是区域?哪些是有界区域?哪些

是有界闭区域?

开集,区域.

开集,区域,有界区域.有界闭区域.且区域,边界点集合

,11}.

y -≤≤

2(1)2(2)

1(1)1(2)1(3)

1(4)

1(5)1(6)

0000000003.,.,.0,(),(),()(),(),()().n

r r r r r E E E E E E P E P E P E r U P E E Q U P E Q E U Q U P U Q E U P E U P E E E P E E E ρρ??=??????>?∈?????=R 设为的边界点集合试证明是一个闭集.

设则且于是存在使得不含的点从而不含的点.否则,存在作为的边界点,存在 含的点于是含的点,矛盾.因此,不含的点,不是的的边界点这表明的边界点全属于.故证 E 是闭集合.

2

111111114.,(,,),(,,)(,,)(,,)(,,),.

,(1)||||||,,;

(2)|n

n n n n n n n n n

x x x x y y x y x y x x x y x y αβαβλαλλλαβααβαβαβα==+=++=?∈=++≤?∈R R R R 像在 中一样我们把中的点同时也视作一个向量并定义两个向量

及的加法运算及数乘运算

此外=我们也可以定义两个向量之内积

,并规定|作为向量的模.试证明112

2

2

2

2

2

2

|||||,,,;

(3)(,,)(,,),(,)||.,(2).||||2||0,.|||||0,||||||.

(n

n n P x x Q y y P d P Q βαγγβαβγαβαβββαλββλαβλαλαβαβαβαβ-≤-+-?∈=-≠+=++≥?∈-≤≤R R 将点及分别看成向量及则有到Q的距离由此可由中之不等式导出三角不等式时结论显然成立设考虑二次函数其判别式|证(1)=0 .0.2

2

2

2

2

2

2)||||||2||||2||||(||||),||||||.

|||()()||()|||||||.

(3),,,(,)||||||(,)(,).

P Q R d P R d P Q d Q R αβαβαβαβαβαβαβαβαβαγβγαγβγαγγβαβγαγαββγ+=++≤++=++≤+-=---≤-+-=-+-====-≤-+-=+

2(3)2(4)

高等代数北大版第章习题参考答案

第七章 线性变换 1.? 判别下面所定义的变换那些是线性的,那些不是: 1)? 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)? 在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3)? 在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4)? 在P 3中,A ),,2(),,(132213 21x x x x x x x x +-=; 5)? 在P[x ]中,A )1()(+=x f x f ; 6)? 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)? 把复数域上看作复数域上的线性空间, A ξξ=。 8)? 在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx = k A )(α, 故A 是P 3 上的线性变换。 5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i , k(A a)=i, A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y , A (k X )=k BXC k kX B ==)()(A X ,故A 是n n P ?上的线性变换。

高等代数(北大版)第5章习题参考答案.doc

第五章 二次型 1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果。 1) 4 x 1 x 2 2 x 1 x 3 2x 2 x 3 ; 2) x 12 2 x 1 x 2 2x 22 4x 2 x 3 4x 32 ; 3) x 12 3x 22 2x 1 x 2 2x 1 x 3 6x 2 x 3 ; 4) 8x 1 x 4 2x 3 x 4 2x 2 x 3 8x 2 x 4 ; 5) x 1 x 2 x 1 x 3 x 1 x 4 x 2 x 3 x 2 x 4 x 3 x 4 ; 6) x 12 2 x 22 x 42 4x 1 x 2 4x 1 x 3 2x 1 x 4 2x 2 x 3 2x 2 x 4 2 x 3 x 4 ; 7) x 2 x 2 x 2 x 2 2x 1 x 2 2x 2 x 3 2x x 4 。 1 2 3 4 3 解1)已知 f x 1 , x 2 , x 3 4x 1 x 2 2x 1x 3 2x 2 x 3 , 先作非退化线性替换 x 1 y 1 y 2 x 2 y 1 y 2 ( 1) x 3 y 3 则 f x 1 , x 2 , x 3 4 y 12 4y 22 4 y 1 y 3 4y 2 4y y y 2 y 2 4y 2 1 1 3 3 3 2 2 y 1 3 y 32 4 y 22 , y 3 再作非退化线性替换 y 1 1 z 1 1 z 3 2 2 y 2 z 2 ( 2) y 3 z 3 则原二次型的标准形为

