文档库 最新最全的文档下载
当前位置:文档库 › 电路实验报告

电路实验报告

电路实验报告
电路实验报告

实验一 元件特性的示波测量法

一、实验目的

1、学习用示波器测量正弦信号的相位差。

2、学习用示波器测量电压、电流、磁链、电荷等电路的基本变量

3、掌握元件特性的示波测量法,加深对元件特性的理解。 二、实验任务

1、 用直接测量法和李萨如图形法测量RC 移相器的相移??即uC u s

??-实验原理图如图

5-6示。 2、 图5-3接线,测量下列电阻元件的电流、电压波形及相应的伏安特性曲线(电源频率在

100Hz~1000Hz 内): (1)线性电阻元件(阻值自选)

(2)给定非线性电阻元件(测量电压范围由指导教师给定)电路如图5-7 3、按图5-4接线,测量电容元件的库伏特性曲线。 4、测量线性电感线圈的韦安特性曲线,电路如图5-5

5、测量非线性电感线圈的韦安特性曲线,电源通过电源变压器供给,电路如图5-8所示。

图 5-7 图 5-8

这里,电源变压器的副边没有保护接地,示波器的公共点可以选图示接地点,以减少误差。 三、思考题

1、元件的特性曲线在示波器荧光屏上是如何形成的,试以线性电阻为例加以说明。

答:利用示波器的X-Y方式,此时锯齿波信号被切断,X轴输入电阻的电流信号,经放大后加至水平偏转板。Y轴输入电阻两端的电压信号经放大后加至垂直偏转板,荧屏上呈现的是u x,u Y的合成的图形。即电流电压的伏安特性曲线。

3、为什么用示波器测量电路中电流要加取样电阻r,说明对r的阻值有何要求?

答:因为示波器不识别电流信号,只识别电压信号。所以要把电流信号转化为电压信号,而电阻上的电流、电压信号是同相的,只相差r倍。r的阻值尽可能小,减少对电路的影响。一般取1-9Ω。

四、实验结果

1.电阻元件输入输出波形及伏安特性

2.二极管元件输入输出波形及伏安特性

实验二 基尔霍夫定律、叠加定理的验证 和线性有源一端口网络等效参数的测定

一、实验目的

1、加深对基尔霍夫定律、叠加定理和戴维南定理的内容和使用范围的理解。

2、学习线性有源一端口网络等效电路参数的测量方法

3、学习自拟实验方案,合理设计电路和正确选用元件、设备、提高分析问题和解决问题的能力 二、实验原理 1、基尔霍夫定律:

基尔霍夫定律是电路普遍适用的基本定律。无论是线性电路还是非线性电路,无论是非时变电路还是时变电路,在任一时刻流进流出节点的电流代数和为零。沿闭合回路的电压降代数和为零。 2、叠加定理

在线性电路中每一个元件的电位或电压可以看成每一个独立源单独作用于电路时,在该元件上所产生的电流或电压的代数和。叠加定理只适用于线性电路中的电压和电流。功率是不能叠加的。 3、戴维南定理

戴维南定理是指任何一个线性有源一端口网络,总可以用一个电压源与电阻串联的有源支路来代替,电压等于该网络的开路电压U oc ,而电阻等于该网络所有独立源为零时端口等效电阻R eq 4、测量线性有源一端口网络等效参数的方法介绍

(1)线性有源一端口的开路电压oc U 及短路电流sc I 的测量

用电压表、电流表直接测出开路电压oc U 或短路电流sc I 。由于电压表及电流表的内阻会影响测量结果,为了减少测量的误差,尽可能选用高内阻的电压表和低内阻的电流表,若仪表的内阻已知,则可以在测量结果中引入相应的校正值,以免由于仪表内阻的存在而引起的方法误差。 (2)线性有源一端口网络等效电阻eq R 的测量方法

1)线性有源一端口网络的开路oc U 及短路电流sc I ,则等效电阻为sc

oc

I U R

这种方法比较简便。

但是,对于不允许将外部电路直接短路或开路的网络(例如有可能因短路电流过大而损坏内部的器件),不能采用此法。

2)若被测网络的结构已知,可先将线性有源一端口网络中的所有独立电源置零,然后采用测量直流电阻的方法测量

(3)用组合测量法求oc U ,eq R

测量线路如图1-1所示。在被测网络端口接一可变电阻L R ,测得L R 两端的电压U 1和 L R 的电流I 1后,改变电阻L R 值,测得相应的U 2、I 2,则可列出方程组

11U I R U eq oc =-

22U I R U eq oc =-

解得: 1

21

221I I I U I U U oc --=

1

22

1I I U U R eq --=

图 1--1

根据测量时电压表、电流表的接法可知,电压表内阻对解得的oc U 没有影响,但解得的eq R 中包含了电流表的内阻,所以实际的等效电阻值1eq R 只要从解得的eq R 中减去A R 即可。

由上可知,此法比起其它方法有消除电压表内阻影响及很容易对电流表内阻影响进行修正的特点。同时它又适用于不允许将网络端口直接短路和开路的网络。

(4). 参考方向

无论是应用网络定理分析电路还是进行实验测量,都要先假定电压和 电流的参考方向,只有这样才能确定电压和电流是正值还是负值。

如图1-2,如何测量该支路的电压U ?首先假定一个电压降的方向,设U

的压降方向为从A 到B 这是电压U 的参考方向。将电压表的正极和负极 图 1—2 分别与A 端和B 端相联,若电压表指针正偏则读数取正,说明参考方向

和真实方向一致;反之电压表读数为负,说明参考方向和真实方向相反。

三、实验任务

(一)基尔霍夫定律和叠加定理的验证

1、根据图1-3实验原理电路图接线,并按标出每个支路电流参考方向和电阻压降的正负号,将理论计算值填入表1-1中

表1-1

四、思考题

1、如果不标出每个支路电流电压参考方向,从理论计算和实验测量能否得出正确的结论?为什

么?

答:不能得出正确结论。因为进行理论计算的第一步就是确定每条支路的参考方向,这是进行理论

计算的基础,不确定参考方向理论计算就无法进行;在实验测量中,如果不标出支路的参考方向,

就不能确定测出数据的正负,从而无法判别支路电流电压实际方向,不能得出正确数据。

2、如图1-3电路图,并将电阻R3改接二极管2CZ82F,实验结果是二极管支路电流和电压降不符

合叠加定理,还是所有支路电流和电压均不符合叠加定理?

答:所有支路电流和电压均不符合叠加定理。

3、用C31-V直流电压表和MF18万用表电压档测开路电压,哪个值更接近于理论值,为什么?答:用MF18测量更接近于理论值。因为MF18的内阻大于C31-V的内阻,所以用MF18测量电压对于外电路的影响比C31-V小。

实验三 交流参数的测定及功率因数的提高

一、实验目的

1、加深理解正弦交流电路中电压和电流的相量概念。

2、学习单相交流电路的电流、电压、功率的测量方法。

3、学习用交流电流表,交流电压表、功率表、单相调压器测量元件的交流等效参数。

4、了解并联电容提高感性负载功率因数的原理与方法 二、实验任务

1、分别测量电阻R 、电感元件 L ,电容C 的交流参数,接线如图3-33。

图 3-3

2、分别测量R 、L ,C 及电容与电感串联,并联时的等效的阻抗,并用实验的方法判别阻抗性质

3、现有电流表、电压表和滑线变阻器、调压器,如何用实验的方法测试某电感线圈的等效参数,设计出实验方案及电路图。

4、实验方法及要求

按图3-3接线,检查无误后通电,先接通SW4,调电压慢慢上升使电源表读数为0.5A ,注意读电流时,电压表,功率表开关要断开,(这三个表在读数时要分别读。)再接通电压表读出电压值,记下此时的电压值,以这个值为基准不变,保持不变,以后调节电阻值使A I R 5.0= 调电容值使

A I C 5.0=,接通功率表分别读出三个元件的功率值;保持电压不变,再测出3个并联电路的电压

和电流值,以及功率值, 三、实验数据

2、电路功率因数提高的研究

(1)按自己设计的电路图接线,数据表据自拟,测出C=0时,U L、U R、I、P L、P R及总功率、计

c os。

算负载端的?

