文档库 最新最全的文档下载
当前位置:文档库 › 同步整流器自驱动方式及其典型整流电路分析

同步整流器自驱动方式及其典型整流电路分析

同步整流器自驱动方式及其典型整流电路分析
同步整流器自驱动方式及其典型整流电路分析

图1 副边绕组电压驱动同步整流电路

图3 应用栅极电荷保持驱动的单端正激式电路

图6 栅极电荷转换驱动半桥变换电路图8 滤波电感耦合电压驱动同步整流电路电压完全由自己的栅源

绕组电压一定时,两个功

上是绕组电压的一半。

源寄生电容的电流绝对

寄生电容中

图9 能量反馈电流驱动同步整流器在高频状态,

图10能量反馈电流驱动同步整流器模块

IPM自举电路设计过程中的关键问题研究

IPM自举电路设计过程中的关键问题研究 摘要:介绍了IPM自举电路的基本拓扑结构和原理,并在理论分析的基础上,研究和探讨了自举电阻、自举二极管和自举电容的选型方法,重点对自举电容初始充电展开研究,提出了一种简单实用的初始充电方法,在实际项目应用中取得良好的充电效果。实验结果表明,这种初始充电方法简单、实用、安全可靠,解决了初始充电可能导致IPM上下管直通的问题。关键词:自举电路;自举电容;自举电阻;自举二极管;初始充电 通常IPM模块应有四路独立电源供电,下桥臂三个IGBT控制电路共用一个独立电源,上桥臂三个IGBT控制电路用三个独立电源。对于小功率IPM,可以由自举电路将其他三路电压进行自举而得到三个独立电源[1]。IPM模块通过将功率器件、驱动电路和保护电路高度集成在一块很小封装基板上,使得功率模块应用单一电源供电成为可能。为了简化设计,驱动电路已普遍采用单一控制电源方案。使用单一电源,必须满足两个要求:一是保证控制电源能够为上桥臂功率器件提供正确的门极偏置电压;二是保证直流母线上的高压不致串到控制电源电路而烧坏元器件。通常使用自举电路法来实现IPM模块的单一电源供电。实现自举有两个关键问题:一是自举电容的初始充电;二是自举电容充完电后,当下臂关断后上臂并未立即导通,而在从下臂关断到上臂导通期间,电容会放电,因此必须保证少量放电后电容电压仍有驱动能力。如果以上两个问题未能处理好,将导致即使PWM波形正常,IPM也不能工作,因为自举电压不足以驱动上臂导通。本文介绍了IPM自举电路的基本拓扑结构和原理,并重点研究了自举电容初始充电问题,通过在控制程序中执行简单的初始充电语句,很好地解决了上述关键问题,并在项目中取得良好的充电效果。1 IPM模块自举电路基本拓扑结构和原理电压自举,就是利用电路自身产生比输入电压更高的电压。基于电容储能的电压自举电路通常是利用电容对电荷的存储作用来实现电荷的转移,从而实现电压的提升。电压自举电路利用电荷转移的方式进行工作,通过存储电容,把电荷从输入转移到输出,提供负载所需要的电流。图1给出了双倍压电压自举电路的基本原理。 假设所有开关均为理想开关,电容为理想电容。当开关S1和S3闭合时,电源VCC给电容C充电使其电压达到VCC。然后开关S1和S3断开,S2闭合,直接接到电容C的低压端,此时电容C上仍然保持有前一个相位存储的电荷VCC×C。由于在S2闭合时,电容C上的电荷量不能突变,因此有:(V0-VCC)×C=VCC×C,即V0=2VCC。在没有直流负载的情况下,通过图1所示的电路,在理想情况下,输出可达到输入电压的两倍。2 自举电路设计中的关键问题研究本项目的IPM型号选用IGCM20F60GA[2]。图2是IPM自举电路原理图。由图2可知,自举元件一端接电路的输入部分,另一端接到同相位的输出电路部分,借输入、输出的同相变化,把自己抬举起来,即自举元件引入的是正极性的反馈。 对原理图中第一路自举电路进行分析[3-4]。IPM模块自举电路仅由自举电阻R62、自举二极管D9和自举电容E1组成,因此简单可靠。其电路基本工作过程为:当VS因为下桥臂功率器件导通被拉低到接近地电位GND时,控制电源VCC会通过R62和D9给自举电容E1充电。当上桥臂导通,VS上升到直流母线电压后,自举二极管D9反向截止,从而将直流母线电压与VCC隔离,以防止直流母线侧的高压串到控制电源低压侧而烧坏元器件。此时E1放电,给上桥臂功率器件的门极提供驱动电压。当VS再次被拉低时,E1将再次通过VCC充电以补充上桥臂导通期间E1上损失的电压。这种自举供电方式就是利用VS端的电平在高低电平之间不停地摆动来实现的。,自举电路给E1充电,E1的电压基于上桥臂输出晶体管源极电压上下浮动。由于运行过程中反复地对自举电容进行充放电,因此必须选择适当的参数,保证

