文档库 最新最全的文档下载
当前位置:文档库 › 高中物理引力场、电场、磁场经典解题技巧专题辅导

高中物理引力场、电场、磁场经典解题技巧专题辅导

高中物理引力场、电场、磁场经典解题技巧专题辅导
高中物理引力场、电场、磁场经典解题技巧专题辅导

高中物理引力场、电场、磁场经典解题技巧专题辅导

【考点透视】

一万有引力定律 万有引力定律的数学表达式:2

21r m m G

F =,适用条件是:两个质点间的万有引力的计算。 在高考试题中,应用万有引力定律解题常集中于三点:①在地球表面处地球对物体的万有引力近似等于物体的重力,即mg R

Mm G =2,从而得出2gR GM =,它在物理量间的代换时非常有用。②天体作圆周运动需要的向心力来源于天体之间的万有引力,即r mv r Mm G 22=;③圆周运动的有关公式:T

πω2=,r v ω=。 二电场 库仑定律:221r

Q kQ F =,(适用条件:真空中两点电荷间的相互作用力) 电场强度的定义式:q F E =

(实用任何电场),其方向为正电荷受力的方向。电场强度是矢量。 真空中点电荷的场强:2r

kQ E =,匀强电场中的场强:d U E =。 电势、电势差:q W U AB B A AB =

-=??。 电容的定义式:U Q C =,平行板电容器的决定式kd

S C πε4=。 电场对带电粒子的作用:直线加速

221mv Uq =

。偏转:带电粒子垂直进入平行板间的

匀强电场将作类平抛运动。 提醒注意:应熟悉点电荷、等量同种、等量异种、平行金属板等几种常见电场的电场线

和等势面,理解沿电场线电势降低,电场线垂直于等势面。

三磁场

磁体、电流和运动电荷的周围存在着磁场,其基本性质是对放入其中的磁体、电流、运动电荷有力的作用。

熟悉几种常见的磁场磁感线的分布。

通电导线垂直于匀强磁场放置,所受安培力的大小:BIL F =,方向:用左手定则判定。

带电粒子垂直进入匀强磁场时所受洛伦兹力的大小: qvB F =,方向:用左手定则判定。若不计带电粒子的重力粒子将做匀速圆周运动,有qB mv R =,qB

m T π2=。 【例题解析】

一万有引力

例1地球(看作质量均匀分布的球体)上空有许多同步卫星,同步卫星绕地球近似作匀速圆周运动,根据所学知识推断这些同步卫星的相关特点。

解析:同步卫星的周期与地球自转周期相同。因所需向心力由地球对它的万有引力提供,轨道平面只能在赤道上空。设地球的质量为M ,同步卫星的质量为m ,地球半径为

R ,同步卫星距离地面的高度为h ,由向万F F =,有 )(4)(22

2h R T

m h R GmM ++π=,得R GMT h -=3224π;又由h R v m h R GmM +=+22)(得h

R GM v +=;再由ma h R GmM =+2)(得2)

(h R GM a +=。由以分析可看出:地球同步卫星除质量可以不同外,其轨道平面、距地面高度、线速度、向心加速度、角速度、周期等都应是相同的。

点拨:同步卫星、近地卫星、双星问题是高考对万有引力定律中考查的落足点,对此应引起足够的重视,应注意准确理解相关概念。

例2某星球的质量为M ,在该星球表面某一倾角为θ的山坡上以初速度0v 平抛一个物

体,经t 时间该物体落到山坡上。欲使该物体不再落回该星球的表面,至少应以多大的速度抛出物体(不计一切阻力,万有引力常量为G )?

解析:由题意可知是要求该星球上的“近地卫星”的绕行速度,也即为第一宇宙速度。设该星球表面处的重力加速度为g ,由平抛运动可得02tan v gt x y ==θ,故t v g θtan 20=;对于该星球表面上的物体有mg R Mm G =2,所以θ

tan 20v GMt R =;而对于绕该星球做匀速圆周运动的“近地卫星”应有R mv mg 2

=,故40tan 2t

GMv gR v θ==。 点拨:只有准确理解了第一宇宙速度的概念才能找到此题的切入点。以某星球为背景,在该星球上作相关的物理实验是高考试题的一种新趋势。处理时最好把该星球理解为熟知的地球,以便“身临其境”,这样会更容易理解、思考问题,从而找出正确的解题方法。

例3如右图所示,a 、b 、c 是在地球大气层外的圆形轨道上运行的3颗人造卫星,下列说法正确的是()

A .b 、c 的线速度大小相等,且大于a 的线速度

B .b 、c 的向心加速度大小相等,且大于a 的向心加速度

C .c 加速可以追上同轨道上的b ,b 减速可以等候同一轨道上的

c

D .a 卫星由于某种原因,轨道半径缓慢变小,其线速度将变大

解析:因为b 、c 在同一轨道上运行,由ma r v m r

Mm G ==2

2知,其线速度大小、加速度大小相等,而b 、c 轨道半径大于a 轨道半径,由r

GM v =知a c b v v v ?=;而因2r M G a =, 有a c b a a a ?=;当c 加速时,有c c r v m r

Mm G 22?,离故它将偏离原轨道而做离心运动;当b 减速时,有b b r v m r

Mm G 22?,它将偏原轨道而离圆心越来越近,所以在同轨道上无论如何c 也追不上b ,b 也等不到c ;而a 卫星由于某种原因,轨道半径缓慢变小,由在此过程中万有引力做正功,减少的引力势能一部分转化为内能,另一部分则转化为卫星的动能,故其线速度将变大,所以综上所述,正确选项是D 。

点拨:通过万有引力与所需向心力大小的比较,可以判定卫星是否作圆周运动,也能有助于理解天体变轨过程。

二电场

【例题解析】

例4、ab 是长为l 的均匀带电细杆,P 1、P 2是位于ab

所在直线上的两点,位置如图所示。ab 上电荷产生的静电

场在P 1处的场强大小为1E ,在P 2处的场强大小为2E ,

则以下说法正确的是()

A .两处的电场方向相同,1E >2E

B .两处的电场方向相反,1E >2E

C .两处的电场方向相同,1E <2E

D .两处的电场方向相反,1

E <2E

解析:设均匀带电细杆带正电荷,杆P 1点左边的4l 和P 1点右边的4l 的电荷在P 1处产生的场强叠加为0,细杆右边距P 1的4l 到4

3l 处的电荷在P 1处产生的场强为1E ,方向水平向左,而整个杆在P 2处产生的场强2E 方向水平向右,可等效为杆的右端的2

l 部分在该点产生的场强(大小与1E 相等)和杆左端的2

l 部分该点产生的场强E '的矢量叠加,因两者方向相同,均与1E 的方向相反,必有E E E '+=12,所以1E <2E ,正确选项是D 。

点拨:场强是矢量,叠加遵守矢量的平行四边形定则。对此类非点电荷场强叠加问题,在中学阶段常利用电荷分布的对称性、等效性来处理。

例5如图所示的匀强电场中,有a 、b 、c 三点,ab =5cm ,bc =12cm ,其中ab 沿电场方向,bc 和电场方向成600角,一个电荷量为q =8104-?C 的正电荷从a 移到b 电场力做功为W l =7102.1-?J ,求:

(1)匀强电场的场强E =?

(2)电荷从b 移到c ,电场力做功W 2=?

(3)a 、c 两点的电势差ac U =?