(2)依次增加电容C值,使电路负载端的功率因数逐步提高,直至电路呈容性为止,测出不同C

c os。

值时的U、I、P计算?

cos=1时的电容值。

(3)测出?

记录表格功率表U m=300V I m=0.5A C W=0.2(w/格)r=7.36Ω

四、思考题

1、实验时,若单相调压器原边和副边接反,会发生了什么情况,为什么?

答:原边和副边接反会使调压器烧毁。

2、用三表法测参数,为什么在被测元件两端并接试验电容可以判断元件的性质,用相量图说明。答:并接电容后,总电流会发生变化,如果电流变大则说明是感性,电流变小则说明是容性。

3、测元件Z所消耗的有功功率,试判别下图中功率表的指针是正偏还是反偏,接法正确吗?

(a) (b) (c) (d)

图 3-5

答:(a)图反偏,(b)图正偏,(c)图正偏,(d)图正偏。(a) (b)图正确,(c) (d)图不正确。

4、感性负载的功率因数用并联电容的办法而不用串联的办法?

答:电路并联电容后,可以使总支路上的电流减小,从而减小视在功率,而不影响感性负载的正常工作即感性负载所消耗的有功功率不变。如果采用串联电容,当两端电压不变的情况下,感性负载两端电压会发生变化,而回路中的电流随着电容的增大而增大,当容抗和感抗相抵消时,回路中的电流最大,这样,视在功率是增大的,负载消耗的有功功率也增大,所以串联电容不能有效地提高功率因数。

答:用电容实现功率因数的提高是利用了在交流电路中电容两端电流相位超前电压900的特性,在感性电路中串联电容,电流受到电感的影响不能超前电压900。

实验四 一阶电路的响应

一、实验目的

1、学习用示波器观察和分析动态电路的过渡过程。

2、学习用示波器测量一阶电路的时间常数。

3、研究一阶电路阶跃响应和方波响应的基本规律和特点。

4、研究RC 微分电路和积分电路 二、实验任务

1、研究RC 电路的零输入响应与零状态响应和全响应

实验电路如图6-8所示。s U 为直流电压源,r 为初始值的充电电阻。开关首先置于位置2,当电容器电压为零以后,开关由位置2转到位置1,即可用示波器观察到零状态响应波形;电路达到稳态以后,记录下电路到达稳态的时间。开关再由位置1转到位置2,即可观察到零输入响应的波形。在R 、C 两端分别观察零输入响应和零状态响应时()t u c 和()t i c 的波形。分别改变R 、C 的数值观察零输入响应和零状态响应时,()t u c 和()t i c 的波形的变化情况。观测全响应时,取Us 1分别为2V ,10V ,12V .接线时注意电源极性,在Us 分别大于、小于、等于Us 1三种情况下,观察u c (t)的波形,注意不能同时将K 和K 1投向电源。

图6-8观察RC 电路响应的实验电路

2、按要求设计一个微积分分器电路。

(电容值选在F F μμ1~1.0之间) 三、实验数据

1.电容器充放电实验数据记录

2.描录RC 微分电路和RC 积分电路的输入,输出波形,并计论构成上述两种电路的条件。

图9-9RC 微分电路的输入输出波形

图9-10 RC积分电路的输入输出波形

实验五 二阶电路的响应

一、实验目的

1、研究RLC 串联电路响应的模式及其元件参数的关系

2、学习用示波器测量衰减振荡角频率和衰减系数

3、观察分析各种响应模式的状态轨迹

4、初步了解二阶电路的设计方法 二、实验任务

1、研究RLC 串联电路的零输入零状态响应,电路如图7-4改变R 的阻值,观察过阻尼、欠阻尼情况下的零输入,零状态响应,画出波形。

2、按预习要求设计的电路连接线路,观察并描绘经过阻尼欠阻尼情况下的方波响应及相应的状态轨迹。并测量欠阻尼情况下的振荡角频率和衰减系数α。

3、通过实验观测欠阻尼RLC 电路的电流经过多长时间衰减为零,可近似测定阻尼因子α。电流衰减为零的时间大约等于5倍的时间常数。一倍的时间ωo 常数可由下式求出:τ =1/ α

欠阻尼RLC 电路的阻尼因子α趋近于零时的振荡频率等于谐振频率ωo ,,欠阻尼RLC 电路的振荡频率ω用下式计算

4、 在电子工作平台上建立如图7-4的实验电路,用信号发生器和示波器对该电路进行动态分析。 A 、根据元件参数计算出相应的衰减因子α和谐振频率ωo ,改变电阻值计算出新的衰减因子α,观测并画出电阻电压随时间变化的曲线,标明电流衰减到零的时间,并近似计算出电流衰减到零的时间。根据新的衰减因子α和谐振频率ωo 计算欠阻尼RLC 电路的电流曲线图的振荡频率ω 。 B 、改变电容值,根据新的元件值计算出新的谐振频率ωo ,观测并画出电阻电压随时间变化的曲线 o 并根据新的衰减因子α和新的谐振频率ωo ,计算欠阻尼RLC 电路的电流曲线图的新的振荡频率ω 。 三、实验报告要求

1、在坐标纸上画出的过阻尼欠阻尼情况下的波形

2、描绘两种阻尼情况下的状态轨迹,并用箭头表明轨迹运动方向。

ωωα=-o 22

3、列出设计的参数设计值的实验值。

4、整理实验数据并与理论值比较,回答思考题1、2,并注意在实验中观察验证。

四、思考题

1、在激励电源发生跃变瞬间,一阶RC串联电路中的电流和二阶RLC串联电路的过阻尼情况下的电流有何质的区别,如何在波形上加以体观?

2、从方波响应,当RLC串联电路处于过阻尼情况时,若减少回路电阻,i L衰减到零的时间变长还

是变短,当电路处于欠阻尼情况下,若增加回路电阻,振荡幅变慢还是变快?

答:减小电阻,,i L衰减到零的时间变长。当电路处于欠阻尼情况下,若增加回路电阻,振荡幅变慢。

3、R的阻值的增加对衰减因子α有何影响?R的阻值的增加对RLC电路的电流曲线图有何影响?答:R的阻值的增加,衰减因子α也增加,电路的电流曲线图衰减时间变快,振荡加快。

4、C的容量的增加对欠阻尼RLC电路的振荡频率有何影响?

答:欠阻尼RLC电路的振荡频率减小。

实验六 串联谐振电路

一、实验目的

1、加深对串联谐振电路特性的理解

2、学习测定RLC 串联谐振电路的频率特性曲线 二、实验任务

1、自己设计实验线路及参数。

2、测量R LC 串联电路在2=Q .25时电流幅度特性和L U 、C U 的频率特性曲线。

3、改变R 的数值,使Q=12.5,保持C L 、数值不变,重复上述实验。 4.测量R LC 串联电路在Q=2.25时的相频特性。 三、实验报告要求

1、 根据实验数据,在坐标纸上绘出不同Q 值下的串联谐振电路的通用曲线以及U c 、U L 的频率特

性曲线,分别与理论值进行比较,并作简略分析。

表格:U=500mV L ≈50mH (53.59mH) r L ≈12Ω(12.91Ω) C ≈1μF(0.9779μF)

2、通过实验总结RLC 串联谐振电路的主要特点。

作出在两种电容情况下的电流谐振曲线;

⑴C=0.1uF时

⑵C=0.01uF时

2.比较上述两种曲线的特点;

答:⑴电容越小,谐振频率越大;

⑵电容越小,电流谐振曲线越尖,Q越大

四.思考题

1、当RLC串联电路发生谐振时,是否有U R=U S和U C=U L?若关系不成立,试分析其原因。答:这两个关系式都成立。

2、可以用哪些实验方法判别电路处于谐振状态?