同步整流电路

随着现代电子技术向高速度高频率发展的趋势,电源模块的发展趋势必然是朝着更低电压、更大电流的方向发展,电源整流器的开关损耗及导通压降损耗也就成为电源功率损耗的重要因素。而在传统的次级整流电路中,肖特基二极管是低电压、大电流应用的首选。其导通压降基本上都大于0.4V,当电源模块的输出电压随着现代电子技术发展继续降低时,电源模块的效率就低得惊人了,例如在输出电压为3.3V时效率降为80%,1.5V输出时效率不到70%,这时再采用肖特基二极管整流方式就变得不太可能了。 为了提高效率降低损耗,采用同步整流技术已成为低电压、大电流电源模块的一种必然手段。同步整流技术大体上可以分为自驱动(selfdriven)和他驱动(controldriven)两种方式。本文介绍了一种具有预测时间和超低导通电阻(低至2.8mΩ/25℃)的他驱动同步整流技术,既达到了同步整流的目的,降低了开关损耗和导通损耗,又解决了交叉导通问题,使同步整流的效率高达95%,从而使整个电源的效率也高达90%以上。 1SRM4010同步整流模块功能简介 SRM4010是一种高效率他激式同步整流模块,它直接和变压器的次级相连,可提供40A的输出电流,输出电压范围在1∽5V之间。它能够在200∽400kHz 工作频率范围内调整,且整流效率高达95%。如果需要更大的电流,还可以直接并联使用,使设计变得非常简单。 SRM4010模块是一种9脚表面封装器件,模块被封装在一个高强电流接口装置包里,感应系数极低,接线端功能强大,具有大电流低噪声等优异特性。 SRM4010引脚功能及应用方式一览表 引脚号引脚名称引脚功能应用方式 1CTCHCatch功率MOSFET漏极接滤波电感和变压器次级正端 2FWDForward功率MOSFET漏极接变压器次级负端 3SGND外控信号参考地外围控制电路公共地 4REGin内部线性调整器输入可以外接辅助绕组或悬空 5REGout5V基准输出可为次级反馈控制电路提供电压 6PGND同步整流MOSFET功率地Catch和Forward功率MOSFET公共地 7CDLY轻载复位电容端设置变压器轻载时的复位时间 8CPDT同步整流预测时间电容端Catch同步整流管设置预置时间

同步整流技术总结

同步整流总结 1概述 近年来,为了适应微处理器的发展,模块电源的发展呈现两个明显的发展趋势:低 压和快速动态响应,在过去的10年中,模块电源大大改善了分布式供电系统的面貌。即使是在对成本敏感器件如线路卡,单板安装,模块电源也提供了诱人的解决方案。然而,高速处理器持续降低的工作电压需要一个全新的,适应未来的电压方案,尤其考虑到肖特级二极管整流模块不能令人满意的效率。同步整流电路正是为了适应低压输出要求应运而生的。由于一般的肖特基二极管的正向压降为0.3V以上,在低压输出时模块的效率 就不能做的很高,有资料表明采用肖特基二极管的隔离式DC-DC模块电源的效率可以 按照下式进行估算: V out V out (0.1 V out V cu V f) 0.1 V out—原边和控制电路损耗 V cu —印制板的线路损耗 V f —整流管导通压降损耗 我们假设采用0.4V的肖特基整流二极管,印制板的线路损耗为0.1V,则1.8V的模 块最大的估算效率为 72%。这意味着28%的能量被模块内部损耗了。其中由于二极管导通压降造成的损耗占了约15%。随着半导体工艺的发展,低压功率MOS管的的有着越 来越小的通态电阻,越来越低的开关损耗,现在IR公司最新的技术可以制作30V/2.5m Q的MOS管,在电流为15A时,导通压降为0.0375,比采用肖特基二极管低了一个数量级。所以近年来对同步整流电路的研究已经引起了人们的极大关注。在中大功率低压输出的DC-DC变换器的产品开发中,采用低压功率MOSFET替代肖特基二极管的方案 得到了广泛的认同。今天,采用同步整流技术的ON-BOARD 模块已经广泛应用于通讯 的所有领域。 2同步整流电路的工作原理 图1采用同步整流的正激电路示意图(无复位绕组)

