文档库 最新最全的文档下载
当前位置:文档库 › 接触网技术参数统计

接触网技术参数统计

接触网技术参数统计
接触网技术参数统计

接触网技术参数统计

1刚性接触网

1.1锚段及跨距

每个锚段一般不超过250米。

1.2锚段关节

(1)关节中间处两接触线等高。

(2)转换悬挂点处非工作支不得低于工作支,可以比工作支高出0~8mm(0~4mm),困难情况下不超过10mm。

(3)受电弓在双向通过时应平滑无撞击和拉弧现象。

(4)非绝缘锚段关节两支接触悬挂的拉出值均为±100mm(75mm),汇流排中心线之间距离为200mm(150??),允许误差±20mm。接触线外露长度为150mm。

(5)绝缘锚段关节两支接触悬挂的拉出值均为±150mm(130mm),汇流排中心线之间距离为300mm(260??),允许误差±20mm。接触线外露150mm。

绝缘貌端关节示意图

1.3线岔

(1)在受电弓可能同时接触两支接触线范围内的两支接触线应等高。

(2)在受电弓始触点后至岔尖方向,渡线接触线应比正线接触线高出0~10mm(0~4)。(3)在受电弓双向通过时应平滑无撞击及不应出现固定拉弧点。

(4)单开道岔悬挂点的拉出值距正线汇流排中心线为200mm,允许误差±20mm。平行段距离为2000mm。

(5)交叉渡线道岔处的线岔,在交叉渡线处两线路中心的交叉点处,两支悬挂的汇流排中心线均距交叉点100mm,允许误差±20m m。

(6)侧线端部向上弯70mm左右。

(7)线岔处电连接线、接地线应完整无遗漏,连接牢固。

道岔分类

刚性悬挂线岔示意图

1.4刚柔过度

(1)两根柔性接触网等高并列运行进入刚柔过渡元件约500mm后,在过渡原件外面的导线逐渐抬高脱离接触,其最终的抬高量不应小于35mm。

(2)刚柔过渡处刚性悬挂应比柔性悬挂高20~50mm。

(3)柔性悬挂升高下锚处绝缘子边缘应距受电弓包络线不得小于75mm。

(4)刚性悬挂带电体距柔性悬挂下锚底座、下锚支悬挂等接地体不应小于150mm。(5)受电弓距柔性悬挂下锚底座、下锚支悬挂等接地体不应小于100mm。

(6)受电弓双向通过时平滑不撞击及不应出现固定拉弧点。

(7)两支悬挂的拉出值为±100mm,间距为200mm,允许误差±20mm。

贯通式刚柔过渡单链悬挂示意图

贯通式刚柔过渡双链悬挂示意图

1.5接触线磨耗

接触线的磨耗要均匀,稍大于50%控制,但最大不要超过60%。

1.6中心锚节

(1)直线区段,中心锚结应处于汇流排中心线的正上方;曲线区段,锚固底座中心线位于中锚在汇流排上锚固线夹处汇流排中心线的延长线的正上方,基座中心偏离汇流排中心应不大于±30mm。

(2)中心锚结绝缘子及拉杆受力均衡适度,与汇流排的夹角不大于45°。

(3)中心锚结绝缘子表面应无损伤,接地端至带电体距离一般情况应不小于150mm;困难情况不应小于115mm。

中心锚结示意图

1.7分段绝缘器

(1)分段绝缘器上的两极靴枝(引弧棒)间距应为100mm,允许误差±5mm。

(2)分段绝缘器中点偏离线路中心线不应大于50mm。

(3)分段绝缘器导流板与接触导线连接处应平滑,与受电弓接触部分应与轨面连线平行,且满足受电弓双向通过均无碰、打弓的现象。

(4)分段绝缘器在两个相邻悬挂点的中间位置,允许误差为±50mm。

分段绝缘器

1.8导高拉出值

(1)悬挂点接触导线的拉出值范围为±200mm,允许误差不应大于±10mm。

(2)悬挂点接触线高度应符合设计要求,允许误差为±5mm。(导高一般为4040mm)(3)相邻的两悬挂点相对高差一般不得超过所在跨距值的0.5‰,设计变坡段不应超过1‰。

(4)跨中弛度不得大于跨距值的1‰,且不应出现负弛度。

(5)汇流排横断面中轴线应垂直于所在处的轨道平面,偏斜不应大于1°。

2柔性区段

2.1锚段及跨距

全补偿简单链形悬挂、弹性简单悬挂的最大跨距不大于50m。

双边补偿时最大锚段长度一般不大于1500m,单边补偿时锚段长度一般不大于750m,当一个锚段内有较长的小半径曲线时,锚段长度可适当缩小。

2.2锚段关节

2.2.1三跨非绝缘锚段关节:

相邻两锚段重叠三个跨距,只进行机械分段,电气上是联通的,也称为电不分段锚段关节。

(1)两转换柱间的两条接触线的水平面上的投影应平行,线间的距离为100mm。

(2)立面图中,两接触线的交叉点应在该跨距中心处,且等高。

(3)转换支柱处,非工作支接触线比工作支接触线抬高200~250mm。

(4)下锚处,非工作支比工作支抬高500mm。

(5)两转换柱与锚柱间,在距转换柱10米处安装电联结线。

(6)换柱处,两接触线间垂直、水平距离允许误差20mm。

锚段关节示意图

三跨非绝缘锚段关节

2.2.2四跨绝缘锚段关节

相邻两锚段重叠四个跨距,机械上分段,电气上相互独立。通过隔离开关实现电路的通断。实现同相位接触线间的绝缘。

(1)两转换柱间两条接触线的水平面上投影平行,线间距500mm。

(2)在立面图中,两接触线的交叉点应在中心柱处且等高。

(3)转换支柱处,非工作支接触线比工作支接触线抬高500mm。

(4)非工作支接触线和下锚支承力索在转换柱靠中心柱处加装一串绝缘子。

(5)两转换柱与锚柱间,在具转换柱10米处应安装电联结线

(6)两个锚段的电路连通或断开由隔离开关控制。

四跨绝缘锚段关节的不足:

(1)中心柱处接触线弹性差。

(2)接触线坡度大。

综上,四跨绝缘锚段关节不适合高速电气化铁路要求。

四跨绝缘锚段关节

2.2.3五跨绝缘锚段关节

五跨绝缘锚段关节

五跨锚段关节

七跨锚段关节

2.3线岔

(1)线岔定位点拉出值应符合设计规定,在线岔的交叉点处,正线或重要的接触线在下方。

(2)侧线与侧线组成的线岔,距中心锚结或硬锚较近的接触线位于下方。

(3)侧线在限制管内上下活动间隙为1~3mm。

(4)线岔的限制管型号要符合要求,安装要正确,螺栓、垫片应齐全、坚固,接触线能自由伸缩无卡滞现象。

(5)由正线与侧线组成道岔时,两工作支在相距500mm处侧线接触线应高于正线接触线5~10mm。两支接触线中有一支为非工作支时,相距500mm处非工作支接触线应高于工作支接触线50~100mm。