答:当电路处于谐振状态是整个电路阻抗最小,电流最大,可以通过电流的变化趋势得出何时处于谐振状态;也可以用示波器观察C、L两端电压相位,通过李萨如图形分析。

3、在测试电路频率特性时,信号源输出电压会随着频率的变化而变化,为什么?

答:因为信号源有内阻,当外接负载后,负载的阻抗随着频率的变化而变化,则回路中的电流也随着频率的变化而变化,内阻上压降也随着频率的变化而变化,所以信号源输出电压会随着频率的变化而变化。

4、电阻值的变化对谐振频率和带宽的影响?

答:电阻变化对谐振频率没有影响;电阻增大带宽减小,反之增大。

5、串联谐振电路的阻抗随频率的是如何变化的?

答:频率从小到大变化阻抗从大变小再从小变大,阻抗最小点就是谐振发生时。

实验七互感的研究

一、实验目的

1、加深对互感电路概念的理解

2、学习耦合线圈同名端的判断方法

2、学习耦合线圈互感系数、耦合系数的测量方法

二、实验任务

(一)、判别耦合线圈的同名端

1.直流通断法实验电路如图1-38,按图接线后,合上开关的瞬间,观察并记录实验现象,写出判别结论。

图 9-2

2.电流大小法

根据等效电感的思路,自拟实验电路,通过改变线圈的不同接法(同名端相连和异名端相连),测出回路中电流的值,比较两次电流值的大小,判别线圈的同名端。注意保持电压值不变,取U=5~10V

3.电压高低法

根据等效电感的思路,自拟实验电路,通过比较端口电压值的不同,判别线圈的同名端。(二)测量线圈互感M

1.等效电感法

用三表法或交流电桥测出两个耦合线圈正向和反向串联时的等效电感,则互感

M=L正-L负/4

2.次级开路法

如图9-3电路,当电压表内阻足够大,则有

U 2=ωM 21I 1 U 1=ωM 12I 2

M 21=U 2/ωI 1 M 12=U 1/ωI 2 (1)

耦合系数可由下式计算:k=M/(L 1L 2)1/2

图 9-3 图 9-4

按图9-3接线,调电源频率为1000Hz ,测电阻上的电压为1V ,然后测量U 20;;以同样的条件L 2接电源,保证电阻上的电压为1V ,测量U 10 。将U 10 U 20代入上式(1)即可求出M 。 3.正反向串联法

按图9-4接线,调电源频率为1000Hz ,调节电源电压使得U R =1V ,测量U 1、U 2、U 12;将线圈对角线连线,调节电源电压使得U R =1V ,再测量U 1、U 2、U 12,记录测量的数据。

则 正接 U 12=ωL 1I+ωL 2I+2M ωI 反接 U 12=ωL 1I+ωL 2I-2M ωI ()()MI U U ω41212=-反接正接

M=U 12(正接)- U 12(反接)/4Ωi 由上述实验值计算L 1L 2的值:

正接:U 12=r 1?+jωL 1?+jωM≈jω(L 1+M)? U 1=ω(L 1+M)? 反接:U 12=r 2?+jωL 2?+jωM≈jω(L 2+M)? U 2= ω(L 2+M)? 当条件为 f=1000Hz I=1/1000(A)时 则 L 1≈U 1正/ωI-M L 2≈U 2正/ωI-M (三)耦合系数大小的研究

电路研究性实验报告

湖南XX学院 电路设计研究型报告 题目:电路综合实验 专业:测控技术与仪器 班级:测控xxxx班 学生组员:郭x(组长)、黄x、余x 指导老师:厉x 日期:2014年6月13日

电路课程研究性实验 实验报告 成员表现评估: 黄X:优秀 余X:优秀 郭X:优秀 (一)实验内容 一、R、L、C元件参数的测量 1.用电压、电流表判别黑匣子元件性质。 2. 用交流电压、电流表及功率表分别测量R、L、C元件交流参数,讨论实验误差引起的原因。 二、正弦电源下电路稳态特性的研究 1.用示波器分别观察R、L、C元件在正弦电源下响应的电压、电流波形。 2.用示波器分别观察R、L、C元件伏安关系曲线。 3. 用示波器分别观察RLC元件串联的在正弦电压情况下感性、容性和电阻性响应的电压、电流波形。 实验员:黄X 余X 郭X 报告及其记录:郭X

(二).实验目的: 1学习用示波器观察和分析RC,RL,RLC的电路的响应 2 通过电路方波响应波形的观察,判别元件性质 3 学会用电压、电流表判别黑匣子元件性质。 4 学习用三表法测量交流电路的参数及其误差分析 5 了解RLC元件在正弦电压情况下的电压电流波形 6.学习正确选用交流仪器和设备 7.掌握功率表、调压器的使用 8 综合运用所学知识,自主完成实验,提高科学素养,增加实 验动手能力,提高积极思考问题解决问题的能力。 9.通过这次实验,增强了自信心,磨练战胜困难的毅力,提高 解决问题的能力,通过这次实验,增进了对集体的参与意识 与责任心,给今后的工作中带来大的帮助和借鉴。

(三):实验原理 一、R、L、C元件参数的测量 1. 调压器提供实验电压,电压表监测元件电压,电流表监测元件电流,在被测元件两端并接一只适当容量的试验电容器,若电流表读数增大则被测元件为容性;反之为感性。 实验操作如【1——1】图接线 实验结果 据图将电压表和电流表的示数记录到表-1中 由表格数据可知电路并入一个电容器后电流表的示数变小,故被测元件为感性。

电路分析实验报告-第一次

电路分析实验报告

实验报告(二、三) 一、实验名称实验二KCL与KVL的验证 二、实验目的 1.熟悉Multisim软件的使用; 2.学习实验Multisim软件测量电路中电流电压; 3.验证基尔霍夫定理的正确性。 三、实验原理 KCL为任一时刻,流出某个节点的电流的代数和恒等于零,流入任一封闭面的电流代数和总等于零。且规定规定:流出节点的电流为正,流入节点的电流为负。 KVL为任一时刻,沿任意回路巡行,所有支路电压降之和为零。且各元件取号按照遇电压降取“+”,遇电压升取“-”的方式。沿顺时针方向绕行电压总和为0。电路中任意两点间的电压等于两点间任一条路径经过的各元件电压降的代数和。 四、实验内容 电路图截图:

1.验证KCL: 以节点2为研究节点,电流表1、3、5的运行结果截图如下: 由截图可知,流入节点2的电流为2.25A,流出节点2 的电流分别为750mA和1.5A。2.25=0.75+1.5。所以,可验证KCL成立。 2.验证KVL: 以左侧的回路为研究对象,运行结果的截图如下:

由截图可知,R3两端电压为22.5V,R1两端电压为7.5V,电压源电压为30V。22.5+7.5-30=0。所以,回路电压为0,所以,可验证KVL成立。 一、实验名称实验三回路法或网孔法求支路电流(电压) 二、实验目的 1.熟悉Multisim软件的使用; 2.学习实验Multisim软件测量电路中电流电压; 3.验证网孔分析法的正确性。 三、实验原理 为减少未知量(方程)的个数,可以假想每个回路中有一个回路电流。若回路电流已求得,则各支路电流可用回路电流线性组合表示。这样即可求得电路的解。回路电流法就是以回路电流为未知量列写电路方程分析电路的方法。网孔电流法就是对平面电路,若以网孔为独立回

电力系统分析实验报告四(理工类)