自举电路的应用

自举电路在电路设计中的应用 朱丽华 (福建信息职业技术学院福州, 350003) 摘要:在电路的设计中,常利用自举电容构成的自举电路来改善电路的某些性能指标,如利用自举提高射随器的输入阻抗、利用自举提高电路增益及扩大电路的动态范围等。本 文就自举电路的工作原理及典型应用作一介绍。 关键词:自举;自举电容;自举电路 在电路的设计中,常利用自举电容构成自举电路来改善电路的某些性能指标,如利用自举电路提高射随器的输入阻抗,利用自举电路提高放大器增益或扩大电路的动态范围等等。现就自举电路的工作原理及典型应用作一介绍。 一、自举电路的工作原理 自举电路的本质是利用电容两端电压瞬间不能突变的特点来改变电路中某一点的瞬时电位。图1是一射极跟随器电路,在偏置电路中加入电阻R3的目的在于提高输入电阻,因为输入电阻为 Ri = [R3+(R1//R2)]//[r be+(1+β)(R4//R L)] 只要将R3值取大,就可以使输入电阻增大。 但是R3取值是不能任意选大的,R3太大将使静态工作点偏离要求,因此,这种偏置方式虽然可以提高输入阻抗,但效能是有限的。 若在该电路中加一电容C3时(如图2所示),只要电容C3的容量足够大,则可认为B点的电压变化与输出端电压变化相同,R 两端的电压变化为-,此时流过R3的电流为 =(-)/ R 3=(-)/ R3 由于电路的跟随着变化而变化,即≈,所以流过R3的电流极小,说明R3此时对交流 呈现出极高的阻抗(比R3的实际阻值要大得多),这就使射极跟随器的输入阻抗得到极大提高。这种利用电容一端电位的提高来控制另一端电位的方法称为“自举”,所以称电容C3为自举电容。自举从本质上说是一种特殊形式的正反馈。 二、应用实例 1.利用自举电路提高射极跟随器的输入电阻 射随器具有输入阻抗高、输出阻抗低的特点,所以在电子线路中的应用是极为广泛的。图3是一典型射极跟随器电路,由于基极采用的是固定偏置电路,所以无法保证工点的稳定。如果将它改为如图4所示

同步整流技术最新

同步整流技术
电源网第20届技术交流会
邹超洋
2012.11

内 容 简 介
?同步整流简介。 ?同步整流的分类。 。 ?同步整流的驱动方式 ?同步整流的 MOSFET

同步整流简介
z 高速超大规模集成电路的尺寸的不断减小,功耗的不断降低,要求
供电电压也越来越低,而输出电流则越来越大。 z 电源本身的高输出电流、低成本、高频化(500kHz~1MHz)高 功率密度、高可靠性、高效率的方向发展。 z 在低电压、大电流输出DC-DC变换器的整流管,其功耗占变换器 全部功耗的50~60%。 z用低导通电阻MOSFET代替常规肖特基整流/续流二极管,可以大大 降低整流部分的功耗,提高变换器的性能,实现电源的高效率,高功 率密度。

同步整流简介
diode
=
MOSFET 代替diode
MOSFET
D
相当于二极管的功能 ?电流从S流向D ?V/I特性,工作于3rd 象限
G S
z 用MOSFET来代替二极管在电路中的整流功能
z 相对于二极管的开关算好极小 g 控制,可以根据系统的需要, z 整流的时序受到MOSFET的Vgs 把整流的损耗做到最小

同步整流简介
? 例如:一个5V?30A输出的电源
Diode
Vf=0.45V Ploss=0.45*30=13.5W Ploss/Po=13.5/45=30% /Po=13 5/45=30% Rdson=1.2m? Ploss=0.0012*30 0 0012*302=1.08W 1 08W Ploss/Po=1.08/45=2.4%
Mosfet
MBR8040(R)
SC010N04LS

桥式整流电路的工作原理

桥式整流电路的工作原理 电子系统的正常运行离不开稳定的电源,除了在某些特定场合下采用太阳能电池或化学电池作电源外,多数电路的直流电是由电网的交流电转换来的。这种直流电源的组成以及各处的电压波形如图所示。直流电源的组成 图中各组成部分的功能如下838电子: ⑴电源变压器:将电网交流电压(220V或380V)变换成符合需要的交流电压,此交流电压经过整流后可获得电子设备所需的直流电压。因为大多数电子电路使用的电压都不高,这个变压器是降压变压器新艺图库。 ⑵整流电路:利用具有单向导电性能的整流元件,把方向和大小都变化的50Hz交流电变换为方向不变但大小仍有脉动的直流电。 ⑶滤波电路:利用储能元件电容器C两端的电压(或通过电感器L的电流)不能突变的性质,把电容C(或电感L)与整流电路的负载RL并联(或串联),就可以将整流电路输出中的交流成分大部分加以滤除,从而得到比较平滑的直流电。在小功率整流电路中,经常使用的是电容滤波。 ⑷稳压电路:当电网电压或负载电流发生变化时,滤波电路输出的直流电压的幅值也将随之变化,因此,稳压电路的作用是使整流滤波后的直流电压基本上不随交流电网电压和负载的变化而变化。 利用二极管的单向导电性组成整流电路,可将交流电压变为单向脉动电压。本章为便于分析整流电路,把整流二极管当作理想元件,即认为它的正向导通电阻为零,而反向电阻为无穷大。但在实际应用中,应考虑到二极管有内阻,整流后所得波形,其输出幅度会减少0.6~1V,当整流电路输入电压大时,这部分压降可以忽略。但输入电压小时,例如输入为3V,则输出只有2V 多,需要考虑二极管正向压降的影响。 在小功率直流电源中,常见的几种整流电路有单相半波、全波、桥式和三相整流电路等。 整流(和滤波)电路中既有交流量,又有直流量。对这些量经常采用不同的表述方法:输入(交流)——用有效值或最大值;输出(直流)——用平均值;二极管正向电流——用平均值;二极管反向电压——用最大值。838电子 单相全波桥式整流器电路的工作原理 由图可看出,电路中采用四个二极管,互相接成桥式结构。利用二极管的电流导向作用,在交流输入电压U2的正半周内,二极管D1、D3导通,D2、D4截止,在负载R L上得到上正下负的输出电压;在负半周内,正好相反,D1、D3截止,D2、D4导通,流过负载R L的电流方向与正半周一致。因此,利用变压器的一个副边绕组和四个二极管,使得在交流电源的正、负半周内,整流电路的负载上都有方向不变的脉动直流电压和电流。桥式整流的名称只是说明电路连接方法是桥式的接法,桥式整流二极管:大家常用的一般是由4只单个二极管封装在一起的元件,取名桥式整流二极管,整流桥或全桥二极管。