解析: (1)设ab 两点间距离d ,ab qU W =1W l =qU ab ,d

U E ab =,所以V /m 601==qd

W E 。 (2)设bc 两点沿场强方向距离0160cos .bc d =,1Ed U bc =,bc qU W =2,即

J 1044.160cos ..702-?==bc Eq W 。

(3)设电荷从a 移到c 电场力做功为W ,则ac qU W W W =+=21,

P 1 P 2 a b 4l 4l

V 6.621=+=q W W U ac 。 点拨:匀强电场的场强公式d U E =中的d 是指两点间距离在场强方向上的投影。电场力做功W =qU 与路径无关,只与初末位置间的电势差有关,注意理解第三问的求解思路。 例6一束质量为m 、电荷量为q 的带电粒子以平行于两极板的

速度0v 进入匀强电场,如图所示。如果两极板间电压为U ,两极

板间的距离为d ,板长为l ,设粒子束不会击中极板,则粒子从进

入电场到飞出极板时电势能的变化量是多少(粒子的重力忽略不计)?

解析:粒子在极板间运动的时间0

v l t =,垂直于极板方向的加速度md

qU m qE m F a ===,所以粒子在飞越极板间电场的过程中,在电场方向发生的侧移2022.2121mdv qUl at s ==,电场力对粒子做的功20

22

222v md l U q d s qU W ==,所以粒子电势能的变化量20

22

222v md l U q W E ==?。 点评:本题未说明粒子射入的位置,但从“粒子束不会击中极板”的题设条件,可知凡是能穿越电场的粒子,发生的侧移距离都相等,电势能的变化量都相等,而与粒子的射入位置无关。由此可见,仔细阅审题,领会一些关键句子的意义,具有决定性的意义。顺便指出,粒子射出电场后将作匀速直线运动。

例7如图(a )所示,真空中相距d =5cm 的两块平行金属板A 、B 与电源连接(图中未画出),其中B 板接地(电势为零),A 板电势变化的规律如图(b )所示。将一个质量m =2.0×10-27 kg,电量q =+1.6×10-19C 的带电粒子从紧临B 板处释放,不计重力。求:

(1)在t=0时刻释放该带电粒子,释放瞬间粒子加速度的大小;

(2)若A 板电势变化周期T =1.0×10-5

s,在t =0时将带电粒子从紧临B 板处无初

速释放,粒子到达A 板时动量的大小;

(3)A 板电势变化频率多大时,在

t =4T 到t=2

T 时间内从紧临B 板处无初速释放该带电粒子,粒子不能到达A 板。 解析:(1)电场强度d U E =,带电粒子所受电场力d

U q qE F ==,ma F =,故29m/s 100.4-?==md

qU a ; (2)粒子在0~2T 时间内走过的距离为m 100.5)2(2122-?=T a ,故带电粒子在t=2

T 时恰好到达A 板,根据动量定理,此时粒子动量kg.m /s 100.423-?==Ft p ;

(3)若在带t=4T 释放电粒子,粒子在t=4T 到t=43T 内先作匀加速运动,后作匀减速运动至速度为零,以后将返回。粒子向A 板运动的可能最大位移

16)4(21222aT T a s =?=,当s

f 1=,故电势变化频率应满足Hz 1025164?=?d

a f 。 点拨:处理带电粒子在“方波”电压形成的交变电场中的运动问题,关键是将带电粒子在不同方向的电场中的运动过程、受力情况分析清楚。要特别注意:①粒子在不同时刻射入电场,它在电场中的运动会有很大差别;②当电场方向改变时,粒子的运动方向不一定改变。若粒子的速度恰好为零,它将沿电场力方向运动;若不为零,则运动方向不变。 三磁场

例8在水平面上平行放置着两根长度均为L 的金属导轨MN 和PQ ,导轨间距为d ,导轨和电路的连接如图所示。在导轨的MP 端放置着一根金属棒,与导轨垂直且接触良好。空间中存在方向竖直向上的匀强磁场,磁感应强度为B 。将开关1S 闭合,2S 断开,电压表和电流表的示数分别为1U 和1I ,金属棒仍处于静

止状态;再将开关2S 闭合,电压表和电流表的示数分别

为2U 和2I ,金属棒在导轨上由静止开始运动,运动过程

中金属棒始终与导轨垂直。设金属棒的质量为m ,金属棒

与导轨之间的动摩擦因数为μ,忽略导轨的电阻以及金属棒运动过程中产生的感应电动势,重力加速度为g 。求:(1)金属棒到达NQ 端时的速度大小。 (2)金属棒在导轨上运动的过程中,电流在金属棒中产生的热量。

解析:(1)当通过金属棒的电流为2I 时,金属棒受恒定的安培力和滑动摩擦力,在导轨上做匀加速运动,设加速度为a ,金属棒到达端NQ 时的速率为v ,由牛顿第二定律得ma mg BdI =-μ2,根据运动学公式aL v 22=有m

L mg BdI v )(22μ-=。 (2)开关1S 闭合,2S 断开,当金属棒静止不动,其电阻为1

1I U r =;设金属棒在导轨上运动的时间为t ,电流在金属棒中产生的热量为Q ,根据焦耳定律rt I Q 22=和运动学公

式t v L 2=得mg BdI Lm I U I Q μ-=211222。 点拨:关于磁场对电流的作用力问题,往往都会与其它力学或电学知识相联系,这就要求考生有一定的综合能力,能对所遇问题进行具体分析,弄清其中的物理状态,物理过程,找出其中起重要作用的因素及有关条件。

例9在以坐标原点O 为圆心、半径为r 的圆形区域内,

存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁

场,如图所示。一个不计重力的带电粒子从磁场边界与x 轴

的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界

与y 轴的交点C 处沿+y 方向飞出。

(1)请判断该粒子带何种电荷,并求出其比荷m

q ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ',该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B '多大?此次粒子在磁场中运动所用时间t 是多少?

解析:(1) 根据左手定则,由粒子的飞行轨迹可知该粒子带负

电。

粒子由A 点射入,由C 点飞出了其速度方向改变了900,则粒子

轨迹半径r R =,而R mv qvB 2=,粒子的比荷Br

v m q =。 (2)粒子从D 点飞出磁场速度方向改变了600角,故AD 弧所

对圆心角为600,粒子做圆周运动的半径r r R 330cot 0==',而B q mv R '

=',所以B B 33='。粒子在磁场中飞行时间v

r B q m T t 332616ππ='?==。 点评:带电粒子在磁场中的圆周运动的问题,往往是确定圆心、半径、运动时间。确定方法分别是:①圆周轨迹上任意两点的速度的方向垂线的交点或者一条速度的方向垂线和圆的某条弦的中垂线的交点,就是圆心;②圆心确定后,画出半径,根据平面几何知识(大多用勾股定理)去求解半径;③先求出运动轨迹所对应的圆心角,然后根据公式θπ

?=2T t (T 为运动周期)就可求得运动时间。 例10如图所示,在x <0与x >0的区域中,存在磁感应强度大小

分别为1B 与2B 的匀强磁场,磁场方向均垂直于纸而向里,且

1B >2B 。一个带负电荷的粒子从坐标原点O 以速度v 沿x 轴负方

向射出,要使该粒了经过一段时间后又经过O 点,1B 与2B 的比值应满足什么条件?

解析:粒子在整个过程中的速度大小恒为v ,交替地在xy 平面内1B 与2B 的磁场区域中

做匀速圆周运动,轨道都是半个圆周。设粒子的质量和电荷量

的大小分别为m 和q ,圆周运动的半径分别为1r 和2r ,由r v m qvB 2=得11qB mv r =,22qB mv r =,粒子的运动轨迹如图所示。在xy 平面内粒子先沿半径为1r 的半圆1C 运动至y 轴上距O

为12r 的A 点,接着沿半径为2r 的半圆1D 运动至y 轴下方的1O 点,1OO 距离为)(212r r d -=,此后,粒子每经过一次“回旋”(即从y 轴出发沿半径为1r 的半圆和沿半径2r 为的半圆回到原点下方的y 轴上),与入射相比,粒子的y 坐标就降低d 。设粒子经过n 次“回旋”后经过n O 点,若n OO 间的距离(即nd )满足12r nd =,则粒子再经过半个圆1+n C 就能经过原点,所以1

21+=n n r r ,整理得112+=n n B B ,其中??=321、、n 为“回旋”次数。

点拨:处理带电粒子在两单一磁场中的组合问题,关键是尽可能准确地画出粒子的运动轨迹,通过轨迹寻找半径与其他量间的关系,进而确定磁场间的关系。

四复合场

例11如图所示,一质量为m 的带电液滴在相互垂直的匀强电场和匀强磁场中运动,已知电场强度的大小为E ,方向竖直向下,磁感应强度为B ,方向垂直

纸面向里,若此液滴在垂直于磁感应强度的平面内,做半径为R 的

匀速圆周运动,求:(1)液滴的速度大小和绕行方向;(2)倘若

液滴运行到轨迹最低点A 时,分裂成大小相同的两滴,其中一个液

滴仍在原来面内做半径为R R 31=的圆周运动,绕行方向不变,且

此圆周的最低点也是A ,另一液滴将如何运动?