(6)由侧线与侧线组成道岔时,两工作支在相距500mm处应等高,允许误差不超过10mm,两支接触线中有一支为非工作支时,在相距500mm处非工作支接触线应高于工作支接触线50~100mm。

(7)线岔两工作支中任一工作支的垂直投影距另一股道线路中心400~850mm的范围内,不得安装任何线夹。

(8)线岔两支接触线交叉点位置:横向距两线路任一线路中心不大于300mm(即垂直投影位于道岔导曲线两内轨之间,且两内轨距不小于840mm),纵向距道岔定位不小于1500mm。

(9)道岔定位支柱位置:7号道岔接触网定位在道岔理论岔心前约2米处,9号道岔接触网定位在道岔理论岔心前约3米处。

(10)线岔处两支承力索或两支吊索间隙不应小于60mm。

(11)线岔定位拉出值不得大于300mm。

(12)对于交叉渡线道岔的线岔,两支接触线相较于两渡线中心线的交点处,允许横向、纵向偏差50mm。

(13)线岔的编号应以其所在的道岔编号命名。

线岔结构2.4接触线磨耗

接触线的磨耗要均匀,最大不要超过25%

2.5中心锚结

(1)中心锚结所在的跨距内承力索、接触线不得有接头和补强,两端中锚辅助绳受力均匀,不得出现弛度,两边的长度和张力力求相等。

(2)中心锚结线夹处导线高度比正常导高高10~20mm,中心锚结线夹处接触线应平顺无负弛度。

(3)中心锚结线夹应安装牢固,在直线上应保持铅垂状态,在曲线上应与接触线的倾斜度相一致。

直线中心锚结

曲线中心锚结

中心锚结结构2.6分段绝缘器

2.7导高拉出值

(1)链形悬挂两接触线及两承力索之间的水平间隙为40mm。

(2)正线导高4600,站场5000,检修库5300或者5600,允许的误差为±15mm。(3)拉出值要符合规定,误差不得大于±20mm。

(4)一般直线段“之”字值不大于±200mm,曲线段拉出值不大于250mm。

(5)双接触线测量读数时,以靠定位器侧的接触线为准。

(6)动态情况:一般直线段“之”字值不大于±250mm,曲线段拉出值不大于300mm。

2.8接触线坡度(导高变化率)

接触网课程设计报告

课程名称:接触场平面设计 设计题目:站场平面设计 院系:电气工程系 专业:铁道电气化 年级: 2011级 姓名:浩 学号: 20116687 指导教师:王老师 西南交通大学峨眉校区 2015年 1月8 日

课程设计任务书 专业铁道电气化姓名浩学号 20116687 开题日期: 2014年月日完成日期: 2015 年月日题目接触场平面设计 一、设计的目的 通过该设计,使学生初步掌握接触场平面设计的设计步骤和方法,熟悉有关平面设计图纸的使用;基本掌握站场平面设计需要考虑的元素;锻炼学生综合运用所学知识的能力,为今后进行工程设计奠定良好的基础。 二、设计的容及要求 1.负载计算。2.最大跨距计算。3.半补偿链形悬挂安装曲线计算。4.半补偿链形悬挂锚段长度及力增量曲线决定。5.平面设计:(1)基本要求;(2)支柱布置;(3)拉出值及之字值标注;(4)锚段关节;(5)咽喉区放大图;(6)接触网分段。6.站场平面表格填写:侧面限界、支柱类型、地质情况、基础类型、安装参考图号。 三、指导教师评语 四、成绩 指导教师 (签章)

年月日 接触网课程设计任务书 一、原始资料 1.悬挂形式:正线全补偿简单链形悬挂,站线半补偿简单链形悬挂。 2.气象条件:学号尾数1的为第一典型气象区,学号尾数2的为第二典型气象区,学号尾数3的为第三典型气象区,学号尾数4的为第四典型气象区,学号尾数5的为第五典型气象区,学号尾数6的为第六典型气象区,学号尾数7的为第七典型气象区,学号尾数8的为第八典型气象区,学号尾数0、9的为第九典型气象区。 3.悬挂数据:学号尾数0、1的结构高度为1.1米,学号尾数2的结构高度为1.2米,学号尾数3的结构高度为1.3米,学号尾数4的结构高度为1.4米,学号尾数5的结构高度为1.5米,学号尾数6、7的结构高度为1.6米,学号尾数8、9的结构高度为1.7米。 站线:承力索JT70,Tcmax=1500kg;接触线CT85,Tjm=1000kg。 正线:承力索JT70,Tcm=1500kg;接触线CT110,Tjm=1000kg。 e=4m 4.土壤特性: (1)女生:安息角(承载力)Φ=30o,挖方地段。 (2)男生:安息角(承载力)Φ=30o,填方地段。 二、设计容 1.负载计算 2.最大跨距计算 3.半补偿链形悬挂安装曲线计算 4.半补偿链形悬挂锚段长度及力增量曲线决定 5.平面设计 (1)基本要求 (2)支柱布置 (3)拉出值及之字值标注 (4)锚段关节 (5)咽喉区放大图 (6)接触网分段 6.站场平面表格填写 支柱编号、侧面限界、支柱类型、地质情况、基础类型、安装参考图号 三、验算部分 1.各种类型支柱校验 2.缓和曲线跨距校验 四、使用图纸 按学号最后两位相加之和的末位数使用站场0---站场9的图纸 五、课程设计于任务书下达后六周交老师,延期交以不及格论处,特殊情况申请延期除外。

接触网设计规范

接触网设计规范

外及跨线建筑物范围内)正常情况不应小于5700mm;困难情况不应小于5650mm;特殊情况不应小于5330mm。 接触线最低高度值在高程1000m以上的区段,应按本规范第5.5.2条规定随空气绝缘间隙值的加大而相应增加。 5.1.5 接触线高度变化时,其坡度不宜大于3‰;确有困难时,不宜大于5‰。 接触网设计的强度安全系数应符合下列规定: 1.铜或铜合金接触线的强度安全系数,当磨耗面积小于或等于15%时,不应小于2.5;当磨耗面积大于15%且小于25%时,不应小于2.2。 2.各种绞线的强度安全系数不应小于: 1)软横跨横承力索中的钢绞线4.0; 2)承力索、定位索及附加导线中的钢绞线5.0;硬铜绞线 2.0;铝绞线、钢芯铝绞线、铝包钢芯铝绞线2.5。 3.绝缘子的强度安全系数不应小于: 1)瓷及钢化玻璃悬式绝缘子(受机电联合荷载时抗拉)2.0; 2)瓷棒式绝缘子(抗弯)2.5

3)针式绝缘子(抗弯)2.5; 4)其他材质绝缘元件,无阳光照射处(抗拉或抗弯)2.5;有阳光照射处,应视材质抗老化性能酌情增加; 4.耐张的零件强度安全系数不应小于5.0。 5.1.7 各类悬挂的接触线弛度(弹性吊弦引起的支柱处高度变化不计在内)均不宜大于250mm;对行车速度不大于45km/h的低速区段,可为350mm。 运行中,接触线(被受电弓顶起)的抬升量按100mm、受电弓的左右摆动量按200mm计算。 5.1.8 隧道内接触悬挂应根据隧道净空高度,隧道内气象条件和各项空气绝缘间隙确定。隧道内悬挂类型宜与区间一致,其零部件应加强防腐蚀措施。 5.2 气象条件 5.2.1 接触网设计的气象条件,应根据最近记录年限不少于20年的沿线气象资料计算,并结合既有电气化铁路或高压架空送电线路的运行经验确定。 5.2.2 接触网的最大设计风速,应采用空旷地区、高地面10m高处的10min自动记录10年发