f x 1 , x 2 , x 3 z 12 4z 22 z 32 , 最后将( 2)代入( 1),可得非退化线性替换为 x 1 1 z 1 z 2 1 z 3 2 2 x 2 1 z 2 1 ( 3) z 1 z 3 2 2 x 3 z 3 于是相应的替换矩阵为 1 0 1 1 0 1 1 1 0 2 2 2 2 T 1 1 0 1 1 1 1 0 0 2 , 1 0 0 1 2 1 且有 1 0 0 T AT 0 4 0 。 0 1 2 )已知 f x 1 , x 2 , x 3 x 12 2x 1 x 2 2x 22 4 x 2 x 3 4x 32 , 由配方法可得 f x , x , x x 2 2x x 2 x 2 x 2 4x x 3 4x 2 1 2 3 1 1 2 2 2 3 x 1 x 2 2 x 2 2x 3 2 , 于是可令 y 1 x 1 x 2 y 2 x 2 2x 3 , y 3 x 3 则原二次型的标准形为 f x , x 2 , x 3 y 2 y 2 , 1 1 2 且非退化线性替换为

(完整版)高等代数(北大版)第9章习题参考答案

第九章 欧氏空间 1.设() ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =, (3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑= 'A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此 ∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 1222 22112 11)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。

北大计算机系考研_历年高等数学真题附答案

北大计算机考研 高等数学真题解答 2008年(5题60分) 1 (12分))(x f 有连续的二阶导数,0)(≠a f ,求) (1 )()(1lim a f a f a x f a x '---→。 2 (12分))(x f 在[]b a ,上连续且0)()(==b f a f ,0)()(>''b f a f ,证明:在()b a ,上必有一点u 使得0)(=u f 。 3 (12分)求不定积分? --dx x x x 2 ) ln (ln 1。 4 (12分)0)0(=f 且0)0(='f ,)(x f 有连续的导数,求dx x t x tf x x ? -→0 4 220) (lim 。 5 (12分))(x f 在0附近可导且导数大于0,证明无穷级数)1 (n f 发散,无穷级 数)1 ()1(n f n -收敛。 2007年(5题60分) 1 (12分)求不定积分?+dx x e x 22)1(tan 。 解:=+?dx x e x 22)1(tan +?xdx e x 22sec =?xdx e x tan 22 +?x d e x tan 2-x e x tan 2=? x d e x tan 2C x e x +tan 2。 2 (12分)求连续函数)(x f ,使它满足0)0(,sin )()(1 0=+=?f x x x f dt tx f 。 解:令,tx u =则0=t 时,0=u ,1=t 时,x u =,xdt du =; ? =1 )(dt tx f ?=x du u f x 0 )(1? +x x x f sin )(? =x du u f 0 )(?+x x x xf sin )(2 ?++'+=x x x x x f x x f x f cos sin 2)()()(2?--='x x x x f cos sin 2)(

(完整版)高等代数(北大版第三版)习题答案II

高等代数(北大第三版)答案 目录 第一章多项式 第二章行列式 第三章线性方程组 第四章矩阵 第五章二次型 第六章线性空间 第七章线性变换 第八章 —矩阵 第九章欧氏空间 第十章双线性函数与辛空间 注: 答案分三部分,该为第二部分,其他请搜索,谢谢!

12.设A 为一个n 级实对称矩阵,且0'A X X , 0>'B X X , 因此 ()0>'+' =+'BX X AX X X B A X , 于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。 14.证明:二次型()n x x x f ,,,21Λ是半正定的充分必要条件是它的正惯性指数与秩相等。 证 必要性。采用反证法。若正惯性指数≠p 秩r ,则r p <。即 ()n x x x f ,,,21Λ2 2122221r p p y y y y y ---+++=+ΛΛ, 若令