解析:(1)因液滴做匀速圆周运动,必然有重力与电场力平衡Eq mg =,故液滴带的

是负电,由R mv qvB 2=得m qBR v =,所以E

gBR v =,其方向为顺时针环绕。 (2)分裂成大小相同的两个液滴后,由于已知一个液滴仍做匀速圆周运动,所以两个液滴各自所受电场力仍与重力平衡。设按原绕行方向做半径为1R 运动的液滴速度为1v ,由

(1)的解法可知v E gBR v 311==;因分裂前后动量守恒212121mv mv mv +=,得v v v v -=-=122。表明另一液滴速度与原液滴速度大小相等、方向相反,所以这该液滴

仍以R 为半径做圆周运动,其轨迹最高点为A ,绕行方向也为顺时针。

点拨:微粒在复合场中运动时,应注意对微粒运动过程及运动状态的变化分析,据此推断应遵守的物理规律,找到物理量间的联系。微粒在复合场是否计重力的判定:对于微观粒子,重力通常被忽略,对质量较大的油滴或固体微粒,则重力一般不能忽略。

例12如图所示,电容量为C 的平行板电容器的极板A 和B 水平放置,相距为d ,与电动势为ε、内阻可不计的电源相连。设两板之间只有一个质量为m 的导电小球,小球可视为质点。已知:若小球与极板发生碰撞,则碰撞后小球的速度立即变为零,带电状态也立即改变,改变后,小球所带电荷符号与该极板相同,电量为极板电量的α倍(1<<α)。不计带电小球对极板间匀强电场的影响。重力加速度为g 。

(1)欲使小球能够不断地在两板间上下往返运动,电动势ε至少应大于多少?

(2)设上述条件已满足,在较长的时间间隔T 内小球做了很多次往返运动。求在T 时间内小球往返运动的次数以及通过电源的总电量。

解析:(1)用Q 表示极板电荷量的大小,q 表示碰后小球电荷量的大小。要使小球能不停地往返运动,小球所受的向上的电场力至少应大于重力,即mg d q >ε

,其中

Q q α=,又有εC Q =,由以上三式有C

mgd αε>; (2)当小球带正电时,小球所受电场力与重力方向相同,向下做加速运动。以1a 表示其加速度,1t 表示从A 板到B 板所用的时间,则有1ma mg d q =+ε,2112

1t a d =,当小球带负电时,小球所受电场力与重力方向相反,向上做加速运动,以2a 表示其加速度,2t 表示从B 板到A 板所用的时间,则有2ma mg d q =-ε,2222

1t a d =,小球往返一次共用时间为(t 1+t 2),故小球在T 时间内往返的次数21t t T n +=

,由以上关系式得mgd C md mgd C md T

n -++=222222εαεα,小球往返一次通过的电量为2q ,在T 时间内通过电源的总电量mgd C md mgd C md T

C nq Q -++=='22222222εαεαεα。

点拨:处理此类带电粒子在复合场中的运动问题时,要认真审题,弄清关键词语的含义,如本题中的“电源内阻不计(板间场强恒定)、上下往返运动(G F >电)、较长时间[2

1t t T n +=]等”。还要弄清在不同物理过程中小球的运动情况和受力情况,寻找不A B + - + - d ε

同物理过程对应的规律,才能正确解题。

例13如图所示,在xoy 平面内,MN 和x 轴之间有平行于y 轴的匀强电场和垂直于xoy 平面的匀强磁场,y 轴上离坐标原点4L 的A 点处有一电子枪,可以沿+x 方向射出速度为0v 的电子(质量为m ,电量为e )。如果电场和磁场同时存在,电子将做匀速直线运动。如果撤去电场,只保留磁场,电子将从x 轴上距坐标原点L 3的C 点离开磁场。不计重力的影响,求:(1)磁感应强度B 和电场强度E 的大小和方向;

(2)如果撤去磁场,只保留电场,电子将从D 点(图中未标出)

离开电场,求D 点的坐标;(3)电子通过D 点时的动能。

解析:(1) 只有磁场时,电子运动轨迹如右图所示,洛仑兹力

提供向心力R mv B ev 200=,由几何关系可得

222)4()3(R L L R -+=,故eL

mv B 2580=,方向垂直纸面向里。由电子做匀速直线运动得B ev Ee 0=,所以eL

mv E 25820=,方向沿y 轴负方向。

(2)只有电场时,电子从MN 上的D 点离开电场,如右图。

D 点横坐标为t v x 0=,电子在竖直方向上的位移222t m e

E L =,有225L x =,故D 点横坐标2

25L x =,纵坐标L y 6=。 (3)从A 点到

D 点,由动能定理得20212.mv

E L Ee KD -=,2050

57mv E KD =。 点拨:带电粒子在复合场中的运动往往只是一些问题的组合,从心里上对此类问题要充满自信,不要畏惧,只要一个问题一个地认真分析,顺藤摸瓜,并抓住物理量间联系问题还是很容易得到解决的。即使不能完全作正确,也应进行一些基本推断,力求对基础问题给出合理的解答。

【专题训练与高考预测】

1.我国将要发射一颗绕月运动的探月卫星“嫦娥l 号”。设该卫星的轨道是圆形的,且贴近月球表面。已知月球的质量约为地球质量的811,月球的半径约为地球半径的41,地球上的第一宇宙速度约为7.9km/s ,则该探月卫星绕月运行的速率约为( )

A 0.4km/s

B .1.8km/s

C 1lkm/s

D 36km/s

2.1969年7月21日,美国宇航员阿姆斯特朗在月球上留下了人类第一只脚印,迈出了人类征服宇宙的第一步。在月球上,如果阿姆斯特朗和同伴奥尔德林用弹簧秤测出质量为m 的仪器的重力为F ,而另一位宇航员科林斯驾驶指挥舱,在月球表面飞行一周,记下所用时间T ,已知引力常量为G 试计算月球的质量。

3.一带负电小球在从空中的a 点运动到b 点的过程中,受重力、空气阻力和电场力作

用,小球克服重力做功5J ,小球克服空气阻力做功1J ,电场力对小球做功2J ,则下列说法正确的是( )