接触网常用计算公式

接触网常用计算公式 1. 平均温度t p 和链形悬挂无弛度温度t o 的计算 ① 2t t tp min max += ② 5-2t t t min max o +=弹 ③ 10-2 t t t min max o +=简 式中 t p —平均温度℃(即吊弦、定位处于无偏移状态的温度); t o 弹、t o 简—分别表示弹性链形悬挂和简单链形悬挂的无弛度温度℃; t max —设计最高温度℃; t min —设计最低度℃; 2. 当量跨距计算公式 ∑∑=== n i I n i I L L LD 1 13 式中L D —锚段当量跨距(m ); ).........(3 3 23 113 n n i I L L L L +++=∑=—锚段中各跨距立方之和; ).........(211 n n i I L L L L +++=∑=—锚段中各跨距之和; 3. 定位肩架高度B 的计算公式 2)101 +( h d h I e H B + +≈ 式中 B —肩架高度(mm ); H —定位点处接触线高度(mm ); e —支持器有效高度(mm ); I —定位器有效长度(包括绝缘子)(mm ); d —定位点处轨距(mm );

h —定位点外轨超高(mm ); 4. 接触线拉出值a 地的计算公式 h d H a a - =地 式中 a 地—拉出值标准时,导线垂直投影与线路中心线的距离(mm )。a 地为正时导线的垂直投影应在线路的超高侧,a 地为负时导线的垂直投影应在线路的低轨侧。 H —定位点接触线的高度(mm ); a —导线设计拉出值(mm ); h —外轨超高(mm ); d —轨距(mm ); 5. 接触线定位拉出值变化量max a ?的计算公式 2 max 2 max E I I a z z -- =? 式中 Δa max —定位点拉出值的最大变化量(mm ); Z L —定位装置(受温度影响)偏转的有效长度(mm ); max E —极限温度时定位器的最大偏移值(mm ); 由上式可知 E=0时 Δa=0 6. 定位器无偏移时拉出值a 15的确定:(取平均温度t p =15℃) max 2115a a a ?± = 式中 a —导线设计拉出值(mm ); Δa max —定位点拉出值的最大变化量(mm ); 15 a —定位器无偏移时(即平均温度时)的拉出值(mm )。a 15与a 的变化关系,主 要取决于定位器在极限温度时Δa max 的变化量的大小,当Δa max 变化量较大时,则a 15相对a 值的变化较大,当Δa max 变化量较小 时,则a 15相对a 值变化量较小。但Δa max 的变化量又取决于定位器在极限温度时E max 值的大小,当定位器在极限温度时偏移值较大时,则Δa max 变化也较大,则a 15≠a ,反之偏移值较小时,则Δa max 变化也较小,则a 15≈a 。所以确定平均温度时定位点拉出值a 15的目的是为了满足在极限温度时,拉出值不超过允许误差。除直线反定位以外,当温度高于或低于平均温度时,拉出值都将是增大。因此,调整a 15时应满足下列关系为好:

接触网课程设计

课程名称:接触网站场平面设计 设计题目:站场平面设计 院系:电气工程系 专业:铁道电气化 年级:2011级 姓名:陈浩 学号:20116687 指导教师:王老师 西南交通大学峨眉校区 2015年1月8 日

课程设计任务书 专业铁道电气化姓名陈浩学号20116687 开题日期:2014年月日完成日期:2015 年月日题目接触网站场平面设计 一、设计的目的 通过该设计,使学生初步掌握接触网站场平面设计的设计步骤和方法,熟悉有关平面设计图纸的使用;基本掌握站场平面设计需要考虑的元素;锻炼学生综合运用所学知识的能力,为今后进行工程设计奠定良好的基础。 二、设计的内容及要求 1.负载计算。2.最大跨距计算。3.半补偿链形悬挂安装曲线计算。4.半补偿链形悬挂锚段长度及张力增量曲线决定。5.平面设计:(1)基本要求;(2)支柱布置;(3)拉出值及之字值标注;(4)锚段关节;(5)咽喉区放大图;(6)接触网分段。6.站场平面表格填写:侧面限界、支柱类型、地质情况、基础类型、安装参考图号。 三、指导教师评语 四、成绩 指导教师(签章) 年月日

接触网课程设计任务书 一、原始资料 1.悬挂形式:正线全补偿简单链形悬挂,站线半补偿简单链形悬挂。 2.气象条件:学号尾数1的为第一典型气象区,学号尾数2的为第二典型气象区,学号尾数3的为第三典型气象区,学号尾数4的为第四典型气象区,学号尾数5的为第五典型气象区,学号尾数6的为第六典型气象区,学号尾数7的为第七典型气象区,学号尾数8的为第八典型气象区,学号尾数0、9的为第九典型气象区。 3.悬挂数据:学号尾数0、1的结构高度为1.1米,学号尾数2的结构高度为1.2米,学号尾数3的结构高度为1.3米,学号尾数4的结构高度为1.4米,学号尾数5的结构高度为1.5米,学号尾数6、7的结构高度为1.6米,学号尾数8、9的结构高度为1.7米。 站线:承力索JT70,Tcmax=1500kg;接触线CT85,Tjm=1000kg。 正线:承力索JT70,Tcm=1500kg;接触线CT110,Tjm=1000kg。 e=4m 4.土壤特性: (1)女生:安息角(承载力)Φ=30o,挖方地段。 (2)男生:安息角(承载力)Φ=30o,填方地段。 二、设计内容 1.负载计算 2.最大跨距计算 3.半补偿链形悬挂安装曲线计算 4.半补偿链形悬挂锚段长度及张力增量曲线决定 5.平面设计 (1)基本要求 (2)支柱布置 (3)拉出值及之字值标注 (4)锚段关节 (5)咽喉区放大图 (6)接触网分段 6.站场平面表格填写 支柱编号、侧面限界、支柱类型、地质情况、基础类型、安装参考图号 三、验算部分 1.各种类型支柱校验 2.缓和曲线跨距校验 四、使用图纸 按学号最后两位相加之和的末位数使用站场0---站场9的图纸 五、课程设计于任务书下达后六周内交老师,延期交以不及格论处,特殊情况申请延期除外。