西华大学实验报告(理工类) 开课学院及实验室: 实验时间 : 年 月 日 一、实验目的 1)初步掌握电力系统物理模拟实验的基本方法。 2)加深理解功率极限的概念,在实验中体会各种提高功率极限措施的作用。 3)通过对实验中各种现象的观察,结合所学的理论知识,培养理论结合实际及分析问题的能力。 二、实验原理 所谓简单电力系统,一般是指发电机通过变压器、输电线路与无限大容量母线联接而且不计各元件的电阻和导纳的输电系统。 对于简单系统,如发电机至系统d 轴和g 轴总电抗分别为d X ∑和q X ∑,则发电机的功率特性为 当发电机装有励磁调节器时,发电机电势q E 随运行情况而变化,根据一般励磁调节器的性能,可认为保持发电机'q E (或' E )恒定。这时发电机的功率特性可表示成 或 这时功率极限为 随着电力系统的发展和扩大,电力系统的稳定性问题更加突出,而提高电力系统稳定性和输送能力的最重要手段之一,就是尽可能提高电力系统的功率极限。从简单电力系统功率极限的表达式看,要提高功率极限,可以通过发电机装设性能良好的励磁调节器,以提高发电机电势、增加并联运行线路回路数;或通过串联电容补偿等手段,以减少系统电抗,使受端系统维持较高的运行电压水平;或输电线采用中继同步调相机、中继电力系统等手段以稳定系统中继点电压。 (3)实验内容 1)无调节励磁时,功率特性和功率极隈的测定 ①网络结构变化对系统静态稳定的影响(改变戈): 在相同的运行条件下(即系统电压U-、发电机电势E 。保持不变.罚芳赆裁Ll=E 。),分别 测定输电线单回线和双回线运行时,发电机的功一角特性曲线,&豆甍辜授冁蝮和达到功率极 限时的功角值。同时观察并记录系统中其他运行参数(如发电极端毫玉萼蔫交化。将两种 情况下的结果加以比较和分析。 实验步骤如下: a)输电线路为单回线; b)发电机与系统并列后,调节发电机,使其输出的有功和无ZZ 蔓专零: c)功率角指示器调零; d)逐步增加发电机输出的有功功率,而发电机不调节震磁: e)观察并记录系统中运行参数的变化,填入表1.3中: f)输电线路为双回线,重复上述步骤,将运行参数填入表l 。毒=:

扩音机电路的综合测试 实验报告

第二节 预应力锚索施工 实验报告 课程名称:电路与电子技术实验Ⅱ 指导老师:张德华 成绩:__________________ 实验名称:扩音机电路的综合测试 实验类型:模拟电路实验 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.熟悉集成功放的基本特点; 2.了解放大电路的频率特性及音调控制原理; 3.学习扩音机电路的测试方法,测试各项指标及电路的音调控制特性; 4.学习手工焊接和电路布局、布线、组装方法; 5.提高电子电路的综合调试能力。 二、实验内容和原理 实验内容: 1.测量各级电路的静态工作点; 2.测试前置级、音调控制级、功率放大级的电压增益和整机增益; 3.测量各项指标: ⑴最大不失真输出电压V omax ; ⑵输入灵敏度V imax ; ⑶最大输出功率P o ; 4.整机电路的频率响应; 5.整机高低音控制特性; 6.噪声电压V N ; 7.听音实验。 实验原理: 1.整机电路原理图: 专业:自动化(电气) 姓名:冷嘉昱 学号:3140100926 日期:2016.5.11&5.18 地点:东三211桌号F-2 装 订 线

2.前置级电路: 由A 1组成的前置放大电路是一个同相输入比例放大器,电路的闭环特性如下: 理想闭环电压增益: 输入电阻R if = R 1,输出电阻R of = 0 扩音机电路的增益是很高的,而扩音机的噪声主要取决于前置放大器的性能。为了减小前置级放大器的噪声,第一级要选用低噪声的运放。另外,如输入线的屏蔽情况,地线的安装等等都对噪声有很大影响。 3.音调控制级电路: 常用的音调控制电路有三种形式,一是衰减式RC 音调控制电路,其调节范围宽,但容易产生失真;另一种是反馈型音调控制电路,其调节范围小一些,但失真小;第三种是混合式音调控制电路,其电路复杂,多用于高级收录机。为使电路简单而失真又小,本音调控制电路中采用了由阻容网络组成的RC 型负反馈音调控制电路。它是通过不同的负反馈网络和输入网络造成放大器闭环放大倍数随信号频率不同而改变,从而达到音调控制的目的。 装 订 线

东南大学电路实验实验报告

电路实验 实验报告 第二次实验 实验名称:弱电实验 院系:信息科学与工程学院专业:信息工程姓名:学号: 实验时间:年月日

实验一:PocketLab的使用、电子元器件特性测试和基尔霍夫定理 一、仿真实验 1.电容伏安特性 实验电路: 图1-1 电容伏安特性实验电路 波形图:

图1-2 电容电压电流波形图 思考题: 请根据测试波形,读取电容上电压,电流摆幅,验证电容的伏安特性表达式。 解:()()mV wt wt U C cos 164cos 164-=+=π, ()mV wt wt U R sin 10002cos 1000=??? ? ? -=π,us T 500=; ()mA wt R U I I R R C sin 213.0== =∴,ππ40002==T w ; 而()mA wt dt du C C sin 206.0= dt du C I C C ≈?且误差较小,即可验证电容的伏安特性表达式。 2.电感伏安特性 实验电路: 图1-3 电感伏安特性实验电路 波形图:

图1-4 电感电压电流波形图 思考题: 1.比较图1-2和1-4,理解电感、电容上电压电流之间的相位关系。对于电感而言,电压相位 超前 (超前or 滞后)电流相位;对于电容而言,电压相位 滞后 (超前or 滞后)电流相位。 2.请根据测试波形,读取电感上电压、电流摆幅,验证电感的伏安特性表达式。 解:()mV wt U L cos 8.2=, ()mV wt wt U R sin 10002cos 1000=?? ? ?? -=π,us T 500=; ()mA wt R U I I R R L sin 213.0===∴,ππ 40002==T w ; 而()mV wt dt di L L cos 7.2= dt di L U L L ≈?且误差较小,即可验证电感的伏安特性表达式。 二、硬件实验 1.恒压源特性验证 表1-1 不同电阻负载时电压源输出电压 2.电容的伏安特性测量

电路实验报告

实验一电路元件伏安特性的测试 一、实验目的 1.学会识别常用电路元件的方法 2.掌握线性电阻、非线性电阻元件伏安特性的测试方法 3.熟悉实验台上直流电工仪表和设备的使用方法 二、原理说明 电路元件的特性一般可用该元件上的端电压U 与通过该元件的电流I之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。电阻元件是电路中最常见的元件,有线性电阻和非线性电阻之分。实际电路中很少是仅由电源和线性电阻构成的“电平移动”电路,而非线性器件却常常有着广泛的使用,例如非线性元件二极管具有单向导电性,可以把交流信号变换成直流量,在电路中起着整流作用。 万用表的欧姆档只能在某一特定的U和I下测出对应的电阻值,因而不能测出非线性电阻的伏安特性。一般是用含源电路“在线”状态下测量元件的端电压和对应的电流值,进而由公式R=U/I求测电阻值。 1.线性电阻器的伏安特性符合欧姆定律U=RI,其阻值不随电压或电流值的变化而变化,伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示,该直线的斜率等于该电阻器的电阻值。 图1-1 元件的伏安特性 2.白炽灯可以视为一种电阻元件,其灯丝电阻随着温度的升高而增大。一般灯泡的“冷电阻”与“热电阻”的阻值可以相差几倍至十几倍。通过白炽灯的电流越大,其温度越高,阻值也越大,即对一组变化的电压值和对应的电流值,所得U/I不是一个常数,所以它的伏安特性是非线性的,如图1-1(b)所示。 3.半导体二极管也是一种非线性电阻元件,其伏安特性如图1-1(c)所示。二极管的电阻值随电压或电流的大小、方向的改变而改变。它的正向压降很小(一般锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急剧上升,而反向电压从零一直增加到十几至几十伏时,其反向电流增加很小,粗略地可视为零。发光二极管正向电压在0.5~2.5V 之间时,正向电流有很大变化。可见二极管具有单向导电性,但反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。 4.稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性较特殊,如图1-1(d)所示。给稳压二极管加反向电压时,其反向电流几乎为零,但当电压增加到某一数值时,电流将突然增加,以后它的端电压将维持恒定,不再随外加反向电压的升高而增大,这便是稳压二极管的反向稳压特性。实际电路中,可以利用不同稳压值的稳压管来实现稳压。注意:流过二极管或稳压二极管的电流不能超过管子的极限值,否则管子会被烧坏。