自举电路

自举电路 编辑词条 自举电路也叫升压电路,利用自举升压二极管,自举升压电容等电子元件,使电容放电电压和电源电压叠加,从而使电压升高.有的电路升高的电压能达到数倍电源电压。 编辑本段原理 举个简单的例子:有一个12V的电路,电路中有一个场效应管需要15V的驱动电压,这个电压怎么弄出来?就是用自举。通常用一个电容和一个二极管,电容存储电压,二极管防止电流倒灌,频率较高的时候,自举电路的电压就是电路输入的电压加上电容上的电压,起到升压的作用。 自举电路只是在实践中定的名称,在理论上没有这个概念。自举电路主要是在甲乙类单电源互补对称电路中使用较为普遍。甲乙类单电源互补对称电路在理论上可以使输出电压Vo达到Vcc的一半,但在实际的测试中,输出电压远达不到Vcc的一半。其中重要的原因就需要一个高于Vcc的电压。所以采用自举电路来升压。 常用自举电路(摘自fairchild,使用说明书AN-6076《供高电压栅极驱动 器IC 使用的自举电路的设计和使用准则》) 编辑本段P 沟道高端栅极驱动器 直接式驱动器:适用于最大输入电压小于器件的栅- 源极击穿电压。 开放式收集器:方法简单,但是不适用于直接驱动高速电路中的MOSFET。 电平转换驱动器:适用于高速应用,能够与常见PWM 控制器无缝式工作。编辑本段N 沟道高端栅极驱动器 直接式驱动器:MOSFET最简单的高端应用,由PWM 控制器或以地为基准的驱动器直接驱动,但它必须满足下面两个条件: VCC

同步整流电路分析

同步整流电路分析作者gyf2000 日期2007-4-22 20:21:00 一、传统二极管整流电路面临的问题 近年来,电子技术的发展,使得电路的工作电压越来越低、电流越来越大。低电压工作有利于降低电路的整体功率消耗,但也给电源设计提出了新的难题。 开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降,这就导致整流损耗增大,电源效率降低。 举例说明,目前笔记本电脑普遍采用3.3V甚至1.8V或1.5V的供电电压,所消耗的电流可达20A。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)P O,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC/DC变换器提高效率的瓶颈。 二、同步整流的基本电路结构 同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。 1、基本的变压器抽头方式双端自激、隔离式降压同步整流电路

各类整流电路图及工作原理

桥式整流电路图及工作原理介绍 桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。由电源变压器、四只整流二极管D1~4 和负载电阻RL组成。四只整流二极管接成电桥形式,故称桥式整流。 图1 桥式整流电路图 桥式整流电路的工作原理 如图2所示。

在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压。 在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。 这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即 UL = 0.9U2 IL = 0.9U2/RL 流过每个二极管的平均电流为 ID = IL/2 = 0.45 U2/RL 每个二极管所承受的最高反向电压为 什么叫硅桥,什么叫桥堆 目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。 二极管整流电路原理与分析 半波整流 二极管半波整流电路实际上利用了二极管的单向导电特性。

当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。当输入电压处于交 流电压的负半周时,二极管截止,输出电压v o=0。半波整流电路输入和输出电压的波形如图所 示。 二极管半波整流电路 对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。 电容输出的二极管半波整流电路仿真演示 通过上述分析可以得到半波整流电路的基本特点如下: (1)半波整流输出的是一个直流脉动电压。 (2)半波整流电路的交流利用率为50%。 (3)电容输出半波整流电路中,二极管承担最大反向电压为2倍交流峰值电压(电容输出 时电压叠加)。 (3)实际电路中,半波整流电路二极管和电容的选择必须满足负载对电流的要求。