接触网的注意参数

电气化铁道接触网在实际的应用中时,需要结合行车速度、行车界限等多方面的注意一些参数,这些的注意参数有导高、侧面限界、拉出值、结构高度、跨距等。 导高 导高是指接触线悬挂点高度的简称,是接触线无弛度时定位点出(或悬挂点处)接触线距轨面的垂直高度,一般用H 表示。 接触线的最高高度,是根据受电弓的最大工作高度确定的。我国电力机车 TGS型受电弓的工作高度为5183?6683mm考虑到接触线可能出现负弛度及保证受电弓接触线工作压力的需要,接触线距轨面的最高高度不应大于6500mm。 接触线的最低高度的确定,是考虑了带电体对接地体之间的空气绝缘距离及通过超限货物的要求。接触线高度的允许施工偏差为土30mm对于行车速度在160km/h?200km/h 时,对施工误差要求更加严格;定位点两侧低一吊弦处接触线高度应等高,相对该定位点的接触线的高度的施工偏差为土10mm但不得出现 “V'字形;两相邻悬挂点等高相对差不得大于20mm同一跨距内相邻吊弦处的导高差应符合设计预留弛度的要求,施工偏差不得大于5mm。 最低点高度应符合下列规定: (1)站场和区间(含隧道)接触线距轨面的高度宜取一致,其最低高度不应小于5700mm编组站、区段站等配有调车组的线、站,正常情况下不小于6200mm 确有困难时不应小于5700mm。 (2)既有隧道内(包括按规定降低高度的隧道口外及跨线建筑物范围内)正常情况下不应小于5700mm困难情况下不应小于5650mm特殊情况下不应小于 5330mm。 开双层集装箱列车的线路,接触线距轨面的最低高度应根据双层集装箱的高度和绝缘距离确定。一般采用6450mn导高。对于客运专线,应为不存在超限货物列车通过问题,为了提高接触悬挂稳定性,导高较低,一般采用5000?5500mm。

接触网支柱装配作业指导书

支柱装配作业指导书 编制孙正成 审核 批准

支柱装配作业指导书 1. 适用范围 本作业指导书适用于时速200公里及以下标准电气化铁路接触网工程支柱装配(腕臂安装、定位安装和拉线制作安装)的施工。 2. 作业准备 熟悉设计文件,认真审核施工图纸,对采用的新技术、新材料编制专项的作业指导书并现场进行技术交底;检查支柱状态符合设计要求且已稳定,腕臂计算软件已进行初始化调试、试验和验证;以设计(或线路开通时)的线路轨道标高为基准在支柱上标注轨面红线,轨道线路中心已达标或者已取得线路中心标准交桩测量资料;支柱已按要求整正到位;配备测量人员、技术人员及现场作业人员;准备好梯车、滑轮、线坠、钢卷尺、丁字尺、支柱倾斜仪、道尺、水平尺、扭矩扳手、电工工具、安全带、微机或手提电脑等工器具。所有支柱装配施工所需材料全部进场,检测合格并对绝缘子做耐压试验。 3. 技术要求 3.1电力金具、接触网零配件运达现场应进行检查,其质量应符合《电力金具通用技术条件》(GB2314)、《电气化铁道接触网通用技术条件》(TB/T2073)和《电气化铁道接触网零部件》(TB/T2075)及有关标准的规定。 3.2腕臂安装高度应符合设计要求,安装时应采用力矩扳手紧固,

紧固力矩要求符合设计要求。紧固件要按设计要求配齐螺帽、垫片、止动垫片、弹簧垫圈等,新产品应符合该产品安装使用说明书的要求。 3.3开口销安装后的劈开角度不应小于60°,开口后不得有裂纹、断裂现象。销钉安装时垂直放置的应钉帽在上,水平放置的两销钉头应相互倒置安装。 3.4锚柱拉线宜设在锚支的延长线上,在任何情况下严禁侵入基本建筑限界,当地形受限时,应按设计要求施工。 3.5板型号、抗压极限强度、埋设深度及锚板拉杆规格均应符合设计要求。锚板拉杆与拉线在一条直线上,锚板垂直于拉线。锚板拉杆与地面夹角宜为45o,特殊困难地段不得大于60o,但锚板埋设深度应按设计要求相应加深。 3.6拉线角钢水平,应与支柱密贴,连接件镀锌层无脱落和漏锌现象,钢绞线拉线无锈蚀现象并涂防腐油防腐。回头绑扎牢固。 3.7锚柱拉线施工允许偏差应符合表3.7规定。 表3.7 锚柱拉线允许偏差(mm)

接触网常用参数标准及测量计算

接触网常用参数标准及测量计算 一、拉出值(跨中偏移值) 1、技术标准 160km/h及以下区段: 标准值:直线区段200-300mm;曲线区段根据曲线半径不同在0-350mm之间选用。 安全值:之字值≤400mm;拉出值≤450mm。 限界值:之字值450mm;拉出值450mm。 160km/h以上区段: 标准值:设计值。 安全值:设计值±30mm。 限界值:同安全值。 2、测量方法 利用DJJ多功能激光接触网检测仪进行拉出值测量:受电弓滑板平面与两钢轨平面平行,检测仪与两钢轨平面平行,测量时无需考虑外轨超高,直接校准定位点在检测仪上的投影位置,此位置与检测仪中心点的距离就是拉出值。 二、导线高度 1、技术标准 标准值:区段的设计采用值。 安全值:标准值±100mm。 限界值:小于6500mm;任何情况下不低于该区段允许的

最低值。 当隧道间距不大于1000m时,隧道内、外的接触线可取同一高度。 2、测量方法 利用DJJ多功能激光接触网检测仪进行导高测量:将测量仪置于两钢轨之上与两轨面平行,利用测量仪上的观察窗校准定位点位置,测出定位点至两轨面的垂直距离即为导高。 三、导线坡度及坡变率 1、技术标准 标准值: 120km/h及以下区段≤3‰;120-160km/h区段≤2‰;200km/h区段≤2‰,坡度变化率不大于1‰;200-250km/h区段≤1‰,坡度变化率不大于1‰。 安全值:120km/h及以下区段≤5‰;120-160km/h区段≤4‰。其他同标准值。 限界值:120km/h及以下区段≤8‰;120-200km/h区段≤5‰;200km/h及以上区段同安全值。 160km/h及以上区段,定位点两侧第一根吊弦处接触线高度应相等,相对该定位点的接触线高度允许误差±10mm,但不得出现V字型。 2、测量与计算方法 定位点A与定位点B之间的坡度测量:1、测出A点的

接触网技术参数统计

接触网技术参数统计 1刚性接触网 1.1锚段及跨距 每个锚段一般不超过250米。 1.2锚段关节 (1)关节中间处两接触线等高。 (2)转换悬挂点处非工作支不得低于工作支,可以比工作支高出0~8mm(0~4mm),困难情况下不超过10mm。 (3)受电弓在双向通过时应平滑无撞击和拉弧现象。 (4)非绝缘锚段关节两支接触悬挂的拉出值均为±100mm(75mm),汇流排中心线之间距离为200mm(150??),允许误差±20mm。接触线外露长度为150mm。 (5)绝缘锚段关节两支接触悬挂的拉出值均为±150mm(130mm),汇流排中心线之间距离为300mm(260??),允许误差±20mm。接触线外露150mm。 绝缘貌端关节示意图