北大版高等数学第4章习题集解答

习题 4.1 3212121.()32[0,1][1,2]Rolle 0,(0)(1)(2)0,()[0,1][1,2]Rolle 620,33(0,1),(1,2),()()0.33 2.f x x x x f f f f f x x x x x x f x f x =-+==='-+===+''= ∈===2验证函数在区间及上满足定理的条件并分别求出导数为的点. 处处可导故在区间及上满足定理的条件.f (x)=3x 讨论下列 解1111()[1,1]Rolle ,,(1,1),()0. (1)()(1)(1),,;(2)()1(1)()(1)(1)(1)(1)(1)(1)()0,(1,1),()0.1 (2)(m n m n m n m n f x c f c f x x x m n f x f x m x x n x x m n x x m mx n nx c f c m f x -----∈-'==+-='=+--+--'=+----== ∈-=+'函数在区间上是否满足定理的条件若满足求使为正整数解1/32 ),(0). 3 3.()ln [1,],?11 (),()(1)ln ln11(1), 1. https://www.wendangku.net/doc/323830329.html,grange (1)|sin sin |||; (2)|tan tan |||,,(/2,/2); (3) ln x f f x x e c f x f e f e e c e x c y x x y x y y x x y b a b b b a ππ-'=-=='=-=-==-=--≤--≥-∈--<<不存在写出函数在区间上的微分中值公式并求出其中的应用中值定理,证明下列不等式:解222(0).(1)|sin sin ||(sin )|()||cos |||||.(2)|tan tan ||(tan )|()|sec ||||. (3)ln ln ln (ln )|()((,)).5.()(1)(4)x c x c x c a a b a x y x x y c x y x y y x x y x c y x y x b a b b a b a b a x b a c a b a a c a P x x x ===-<<'-=-=-≤-'-=-=-≥----'<=-=-=∈<=--证明多项式的导函数的证1,212,. ()1,2,Rolle ,,,()(2,1),(1,1),(1,2). 6.,,,:()cos cos 2cos (0,). n n P x P x c c c f x c x c x c nx π±±---=+++L L 三个根都是实根并指出它们的范围有四个实根根根据定理它的导函数有三个实根又作为四次多项式的导函数是三次多项式,最多三个实根,故的导函数的三个根都是实根,分别在区间设为任意实数证明函数在内必有根证

北京大学数学分析考研试题及解答

判断无穷积分 1 sin sin( )x dx x +∞ ?的收敛性。 解 根据不等式31|sin |||,||62 u u u u π -≤≤, 得到 33 sin sin 1sin 11 |sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x x dx x x +∞-?绝对收敛,因而收敛, 再根据1sin x dx x +∞?是条件收敛的, 由sin sin sin sin sin()(sin())x x x x x x x x =-+ , 可知积分1sin sin()x dx x +∞?收敛,且易知是是条件收敛的。 例5.3.39 设2()1...2!! n n x x P x x n =++++,m x 是21()0m P x +=的实根, 求证:0m x <,且lim m m x →+∞ =-∞。 证明 (1)任意* m N ∈,当0x ≥时,有21()0m P x +>; 当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在, 又212()()0m m P x P x +'=>,21()m P x +严格递增,所以根唯一,0m x <。 (2) 任意(,0)x ∈-∞,lim ()0x n n P x e →+∞ =>,所以21()m P x +的根m x →-∞,(m →∞)。 因为若m →∞时,21()0m P x +=的根,m x 不趋向于-∞。 则存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列0k m x x →,(0x 为某有限数0x M ≥-); 21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞ →+∞ <=-≤=,矛盾。 例、 设(1)ln(1)n n p a n -=+,讨论级数2 n n a ∞ =∑的收敛性。 解 显然当0p ≤时,级数 2 n n a ∞ =∑发散; 由 20 01 1ln(1) 1lim lim 2x x x x x x x →→- -++=011lim 21x x →=+ 12=, 得 2 21ln(1)4 x x x x ≤-+≤,(x 充分小),

高等代数北大版习题参考答案

第九章 欧氏空间 1.设()ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,

(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 122222 11211)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。 4) 由定义,知 ∑=j i j i ij y x a ,),(βα , α== β==

高等代数(北大版第三版)习题答案III

高等代数(北大*第三版)答案 目录 第一章多项式 第二章行列式 第三章线性方程组 第四章矩阵 第五章二次型 第六章线性空间 第七章线性变换 第八章 —矩阵 第九章欧氏空间 第十章双线性函数与辛空间 注: 答案分三部分,该为第三部分,其他请搜索,谢谢!