同步整流电路分析

一、传统二极管整流电路面临的问题 近年来,电子技术的发展,使得电路的工作电压越来越低、电流越来越大。低电压工作有利于降低电路的整体功率消耗,但也给电源设计提出了新的难题。 开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达~,即使采用低压降的肖特基二极管(SBD),也会产生大约的压降,这就导致整流损耗增大,电源效率降低。 举例说明,目前笔记本电脑普遍采用甚至或的供电电压,所消耗的电流可达20A。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)P O,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC /DC变换器提高效率的瓶颈。 二、同步整流的基本电路结构 同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。 1、基本的变压器抽头方式双端自激、隔离式降压同步整流电路 2、单端自激、隔离式降压同步整流电路 图1 单端降压式同步整流器的基本原理图 基本原理如图1所示,V1及V2为功率MOSFET,在次级电压的正半周,V1导通,V2关断,V1起整流作用;在次级电压的负半周,V1关断,V2导通,V2起到续流作用。同步整流电路的

整流器工作原理

整流器工作原理 桥式整流器原理电路 桥式整流电路(如图5-5所示)是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定 程度上克服了它的缺点。 图5-5(a)为桥式整流电路图(b)为其简化画法 式整流电路的工作原理如下:e2为正半周时,对D1、D3和方向电压,Dl,D3导通;对D2、D4加反向电压,D2、D4截止。电路中构成e2、Dl、Rfz、D3通电回路,在Rfz,上形成上正下负的半波整洗电压,e2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。电路中构成e2、D2Rfz、D4通电回路,同样在Rfz上形成上正下负的另外半波的整流电压。以上两种工作状态分别如图5-6(a)和(b)所示。

图5-6 桥式整流电路的工作原理示意图 如此重复下去,结果在Rfz,上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图5-6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整流电路小一半。 桥式整流电路的整流效率和直流输出与全波整流电路相同,变压器的利用率最高。现在常用的全桥整流,不用单独的四只二极管而用一只全桥,其中包括四只二极管,但是要标清符号,有交流符号的两端接变压器输出,+、-两端接入整流电路。 需要特别指出的是,二极管作为整流元件,要根据不同的整流方式和负载大小加以选择。如选择不当,则或者不能安全工作,甚至烧了管子;或者大材小用,造成浪费。表5-1所列参数可供选择二极管时参考。 另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以把二极管串联或并联起来使用。

整流器工作原理

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 整流器工作原理 桥式整流器原理电路 桥式整流电路(如图5-5所示)是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。 图5-5(a)为桥式整流电路图(b)为其简化画法 式整流电路的工作原理如下:e2为正半周时,对D1、D3和方向电压,Dl,D3导通;对D2、D4加反向电压,D2、D4截止。电路中构成e2、Dl、Rfz、D3通电回路,在Rfz,上形成上正下负的半波整洗电压,e2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。电路中构成e2、D2Rfz、D4通电回路,同样在Rfz上形成上正下负的另外

半波的整流电压。以上两种工作状态分别如图5-6(a)和(b)所示。 图5-6 桥式整流电路的工作原理示意图 如此重复下去,结果在Rfz,上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图5-6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整流电路小一半。 桥式整流电路的整流效率和直流输出与全波整流电路相同,变压器的利用率最高。现在常用的全桥整流,不用单独的四只二极管而用一只全桥,其中包括四只二极管,但是要标清符号,有交流符号的两端接变压器输出,+、-两端接入整流电路。 需要特别指出的是,二极管作为整流元件,要根据不同的整流方式和负载大小加以选择。如选择不当,则或者不能安全工作,甚至烧了管子;或者大材小用,造成浪费。表5-1所列参数可供选择二极管时参考。 另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以把二极管串联或并联起来使用。

直流升压电路原理图

几款直流升压电路 直流升压就是将电池提供的较低的直流电压,提升到需要的电压值,其基本的工作过程都是:高频振荡产生低压脉冲——脉冲变压器升压到预定电压值——脉冲整流获得高压直流电,因此直流升压电路属于DC/DC电路的一种类型。 在使用电池供电的便携设备中,都是通过直流升压电路获得电路中所需要的高电压,这些设备包括:手机、传呼机等无线通讯设备、照相机中的闪光灯、便携式视频显示装置、电蚊拍等电击设备等等。 一、几种简单的直流升压电路 以下是几种简单的直流升压电路,主要优点:电路简单、低成本;缺点:转换效率较低、电池电压利用率低、输出功率小。这些电路比较适合用在万用电表中,替代高压叠层电池。