A .小球在a 点的重力势能比在b 点的大5J

B .小球在a 点的机械能比在b 点的大1 J

C .小球在a 点的电势能比在b 点的多2 J

D .小球在a 点的动能比在b 点的多4 J

4.如图所示,在竖直放置的铅屏A 的右表面上贴着β射线放射源

P ,已知β射线实质为高速电子流,放射源放出β粒子的速度

m/s 100.170?=v 。足够大的荧光屏M 与铅屏A 平行放置,相距

m 100.22-?=d ,其间有水平向左的匀强电场,电场强度大小

N/C 105.24?=E 。已知电子电量C 106.119-?=e ,电子质量取g m k 100.931?=。求

(1)电子到达荧光屏M 上的动能;(2)荧光屏上的发光面积。

5.如图所示,在空间存在着水平方向的匀强磁场和竖直方向的匀强电场,电场强度为E ,磁感应强度为B ,在某点由静止释放一个带电液滴a ,它运动

到最低点处,恰与一个原来处于静止的液滴b 相撞,撞后两液滴合

为一体,沿水平方向做直线运动,已知液滴a 质量是液滴b 质量的

2倍,液滴a 所带电荷量是液滴b 所带电荷量的4倍,求两液滴初

始位置之间的高度差h (设a 、b 之间的静电力可以不计)。

6.空间中存在着以0=x 平面为理想分界面的两个匀强磁场,左

右两边磁场的磁感强度分别为1B 和2B ,且1B :2B =4:3,方向如

图所示,现在原点O 处有带等量异号电荷的二个带电粒子a 、b ,分

别以大小相等的水平初动量沿x 轴正向和负向同时在磁场中开始运

动,且a 带正电,b 带负电,若a 粒子在第4次经过y 轴时,恰与b

粒子相遇,试求a 粒子和b 粒子的质量比b a m m :(不计a 、b 粒子

的重力)。

7.如图所示,坐标平面的第I 象限内存在大小为E 、方向水平向左的匀强电场,足够长的挡板MN 垂直x 轴放置且距离点O 为d ,第II 象限内存在垂直于纸面向里的匀强磁场,磁感应强度为B 。一质量为m ,带电量为-q 的粒子(重力忽略不计)若自距原点O 为L 的A 点以一定的速度垂直x 轴进入磁场,则粒子恰好到达

O 点而不进入电场。现该粒子仍从A 点进入磁场,但初速

度大小为原来的4倍,为使粒子进入电场后能垂直到达挡

板MN 上,求:(1)粒子从A 点进入磁场时,速度方向与

x 轴正向间的夹角大小;(2)粒子打到挡板上时的速度大

小。

8.如图所示,在x >0的空间中,存在沿x 轴方向的匀强电场,电场强度E =10N/C ;在x <0的空间中,存在垂直xy 平面方向的匀强磁场,磁感应强度B =0.5T 。一带负电的粒子(比荷C/kg 160=m q )在x =0.06m 处的d 点以0v =8m/s 的初速度沿y 轴正方向开始运动,不计带电粒子的重力。

求:

(1)带电粒子开始运动后第一次通过y 轴时距O 点的距

离。

(2)带电粒子进入磁场后经多长时间返回电场。

(3)带电粒子运动的周期。

【参考答案】

1.B 。

2.344

316m

G T F M π=。 解析:根据题意有2R Mm G F =,R T m R

m M G 22)2(π'=',所以344316m G T F M π=。 3.C D 。

4.J 1025.116-?,23m 1083.2-?。

解析:(1)由动能定理得202

1mv E eEd k -=,J 1025.116-?=k E ; (2)射线在A 、M 间电场中被加速,除平行于电场线的电子流外,其余均在电场中偏转,其中和铅屏A 平行的电子流在纵向偏移距离最大:221t m eE d ??=

,该电子的竖直位移为t v s 0=,在荧光屏上观察到的范围是半径m 10320-?===t v s r 的圆面,面积

2r S π=23m 1083.2-?=。

5.2

2

23gB E h =。 解析:由a 受洛伦兹力作曲线运动知,a 带负电荷,由液滴b 原来处于静止知,b 带正电荷。设a 的质量为2m ,带电椅量为-4q ;b 的质量为m ,带电荷量为+ q 。

碰前:对a 液滴有21)2(2

1)24(v m h mg qE =+ ,对b 液滴有mg qE =,碰撞过程满足动量守恒定律2132mv mv =;碰后整体有B qv mg qE 2333=+,整理得

22

23gB

E h =。 6.75=b a m m 。

解析:由题意知p v m v m b b a a ==,q q q b a ==,在1B 区域内1qB p R R b a ==,在2B 区域内2qB p R R b a ='=',所以4312=='='B B R R R R b b a

a ,两粒子在场区中运动轨迹如图所示。要a 第4次经过y 轴时,a 、

b 相遇,应相遇在必然在图中A 点处,设从

开始运动到相遇历时为t ,则对a 有)(221qB m qB m t a a

ππ+=,对b 有2

12qB m qB m t b b ππ+=,整理可得7

5=b a m m 。 7.?=30θ或?=150θ,2

2

2242m L B q m qEd +。 解析:(1)粒子在磁场中作圆周运动半径为r ,速度为0v ,由牛顿第二定律知:

r mv B qv 200=,2

L r = ;粒子初速度为原来的4倍时半径为1r ,速度为1v ,由牛顿第二定律知: 1

211r mv B qv =,014v v =,r 1=2L ,所以m qBL v 21=,为使粒子进入电场后能垂直到达挡板MN 上,粒子必须平行x 轴进入电场,圆心O 在y 轴上的O '点,设速度方向与x 轴正方向间夹角为θ,由几何关系知:2

12sin =='=L L A O OA θ,故?=30θ或?=150θ。 (2)设粒子到达挡板速度为2v ,由动能定理知21222

121mv mv qEd -= ,所以有 22

22242m

L B q m qEd v +=。 8.m 069.0,s 120π

,0.043s )s 120

20032(=+?=πT 。 解析:(1)对于粒子在电场中的运动有m qE a =

,221at d =,第一次通过y 轴的交点到O 点的距离为m 069.001==t v y ;

(2)x 方向的速度m/s 38==t m

qE v x ,设进入磁场时速度与y y

轴正方向的夹角为θ,3tan 0

==v v x θ,故060=θ,所以在磁场中作圆周运动所对应的圆心角为0

1202==θα,带电粒子在磁场中做匀速圆周运动周期为qB m T π2=,带电粒子在磁场中运动的时间s 120

3601202π==T t ; (3)从开始至第一次到达y 轴的时间s 200

3/21==m qE d t ,从磁场再次回到电场中的过程(未进入第二周期)是第一次离开电场时的逆运动,根据对称性13t t =,因此粒子的运动周期为0.043s )s 120

20032(321=+?

=++=πt t t T 。

高中物理解题技巧:图像法

高物理解题技巧:图像法1 物理规律可以用文字描述,也可以用数函数式表示,还可以用图象描述。图象作为表示物理规律的方法之一,可以直观地反映某一物理量随另一物理量变化的函数关系,形象地描述物理规律。在进行抽象思维的同时,利用图象视觉感知,有助于对物理知识的理解和记忆,准确把握物理量之间的定性和定量关系,深刻理解问题的物理意义。应用图象不仅可以直接求或读某些待求物理量,还可以用探究某些物理规律,测定某些物理量,分析或解决某些复杂的物理过程。 图象的物理意义主要通过“点”、“线”、“面”、“形”四个方面体现,应从这四方面入手,予以明确。 1、物理图象“点”的物理意义:“点”是认识图象的基础。物理图象上的“点”代表某一物理状态,它包含着该物理状态的特征和特性。从“点”着手分析时应注意从以下几个特殊“点”入手分析其物理意义。 (1)截距点。它反映了当一个物理量为零时,另一个物理的值是多少,也就是说明确表明了研究对象的一个状态。如图1,图象与纵轴的交点反映当I=0时,U=E即电的 电动势;而图象与横轴的交点反映电的短路电流。这可通过图象的数表达式 得。 (2)交点。即图线与图线相交的点,它反映了两个不同的研究对象此时有相同的物理量。如图2的P点表示电阻A接在电B两端时的A两端的电压和通过A的电流。