1.3线岔 (1)在受电弓可能同时接触两支接触线范围内的两支接触线应等高。 (2)在受电弓始触点后至岔尖方向,渡线接触线应比正线接触线高出0~10mm(0~4)。(3)在受电弓双向通过时应平滑无撞击及不应出现固定拉弧点。 (4)单开道岔悬挂点的拉出值距正线汇流排中心线为200mm,允许误差±20mm。平行段距离为2000mm。 (5)交叉渡线道岔处的线岔,在交叉渡线处两线路中心的交叉点处,两支悬挂的汇流排中心线均距交叉点100mm,允许误差±20mm。 (6)侧线端部向上弯70mm左右。 (7)线岔处电连接线、接地线应完整无遗漏,连接牢固。 道岔分类

刚性悬挂线岔示意图 1.4刚柔过度 (1)两根柔性接触网等高并列运行进入刚柔过渡元件约500mm后,在过渡原件外面的导线逐渐抬高脱离接触,其最终的抬高量不应小于35mm。 (2)刚柔过渡处刚性悬挂应比柔性悬挂高20~50mm。 (3)柔性悬挂升高下锚处绝缘子边缘应距受电弓包络线不得小于75mm。 (4)刚性悬挂带电体距柔性悬挂下锚底座、下锚支悬挂等接地体不应小于150mm。(5)受电弓距柔性悬挂下锚底座、下锚支悬挂等接地体不应小于100mm。 (6)受电弓双向通过时平滑不撞击及不应出现固定拉弧点。 (7)两支悬挂的拉出值为±100mm,间距为200mm,允许误差±20mm。 贯通式刚柔过渡单链悬挂示意图

接触网系统工作原理及组成

目录 绪论 (1) 1.电气化铁道概述 (1) 2.电气化铁路的组成 (1) 第一章供电系统工作原理 (1) 1.电力牵引的制式 (1) 2.电力牵引供电系统的组成 (2) 3.牵引网与接触网 (4) 4.接触网的工作特点 (5) 5.对接触网的基本要求 (5) 6.接触网的分类 (5) 7.接触网的供电方式 (6) 8.接触网的电分段 (6) 9.架空式接触网的机械分段 (7) 第二章接触网的组成 (9) 1.架空式接触网的组成及结构 (9) 1.1.接触悬挂的种类 (9) 1.2.接触悬挂的导线结构与类型 (12) 1.3.接触悬挂的下锚方式 (14) 1.4.支持与固定装置 (15) 1.5.支柱和基础 (19) 1.6.接触网的张力和弛度曲线 (21) 2.接触轨式接触网组成及结构 (21) 2.1.上磨式 (22) 2.2.下磨式 (22) 2.3.侧面接触式 (22) 3.刚性悬挂接触网系统简介 (24) 3.1.架空刚性悬挂系统简介 (24) 3.2.“Π”型刚性悬挂接触网特点 (24)

绪论 1.电气化铁道概述 采用电力机车为主要牵引动力的铁路称为电气化铁路,它是在19世纪70年代末的欧洲最先出现。早期的电气化铁路多采用直流供电方式,电压等级较低,需设整流装臵,不利于设臵在长距离的铁路干线上。 目前国际上普遍采用比较先进的单相工频交流制电气化铁路,它便于升压和减少电能的损耗,可以增加牵引变电所之间的距离,大大降低了建设投资和运营费用。 随着高新技术的发展,特别是计算机技术的应用,使电力机车和牵引供电装臵的工作性能不断提高。低能耗、高效率、高速度的电力牵引已成为世界各国铁路发展趋势,是铁路现代化的标志。 我国电气化铁路自本世纪50年代末发展以来,走过了几十年艰苦创业的历程,根据80年代铁道部确定的以电力牵引为主内燃牵引为辅的技术政策,国家拨款和吸引国外资金等多种方式大力发展电气化铁路,借助改革开放的大好形势相继建成一批高质量、高性能的电气化铁路,已使我国电气化铁路初具规模,形成了良性发展的大好局面,在科学技术的推动下,接触网自动化检测、牵引变电所远程自动控制、微机保护系统等,普遍应用在电气化铁路上。为了提高铁路运输能力,铁道部又制定了发展高速铁路的计划,可以预测中国电气化铁路的发展有着广阔的前景。 2.电气化铁路的组成 由于电力机车本身不携带能源,靠外部电力系统经过牵引供电装臵供给其电能,故电气化铁路是由电力机车和牵引供电装臵组成的。 牵引供电装臵一般分成牵引变电所和接触网两部分,所以人们又称电力机车、牵引变电所和接触网为电气化铁道的“三大元件”。本书主要讨论和介绍接触网的有关内容。为便于全面了解电气化铁路,我们对电力机车和牵引变电所与接触网有关的内容作一些简单介绍。

接触网风偏计算

接触网风偏移值计算 接触网支柱结构设计风荷载取值 1.接触网风偏设计风速小于30 m/s时,接触网风偏设计风速作为接触网支柱标准容量设计风速;当接触网风偏设计风速大于30 m/s时,以30 m/s作为接触网支柱标准容量设计风速。 2.路基地段接触网结构设计风速,按l0 m高度的风压高度系数考虑风速;高度小于等于30 m的桥梁,按照30 m高度的风压高度系数考虑风速;高度大于30 m的桥梁,建议采用其他悬挂安装方式,以提高悬挂的可靠性及稳定性。 3.接触网支柱标准容量按接触网风偏设计风速计算,同时应考虑列车气动力影响,初步选择支柱截面尺寸,再采用结构设计风速校核支柱的强度,并以此最终确定支柱截面尺寸。 4.接触网支柱基础、基础螺栓按照结构设计风速进行设计。 目前所设计的国内高速铁路,如:郑西、武广、京津城际等均未设置挡风墙,海南东环线也未设置挡风墙。因此可以认为30 m/s就是列车运行的最大限制风速,超过该风速,列车停运。 接触网支柱标准容量风速设计 1.当接触网风偏设计风速小于30 m/s时,接触网风偏设计风速作为接触网支柱标准容量设计风速; 2.当接触网风偏设计风速大于30m/s时,以30 m/s作为接触网支柱标准容量设计风速。 接触线最大偏移值的公式为: 式中——————接触线和承力索单位长度的风负载(KN/m); ——————接触线和承力索的张力(KN/m)。 曲线区段接触线拉出值的选择 在直线区段受电弓中心与线路中心重和,接触线之字值沿线路中心对称,其标准为±300mm。提速后为200~250mm之间;拉出值350~450mm之间。在曲线区段,拉出值和曲线半径大小有关。 接触线拉出值是接触网自身结构参数,其取值直接影响弓网运行安全。在运营中发现曲线区段拉出值超标严重,这是因为在设置拉出值时,未考虑受电弓中心线在气象条件、线路参数、机车及受电弓型号和参数、运营方式、运行速度等多种因素影响下的动态变化。基于此种情况,有必要对运行速度、线路参数及施工误差等几个主要影响因素进行分析,找到曲线区段受电弓中心在动态下的侧偏规律,合理设置拉出值,提高施工质量,确保机车良好受流。 拉出值是指定位点处接触线距受电弓滑板中心的距离,在曲线区段拉出值确定: 式中,a为接触线拉出值,单位mm;m为定位点处接触线与线路中心的水平距离,单位mm;c为定位点处受电弓中心与线路中心的水平距离,单位mm;c=h-H/L,其中,h为外轨超高,H为接触线高度,L为轨距。但在动态取流条件下,由此确定的拉出值常存在超标情况。下面就影响弓一网相对位置变化的几个主要因素做一理论分析。 运行速度对受电弓中心线位置的影响 列车通过曲线区段时,为了平衡自身重力产生的惯性离心力,保证内外两股钢轨受力相等,均会将外轨抬高,其抬高的设计值: 式中,为设计平均速度。;R为曲线半径,m。 实际上,通过曲线的各次列车,其速度不可能是相同的,当运行速度 V>时,外轨超高不足,产生欠超高,而当V<时,产生过超高,这些未被平衡的超高使得设置在机车与转向架之间的弹簧产生压缩或伸张,进而使受电弓中心线发生偏移。 线路参数对受电弓中心线位置的影响