电路仿真实验报告要求

电路计算机仿真分析 实验指导 武汉大学电气工程学院 电工仿真实验室 2006.11 PSPICE 简介 PSPICE 简介 1984年,美国MicroSim公司推出了基于SPICE的微机版PSPICE(Personal-SPICE).可以说在同类产品中,它是功能最为强大的模拟和数字电路混合仿真EDA软件,在国内普遍使用.它可以进行各种各样的电路仿真,激励建立,温度与噪声分析,模拟控制,波形输出,数据输出,并在同一窗口内同时显示模拟与数字的仿真结果.无论对哪种器件哪些电路进行仿真,都可以得到精确的仿真结果,并可以自行建立元器件及元器件库. 在目的个人电脑广使用的向用的商用仿真软件中,以Pspice A/D系列最受人众欢迎. PSPICE 是面向PC 机的通用电路仿真软件, 该软件具有强大的电路图绘制功能,电路模拟仿真功能,图形后处理功能和元器件符号制作功能,模拟仿真快速准确,并提供了良好的人机交互环境,操作方便,易学易用.软件的用途非常广泛,不仅可用于电路分析和优化设计,还可用于电子线路,电路,信号与系统等课程的计算机辅助教学.与印刷线路板设计软件配合使用,还可以实现电子设计自动化.这些特点使得PSPICE 受到广大电子设计工作者,科研人员和高校师生的热烈欢迎,国内许多高校已将PSPICE 列入电子类本科生和硕士生的辅修课程. PSPICE 软件在国外非常流行.在大学里,它是工科类学生必会的分析与设计电路的工具;在公司中,它是产品从设计,实验到定型过程中不可缺少的设计工具.世界各国的半导体元件公司为它提供了上万种模拟和数字元件组成的元件库,使PSPICE 软件的仿真更可信,更真实. PSPICE 软件几乎完全取代了电路和电子电路实验中的元件,面包板,信号源,示波器和万用表.有了PSPICE 软件就相当有了电路和电子学实验室. PSPICE 的功能 PSPICE 用于模拟电路,数字电路及模数混合电路的分析以及电路的优化设计. PSPICE 的分析功能主要体现在以下几方面: 直流分析:当电路中某一参数(称为自变量)在一定范围内变化时,对自变量的每一个取值,计算电路的直流偏置特性(称为输出变量). 交流分析:作用是计算电路的交流小信号频率响应特性. 噪声分析:计算电路中各个器件对选定的输出点产生的噪声等效到选定的输入源(独立的电压或电流源)上.即计算输入源上的等效输入噪声. 瞬态分析:在给定输入激励信号作用下,计算电路输出端的瞬态响应. 基本工作点分析:计算电路的直流偏置状态. 蒙特卡罗统计分析:为了模拟实际生产中因元器件值具有一定分散性所引起的电路特性分散性,PSpice提供了蒙特卡罗分析功能.进行蒙特卡罗分析时,首先根据实际情况确定元器件值分布规律,然后多次"重复"进行指定的电路特性分析,每次分析时采用的元器件值是从元器件

电工电子综合实验1--裂相电路仿真实验报告格 2

电子电工综合实验论文 专题:裂相(分相)电路 院系:自动化学院 专业:电气工程及其自动化 姓名:小格子 学号: 指导老师:徐行健

裂相(分相)电路 摘要: 本实验通过仿真软件Mulitinism7,研究如何将一个单相的交流分裂成多相交流电源的问题。用如下理论依据:电容、电感元件两端的电压和电流相位差是90度,将这种元件和与之串联的电阻当作电源,这样就可以把单相交流源分裂成两相交流电源、三相电源。同时本实验还研究了裂相后的电源接不同的负载时电压、功率的变化。得到如下结论: 1.裂相后的电源接相等负载时两端的电压和负载值成正相关关系; 2.接适当的负载,裂相后的电路负载消耗的功率将远大于电源消耗的功率; 3.负载为感性时,两实验得到的曲线差别较小,反之,则较大。 关键词:分相两相三相负载功率阻性容性感性 引言 根据电路理论可知,电容元件和电感元件最容易改变交流电的相位,又因它们不消耗能量,可用作裂相电路的裂相元件。所谓裂相,就是将适当的电容、电感与三相对称负载相配接,使三相负载从单相电源获得三相对称电压。而生活和工作中一般没有三相动力电源,只有单相电源,如何利用单相电源为三相负载供电,就成了值得深入研究的问题了。 正文 1.实验材料与设置装备 本实验是理想状态下的实验,所有数据都通过在电路专用软件Multisim 7中模拟实验测得的;所有实验器材为(均为理想器材) 实验原理: (1). 将单相电源分裂成两相电源的电路结构设计 把电源U1分裂成U1和U2输出电压,如下图所示为RC桥式分相电压原理,可以把输入电压分成两个有效值相等,相位相差90度的两个电压源。 上图中输出电压U1和U2与US之比为

数字电路实验报告

数字电路实验报告 姓名:张珂 班级:10级8班 学号:2010302540224

实验一:组合逻辑电路分析一.实验用集成电路引脚图 1.74LS00集成电路 2.74LS20集成电路 二、实验内容 1、组合逻辑电路分析 逻辑原理图如下:

U1A 74LS00N U2B 74LS00N U3C 74LS00N X1 2.5 V J1 Key = Space J2 Key = Space J3 Key = Space J4 Key = Space VCC 5V GND 图1.1组合逻辑电路分析 电路图说明:ABCD 按逻辑开关“1”表示高电平,“0”表示低电平; 逻辑指示灯:灯亮表示“1”,灯不亮表示“0”。 真值表如下: A B C D Y 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 表1.1 组合逻辑电路分析真值表 实验分析: 由实验逻辑电路图可知:输出X1=AB CD =AB+CD ,同样,由真值表也能推出此方程,说明此逻辑电路具有与或功能。 2、密码锁问题: 密码锁的开锁条件是:拨对密码,钥匙插入锁眼将电源接通,当两个条件同时满足时,开锁信号为“1”,将锁打开;否则,报警信号为“1”,则接通警铃。

试分析下图中密码锁的密码ABCD 是什么? 密码锁逻辑原理图如下: U1A 74LS00N U2B 74LS00N U3C 74LS00N U4D 74LS00N U5D 74LS00N U6A 74LS00N U7A 74LS00N U8A 74LS20D GND VCC 5V J1 Key = Space J2 Key = Space J3 Key = Space J4 Key = Space VCC 5V X1 2.5 V X2 2.5 V 图 2 密码锁电路分析 实验真值表记录如下: 实验真值表 A B C D X1 X2 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 表1.2 密码锁电路分析真值表 实验分析: 由真值表(表1.2)可知:当ABCD 为1001时,灯X1亮,灯X2灭;其他情况下,灯X1灭,灯X2亮。由此可见,该密码锁的密码ABCD 为1001.因而,可以得到:X1=ABCD ,X2=1X 。