第九章 欧氏空间 1.设() ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =, (3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑= 'A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此 ∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 1222 22112 11)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。

北大版高数答案

习题 1.1 22 22222222222222 22. ,,.3,3.3, ,313 2.961,9124,31.3,93,3,3.,,. ,,,,p p p q p q p q q p p k p k p k k p k k p p k k q q k q p q p a a a b p a pb b b ====+=+=++=++======为互素自然数除尽必除尽否则或除将余故类似得除尽与互素矛盾.设是正的素数为互素自然数,则素证 2.证 1.2222222,, .,..,: (1)|||1| 3.\;(2)|3| 2. 0,13,22,1,(1,0);01,13,13,(0,1);1,13,3/2,(1,3/2).(1,0)(0,1)p a p a a pk p k pb pk b p b a b x x x x x x x x x x x x x x x X ===+-<-<<-+-<>->--<<+-<<>+-<<=-?数除尽故除尽类似得除尽此与为互素自然数矛盾.解下列不等式若则若则若则3.解 (1)222(1,3/2). (2)232,15,1||5,1||(1).,(1)||||||;(2)||1,|||| 1.(1)|||()|||||||||,||||||.(2)|||()||||||x x x x x a b a b a b a b a b a a b b a b b a b b a b a b a b a b b a b b ?-<-<<<<<<<=?-+≥--<<+=++-≤++-=+++≥-=+-≤+-<设为任意实数证明设证明证4. ,| 1.(1)|6|0.1;(2)||. 60.160.1. 5.9 6.1.(, 6.1)( 5.9,).(2)0,(,)(,);0,;0,(,). 1 1,01,. 1, 1.11x x a l x x x x X l X a l a l l x a l X a a n n a b a ++>->+>+<->-<-=-∞-?-+∞>=++∞?-∞-=≠<=-∞+∞-><<>=>-=-=解下列不等式或或若若若若证明其中为自然数若解(1)证5.: 6.1200001)(1)1).(,),(,).1/10.{|}.(,),,{|}, 10 {|}./10,(1)/10,/10(1)/101/10n n n n n n n n n n n b b n a b a b n b a m A A m A a b A B C B A x x b C A x x a B m m C b a m m --+++><-=∈?=?=?=?≥=?≤-∈-≤-Z L 设为任意一个开区间证明中必有有理数取自然数 满足考虑有理数集合 = 若则中有最小数-=证 7.(,),(,).1/10.|}.10n n n n a b a b m n b a A m <-=∈Z ,此与的选取矛盾. 设为任意一个开区间证明中必有无理数取自然数 满足考虑无理数集合 以下仿8题.8.证习题1.2

高等代数北大版习题参考答案

第七章线性变换 1.?判别下面所定义的变换那些是线性的,那些不是: 1)?在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)?在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3)?在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4)?在P 3中,A ),,2(),,(132213 21x x x x x x x x +-=; 5)?在P[x ]中,A )1()(+=x f x f ; 6)?在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)?把复数域上看作复数域上的线性空间,A ξξ=。 8)?在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α,A )0,0,4()(=αk , A ≠ )(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+=A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- =A α+A β, A =)(αk A ),,(321kx kx kx =k A )(α, 故A 是P 3 上的线性变换。 5)是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f +=A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f +A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i,k(A a)=i,A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,