(3)极值点。它可表明该点附近物理量的变化趋势。如图3的D点表明当电流等于时,电有最大的输功率。 (4) 拐 点。通常反映物理过程在该点发生突变,物理量由量变到质变的转折点。拐点分明拐点和暗拐点,对明拐点,生能一眼看其物理量发生了突变。如图4的P点反映了加速度方向发生了变化而不是速度方向发生了变化。而暗拐点,生往往察觉不到物理量的突变。如图5P点看起是一条直线,实际上在该点速度方向发生了变化而加速度没有发生变化。 2、物理图象“线”的物理意义:“线”:主要指图象的直线或曲线的切线,其斜率通常 具有明确的物理意义。物理图象的斜率代表两个物理量增量之比值,其大小往往 代表另一物理量值。如-t图象的斜率为速度,v-t图象的斜率为加速度,Φ-t图象的斜率为感应电动势(n=1的情况下),电U-I图象(如图1)的斜率 为电的内阻(从图象的数表达式也一目了然)等。 3、物理图象“面”的物理意义:“面”:是指图线与坐标轴所围的面积。有些物理图象的图线与横轴所围的面积的值常代表另一个物理量的大小.习图象时,有意识地利用求面积的方法,计算有关问题,可使有些物理问题的解答变得简便,如v-t图象所围面积 代表位移,F-图象所围面积为力做的功,P-V图象所围面积为 气体压强做的功等。 4、物理图象“形”的物理意义:“形”:指图象的形状。由图线的形状结合其斜率找其隐含的物理意义。例如在v-t图象,如果是一条与时间轴平行的直线,说明物体做匀速直线运动;若是一条斜的直线,说明物体做匀变速直线运动;若是一条曲线,则可根据其斜率变化情况,判断加速度的变化情况。在波的图象,可通过微小的平移能够判断各质点在该时刻的振动方向;在研究小电珠两端的电压U与电流I关系时,通过实验测在

高中物理答题技巧归纳大全

高中物理答题技巧归纳大全 一,考场中心态的保持 心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人、学习的主人。情绪稳定,效率提高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此而心在彼,貌似用功,实则骗人。 二,高中物理选择题的答题技巧 选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题: 每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。 注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。 相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。 做选择题的常用方法: 筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。 极限分析法:将某些物理量取极限,从而得出结论的方法。 直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。 观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。 物理实验题的做题技巧 实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。 常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常

高中物理带电粒子在磁场中的运动解题技巧及练习题

高中物理带电粒子在磁场中的运动解题技巧及练习题 一、带电粒子在磁场中的运动专项训练 1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。求: (1)带电粒子的初速度; (2)粒子从P 点射出到再次回到P 点所用的时间。 【答案】(1)8qBL v m =;(2)41(1)45m t qB π=+ 【解析】 【详解】 (1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得: 5sin37o QC L = 15sin37O OQ O Q L = = 在y 轴左侧磁场中做匀速圆周运动,半径为1R , 11R O Q QC =+

2 1 v qvB m R = 解得:8qBL v m = ; (2)由公式2 2 v qvB m R =得:2mv R qB =,解得:24R L = 由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t 5cos37o PC L = 1PC t v = 带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t 12m T qB π= 21 37360 o o t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t 22·2m m T q B qB ππ= = 3212 t T = 从P 点到再次回到P 点所用的时间为t 12222t t t t =++ 联立解得:41145 m t qB π??=+ ?? ? 。 2.如图所示,虚线MN 沿竖直方向,其左侧区域内有匀强电场(图中未画出)和方向垂直纸面向里,磁感应强度为B 的匀强磁场,虚线MN 的右侧区域有方向水平向右的匀强电场.水平线段AP 与MN 相交于O 点.在A 点有一质量为m ,电量为+q 的带电质点,以大小为v 0的速度在左侧区域垂直磁场方向射入,恰好在左侧区域内做匀速圆周运动,已知A

物理解题技巧高中对称法

物理解题技巧高中对称法 物理解题技巧高中自然界和自然科学中,普遍存在着优美和谐的对称现象.对称性就是事物在变化时存在的某种不变性.物理中对称现象比比皆是,对称的结构、对称的作用、对称的电路、对称的物和像等等.一般情况下对称表现为研究对象在结构上的对称性、物理过程在时间上和空间上的对称性、物理量在分布上的对称性及作用效果的对称性等.利用对称性解题时有时能一眼看出答案,大大简化解题步骤.从科学思维方法的角度来讲,对称性最突出的功能是启迪和培养学生的直觉思维能力.用对称性解题的关键是敏锐地看出并抓住事物在某一方面的对称性,这些对称性往往就是通往答案的捷径. 静力学问题解题的思路和方法 确定研究对象:并将“对象”隔离出来-。必要时应转换研究对象。这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。 分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。以受力图表示。 根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。 对于平衡问题,应用平衡条件∑F=0,∑M=0,列方程求解,而后讨论。 认识物体的平衡及平衡条件 对于质点而言,若该质点在力的作用下保持静止或匀速直线运

动,即加速度为零,则称为平衡,欲使质点平衡须有∑F=0。若将各力正交分解则有:∑FX=0,∑FY=0。 这里应该指出的是物体在三个力(非平行力)作用下平衡时,据∑F=0可以引伸得出以下结论: 这三个力矢量组成封闭三角形。 任何两个力的合力必定与第三个力等值反向。 对物体受力的分析及步骤 明确研究对象 分析物体或结点受力的个数和方向,如果是连结体或重叠体,则用“隔离法” 作图时力较大的力线亦相应长些 每个力标出相应的符号(有力必有名),用英文字母表示 用正交分解法解题列动力学方程 受力不平衡时 一些物体的受力特征:轻杆或弹簧对物体可以有压力或者拉力。绳子或橡皮筋可受拉力不能受压力,同一绳放在光滑滑轮或光滑挂钩上,两侧绳子受力大小相等,当三段以上绳子在交点打结时,各段绳受力大小一般不相等。 受力分析步骤: 判断力的个数并作图:重力;接触力(弹力和摩擦力);场力(电场力、磁场力) 判断力的方向:

高考物理复习高中物理解题方法归类总结高中物理例题解析,原来还有这么巧妙的方法!

高考物理复习高中物理解题方法归类总结 (高中物理例题解析) 方法一:图像法解题 一、方法简介 图像法是根据题意把抽像复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的. 高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题. 二、典型应用 1.把握图像斜率的物理意义

在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同. 2.抓住截距的隐含条件 图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件. 例1、在测电池的电动势和内电阻的实验中,根据得出的一组数据作出U-I图像,如图所示,由图像得出电池的电动势E=______ V,内电阻r=_______ Ω. 【解析】电源的U-I图像是经常碰到的,由图线与纵轴的截距容易得出电动势E=1.5 V,图线与横轴的截距0.6 A是路端电压为0.80伏特时的电流,(学生在这里常犯的错误是把图线与横轴的截距0.6 A当作短路电流,而得出r=E/I 短=2.5Ω的错误结论.)故电源的内阻为:r=△U/△I=1.2Ω 3.挖掘交点的潜在含意

一般物理图像的交点都有潜在的物理含意,解题中往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”. 例2、A、B两汽车站相距60 km,从A站每隔10 min向B站开出一辆汽车,行驶速度为60 km/h.(1)如果在A站第一辆汽车开出时,B站也有一辆汽车以同样大小的速度开往A站,问B站汽车在行驶途中能遇到几辆从A站开出的汽车?(2)如果B站汽车与A站另一辆汽车同时开出,要使B站汽车在途中遇到从A站开出的车数最多,那么B站汽车至少应在A站第一辆车开出多长时间后出发(即应与A站第几辆车同时开出)?最多在途中能遇到几辆车?(3)如果B站汽车与A站汽车不同时开出,那么B站汽车在行驶途中又最多能遇到几辆车? 【解析】依题意在同一坐标系中作出分别从A、B站由不同时刻开出的汽车做匀速运动的s一t图像,如图所示. 从图中可一目了然地看出:(1)当B站汽车与A站第一辆汽车同时相向开出时,B站汽车的s一t图线CD与A站汽车的s-t图线有6个交点(不包括在t轴上的交点),这表明B站汽车在途中(不包括在站上)能遇到6辆从A站开出的汽车.(2)要使B站汽车在途中遇到的车最多,它至少应在A站第一辆车开出50 min后出发,即应与A站第6辆车同时开出此时对应B站汽车的s—t图线MN与A 站汽车的s一t图线共有11个交点(不包括t轴上的交点),所以B站汽车在途中(不包括在站上)最多能遇到1l辆从A站开出的车.(3)如果B站汽车与A站汽