电子电路实验三 实验报告

实验三负反馈放大电路 实验报告 一、实验数据处理 1.实验电路图 根据实际的实验电路,利用Multisim得到电路图如下: (1)两级放大电路 (2)两级放大电路(闭环)

2.数据处理 (1)两级放大电路的调试 第一级电路:调整电阻参数,使得静态工作点满足:IDQ约为2mA,UGDQ<-4V。记录并计 第二级电路:通过调节Rb2,使得静态工作点满足:ICQ约为2mA,UCEQ=2~3V。记录电 输入正弦信号Us,幅度为10mV,频率为10kHz,测量并记录电路的电压放大倍数 A u1=U o1 U s 、A u= U o U s (2)两级放大电路闭环测试 在上述两级放大电路中,引入电压并联负反馈。合理选取电阻R的阻值,使得闭环电压放大倍数的数值约为10。 输入正弦信号Us,幅度为100mV,频率为10kHz,测量并记录闭环电压放大倍数 A usf=U o/U s 输入电阻Rif和输出电阻Rof。

输入正弦信号Us,幅度为100mV,频率为10kHz,测量并记录闭环电压放大倍数 A usf=U o/U s 输入电阻Rif和输出电阻Rof。 3.误差分析 利用相对误差公式: 相对误差=仿真值?实测值 实测值 ×100% 得各组数据的相对误差如下表: 误差分析: (1)由上表可得知,两级放大电路实验中,开环输出电阻Ro及闭环输出电阻Rof仿真值与实测值的相对误差较大;电流并联负反馈电路中,三组数据仿真值与实测值的相对误差均较大。 (2)两级放大电路中,输出电阻测量的相对误差较大,原因可能是实际实验中使用的晶体管与仿真实验中的晶体管的特性相差较大,而且由理论分析知输出电阻会随温度的变化而变化(晶体管rbe阻值随温度的增大而增大),这导致了输出电阻实测值与仿真值相差较大。(3)电流并联负反馈电路中,电压放大倍数测量的相对误差较大,原因也应该是实际实验中的晶体管放大倍数与仿真中的不同,仿真实验中晶体管的β为280,实际实验的相关参数达不到这么大,故电压放大倍数较小。

电路基础实验报告

北京交通大学电路基础实验报告

实验目的: (1)学习MultiSim2001建立电路、直流电路的分析方法。 (2)掌握伏安特性的测量。 (3)通过实验,加深对叠加定理和戴维南定理的理解。 实验内容: 1)测量二极管的伏安特性 (1)建立如右图所示的仿真Array电路。 (2)启动Simulate菜单中的 Analyses下的DC Sweep 设置相应的参数后,单击Simulate按钮,得到二极管的伏 安特性曲线。 2)验证叠加定理Array(1)建立如右图 所示的仿真电路。 (2)启动仿真开 关后,用电压表分 别测出V1、V2单 独作用和共同作 用时个支路的电压值,验证叠加定理。 3)验证戴维南定理 (1)建立如下图所示的仿真电路。(其中a对应2的位置,

b 对应0的位置) (2)用电压表测量R3断开时a 、b 端口的开路电压。 (3)将电阻R3短路,用电流表测量a 、b 端口短路电压。 (4)计算出等效电阻。重新建立一仿真电路,调出一个直流电压源,设置其电压为测量出的开路电压值,调一个电阻值为计算出的等效电阻,与R3电阻串联成一个等效电路。再用电压表和电流表测量R3两端的电压和流过电流,验证戴维南定理。 实验过程: 1) 测量二极管的伏安特性。 如右图,建立仿真电路图后,启动Simulate 菜单中的Analyses 下的DC Sweep 命令,设置相应的参数后,单击Simulate 按钮,得到二极管的伏安特性曲线如下:

2)验证叠加定理。 V1单独作用: 令V2=0.启动仿真开关如下图: U11=8.727V U21=3.273V U31=3.273V V2单独作用: 令V1=0,启动仿真开关如下图:

数电逻辑门电路实验报告doc

数电逻辑门电路实验报告 篇一:组合逻辑电路实验报告 课程名称:数字电子技术基础实验指导老师:樊伟敏 实验名称:组合逻辑电路实验实验类型:设计类同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)五、实验数据记录和处理七、讨论、心得 一.实验目的 1.加深理解全加器和奇偶位判断电路等典型组合逻辑电路的工作原理。 2.熟悉74LS00、74LS11、74LS55等基本门电路的功能及其引脚。 3.掌握组合集成电路元件的功能检查方法。 4.掌握组合逻辑电路的功能测试方法及组合逻辑电路的设计方法。 二、主要仪器设备 74LS00(与非门) 74LS55(与或非门) 74LS11(与门)导线电源数电综合实验箱 三、实验内容和原理及结果 四、操作方法和实验步骤 六、实验结果与分析(必填)

实验报告 (一) 一位全加器 1.1 实验原理:全加器实现一位二进制数的加法,输入有被加数、加数和来自相邻低位的进位;输出有全加和与向高位的进位。 1.2 实验内容:用 74LS00与非门和 74LS55 与或非门设计一个一位全加器电路,并进行功能测试。 1.3 设计过程:首先列出真值表,画卡诺图,然后写出全加器的逻辑函数,函数如下: Si = Ai ?Bi?Ci-1 ;Ci = Ai Bi +(Ai?Bi)C i-1 异或门可通过Ai ?Bi?AB?AB,即一个与非门; (74LS00),一个与或非门(74LS55)来实现。Ci = Ai Bi +(Ai?Bi)C 再取非,即一个非门( i-1 ?Ai Bi +(Ai?Bi)C i-1 ,通过一个与或非门Ai Bi +(Ai?Bi)C i-1 ,

北京邮电大学电路实验报告-(小彩灯)

北京邮电大学电路实验报告-(小彩灯)

电子电路综合实验报告课题名称:基于运算放大器的彩灯显示电路的设计与实现 姓名:班级:学号: 一、摘要: 运用运算放大器设计一个彩灯显示电路,通过迟滞电压比较器和反向积分器构成方波—三角波发生器,三角波送入比较器与一系列直流电平比较,比较器输出端会分别输出高电平和低电平,从而顺序点亮或熄灭接在比较器输出端的发光管。 关键字: 模拟电路,高低电平,运算放大器,振荡,比较 二、设计任务要求: 利用运算放大器LM324设计一个彩灯显示电路,让排成一排的5个红色发光二极管(R1~R5)重复地依次点亮再依次熄灭(全灭→R1→R1R2→R1R2R3→R1R2R3R4→R1R2R3R4R5→R1R2R3R4→R1R2R3→R1R2→R1→全灭),同时让排成一排的6个绿色发光二极管(G1~G6)单光

三角波振荡电路可以采用如图2-28所示电路,这是一种常见的由集成运算放大器构成的方波和三角波发生器电路,图2-28中运放A1接成迟滞电压比较器,A2接成反相输入式积分器,积分器的输入电压取自迟滞电压比较器的输出,迟滞电压比较器的输入信号来自积分器的输出。假设迟滞电压比较器输出U o1初始值为高电平,该高电平经过积分器在U o2端得到线性下降的输出信号,此线性下降的信号又反馈至迟滞电压比较器的输入端,当其下降至比较器的下门限电压U th-时,比较器的输出发生跳变,由高电平跳变为低电平,该低电平经过积分器在U o2端得到线性上升的输出信号,此线性上升的信号又反馈至迟