北大版高等数学课后习题答案完整版

习题 1.1 22 22222222222222 223. 33,,.3,3.3, ,313 2.961,9124,31.3,93,3,3.,,. ,,,,p p p q p q p q q p p k p k p k k p k k p p k k q q k q p q p p a a p a b p a pb b b ====+=+=++=++======证明为无理数若不是无理数,则为互素自然数除尽必除尽否则或除将余故类似得除尽与互素矛盾.设是正的素数证明是无理数设为互素自然数,则素证 2.证 1.2222222,, .,..,: (1)|||1| 3.\;(2)|3| 2. 0,13,22,1,(1,0);01,13,13,(0,1);1,13,3/2,(1,3/2).(1,0)(0,1)p a p a a pk p k pb pk b p b a b x x x x x x x x x x x x x x x X ===+-<-<<-+-<>->--<<+-<<>+-<<=-?数除尽故除尽类似得除尽此与为互素自然数矛盾.解下列不等式若则若则若则3.解 (1)222(1,3/2). (2)232,15,1||5,1||5,(1,5)(5,1).,(1)||||||;(2)||1,|||| 1.(1)|||()|||||||||,||||||.(2)|||()||||||x x x x x a b a b a b a b a b a a b b a b b a b b a b a b a b a b b a b b ?-<-<<<<<<<=?--+≥--<<+=++-≤++-=+++≥-=+-≤+-<设为任意实数证明设证明证4.,| 1.(1)|6|0.1;(2)||. 60.160.1. 5.9 6.1.(, 6.1)( 5.9,).(2)0,(,)(,);0,;0,(,). 1 1,01,. 1, 1.11n n n n x x a l x x x x X l X a l a l l x a l X a a a n n a a b a a ++>->+>+<->-<-=-∞-?-+∞>=++∞?-∞-=≠<=-∞+∞-><-<>=>-=-=解下列不等式或或若若若若证明其中为自然数若显然解(1)证5.: 6.120000(1)(1)(1). (,),(,).1/10.{|}.(,),,{|}, 10 {|}./10,(1)/10,/10(1)/101/10n n n n n n n n n n n n n a b b n a a b a b n b a m A A m A a b A B C B A x x b C A x x a B m m C b a m m ---+++>-<-=∈?=?=?=?≥=?≤-∈-≤-Z 设为任意一个开区间证明中必有有理数取自然数 满足考虑有理数集合 = 若则中有最小数-=证7.(,),(,).1/10.{2|}.10n n n n a b a b m n b a A m <-=+ ∈Z ,此与的选取矛盾. 设为任意一个开区间证明中必有无理数取自然数 满足考虑无理数集合 以下仿8题.8.证习题1.2

高等代数(北大版)第5章习题参考答案

第五章 二次型 1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果。 1)323121224x x x x x x ++-; 2)2 3322221214422x x x x x x x ++++; 3)3231212 2216223x x x x x x x x -+--; 4)423243418228x x x x x x x x +++; 5)434232413121x x x x x x x x x x x x +++++; 6)4342324131212 422212222442x x x x x x x x x x x x x x x ++++++++; 7)4332212 4232221222x x x x x x x x x x ++++++。 解 1)已知 ()323121321224,,x x x x x x x x x f ++-=, 先作非退化线性替换 ??? ??=-=+=33 212211y x y y x y y x (1) 则 ()312 221321444,,y y y y x x x f ++-= 2 223233121444y y y y y y ++-+-= ()2 2 233 3142y y y y ++--=, 再作非退化线性替换 ??? ? ??? ==+=3 3223112121z y z y z z y (2) 则原二次型的标准形为

()2 322213214,,z z z x x x f ++-=, 最后将(2)代入(1),可得非退化线性替换为 ??? ? ? ? ??? =+-=++=333212321 121212 121z x z z z x z z z x (3) 于是相应的替换矩阵为 ?? ?????? ? ?-=? ?????? ??????? ??-=1002112 1 210 2110001021021100011011T , 且有 ??? ? ? ??-='100040001AT T 。 2)已知()=321,,x x x f 2 3322221214422x x x x x x x ++++, 由配方法可得 ()()() 2 33222222121321442,,x x x x x x x x x x x f +++++= ()()2 322 212x x x x +++=, 于是可令 ??? ??=+=+=33 3222112x y x x y x x y , 则原二次型的标准形为 ()2 221321,,y y x x x f +=, 且非退化线性替换为

北大版高等数学第5章习题解答

习题5.1 1.,,,,,().11 ,,().22 ABCD AB AD AC DB MA M AC DB MA AM AC ===+=-=-=- =-+设为一平行四边形试用表示为平行四边形对角线的交点解a b.a b a b a b a b () 2.,1 (). 2 11 22 1 ().2 M AB O OM OA OB OM OA AM OA AB OA OB OA OA OB =+=+=+=+-=+设为线段的中点,为空间中的任意一点证明 证 3.,,1 (). 3 221 () 332 1 (), 3 1(),3M ABC O OM OA OB OC OM OA AM OA AD OA AB AC OA AB AC OM OB BA BC OM OC =++=+=+=+?+=++=++=设为三角形的重心为空间中任意一点证明证1 (). 3 1 3,(). 3 CA CB OM OA OB OC OM OA OB OC ++=++=++ 4.,1 ,(). 4 1 (), 2 11 (),(), 221 (). 2 4ABCD M O OM OA OB OC OD OM OA AM OA AB AD OM OB BA AD OM OC BA DA OM OD AB DA OM OA OB OC OD =+++=+=++=++=++=++=+++设平行四边形的对角线交点为为空间中的任意一点证明证1 ,(). 4 OM OA OB OC OD =+++