二、24V供电CRT高压电源 一些照相机CRT使用11.4cm(4.5英寸)纯平面CRT作为显示部件,其高压部件的阳极电压为+20kV,聚焦极电压为+3.2kV,加速极电压为+1000V,高压部件供电为直流24V。以下电路是为替换维修这些显示器的高压部件而设计(电路选自网络文章,原作者不详)。该电路的设计也可为其他升压电路设计提供参考。 基本原理:NE555构成脉冲发生器,调节电位器VR2可使之产生频率为20kHz左右的脉冲,电位器VR1调脉宽。TR1为推动级,脉冲变压器T1采用反极性激励,即TR1导通时TR2截止,TR1截止时TR2导通,D3、C9、VR3、R7及D4、R6、TR3组成高压保护电路。VR2用于调频率,调节VR2可调整高压大小。 VR2选用精密可调电阻。T2可选用彩电行输出变压器变通使用。笔者选用的是东洋SE-1438G系列35cm(14英寸)彩电的行输出变压器,采用此变压器阳极电压可达20kV,再适当选取R8的阻值使加速极电压为+1000V、R9的阻值使聚焦极电压为+3.2kV即可。整个部件采用铝盒封装,铝壳接地,这样可减少对电路干扰。 直流升压电压电路图集锦: 三极管升压电路:

桥式整流电路及工作原理详解

桥式整流电路图及工作原理介绍之我见 桥式整流电路图及工作原理介绍之我见
桥式整流电路如图 1 所示,图(a)(b)(c)是桥式整流电路的三种不同 、 、 画法。由电源变压器、四只整流二极管 D1~4 和负载电阻 RL 组成。四只整流二 极管接成电桥形式,故称桥式整流。
图 1 桥式整流电路图 桥式整流电路的工作原理 如图 2 所示。

在 u2 的正半周,D1、D3 导通,D2、D4 截止,电流由 TR 次级上端经 D1→ RL →D3 回到 TR 次级下端,在负载 RL 上得到一半波整流电压 在 u2 的负半周,D1、D3 截止,D2、D4 导通,电流由 Tr 次级的下端经 D2→ RL →D4 回到 Tr 次级上端,在负载 RL 上得到另一半波整流电压。 这样就在负载 RL 上得到一个与全波整流相同的电压波形,其电流的计算与全波 整流相同,即 UL = 0.9U2 IL = 0.9U2/RL 流过每个二极管的平均电流为 ID = IL/2 = 0.45 U2/RL 每个二极管所承受的最高反向电压为 什么叫硅桥,什么叫桥堆 目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器 件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图 Z 图 1(c)的形式。 桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反 压大的缺点,但多用了两只二极管。在半导体器件发展快,成本较低的今天,此 缺点并不突出,因而桥式整流电路在实际中应用较为广泛。

二极管整流电路原理与分析
半波整流 二极管半波整流电路实际上利用了二极管的单向导电特性。 当输入电压处于交流电压的正半周时,二极管导通,输出电压 vo=vi-vd。当输入电压处于交 流电压的负半周时,二极管截止,输出电压 vo=0。半波整流电路输入和输出电压的波形如图所 示。
二极管半波整流电路 对于使用直流电源的电动机等功率型的电气设备, 半波整流输出的脉动电压就足够了。 但对于电 子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。平滑处理 电路实际上就是在半波整流的输出端接一个电容, 在交流电压正半周时, 交流电源在通过二极管 向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。

升压(自举)电路原理

自举电路也叫升压电路,利用自举升压二极管,自举升压电容等电子元件,使电容放电电压和电源电压叠加,从而使电压升高.有的电路升高的电压能达到数倍电源电压。 升压电路原理 举个简单的例子:有一个12V的电路,电路中有一个场效应管需要15V的驱动电压,这个电压怎么弄出来?就是用自举。通常用一个电容和一个二极管,电容存储电压,二极管防止电流倒灌,频率较高的时候,自举电路的电压就是电路输入的电压加上电容上的电压,起到升压的作用。 升压电路只是在实践中定的名称,在理论上没有这个概念。升压电路主要是在甲乙类单电源互补对称电路中使用较为普遍。甲乙类单电源互补对称电路在理论上可以使输出电压Vo达到Vcc的一半,但在实际的测试中,输出电压远达不到Vcc的一半。其中重要的原因就需要一个高于Vcc的电压。所以采用升压电路来升压。 开关直流升压电路(即所谓的boost或者step-up电路)原理 the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。基本电路图见图1. 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来说明这个电路。 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。

同步整流的基本工作原理

同步整流的基本工作原理 https://www.wendangku.net/doc/364054421.html,文章出处:发布时间:2008/10/09 | 6869 次阅读| 1次推荐| 0条留言 Samtec连接器完整的信号来源开关,电源限时折扣最低45折每天新产品时刻新体验ARM Cortex-M3内核微控制器最新电子元器件资料免费下载完整的15A开关模式电源首款面向小型化定向照明应用代替 图1(a)所示为N沟道功率MOS管构成的同步整流管SR和SBD整流二极管的电路图形符号,整流二极管有两个极:即阳极A和阴极K。功率MOS管有三个极:即漏极D、源极S和门极G。在用做同步整流管时,将功率MOS管反接使用,即源极S接电源正端,相当于二极管的阳极A;漏极D接电压负端,相当于二极管的阴极K;当功率MOS管在门极G信号的作用下导通时,电流电源极S流向漏极D。而功率MOS管作为开关使用时,漏极D接电源正端,源极S接电压负端;导通时,相当于开关闭合,电流由漏极D流向源极S。 图1 同步整流管和整流二极管 同步整流管SR及整流二极管构成的半波整流电路如图1(b)所示。当SR的门极驱动电压ug,与正弦波电源电压仍同步变化时,则负载R上得到的是与二极管整流电路相同的半波正弦波电压波形1fR。 同步整流管的源一漏极之间有寄生的体二极管,还有输出结电容(未画出),驱动信号加在门极和源极(G-S)之间,是一种可控的开关器件。皿关断时,电流仍然可以由体二极管流通。不过m体二极管的正向导通压降和反向恢复时间都比SBD大得多,因此,一旦电流流过SR的体二极管,则整流损耗将明显增加。