(完整版)高中物理解题技巧

物理快速解题技巧 技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所 示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木 块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块 有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解 木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2 所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置 用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻 绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的 θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

高中物理大题技巧

高考物理解答题规范化要求 物理计算题可以综合地考查学生的知识和能力,在高考物理试题中,计算题在物理部分中的所占的比分很大(60%),单题的分值也很高。一些考生考后感觉良好但考分并不理想,一个很重要的原因便是解题不规范导致失分过多。在高考的物理试卷上对论述计算题的解答有明确的要求:“解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位。”具体地说,物理计算题的解答过程和书写表达的规范化要求,主要体现在以下几个方面。 一、文字说明要清楚 必要的文字说明是指以下几方面内容: ①说明研究的对象 ①对字母、符号的说明。题中物理量有给定符号的,必须严格按题给符号表示,无需另设符号; 题中物理量没有给定符号的,应该按课本习惯写法(课本原始公式)形式来设定。 ②对物理关系的说明和判断。如在光滑水平面上的两个物体用弹簧相连,"在两物体速度相等时弹簧的弹性势能最大","在弹簧为原长时物体的速度有极大值。" ③说明研究对象、所处状态、所描述物理过程或物理情境要点,关健的条件作必要的分析判断。题目中的隐含条件,临界条件等。即说明某个方程是关于"谁"的,是关于"哪个状态或过程"的。 ④说明所列方程的依据及名称,规定的正方向、零势点及所建立的坐标系. 这是展示考生思维逻辑严密性的重要步骤。 ⑤选择物理规律的列式形式;按课本公式的“原始形式”书写。 ⑥诠释结论:说明计算结果中负号的物理意义,说明矢量的方向。 ⑦对于题目所求、所问的答复,说明结论或者结果。 文字说明防止两个倾向:①过于简略而显得不完整,缺乏逻辑性。②罗嗦,分不清必要与必不要。 答题时表述的详略原则是物理方面要祥,数学方面要略.书写方面,字迹要清楚,能单独辨认.题解要分行写出,方程要单列一行,绝不能连续写下去,切忌将方程、答案淹没在文字之中. 二、主干方程要突出(在高考评卷中,主干方程是得分的重点) 主干方程是指物理规律、公式或数学的三角函数、几何关系式等 (1) 主干方程式要有依据,一般表述为:依xx 物理规律得;由图几何关系得,根据……得等。 (2) 主干方程列式形式得当,字母、符号的书写规范,严格按课本“原始公式”的形式列式,不能以变形的结果式代替方程式;(这是相当多考生所忽视的). 要全部用字母符号表示方程,不能字母、符号和数据混合,不要方程套方程;要用原始方程组联立求解,不要用连等式 如:带电粒子在磁场的运动应有R v m qvB 2 =,而不是其变形结果qB m v R =. (3) 列方程时,物理量的符号要用题目中所给符号,不能自己另用字母符号表示, 若题目中没有给定物理量符号,应该先设定,设定也有要求(按课本形式设定), 如:U 表示两点间的电压,?表示某点的电势,E 表示电动势,ε表示电势能 (4) 主干方程单独占一行,按首行格式放置;式子要编号,号码要对齐。 (5) 对所列方程式(组)进行文字(符号)运算,推导出最简形式的计算式,不是关键环节不计算结果。 具体推导过程只在草稿纸上演算而不必写在卷面上。如果题目有具体的数值运算,则只在最简形式的计算式中代入数值算出最后结果,切忌分步进行代数运算。 (6) 要用原始公式联立求解,分步列式,并用式别标明。不要用连等式,不断地用等号连等下去。 因为这样往往因某一步的计算错误会导致整个等式不成立而失分。 三、书写布局要规范 (1) 文字说明的字体要书写公整、版面布局合理整齐、段落清晰、美观整洁。详略得当、言简意赅、逻辑

(完整)高考物理磁场经典题型及其解题基本思路

高考物理系列讲座——-带电粒子在场中的运动 【专题分析】 带电粒子在某种场(重力场、电场、磁场或复合场)中的运动问题,本质还是物体的动力学问题 电场力、磁场力、重力的性质和特点:匀强场中重力和电场力均为恒力,可能做功;洛伦兹力总不做功;电场力和磁场力都与电荷正负、场的方向有关,磁场力还受粒子的速度影响,反过来影响粒子的速度变化. 【知识归纳】一、安培力 1.安培力:通电导线在磁场中受到的作用力叫安培力. 【说明】磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力. 2.安培力的计算公式:F=BILsinθ;通电导线与磁场方向垂直时,即θ = 900,此时安培力有最大值;通电导线与磁场方向平行时,即θ=00,此时安培力有最小值,F min=0N;0°<θ<90°时,安培力F介于0和最大值之间. 3.安培力公式的适用条件; ①一般只适用于匀强磁场;②导线垂直于磁场; ③L为导线的有效长度,即导线两端点所连直线的长度,相应的电流方向沿L由始端流向末端; ④安培力的作用点为磁场中通电导体的几何中心; ⑤根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力. 【说明】安培力的计算只限于导线与B垂直和平行的两种情况. 二、左手定则 1.通电导线所受的安培力方向和磁场B的方向、电流方向之间的关系,可以用左手定则来判定. 2.用左手定则判定安培力方向的方法:伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿入手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向. 3.安培力F的方向既与磁场方向垂直,又与通电导线方向垂直,即F总是垂直于磁场与导线所决定的平面.但B与I的方向不一定垂直. 4.安培力F、磁感应强度B、电流I三者的关系 ①已知I、B的方向,可惟一确定F的方向; ②已知F、B的方向,且导线的位置确定时,可惟一确定I的方向; ③已知F、I的方向时,磁感应强度B的方向不能惟一确定. 三、洛伦兹力:磁场对运动电荷的作用力. 1.洛伦兹力的公式:F=qvBsinθ; 2.当带电粒子的运动方向与磁场方向互相平行时,F=0; 3.当带电粒子的运动方向与磁场方向互相垂直时,F=qvB; 4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷在磁场中受到的磁场对电荷的作用力一定为0; 四、洛伦兹力的方向 1.运动电荷在磁场中受力方向可用左手定则来判定; 2.洛伦兹力f的方向既垂直于磁场B的方向,又垂直于运动电荷的速度v的方向,即f

高中物理解题方法整体法和隔离法

高中物理解题方法---整体法和隔离法 选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。 隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。 整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。 这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。 对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。 一、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。 【例1】在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D . 【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么? 【例2】有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。现将P 环向左移一小段距离,两 环再次 A O B P Q

高中物理引力场、电场、磁场经典解题技巧专题辅导

高中物理引力场、电场、磁场经典解题技巧专题辅导 【考点透视】 一万有引力定律 万有引力定律的数学表达式:2 21r m m G F =,适用条件是:两个质点间的万有引力的计算。 在高考试题中,应用万有引力定律解题常集中于三点:①在地球表面处地球对物体的万有引力近似等于物体的重力,即mg R Mm G =2,从而得出2gR GM =,它在物理量间的代换时非常有用。②天体作圆周运动需要的向心力来源于天体之间的万有引力,即r mv r Mm G 22=;③圆周运动的有关公式:T πω2=,r v ω=。 二电场 库仑定律:221r Q kQ F =,(适用条件:真空中两点电荷间的相互作用力) 电场强度的定义式:q F E = (实用任何电场),其方向为正电荷受力的方向。电场强度是矢量。 真空中点电荷的场强:2r kQ E =,匀强电场中的场强:d U E =。 电势、电势差:q W U AB B A AB = -=??。 电容的定义式:U Q C =,平行板电容器的决定式kd S C πε4=。 电场对带电粒子的作用:直线加速 221mv Uq = 。偏转:带电粒子垂直进入平行板间的 匀强电场将作类平抛运动。 提醒注意:应熟悉点电荷、等量同种、等量异种、平行金属板等几种常见电场的电场线