2222225.?(1)()();(2)();(3)()(). (1).:()().(2).:()0, 1.(3),6.==?=?======0对于任意三个向量与判断下列各式是否成立不成立例如,不成立例如,成立都是与组成的平行六面体的有向体积利用向量证明三角形两边中点的连线平行解a,b c,a b c b c a a b a b a b c c a b a b i c =j.a b c =j,b c a =a i b j,a b a b a,b c .,1122 11 ().22DE DA AE BA AC BA AC BC =+= +=+=于第三边并且等于第三边长度之半.证 2227.: (1),;(2).(1)()()()()||||0. ()cos |||||||||||||AC BD AB BC BC CD AB BC BC CD BC CD AB AC AB AB AD AB AB AB AD a AB AD AB AC AB AC AB AC α=++=+-=-=+++===利用向量证明菱形的对角线互相垂直且平分顶角勾股弦定理证2, ||()cos cos . ||||||||||| ,. a AC AD AB AD AD AB AD AD a AB AD AB AC AB AC a AC βααβαβ+++=====与都是锐角故 22 2 2 2 (2)||()()||||2||||. AC AC AC AB BC AB BC AB BC AB BC AB BC ==++=++=+ 2222222222222222228.()()||||. ()()||||cos ||||sin ||||(cos sin )||||.9..||.AB AC ABC ABC ABDC AB AC αααα?+=?+=+=+=?=?证明恒等式试用向量与表示三角形的面积11 的面积= 的面积22 证解a b a b a b a b a b a b a b a b a b 2222222 2 2210.,,,()()2(). ()()()()()()222(). =++-=+++-=+++--=-+给定向量记为即现设为任意向量证明证a a a a a a a.a b , :a b a b a b a b a b a b a b a b a b a a +b b +a b +a a +b b a b =a b

高等代数北大版第章习题参考答案

高等代数北大版第章习 题参考答案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第六章 线 性空 间 1.设,N M ?证明:,M N M M N N ==。 证任取,M ∈α由,N M ?得,N ∈α所以,N M ∈α即证M N M ∈。又因 ,M N M ? 故M N M =。再证第二式,任取M ∈α或,N ∈α但,N M ?因此无论 哪一种情形,都有,N ∈α此即。但,N M N ?所以M N N =。 2.证明)()()(L M N M L N M =,)()()(L M N M L N M =。 证),(L N M x ∈?则.L N x M x ∈∈且在后一情形,于是.L M x N M x ∈∈或所以)()(L M N M x ∈,由此得)()()(L M N M L N M =。反之,若 )()(L M N M x ∈,则.L M x N M x ∈∈或在前一情形,,,N x M x ∈∈因此 .L N x ∈故得),(L N M x ∈在后一情形,因而,,L x M x ∈∈x N L ∈,得 ),(L N M x ∈故),()()(L N M L M N M ? 于是)()()(L M N M L N M =。 若x M N L M N L ∈∈∈(),则x ,x 。 在前一情形X x M N ∈,X M L ∈且,x M N ∈因而()(M L )。 ,,N L x M N X M L M N M M N M N ∈∈∈∈∈?在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L ) 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1)次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2)设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量乘法;

北大版高等数学第一章 函数及极限答案 第一章总练习题

第一章总练习题 221.:581 2. 3|58|1422.|58|6,586586,. 3552 (2)33,5 2 333,015. 5 (3)|1||2| 1 (1)(2),2144,. 2 2|2|,. 2,2,4,2;2,3x x x x x x x x x x x x x x x x x y x x x y x y x y x y x y x -≥-≥-≥-≥-≤-≥≤-≤-≤-≤≤≤+≥-+≥-+≥-+≥=+-≤=+≤=->=求解下列不等式()或或设试将表示成的函数当时当时解解解2. 解22231231 2,4,(2). 3 2,41 (2), 4.3 1 3.1. 2 2,4(1)44,0.1,0.4.:1232(1)2.22222 121 1,.22 123222n n y x y y y x y y x x x x x x x x x x n n n n ->=--≤??=?->??<+≥-<++<++>≥-≠+++++=-+==++ 的全部用数学归纳法证明下列等式当时,2-等式成立设等式对于成立,则 解证1231111 12 1 2 112 22 11231222222 2124(1)(1)3222,2222 1..1(1)(2)123(1). (1)1(11)1(1)1,(1)(1) n n n n n n n n n n n n n n n n n n n n n x nx x x nx x x x x x n x x ++++++-+++++=++++++++-+++=-+=-=-+-++++++=≠--++-===-- 即等式对于也成立故等式对于任意正整数皆成立当时证1,1 21 2 .1(1)123(1)(1)(1) n n n n n n n x nx x x nx n x n x x +--++++++++=++- 等式成立设等式对于成立,则