由于同步整流是由可控的三端半导体开关器件来实现的,因此必须要有符合一定时序关系的门极驱动信号去控制它,使其像一个二极管一样地导通和关断。驱动方法对银的整体性能影响很大,因此,门极驱动信号往往是设计同步整流电路时必须要解决的首要问题。例如,SR开通过早或关断过晚,都可能造成短路,而开通过晚或关断过早又可能使SR的体二极管导通,使整流损耗和器件应力增大。 综上所述,当功率MOS管反接时可以作为SR使用,其特点如下: (1)SR是一个可控的三极开关器件,在门极和源极之间加人驱动信号时,可以控制功率MOS管源极S和漏极D之间的通/断。 (2)门极驱动信号和源极电压同步,如源极为高电平时,驱动信号也是高电平则MOS 管导通;反之,源极为低电平时,驱动信号也是低电平,则MOS管关断;这样就自然实现了整流,而且电流也只能由源极s流向漏极D。由于是通过门极信号和源极电压同步来实现整流的,因此把这种整流方式称为同步整流。 (3)用于PWM开关转换器中的同步整流管SD代替SBD作为整流管或续流工作时,必须保证门极有正确的控制时序,使其工作与PWM开关转换器的主开关管同步协调工作。因此不同的开关转换器主电路,其同步整流管的控制时序也是不同的。同步整流开关管的控制时序将在后面进行介绍。 (4)在功率MOS管反接的情况下,其固有的体二极管极性却是正向的。有时要利用它先导通,以便过渡到功率MOS管进入整流状态。但由于体二极管的正向压降较大,常常不希望它导通或导通时问过长。

高压侧悬浮驱动的自举原理

---------高压悬浮驱动器IR2110的原理和扩展应用 ---------吴胜华,张成胜,钟炎平,吴保芳 ---------3高压侧悬浮驱动的自举原理 IR2110用于驱动半桥的电路如图2所示。图中C1、VD1分别为自举电容和二极管,C2为VCC的滤波电容。假定在S1关断期间C1已充到足够的电压(VC1≈VCC)。当HIN为高电平时VM1开通,VM2关断,VC1加到S1的门极和发射极之间,C1通过VM1,Rg1和S1门极栅极电容Cgc1放电,Cgc1被充电。此时VC1可等效为一个电压源。当HIN为低电平时,VM2开通,VM1断开,S1栅电荷经Rg1、VM2迅速释放,S1关断。经短暂的死区时间(td)之后,LIN为高电平,S2开通,VCC经VD1,S2给C1充电,迅速为C1补充能量。如此循环反复。 ---------4自举元器件的分析与设计 如图2所示自举二极管(VD1)和电容(C1)是IR2110在PWM应用时需要严格挑选和设计的元器件,应根据一定的规则进行计算分析。在电路实验时进行一些调整,使电路工作在最佳状态。 ---------4.1自举电容的设计 IGBT和PM(POWERMOSFET)具有相似的门极特性。开通时,需要在极短的时间内向门极提供足够的栅电荷。假定在器件开通后,自举电容两端电压比器件充分导通所需要的电压(10V,高压侧锁定电压为8.7/8.3V)要高;再假定在自举电容充电路径上有1.5V的压降(包括VD1的正向压降);最后假定有1/2的栅电压(栅极门槛电压VTH通常3~5V)因泄漏电流引起电压降。综合上述条件,此时对应的自举电容可用下式表示:C1=(1)工程应用则取C1>2Qg/(VCC-10-1.5)。 例如FUJI50A/600VIGBT充分导通时所需要的栅电荷Qg=250nC(可由特性曲线查得),VCC=15V,那么 C1=2×250×10-9/(15-10-1.5)=1.4×10-7F 可取C1=0.22μF或更大一点的,且耐压大于35V的钽电容。 ---------4.2悬浮驱动的最宽导通时间ton(max)当最长的导通时间结束时,功率器件的门极电压Vge仍必须足够高,即必须满足式(1)的约束关系。不论PM还是IGBT,因为绝缘门极输入阻抗比较高,假设栅电容(Cge)充电后,在VCC=15V时有15μA的漏电流(IgQs)从C1中抽取。仍以4.1中设计的参数为例,Qg=250nC,ΔU=VCC-10- 1.5=3.5V,Qavail=ΔU×C=3.5×0.22=0.77μC。则过剩电荷ΔQ=0.77-0.25=0.52μC, ΔUc=ΔQ/C=0.52/0.22=2.36V,可得Uc=10+2.36=12.36V。由U=Uc及栅极输入阻抗 R===1MΩ可求出t(即ton(max)),由===1.236可求出 ton(max)=106×0.22×10-6ln1.236=46.6ms ---------4.3悬浮驱动的最窄导通时间ton(min) 在自举电容的充电路径上,分布电感影响了充电的速率。下管的最窄导通时间应保证自举电容能够充足够的电荷,以满足Cge所需要的电荷量再加上功率器件稳态导通时漏电流所失去的电荷量。因此从最窄导通时间ton(min)考虑,自举电容应足够小。 综上所述,在选择自举电容大小时应综合考虑,既不能太大影响窄脉冲的驱动性能,也不