滞电压比较器的输入端,当其上升至比较器的上门限电压U th+时,比较器的输出发生跳变,由低电平跳变为高电平,此后,不断重复上述过程,从而在迟滞电压比较器的输出端U o1得到方波信号,在反向积分器的输出端U o2得到三角波信号。假设稳压管反向击穿时的稳定电压为U Z,正向导通电压为U D,由理论分析可知,该电路方波和三角波的输出幅度分别为: 式(5)中R P2为电位器R P动头2端对地电阻,R P1为电位器1端对地的电阻。 由上述各式可知,该电路输出方波的幅度由稳压管的稳压值和正向导通电压决定,三角波的输 出幅度决定于稳压管的稳压值和正向导通电压以及反馈比R1/R f,而振荡频率与稳压管的稳压值和正向导通电压无关,因此,通过调换具有不同稳压值和正向 导通电压的稳压管可以成比例地改变方波和三角波的幅度而不改变振荡频率。 电位器的滑动比R P2/R P1和积分器的积分时间常数R2C的改变只影响振荡频率而 不影响振荡幅度,而反馈比R1/R f的改变会使振荡频率和振荡幅度同时发生变化。因此,一般用改变积分时间常数的方法进行频段的转换,用调节电位器滑动头 的位置来进行频段内的频率调节。

电路实验报告二

实验二、基尔霍夫定律的验证 一、实验目的 1.通过实验验证基尔霍夫电流定律和电压定律,巩固所学理论知识。 2.加深对参考方向概念的理解。 二、器材设备 双路直流稳压电源,直流电路单元板(TS-B-28),万用表 三、实验原理 基尔霍夫节点电流定律: 电路中任意时刻流进(或流出)任一节点的电流的代数和等于零。其数学表达式为: ∑=0 I (2-1) i 基尔霍夫回路电压定律: 电路中任意时刻,沿着任一节闭合回路,电压的代数和等于零。其数学表达式为: ∑=0 U (2-2) i 电路的参考方向: 在电路中假定一个方向为参考,称为参考方向。当电路中的电流(或电压)的实际方向与参考方向相同时取正值,其实际方向与参考方向相反时取负值。 四.实验内容及步骤 本实验在直流电路单元板(TS -B-28)上进行,实验电路如图2-1所示。图中X1、X2、X3、X4、X5、X6为节点B的三条支路测量接口。 4.1、验证KCL定律 测量节点B的某支路的电流时,可假定流入节点B的电流为正,并将另外两个支路的测量接口短接,再将电流表的负极接到B点上,电流表的正极接到该支路的接口上(如图2-2)。

1. 按图2-2(a)接好实验电路,再将双路直流稳压电源的输出电压调节旋钮沿逆时针方向调到底,然后打开电源开关,调节电压输出,使U1=10.00V,U2=18.00V,测出AB支路的电流I1值,并在表2-1中记下测量值。 2.将电路转换成图2-2(b)形式,测出并记录BC支路的电流I2值。再将电路转换成图2-2(c)形式,测出并记录BE支路的电流I3值.。 3. 计算∑i I数值,验证基尔霍夫电流定律的正确性。利用电路中已知的电阻及电源电压值,应用电路定律计算出I1、I2、I3值并与测得的I1、I2、I3值比较,求出各测量值的相对误差。 表2-1(保留小数点后两位) 4.2、验证KVL定律 当要测量电压时,应将三个支路的测量接口短接,再取ABEFA回路为回路I,BCDEB 回路为回路II,可选取顺时针方向为绕行方向,依次测量两回路各支路的电压值。 1. 将电路转换成图2-3形式,仍保持U1=10.00V,U2=18.00V取顺时针方向为绕行方向,选择合适的电压表量程,依次测出回路I中各支路电压U AB、U BE、U EF、U FA和回路II中各支路电压U BC、U CD、U DE、U EB,并在表2-2中记下测量值。 2. 计算∑i U数值,验证基尔霍夫电压定律的正确性。利用已知的电阻及电源电压值,应用电路定律计算出上述各支路的电压值并与测得的值比较,求出各测量值的相对误差。 表2-2(保留小数点后三位) [数据处理,保留小数点后三位] 一、利用基尔霍夫定律计算节点B各支路的电流及回路Ⅰ、回路Ⅱ各支路的电压值。 设图2-3电路的节点B各支路的电流方向如图,取流入节点的电流方向为参考方向,则据基尔霍夫电流定律有:I1+I2=-I3 (2-3)另I4=I1、I2=I5(2-4)取顺时针方向为电压的参考方向,则据基尔霍夫电压定律有: 回路Ⅰ:R1×I1-R3×I3+R4×I1=U1(2-5)

电子技术实验报告—实验4单级放大电路

电子技术实验报告 实验名称:单级放大电路 系别: 班号: 实验者姓名:学号:实验日期: 学号: 实验日期: 实验报告完成日期:

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (6) 1、搭接实验电路 (6) 2、静态工作点的测量和调试 (7) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (7) 4、放大器上限、下限频率的测量 (8) 5、电流串联负反馈放大器参数测量 (8) 五、思考题 (9) 六、实验总结 (9)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器 1台 2.函数信号发生器 1台 3.直流稳压电源 1台 4.数字万用表 1台 5.多功能电路实验箱 1台 6.交流毫伏表 1台 三、实验原理 (一)单级低频放大器的模型和性能 1.单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和 负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极 性相反,则为负反馈。

电路综合设计实验-设计实验2-实验报告

设计实验2:多功能函数信号发生器 一、摘要 任意波形发生器是不断发展的数字信号处理技术和大规模集成电路工艺孕育出来的一种新型测量仪器,能够满足人们对各种复杂信号或特殊信号的需求,代表了信号源的发展方向。可编程门阵列(FPGA)具有高集成度、高速度、可重构等特性。使用FPGA来开发数字电路,可以大大缩短设计时间,减小印制电路板的面积,提高系统的可靠性和灵活性。 此次实验我们采用DE0-CV开发板,实现函数信号发生器,根据按键选择生产正弦波信号、方波信号、三角信号。频率范围为10KHz~300KHz,频率稳定度≤10-4,频率最小不进10kHz。提供DAC0832,LM358。 二、正文 1.方案论证 基于实验要求,我们选择了老师提供的数模转换芯片DAC0832,运算放大器LM358以及DE0-CV开发板来实现函数信号发生器。 DAC0832是基于先进CMOS/Si-Cr技术的八位乘法数模转换器,它被设计用来与8080,8048,8085,Z80和其他的主流的微处理器进行直接交互。一个沉积硅铬R-2R 电阻梯形网络将参考电流进行分流同时为这个电路提供一个非常完美的温度期望的跟踪特性(0.05%的全温度范围过温最大线性误差)。该电路使用互补金属氧化物半导体电

流开关和控制逻辑来实现低功率消耗和较低的输出泄露电流误差。在一些特殊的电路系统中,一般会使用晶体管晶体管逻辑电路(TTL)提高逻辑输入电压电平的兼容性。 另外,双缓冲区的存在允许这些DAC数模转换器在保持一下个数字词的同时输出一个与当时的数字词对应的电压。DAC0830系列数模转换器是八位可兼容微处理器为核心的DAC数模转换器大家族的一员。 LM358是双运算放大器。内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。LM358的封装形式有塑封8引线双列直插式和贴片式。 本次实验选用的FPGA是Altera公司Cyclone系列FPGA芯片。Cyclone V系列器件延续了前几代Cyclone系列器件的成功,提供针对低成本应用的用户定制FPGA特性,支持常见的各种外部存储器接口和I/O协议,并且含有丰富的存储器和嵌入式乘法器,这些内嵌的存储器使我们在设计硬件电路时省去了外部存储器,节省了资源,而

串联电路实验报告

串联电路实验报告 篇一:实验报告:组成串联电路和并联电路a 连接串联电路和并联电路 一、实验目的:掌握_____________、______________的连接方式。 二、实验器材: __________、__________、__________、__________、___________。 三、步骤: (一).组成串联电路 1.按图1-1的电路图,先用铅笔将图1-2中的电路元件,按电路图中的顺序连成实物电路图(要求元件位置不动,并且导线不能交叉)。在连接实物电路过程中,开关是 2.经电路连接无误后,闭合和断开结果填入表格中。 3.把开关改接到L1和L2之间,再改接到L2和电池负极间,观察开关控制两只灯泡的情况。将观察结果填入表格中。 (二)组成并联电路 1、在图方框中画出由两只灯泡L1、L2组成的并联电路。要求三个开关中的开关S控制干 路,开关S1和S2分别控制两个支路,并按电路图连接实物及实物图。 2、经检查电路连接无误后,把