1.1高数(北大版)

习题 1.1
证明 3为无理数. 1. 证 若 3不是无理数,则 3 = p p2 , p, q为互素自然数.3 = 2 , p 2 = 3q 2 .3除尽p 2 , q q
必除尽p, 否则p = 3k + 1或p = 3k + 2. p 2 = 9k 2 + 6k + 1, p 2 = 9k 2 + 12k + 4, 3除 p 2 将余1.故p = 3k , 9k 2 = 3q 2 , q 2 = 3k 2 , 类似得3除尽q.与p, q互素矛盾. 设 2. p是正的素数, 证明 p是无理数. 证 设 p= a a2 , a, b为互素自然数,则p = 2 , a 2 = pb 2 , 素数p除尽a 2 , 故p除尽a, b b 2 2 2 2 2 a = pk . p k = pb , pk = b .类似得p除尽b.此与a, b为互素自然数矛盾.
解下列不等式 : 3. (1) | x | + | x ? 1|< 3.\; (2) | x 2 ? 3 |< 2. 解 (1)若x < 0, 则 ? x + 1 ? x < 3, 2 x > ?2, x > ?1, (?1, 0); 若0 < x < 1, 则x + 1 ? x < 3,1 < 3, (0,1); 若x > 1, 则x + x ? 1 < 3, x < 3 / 2, (1,3 / 2). X = (?1, 0) ∪ (0,1) ∪ (1,3 / 2). (2) ? 2 < x 2 ? 3 < 2,1 < x 2 < 5,1 <| x |2 < 5,1 <| x |< 5, x = (1, 5) ∪ (? 5, ?1). 设 4. a, b为任意实数,(1)证明 | a + b |≥| a | ? | b |;(2)设 | a ? b |< 1, 证明 | a |<| b | +1. 证(1) | a |=| a + b + (?b) |≤| a + b | + | ?b |=| a + b | + | b |,| a + b |≥| a | ? | b | . (2) | a |=| b + (a ? b) |≤| b | + | a ? b |<| b | +1. 解下列不等式 : 5. (1) | x + 6 |> 0.1;(2) | x ? a |> l. 解(1)x + 6 > 0.1或x + 6 < ?0.1.x > ?5.9或x < ?6.1. X = (?∞, ?6.1) ∪ (?5.9, +∞). (2)若l > 0, X = (a + l , +∞) ∪ (?∞, a ? l ); 若l = 0, x ≠ a; 若l < 0, X = (?∞, +∞). 若 6. a > 1, 证明0 < n a ? 1 < a ?1 , 其中n为自然数. n
n
证若a > 1, 显然 n a = b > 1.a ? 1 = n a ? 1 = ( n a ? 1)(b n ?1 + b n ? 2 + L + 1) > n( n a ? 1). 设 7. (a, b)为任意一个开区间, 证明(a, b)中必有有理数. 证取自然数n 满足1/10 n < b ? a.考虑有理数集合 m A=An = { n | m ∈ Z}. 若An ∩ (a, b) = ?, 则A = B ∪ C , B = A ∩ {x | x ≥ b}, 10 C = A ∩ {x | x ≤ a}.B中有最小数m0 /10n , (m0 ? 1) /10n ∈ C , b ? a ≤ m0 /10 n -(m0 ? 1) /10 n =1/10n ,此与n的选取矛盾. 设 8. (a, b)为任意一个开区间, 证明(a, b)中必有无理数. 证取自然数n 满足1/10 n < b ? a.考虑无理数集合An = { 2 + m | m ∈ Z}. 以下仿8题. 10n
1

相关文档
相关文档 最新文档