同步整流电路分析

同步整流电路分析 一、传统二极管整流电路面临的问题 近年来,电子技术的发展,使得电路的工作电压越来越低、电流越来越大。低电压工作有利于降低电路的整体功率消耗,但也给电源设计提出了新的难题。 开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降,这就导致整流损耗增大,电源效率降低。 举例说明,目前笔记本电脑普遍采用3.3V甚至1.8V或1.5V的供电电压,所消耗的电流可达20A。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)P O,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC/DC变换器提高效率的瓶颈。 二、同步整流的基本电路结构 同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。 1、基本的变压器抽头方式双端自激、隔离式降压同步整流电路

2、单端自激、隔离式降压同步整流电路 图1 单端降压式同步整流器的基本原理图 基本原理如图1所示,V1及V2为功率MOSFET,在次级电压的正半周,V1导通,V2关断,V1起整流作用;在次级电压的负半周,V1关断,V2导通,V2起到续流作用。同步整流电路的功率损耗主要包括V1及V2的导通损耗及栅极驱动损耗。当开关频率低于1MHz时,导通损耗占主导地位;开关频率高于1MHz时,以栅极驱动损耗为主。 3、半桥他激、倍流式同步整流电路

一种非常实用的Boost升压电路原理详解

一种实用的BOOST电路 0 引言 在实际应用中经常会涉及到升压电路的设计,对于较大的功率输出,如70W以上的DC /DC升压电路,由于专用升压芯片内部开关管的限制,难于做到大功率升压变换,而且芯片的价格昂贵,在实际应用时受到很大限制。考虑到Boost升压结构外接开关管选择余地很大,选择合适的控制芯片,便可设计出大功率输出的DC/DC升压电路。 UC3S42是一种电流型脉宽调制电源芯片,价格低廉,广泛应用于电子信息设备的电源电路设计,常用作隔离回扫式开关电源的控制电路,根据UC3842的功能特点,结合Boos t拓扑结构,完全可设计成电流型控制的升压DC/DC电路,且外接元器件少,控制灵活,成本低,输出功率容易做到100W以上,具有其他专用芯片难以实现的功能。 1 UC3842芯片的特点 UC3842工作电压为16~30V,工作电流约15mA。芯片内有一个频率可设置的振荡器;一个能够源出和吸入大电流的图腾式输出结构,特别适用于MoSFET的驱动;一个固定温度补偿的基准电压和高增益误差放大器、电流传感器;具有锁存功能的逻辑电路和能提供逐个脉冲限流控制的PWM比较器,最大占空比可达100%。另外,具有内部保护功能,如滞后式欠压锁定、可控制的输出死区时间等。 由UC3842设计的DC/DC升压电路属于电流型控制,电路中直接用误差信号控制电感峰值电流,然后间接地控制PWM脉冲宽度。这种电流型控制电路的主要特点是: 1)输入电压的变化引起电感电流斜坡的变化,电感电流自动调整而不需要误差放大器输出变化,改善了瞬态电压调整率; 2)电流型控制检测电感电流和开关电流,并在逐个脉冲的基础上同误差放大器的输出比较,控制PWM脉宽,由于电感电流随误差信号的变化而变化,从而更容易设置控制环路,改善了线性调整率; 3)简化了限流电路,在保证电源工作可靠性的同时,电流限制使电感和开关管更有效地工作; 4)电流型控制电路中需要对电感电流的斜坡进行补偿,因为,平均电感电流大小是决定输出大小的因素,在占空比不同的情况下,峰值电感电流的变化不能与平均电感电流变化相对应,特别是占空比,50%的不稳定性,存在难以校正的峰值电流与平均电流的误差,即使占空比<50%,也可能发生高频次谐波振荡,因而需要斜坡补偿,使峰值电感电流与平均电感电流变化相一致,但是,同步不失真的斜坡补偿技术实现上有一定的难度。

相关文档