接触网支柱基础施工方案

新建哈尔滨至牡丹江铁路客运专线SG-7标 路基接触网支柱基础及下锚拉线基础 施工方案 编制: 审核: 批准: 中铁十九局集团有限公司 哈牡客专工程七标项目经理部 二○一七年六月

接触网支柱基础施工方案 1、工程概况 新建哈尔滨至牡丹江铁路客运专线位于黑龙江省的东南部,本项目区间段路基工程位于牡丹江市海林市海林镇境内,区间路基DK272+396-- DK273+367.05、DK273+764.86-DK274+450.89段全长1657.06m。根据施工图纸统计,此段落接触网支柱类型分为ZQ120、ZQ140 、ZM55三种,有接触网支柱基础84个。ZQ140型接触网支柱基础深度4.3m,其中地下4.1m外露0.2m;ZQ120型接触网支柱基础深度4.1m,其中地下3.9m外露0.2m;三种类型均为直径0.7m圆柱形。 路基接触网支柱基础及下锚拉线基础混凝土强度等级为C30,配置钢筋,纵向钢筋采用HRB400级,箍筋采用HPB300级,为便于施工及保证纵向筋分布,我工区增加与主筋同类型钢筋做为加强箍圈,每个接触网基础钢筋笼增设三道。 2、编制依据 ①《接触网环形等径预应力混凝土柱(350)》[通化(2006)1201-Ⅰ]; ②《支柱基础及拉线基础安装图》叁化(2010)1176; ③《接触网平面布置图》(哈牡客专施网-191); ④《高速铁路路基工程施工质量验收标准》(TB10751-2010); ⑤《高速铁路路基工程施工技术规程》(Q/CR9602-2015);

3、施工要求及工艺 3.1施工要求 施工前应对设计要求进行明确,接触网基础的位置、标高、结构形式、预埋件位置及数量、结构尺寸的允许偏差等关键参数必须清楚明了,所使用的预埋件要有检验合格证书方可使用,试验室应对现场的钢筋、地脚螺栓等原材料进行抽样检查。 为了保证接触网支柱基础的施工质量和施工便利,选定按照地下部分定位、成孔浇筑,地上部分立模浇筑的施工工艺进行,以期达到预埋螺栓组定位准确,基础外露部分整齐、美观的效果。 施工开始前对现场施工人员进行技术交底、安全培训,明确施工标准、设计意图、基础布置等,施工过程中技术员全程旁站,防止施工错误。 3.2人员准备 接触网基础施工投入的主要人员

电气化铁道接触网课程设计

课程名称:接触网课程设计 设计题目:接触网九区平面设计 院系:电气工程系 专业:铁道电气化 年级:2007 级 学号: 姓名: 指导教师:王老师 西南交通大学峨眉校区 年月日 接触网课程设计 一、原始资料 1.悬挂形式:正线全补偿简单链形悬挂,站线半补偿简单链形悬挂。 2.气象条件:学号尾数1的为第一典型气象区,学号尾数2的为第二典型气象区,学号尾数3的为第三典型气象区,学号尾数4的为第四典型气象区,学号尾数5的为第五典型气象区,学号尾数6的为第六典型气象区,学号尾数7的为第七典型气象区,学号尾数8的为第八典型气象区,学号尾数0、9的为第九典型气象区。 3.悬挂数据:学号尾数0、1的结构高度为1.1米,学号尾数2的结构高度为1.2米,学号尾数3的结构高度为1.3米,学号尾数4的结构高度为1.4米,学号尾数5的结构高度为1.5米,学号尾数6、7的结构高度为1.6米,学号尾数8、9的结构高度为1.7米。 站线:承力索GJ—70,Tcmax=1500kg;接触线TCG—100,Tjm=1000kg。 正线:承力索GJ—70,Tjm=1500kg;接触线TCG—100,Tjm=1000kg。 e=8.5m 4.土壤特性: (1)女生:安息角(承载力)Φ=30o,挖方地段。 (2)男生:安息角(承载力)Φ=30o,填方地段。 二、设计内容 1.负载计算 2.最大跨距计算 3.半补偿链形悬挂安装曲线计算 4.半补偿链形悬挂锚段长度及张力增量曲线决定 5.平面设计 (1)基本要求

(2)支柱布置 (3)拉出值及之字值标注 (4)锚段关节 (5)咽喉区放大图 (6)接触网分段 6.站场平面表格填写 侧面限界、支柱类型、地质情况、基础类型、拉杆及腕臂/定位管及定位器、安装参考图号 三、验算部分 1.各种类型支柱校验 2.缓和曲线跨距校验 四、使用图纸 按学号最后两位相加之和末位数使用站场0---站场9的图纸 五、课程设计于第七周末交,延期交以不及格论处,特殊情况申请延期除外。 第一章 接触网的负载计算 各种气象条件下悬挂负载的计算: 原始资料:1)悬挂形式:正线全补偿链型悬挂,站线半补偿链向悬挂 2)气象条件:第九典型气象区 3)悬挂数据:结构高度为1.1m 站线:承力索GJ —70,cm T =1500kg ; 接触线TCG —100,jm T =1000kg 。 正线:承力索GJ —70,jm T =1500kg ; 接触线TCG —100,jm T =1000kg 。 e=8.5m 4)土壤特性:安息角(承载力)为300,填方地段 1、气象条件:m ax t =40℃;min t =-20℃;b t =-5℃;m ax V =30m/s ;b V =15m/s ; b=20mm;3/900m kg b =γ;05V t C =-(查标准典型气象区表) 2. 线索条件:承力索GJ-70: max c T =1500Kg ; Δc T =±10%c T ;c g =0.615Kg/m ; dc=11mm ;s=72.20mm 2 接触线TCG-100:jm T =1000kg :;ΔJ T =±15%j T ;A=11.8mm ; B=12.8mm ;j g =0.89kg/m ,d g =0.05kg/m 。 风速不均匀系数 : α=0.85(查风速不均匀系数表) 风载体型系数: K=1.25(查风负载体型系数表) 计算过程: 1.垂直负载:

交大接触网课程设计

接触网技术课程设计报告 班 学 姓 2012 年 2 月24 日

1基本题目 1.1 题目 张力自动补偿装置的分析与研究。 1.2 题目分析 电气化铁路接触网和普通意义上的输电线路有本质区别。输电线路在铺设时只需预留出热胀冷缩导致输电线内张力变化的裕量,而接触网的负载时高速移动的电力机车,为了确保受流质量,预留裕量的方法是不可取的。为了解决这一问题,一般在一个锚段的两端,在接触线及承力索内串接张力自动补偿装置后,再进行下锚。 2题目:张力自动补偿装置的分析与研究 2.1 张力自动补偿装置的概念 张力自动补偿装置,又称张力自动补偿器,它是装在锚段的两端,并且串接在接触线和承力索内,它的作用是补偿线索内的张力变化,使张力保持恒定。因为在大气温度发生变化时,接触线或承力索也会发生伸长或缩短,从而使线索内的张力发生变化,这时就会影响到接触线或承力索的驰度也会发生变化,因而使受流条件恶化。为改变这种情况,一般在一个锚段的两端,在接触线及承力索内串接张力自动补偿装置后,再进行下锚。 对张力自动补偿装置的要求有二:其一,补偿装置应灵活,在线索内的张力发生缓慢变化时,应能及时补偿,传送效率要高;其二,具有快速制动作用,一旦发生断线事故或其他异常情况,线索内的张力迅速变化时,补偿装置还应有一种制动功能。一般对于全补偿的承力索内的补偿装置,如果不具备这种功能时,还需专门加有断线制动装置,以防止在一旦发生断线时,坠砣串落地而造成事故扩大、恢复困难。 张力自动补偿装置有许多种类,有滑轮式、棘轮式、鼓轮式、液压式及弹簧式等。 2.2 滑轮式张力自动补偿装置 我国电气化铁路广泛采用滑轮组式补偿装置,它是由补偿滑轮、补偿绳、杵环杆、锤铊杆、限制导管和坠砣组成。对于半补偿链形悬挂,承力索为硬锚,就是直接下锚,如图2.1所示;对于全补偿链形悬挂,接触线和承力索都通过滑轮组补偿装置后下锚,此时承力索采用三个滑轮,接触线采用两个滑轮,承力索张力为15kN,接触线张力为10kN,承力索采用的传动比为3:1,接触线采用的传动比为2:1,所以坠砣的重负载都是5kN,如图2.2所示。这种全补偿装置的断线制动装置是另外的加设的。 应该指出,各种线索的张力值不是任意选用的,而是根据线索的拉断力(抗拉应

接触网计算题

1.在半补偿简单链形悬挂区段,采用G J-70+T C G-100,最高气温为+40℃,最低气温为一20℃,吊弦离中心锚结900m.a j=1.7x l0-5/℃,计算温度为40℃时吊弦偏移值。 解:由tp=(tmax+ tmin)/2,得tp=10℃,由E=Laj(tX - tp),得E=459mm。 答:向下锚偏459 mm. 2.在半补偿弹性链形悬挂区段,采用G J-70+T C G-85,最高气温为+40℃,最低气温为-20,吊弦离中心锚结600m,a j=1.7x l0-5/℃,计算温度为30℃时吊弦偏移值。 解:由tp=(tmax+ tmin)/2,得tp=10℃,由E=Laj(tX - tp),得E=204 mm。 答:向下锚偏204mm。 3.在半补偿简单链形悬挂区段,采用G J-70+G L C B85/173,最高气温为+40℃,最低气,为-20℃,某悬挂点离中心锚结500m. a j=1.7x l0-5/℃,计算温度为一10℃腕臂相对支柱中心的偏移值。解:由tp=(tmax+ tmin)/2,得tp=10℃,由E=Laj(tX - tp),得E=-170 mm。 答:向中锚偏170 mm。 4.在半补偿简单链形悬挂区段,采用G J-70+T C G-100,最高气温为+40℃,最低气温-20℃,某悬挂点离中心锚结800m.a j=1.7x l0-5/℃,计算温度为40℃时定位器相对中心的偏移值。 解:由tp=(tmax+ tmin)/2,得tp=10℃,由E=Laj(tX - tp),,得E=408

mm。 答:,向下锚偏408 mm。 5.在半补偿弹性链形悬挂区段,采用G J-70+T C G-110,最高气温为+40℃,最低气温-20℃,吊弦离中心锚结800m,a j=1.7x l0-5/℃,计算温度为40℃时吊弦偏移。 解:由tp=(tmax+ tmin)/2,得tp=10℃,由E=Laj(tX - tp),得E=-408 mm。 答:向中锚偏408 mm。 6.在某电气化铁路区段,采用全补偿简单链形悬挂,计算跨距L为35m,K=4时的吊弦间距。 解:由X0=(L一2e)/(K-1),得Xo=9 m(注意e=4)答:吊弦间距为9m。 7.在某电气化铁路区段,采用全补偿简单链形悬挂,计算跨距L为45m.,K=5时的吊弦间距。 解:由Xo=(L-2e)/(K-1),得Xo=9. 25 m(注意e=4)答:吊弦间距为9.25 m。 8.在某电气化铁路区段,采用半补偿简单链形悬挂,计算跨距L为55m.,K=6时的吊弦间距。 解:由Xo=(L一2e)/(K-1),得Xo=9.4 m(注意e=4)答:吊弦间距为9.4 m 9.在某电气化铁路区段,采用半补偿简单链形悬挂,计算跨距L为65m.,K=7时的吊弦间距。

兰州交通大学接触网支柱容量完整版

接触网工程课程设计 专 班 姓 学兰州交通大学自动化与电气工程学院 2012年7月13日 指导教师评语 平时(30)报告(30)修改(40)总成绩

1方案选择 1.1支柱选用 根据要求选择支柱型号,根据地质条件设计基础,并对支柱进行负载容量的计算。本题主要说明腕臂支柱的选择要求。 对支柱进行校验主要是计算负载,支柱的负载是支柱在工作状态下所承受的垂直负载和水平负载的统称。支柱负载越大,支柱基底面处所承受的弯矩也越大。支柱的负载计算,就是计算基底面处可能出现的最大弯矩值,其目的是根据计算结果来选择适当容量的支柱。我们通常所说的支柱容量,是指支柱本身所能承受的最大许可弯矩值。支柱的最大弯矩,除了与支柱所在位置、支柱类型、接触悬挂类型、线索悬挂高度、支柱跨距及支柱侧面限界有关外,还与计算气象条件有直接关系。最大弯矩可能出现在最大风速、最大附加负载(覆冰)或最低温度的时候。在计算最大弯矩时,一般应对三种气象条件进行计算,取其中最大值作为选择支柱容量的依据。一般来说,支柱的最大计算弯矩多发生在最大风速及最大冰负载时。本文就取最大风速及最大冰负载时作为选择依据。 进行支柱负载计算时,应根据支柱悬挂类型,按垂直负载和水平负载分别计算,计算之前,必须具有所有计算应具有的原始结构尺寸数据,并确定相关的参数,原始结构尺寸数据及相关参数可以查接触网设计手册得到。 1.2方案选择 设计一个建造于天然地基上的基础,应具备三个条件:基础自身具有足够的强度;基础具有良好的稳定性;地基应具有足够的承载力。 接触网支柱的基础是直接埋置于土体中的,其埋置深度一般都小于5m,属于浅平基。接触网支柱的受力特点是水平负荷大,因此,其抗倾覆的稳定性是很重要的。根据支柱负荷的大小,基础的结构和形式也不尽相同。 支柱类型有很多,一般为现场浇注的混凝土整体基础形式,基础内预埋设地脚螺栓,安装时将支柱拧固于地脚螺栓上。支柱安装后,在基础顶部做一个混凝土帽,为基础帽,以保护连接螺栓、螺母不致锈蚀。基础帽只起防水作用,不用打的很结实,只要求表面细密防水,以便需要搬迁支柱时容易敲开。 但是对于矩形截面的混凝土支柱,在不单独设立基础时,其地面以下部分代替了基础基础的效用,为了增加地下部分与地基土的接触面积,需要在其受力面安装横卧板。