和等势面,理解沿电场线电势降低,电场线垂直于等势面。 三磁场 磁体、电流和运动电荷的周围存在着磁场,其基本性质是对放入其中的磁体、电流、运动电荷有力的作用。 熟悉几种常见的磁场磁感线的分布。 通电导线垂直于匀强磁场放置,所受安培力的大小:BIL F =,方向:用左手定则判定。 带电粒子垂直进入匀强磁场时所受洛伦兹力的大小: qvB F =,方向:用左手定则判定。若不计带电粒子的重力粒子将做匀速圆周运动,有qB mv R =,qB m T π2=。 【例题解析】 一万有引力 例1地球(看作质量均匀分布的球体)上空有许多同步卫星,同步卫星绕地球近似作匀速圆周运动,根据所学知识推断这些同步卫星的相关特点。 解析:同步卫星的周期与地球自转周期相同。因所需向心力由地球对它的万有引力提供,轨道平面只能在赤道上空。设地球的质量为M ,同步卫星的质量为m ,地球半径为 R ,同步卫星距离地面的高度为h ,由向万F F =,有 )(4)(22 2h R T m h R GmM ++π=,得R GMT h -=3224π;又由h R v m h R GmM +=+22)(得h R GM v +=;再由ma h R GmM =+2)(得2) (h R GM a +=。由以分析可看出:地球同步卫星除质量可以不同外,其轨道平面、距地面高度、线速度、向心加速度、角速度、周期等都应是相同的。 点拨:同步卫星、近地卫星、双星问题是高考对万有引力定律中考查的落足点,对此应引起足够的重视,应注意准确理解相关概念。 例2某星球的质量为M ,在该星球表面某一倾角为θ的山坡上以初速度0v 平抛一个物

高中物理总复习 15种快速解题技巧

技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin θ (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的加速度(其它部分都无加速度),所以系统有竖直向上的加速度,系统处于超重状态,所以轻绳对系统的拉力F 与系统的重力(M+m )g 满足关系式:F >(M+m )g ,正确答案为D. 【方法链接】对于超、失重现象大致可分为以下几种情况: θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

高中物理带电粒子在磁场中的运动解题技巧讲解及练习题(含答案)及解析

高中物理带电粒子在磁场中的运动解题技巧讲解及练习题(含答案)及解析 一、带电粒子在磁场中的运动专项训练 1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。挡板PQ 垂直MN 放置,挡板的中点置于N 点。在挡板的右侧区域存在垂直纸面向外的匀强磁场。在左侧虚线上紧靠M 的上方取点A ,一比荷 q m =5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。 (1)求电场强度E 的大小; (2)求磁感应强度B 的大小; (3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。 【答案】(1) 16/N C (2) 21.610T -? (3) 43.910s -? 【解析】 【详解】 (1)带正电的粒子在电场中做类平抛运动,有:L=v 0t 2 122L qE t m = 解得E=16N/C (2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0 tan v qE t m θ= 可得θ=450粒子射入磁场时的速度大小为2v 0 粒子在磁场中做匀速圆周运动:2 v qvB m r = 由几何关系可知2r L = 解得B=1.6×10-2T

高考物理解题技巧与时间分配

高考物理解题技巧与时间分配 (一)选择题 1、分时间以课标卷高考为例,高考物理一共8个选择题,按照高考选择题总时间在35--45 分钟的安排,物理选择题时间安排在15一25 分钟为宜,大约占所有选择题的一半时间(由于生物选择题和化学选择题的计算量不大,很多题目可以直接进行判断,所以物理选择题所占的时间比例应稍大些).在物理的8个选择题中,时间也不能平均分配,一般情况下,选择题的难度会逐渐增加,物理选择题也不会例外,难度大的题目大约需要 3 分钟甚至更长一点的时间,而难度较小的选择题一般 1 分钟就能够解决了, 7、8个选择题中,按照 2 : 5 : 1 的关系,一般有 2 个简单题目, 4、5个中档题目和 1 个难度较大的题目(开始时难题较少)。 2 .析本质 选择题一般考查的是考生对基本知识和基本规律的理解及应用这些知识进行一些定性推理,很少有较复杂的计算.解题时一定要注意一些关键词,例如“不正确的”“可能”与“一定”的区别,要讨论多种可能性.不要挑题做,应按题号顺序做,而且开始应适当慢一点,这样刚上场的紧张心情会逐渐平静下来,做题思维会逐渐活跃,不知不觉中能全身心进入状态.一般地

讲,如遇熟题,题图似曾相识,应陈题新解;如遇陌生题,题图陌生、物理情景陌生,应新题常规解,如较长时间分析仍无思路,则应暂时跳过去,先做下边的试题,待全部能做的题目做好后,再来慢慢解决(此时解题的心情已经会相对放松,状态更易发挥).确实做不出来时,千万不要放弃猜答案的机会,先用排除法排除能确认的干扰项,如果能排除两个,其余两项肯定有一个是正确答案,再随意选其中一项,即使一个干扰项也不能排除仍不要放弃,四个选项中随便选一个.尤其要注意的是,选择题做完后一定要立即涂卡. 3 .巧应对 高考物理选择题是所有学科中选择题难度最大的,主要难点有以下几种情况:一是物理木身在各个学科中就属于比较难的学科;二是物理选择题是不定项选择,题目答案个数不确定,造成在选择的时候瞻前顾后,不得要领;三是大部分选择题综合性很高,涉及的知识点比计算题和填空题还要多,稍有不慎,就会顾此失彼;四是有些选择题本身就是小型的计算题,计算量并不比简单的计算题小. 虽然说高考物理选择题在解决的时候有这样那样的困难,但是如果方法选择好,解决起来还是有章可循的,为了能够在处理高考选择题时游刃有余,我们首先要了解选择题一般的特点,把高考选择题进行分类,然后根据各自的类型研究对策.

高中物理解题方法

高中物理解题方法指导 物理题解常用的两种方法: 分析法的特点是从待求量出发,追寻待求量公式中每一个量的表达式,(当然结合题目所给的已知量追寻),直至求出未知量。这样一种思维方式“目标明确”,是一种很好的方 法应当熟练掌握。 综合法,就是“集零为整”的思维方法,它是将各个局部(简单的部分)的关系明确以后,将各局部综合在一起,以得整体的解决。 综合法的特点是从已知量入手,将各已知量联系到的量(据题目所给条件寻找)综合在一起。 实际上“分析法”和“综合法”是密不可分的,分析的目的是综合,综合应以分析为基础,二者相辅相成。 正确解答物理题应遵循一定的步骤 第一步:看懂题。所谓看懂题是指该题中所叙述的现象是否明白不可能都不明白,不懂之处是哪哪个关键之处不懂这就要集中思考“难点”,注意挖掘“隐含条件。”要养成这样一个习惯:不懂题,就不要动手解题。 若习题涉及的现象复杂,对象很多,须用的规律较多,关系复杂且隐蔽,这时就应当将习题“化整为零”,将习题化成几个过程,就每一过程进行分析。 第二步:在看懂题的基础上,就每一过程写出该过程应遵循的规律,而后对各个过程组成的方程组求解。 第三步:对习题的答案进行讨论.讨论不仅可以检验答案是否合理,还能使读者获得进一步的认识,扩大知识面。