3、闭合S1和S2,断开与闭合干路中的开关S,观察它控制哪个灯泡?将观察结果填入表 格中。 4、闭合S和S2,断开与闭合支路中的开关S1,观察它控制哪个灯泡?将观察结果填入表 格中。 5、闭合S和S1,断开与闭合支路开关S2,观察它控制哪个灯泡?将观察结果填入表格中。 (三)实验结论 串联电路:在串联电路里只有条电流路径;用电器)工作,它们之间(选填“会”或“不会”)相互影响;开关控制_____ ____用电器;如果开关的位置改变了,开关的控制作用_________. 并联电路:在并联电路里有条电流路径;用电器)工作,它们之间(选填“会”或“不会”)相互影响;干路开关控制_________用电器,支路开关控制_________用电器(四)、结束实验,整理仪器,把器材分类放好,依次推出实验室。 电学实验规则: 1.实验开始时:首先要依据实验要求,能正确地画出电路图。 2.选择器材时:要依据画出(含“给出”)的电路图,

调幅电路实验报告4

调幅电路实验报告 姓名: 学号: 班级:

一、实验目的 1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与过程,并研究已调波与二输入信号的关系。 2.掌握测量调幅系数的方法。 3.通过实验中波形的变换,学会分析实验现象。 二、实验内容及步骤 (1)普通调幅电路 1.利用EWB软件绘制出如图 1.9的普通调幅实验电路。 2. 按图设置各个元件参数,打开仿真开关,从示波器上观察调幅波波形及与调制信号U1的关系。画出波形图。 3. 改变直流电压U0的值为4V,观察过调幅的现象,并做好记录。画出波形图。 附图1.9 普通调幅实验电路 U0=6V

(2)双边带调幅电路 1.利用EWB软件绘制出如图 1.12的双边带调幅实验电路。 2. 按图设置各个元件参数,打开仿真开关,从示波器上观察双边带波形。画出波形图。 附图1.12 双边带调制实验电路

三.实验报告要求 1. 画出100%调幅波形及抑制载波双边带调幅波形,比较二者的区别。抑制载波双边带调幅波形

100%调幅波形 100%调幅波的包迹随调制信号的大小成比例变化,它反映了调制信号的变化规律;双边带调幅波的包迹不再随载波振幅的上下变化,而是在横轴的上下变化,并使高频波在调制信号过0点时出现倒相现象,它的包迹不再反映调制信号的变化规律。

2.画出过调幅时的输入、输出波形。 U0=4V 四.思考题 说明普通调幅波和双边带调幅波的区别。 答:普通调幅波中只有上、下边带反映调制信号的信息,载频分量不含调制信号的信息,但它却占用了调幅波的绝大部分功率,而双边带调幅波则将调幅波中的载频分量抑制掉,仅将上、下边带向外发送,这样大大节省了发送设备的功率,使其体积大大减小

电路实验报告

目录实验一电位、电压的测定及电路电位图的绘制实验二基尔霍夫定律的验证 实验三线性电路叠加性和齐次性的研究 实验四受控源研究 实验六交流串联电路的研究 实验八三相电路电压、电流的测量 实验九三相电路功率的测量

330口 R B 1— 1 2. 电路中相邻两点之间的电压值 在图1 — 1中,测量电压U AB :将电压表的红笔端插入 A 点,黑笔端插入B 点,读电压表读数,记入表 1 — 1中。按同样方法测量 U BC 、U CD 、U DE 、U EF 、及U FA ,测量数据记入表1 — 1中。 实验一 电位、电压的测定及电路电位图的绘制 1.学会测量电路中各点电位和电压方法。理解电位的相对性和电压的绝对性; 2?学会电路电位图的测量、绘制方法; 3.掌握使用直流稳压电源、直流电压表的使用方法。 .原理说明 在一个确定的闭合电路中, 各点电位的大小视所选的电位参考点的不同而异, 但任意两点之间的电 压(即两点之间的电位差)则是不变的,这一性质称为电位的相对性和电压的绝对性。据此性质,我们 可用一只电压表来测量出电路中各点的电位及任意两点间的电压。 若以电路中的电位值作纵坐标, 电路中各点位置(电阻或电源)作横坐标, 将测量到的各点电位在 该平面中标出,并把标出点按顺序用直线条相连接, 就可得到电路的电位图, 每一段直线段即表示该两 点电位的变化情况。而且,任意两点的电位变化,即为该两点之间的电压。 在电路中,电位参考点可任意选定, 对于不同的参考点, 所绘出的电位图形是不同,但其各点电位 变化的规律却是一样的。 三.实验设备 1.直流数字电压表、直流数字毫安表 2 .恒压源(EEL — I 、II 、III 、IV 均含在主控制屏上,可能有两种配置( 1) +6V ( +5V ) , +12 V , 0? 30V 可调或(2)双路0?30V 可调。) 四.实验内容 实验电路如图1 — 1所示,图中的电源U S 1用恒压源中的+6V (+5V )输出端, 输出端,并将输出电压调到 +12V 。 U S2用0?+30V 可调电源 1.测量电路中各点电位 以图1 — 1中的A 点作为电位参考点,分别测量 B 、C 、 用电压表的黑笔端插入 A 点,红笔端分别插入 B 、C 、 以D 点作为电位参考点,重复上述步骤,测得数据记入表 D 、E 、F 各点的电位。 D 、 E 、 F 各点进行测量,数据记入表 1 — 1 中。 1 — 1 中。 5100 S3 VCU 5100 5ion R4

电子电路综合实验报告

电子电路实验3 综合设计总结报告题目:波形发生器 班级:20110513 学号:2011051316 姓名:仲云龙 成绩: 日期:2014.3.31-2014.4.4

一、摘要 波形发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都需要信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。波形发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。它可以产生多种波形信号,如正弦波、三角波、方波等,因而广泛用于通信、雷达、导航等领域。 二、设计任务 2.1 设计选题 选题七波形发生器 2.2 设计任务要求 (1)同时四通道输出,每通道输出矩形波、锯齿波、正弦波Ⅰ、正弦波Ⅱ中的一种波形,每通道输出的负载电阻均为1K欧姆。 (2)四种波形的频率关系为1:1:1:3(三次谐波),矩形波、锯齿波、正弦波Ⅰ输出频率范围为8 kHz—10kHz,正弦波Ⅱ输出频率范围为24 kHz—30kHz;矩形波和锯齿波输出电压幅度峰峰值为1V,正弦波Ⅰ、Ⅱ输出幅度为峰峰值2V。(3)频率误差不大于5%,矩形波,锯齿波,正弦波Ⅰ通带内输出电压幅度峰峰值误差不大于5%,正弦波Ⅱ通带内输出电压幅度峰峰值误差不大于10%,矩形波占空比在0~1范围内可调。 (4)电源只能选用+9V单电源,由稳压电源供给,不得使用额外电源。

三、方案论证 1.利用555多谐振荡器6管脚产生8kHz三角波,3管脚Vpp为1V的8kHz的方波。 2.三角波通过滞回比较器和衰减网络产生8kHzVpp为1V的方波。 3.方波通过反向积分电路产生8kHzVpp为1V的三角波。 4.方波通过二阶低通滤波器产生8kHz低通正弦波。 5.方波通过带通滤波器产生中心频率为27kHz的正弦波。 系统方框图见图1 图1 系统方框图 此方案可以满足本选题技术指标,分五个模块实现产生所需的波形,而且电路模块清晰,容易调试,电路结构简单容易实现。

相关文档
相关文档 最新文档