《接触网》习题解析

《接触网》习题一、二、三 一、填空题 1.链形悬挂环节吊弦间距一般在__6-12_m内均匀布置。 2.软横跨支柱挠度是指支柱受力后的_倾斜程度__。 3.用力学计算法求出的T值表示软横跨横向承力索的___水平分力__。 4.计算软横跨横向承力索各分段长度b的公式为b i =2 2 i i a K。 5.硬横梁端头部分梁段用YHT 表示。 6.硬横梁中间部分各梁段用_YHZ _表示。 7.硬横跨支柱采用直径为550mm、容量为__60Kn/m __的圆形预应力混凝土支柱。 8.接触线距轨面的最高高度不得大于_6500__mm。 " 9.整体吊弦是将铜绞线和C型线夹、_ J型线夹_通过压接机压接在一起的。 10.整体吊弦使用的铜绞线无散股、断股、死弯等缺陷,外径尺寸为+ 。 11.电力机车一般由机械、__电气__和空气管路系统三大部分组成。 12.空气管路系统包括__空气制动_、控制和辅助气路系统。 13.电力机车通过受电弓从接触网_上取得电流。 14.接触线高度变化时,其坡度困难情况下不应大于__千分之五__。 15.“AT”供电区段常采用斯科特接线和__伍德桥__接线。 16.牵引变电所的高压开关设备包括高压断路器、__高压熔断器__和高压隔离开关等。 17.所谓支柱容量是指支柱_基础面_所能承受最大弯矩的能力。 18.常用的火花间隙型号为_ H-1型_。 " 号复式交分道岔标准定位柱位于两直线间距_167mm _处。 20.两个__吸流变压器_之间的距离称为“BT”区段。 21.并联电容补偿装置,宜设在牵引变电所__二次___侧两相母线上。 22.接触线高度是指接触线至__轨面连线__的垂直距离。 23.安装调整完毕的分段绝缘器与受电弓接触部分应与__两轨面平行__。 24.承力索超拉标准是:超拉张力等于额定张力× 。 25.接触线超拉标准是:超拉张力保持时间为___3h___。 26.在接触线超拉时,曲线外侧支柱应将接触线通过φ4.0mm铁线拉到__支柱上__。

接触网支柱侧面限界的计算及选用表

接触网支柱侧面限界的计算及选用表 支柱侧面限界系指轨面(或轨面连线中心)处支柱内缘至邻近线路中心的距离。 1. 直线区段,通过超限货物列车的正线或站线必须大于244Omm不 通行超限货物列车的站线必须大 2150mm 2. 曲线区段由于外轨超高引起的机车车辆的倾斜对支柱的影响,曲线 半径越小,超出越多,侧面限界越大。 3. 用大型机械养护地段,可根据大型养护机械种类酌情加大。 4. 基本站台上支柱的内缘距站台边缘应有不小于1500mπ?勺轻型车通道。 根据支柱所在位置及现行国家标准《标准轨距铁路建筑限界》的规定计算出支柱的侧面限界如下 正线(因考虑大养机械)按不小于 3米以外,其余均按下表选用:

软 横站台根据站台宽度取值 支柱内缘距 站台边缘不 小于1.5m R ≤ 800m 曲 跨般 3. 0 (3.1)线内侧时选 地段括号内值 支 牵出线 3. 1 柱 注: 位于曲线头尾不大于22m的直线上时,支柱的侧面限界应为: 有缓和曲线时为2.6m,无缓和曲线时按曲线情况取值 5. 信号机前方支柱侧面限界应按铁道部基字199号文及(82)电铁施230号文的有关规定执行。如下图(适用于非大型机械养护区段): (1).直线地段支柱立在同侧时 进站信号机 S≥ 350m CX=2.5 2.6 2.8 2.8 3.0 3.1 3.1 3.1 H=2.1 1.7 1.7 1.7 1.7 1.5 1.5 2.1 注:①.H —拉杆底座与腕臂底座的距离;

② .在S 范围内若支柱多余6根,则多余支柱的侧面限界 CX=2.5m , H=2.1m; ③ .信号机处接触线对线路中心的偏移宜离开信号机 (即前进方 向线路中心线的右侧. 通过信号机 S>250m O CX=2.8 2.8 2.8 3.0 3.0 3.0 注:在S 范围内若支柱多于4根,则多余支柱的侧面限界 CX=2.8m (2).曲线区段 ①.信号机前方支柱位于圆曲线外侧时如下图: 米;900

接触网计算公式

接触网计算公式 3 2接触网上部悬挂的载荷 3 2 1负载分析 接触网上部悬挂结构受到的主要外载荷包括:接触线和承力索在风作用下的风负载F风、以及接触线和承力索在覆冰作用下的冰负载Ft、接触线作用下的之字力P、地面对支柱的支持力F冰、受电弓作用下的抬升力N和其自身的重力Q。 由于接触网外部悬挂结构多种多样,但每一种结构的分析方法都大同小异。本文选择一种典型的接触网上部悬挂结构作为研究对象,进行分析计算,即直线段中间支柱反定位悬挂形式。其示意图如下 其中F风=Pc+Pj,F冰.合成在Qo中 以兰新线武威南至嘉峪关段直线段中间柱反安装为例,取侧面界限Cx=3.1m,安装角a=45°。 标准典型气象区选Ⅳ区,最大风度Vb=lOm/s,覆冰厚度b=5mm,吊弦单位长度自重取g。=0.5×l03 KN/m,跨距取l =65m,拉出值a=200 mm。 承力索和接舷线的相关参数如表3.1。 表3.1 承力索和接触线的参数 接触线长度65m,考虑弛度的影响,承力索实际长度为 L=l+8F/3l 计算得到承力索实际长度l=65. 02m。 (1)单位长度风负载 P =0.615akv2d×106(kN/m) 式中p——绳索所受的实际风负载: a——风速不均匀系数; k——风负载体型系数; d——绳索的直径。 代入数据计算得到: 单位长度承力索风负载:P cb=1.494×10-3(KN/m) 单位长发接触线风负载:P jb=1.494×10-3 (KN/m) (2)单位长度冰负载 g b=πr b b(b+ d)g H l0-9 (KN/m) 式中g b——绳索的覆冰重力负载 b——覆冰厚度;

相关文档