一、静力学问题解题的思路和方法 1.确定研究对象:并将“对象”隔离出来-。必要时应转换研究对象。这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。 2.分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。以受力图表示。 3.根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。 4.对于平衡问题,应用平衡条件∑F=0,∑M=0,列方程求解,而后讨论。 5.对于平衡态变化时,各力变化问题,可采用解析法或图解法进行研究。 静力学习题可以分为三类: ①力的合成和分解规律的运用。 ②共点力的平衡及变化。 ③固定转动轴的物体平衡及变化。 认识物体的平衡及平衡条件 对于质点而言,若该质点在力的作用下保持静止或匀速直线运动,即加速度α =0,为零,则称为平衡,欲使质点平衡须有∑F=0。若将各力正交分解则有:∑F X =0 。 ∑F Y 对于刚体而言,平衡意味着,没有平动加速度即α=0,也没有转动加速度即β=0(静止或匀逮转动),此时应有:∑F=0,∑M=0。 这里应该指出的是物体在三个力(非平行力)作用下平衡时,据∑F=0可以引伸得出以下结论:

高中物理部分电路欧姆定律解题技巧及练习题及解析

高中物理部分电路欧姆定律解题技巧及练习题及解析 一、高考物理精讲专题部分电路欧姆定律 1.地球表面附近存在一个竖直向下的电场,其大小约为100V /m 。在该电场的作用下,大气中正离子向下运动,负离子向上运动,从而形成较为稳定的电流,这叫做晴天地空电流。地表附近某处地空电流虽然微弱,但全球地空电流的总电流强度很大,约为1800A 。以下分析问题时假设地空电流在全球各处均匀分布。 (1)请问地表附近从高处到低处电势升高还是降低? (2)如果认为此电场是由地球表面均匀分布的负电荷产生的,且已知电荷均匀分布的带电球面在球面外某处产生的场强相当于电荷全部集中在球心所产生的场强;地表附近电场的大小用E 表示,地球半径用R 表示,静电力常量用k 表示,请写出地表所带电荷量的大小Q 的表达式; (3)取地球表面积S =5.1×1014m 2,试计算地表附近空气的电阻率ρ0的大小; (4)我们知道电流的周围会有磁场,那么全球均匀分布的地空电流是否会在地球表面形成磁场?如果会,说明方向;如果不会,说明理由。 【答案】(1)降低 (2)2ER Q k = (3)2.8×1013Ω·m (4)因为电流关于地心分布是球面对称的,所以磁场分布也必将关于地心球面对称,这就要求磁感线只能沿半径方向;但是磁感线又是闭合曲线。以上两条互相矛盾,所以地空电流不会产生磁场 【解析】试题分析:(1)沿着电场线方向,电势不断降低;(2)根据点电荷的电场强度定义式进行求解电量;(3)利用微元法求一小段空气层为研究对象,根据电阻定律和欧姆定律进行求解电阻率;(4)根据地球磁场的特点进行分析。 (1)由题意知,电场方向竖直向下,故表附近从高处到低处电势降低。 (2)由2Q E k R =,得电荷量的大小2ER Q k = (3)如图从地表开始向上取一小段高度为Δh 的空气层(Δh 远小于地球半径R ) 则从空气层上表面到下表面之间的电势差为·U E h =? 这段空气层的电阻0 h r S ρ?=,且U I r = 三式联立得: 0ES I ρ= 代入数据解: 130 2.810? m ρ=?Ω (4)方法一:如图,为了研究地球表面附近A 点的磁场情况

高中物理大题的答题规范与解题技巧

高中物理大题的答题规范与解题技巧 计算题通常被称为“大题”,其原因是:此类试题一般文字叙述量较大,涉及多个物理过程,所给物理情境较复杂;涉及的物理模型较多且不明显,甚至很隐蔽;要运用较多的物理规律进行论证或计算才能求得结论;题目的赋分值也较重.从功能上讲,计算题能很全面地考查学生的能力,它不仅能很好地考查学生对物理概念、物理规律的理解能力和根据已知条件及物理事实对物理问题进行逻辑推理和论证的能力,而且还能更有效地考查学生的综合分析能力及应用数学方法处理物理问题的能力.因此计算题的难度较大,对学生的要求也比较高.要想解答好计算题,除了需要扎实的物理基础知识外,还需要掌握一些有效的解题方法. 答题规范 每年高考成绩出来,总有一些考生的得分与自己的估分之间存在着不小的差异,有的甚至相差甚远.造成这种情况的原因有很多,但主要原因是答题不规范.表述不准确、不完整,书写不规范、不清晰,卷面不整洁、不悦目,必然会造成该得的分得不到,不该失的分失掉了,致使所答试卷不能展示自己的最高水平.因此,要想提高得分率,取得好成绩,在复习过程中,除了要抓好基础知识的掌握、解题能力的训练外,还必须强调答题的规范,培养良好的答题习惯,形成规范的答题行为.对考生的书面表达能力的要求,在高考的《考试大纲》中已有明确的表述:在“理解能力”中有“理解所学自然科学知识的含义及其适用条件,能用适当的形式(如文字、公式、图或表)进行表达”;在“推理能力”中有“并能把推理过程正确地表达出来”,这些都是考纲对考生书面表达能力的要求.物理题的解答书写与答题格式,在高考试卷上还有明确的说明:解答应写出必要的文字说明、方程式和重要演算步骤,只写出答案的不能得分;有数字计算的题目,答案中必须明确写出数值和单位.评分标准中也有这样的说明:只有最后答案而无演算过程的,不给分;解答中单纯列出与解答无关的文字公式,或虽列出公式,但文字符号与题目所给定的不同,不给分.事实上,规范答题体现了一个考生的物理学科的基本素养.然而,令广大教育工作者担忧的是,这些基本素养正在逐渐缺失.在大力倡导素质教育的今天,这一现象应引起我们足够的重视.本模块拟从考生答题的现状及成因,规范答题的细则要求,良好素养的培养途径等方面与大家进行探讨. 一、必要的文字说明 必要的文字说明的目的是说明物理过程和答题依据,有的同学不明确应该说什么,往往将物理解答过程变成了数学解答过程.答题时应该说些什么呢?我们应该从以下几个方面给予考虑: 1.说明研究对象(个体或系统,尤其是要用整体法和隔离法相结合求解的题目,一定要注意研究对象的转移和转化问题). 2.画出受力分析图、电路图、光路图或运动过程的示意图. 3.说明所设字母的物理意义. 4.说明规定的正方向、零势点(面). 5.说明题目中的隐含条件、临界条件. 6.说明所列方程的依据、名称及对应的物理过程或物理状态. 7.说明所求结果的物理意义(有时需要讨论分析).

高中物理知识点总结和常用解题方法(带例题)

一、静力学: 1.几个力平衡,则一个力是与其它力合力平衡的力。 2.两个力的合力:F(max)-F(min)≤F合≤F(max)+F(min)。三个大小相等的共面共点力平衡,力之间的夹角为120°。 3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。 4.三力共点且平衡,则:F1/sinα1=F2/sinα2=F3/sinα3(拉密定理,对比一下正弦定理) 文字表述:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比5.物体沿斜面匀速下滑,则u=tanα6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。此时速度、加速度相等,此后不等。 7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。因其形变被忽略,其拉力可以发生突变,“没有记忆力”。 8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。 9.轻杆能承受纵向拉力、压力,还能承受横向力。力可以发生突变,“没有记忆力”。 10、轻杆一端连绞链,另一端受合力方向:沿杆方向。 11、“二力杆”(轻质硬杆)平衡时二力必沿杆方向。 12、绳上的张力一定沿着绳子指向绳子收缩的方向。13、支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N不一定等于重力G。14、两个分力F1和F2的合力为F,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。 15、已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。

相关文档
相关文档 最新文档