文档库 最新最全的文档下载
当前位置:文档库 › 有限元概念

有限元概念

有限元概念
有限元概念

1、有限元的概念

有限单元法最初作为结构力学位移法的拓展,它的基本思路就是将复杂的结构看成由有限个单元仅在节点处连接的整体,首先对每一个单元分析其特性,建立县官的物理量之间的相关联系。然后,依据单元之间的联系,再将各单元组装成整体,从而获得整体性方程,再应用方程相应的解法,即可完成整个问题的分析。这种先“化整为零”,然后再“集零为整”和“化未知为已知”的研究方法,是有普遍意义的。

有限单元法作为一种近似的(除杆件体系结构静力分析外)数值分析方法,它借助于矩阵等数学工具,尽管计算工作量很大,但是整体分析是一致的,有限强的规律性和统一模式,因此特别适合于编制计算机程序来处理。一般来说,一定前提条件下的分析近似值,随着离散化网络的不断细化,计算精度也随之得到改善。所以,随着计算机硬件、软件技术的飞速发展,有限单元分析技术得到了越来越多的应用,40多年来的发展几乎涉及了各类科学、工程领域中的问题。从应用的深度和广度来看,有限单元法的研究和应用正继续不断地向前探索和推进。

有限元法是随电子计算机应用的日益普及和数值分析技术日益发展而迅速发展的一种新颖有效的数值方法。它在50年代起源于飞机结构的矩阵分析,60年代开始被推广用来分析弹性力学平面问题。由于它所依据的理论的普遍性,很快就广泛应用与求解热传导、电磁场、流体力学等连续问题。目前已再各个工程技术领域中得到了十分广泛的应用。

2、有限元的发展概况

从经典结构力学派生的结构矩阵分析方法,早就用于建筑工程的复杂钢架等的分析。但这些结构本身都是明显地由杆件所组成,杆件的特性可通过经典的位移分析来建立。虽然矩阵位移法整个分析方法和步骤都与有限单元法相似,也是用矩阵来表达、用计算机来求解,但它与目前广泛应用的有单元法是有本质区别的。前者只能用以分析具有已知单元结点力-单元结点位移关系的杆件体系结构,而不能分析非杆件体系的连续体结构。因为对离散所得的非杆件连续体单元,无法像矩阵位移法那样用传统方法建立起单元结点力和单元结点位移之间的关系。

有限单元法基本思想的提出,可以追溯到Courant 在1943年的工作,他第一次假设翘曲函数在一个人为划分的三角形单元集合体的每个单元上为简单的线性函数,求得了St.Venant扭转问题的近似解。一些应用数学家、物理学家和工程师赋于各种原因也都涉足过有限单元法的概念。但由于当时计算技术的制约,不能用以解决工程实际问题。因而也就没有引起科学及工程界的重视。到了20世纪60年代,随着电子计算机硬件、软件技术的迅速发展,制约有限单元法发展的条件消除了,有限单元法开始飞速发展。

Hrennikoff[1]于1941年,MeHenry于1943年用线(一维)单元(杆和梁)网格求解连续体中的应力,从而在20世纪40年代开始有限元方法的现代发展。Courant在1943年的工作,他第一次尝试应用定义在三角形区域的分片连续函数和最小势能原理求解圣维南(St.Venant)扭转问题。但由于当时没有计算机这一工具,没能用来分析工程实际问题,因而未得到重视和发展。Argy和Kelsey[6,7]1954年利用能量原理建立了矩阵结构分析方法,此原理在有限元中起着重要的作用。

从20世纪50年代早期到现在,应用有限元方法解决复杂的工程问题已取得了巨大的进展。工程师、应用数学家和其他科学家毫无疑问会建立新的应用领域。

现代有限单元法的第一个成功尝试,是Turner、Clough等人于1956年在分析飞机结构时得到的。他们将矩阵位移法的方法、原理推广应用于弹性力学平面问题,将一个弹性连续体假想地划分为一系列三角形的所谓单元,而不再像里兹法那样在整个求解域内构造约束所允许的位移试函数,而是以三角形单元三个角顶结点的位移作为优先解决的基本未知量,在满足一定条件下对整个求解域构造分片连续的位移场,这就使原来建立位移场的困难得到了解决。随之又解决了单元结点力和结点位移之间单元特性关系(单元刚度方程),从而用三角形单元求得了平面应力问题的近似解答。他们的这些研究工作开创了利用计算机求解复杂平面弹性问题的新局面。1960年Clough进一步处理了平面弹性问题,并第一次卧式提出了“有限单元法”的名称。

早期的有限单元法是建立在虚位移原理或最小势能原理基础上的,这对人们地理解有限单元法的物理概念是很有帮助的,但是它只能处理一些比较简单的实际问题。1963-1964年,Besseling、Melosh、Jones、卞学璜等人的研究工作

表明,基于各种变分原理可以建立起更为灵活、适应性更强、计算精度更高的有限单元法。这些成果大大促进了变分原理(包含广义变分原理的新型有限单元模型,诸如各种混合元、杂交元、非协调元、广义协调元等。

诸多变分原理都和相应的数学物理方程相对应,但也有一些问题可能建立了数学物理方程和定解条件,但却没有对应的变分泛函。从20世纪60年代后期开始,人们开始研究加权余量(也称为加权残值、加权残数)法。它是按某种规则建立问题的试函数,根据其对控制方程、边界条件的满足程度,通过建立余量加权意义下的最小值来获得问题的近似解答。利用加权余量法中的伽辽金(Galerkin)法也可建立基于变分原理所得到的相应方程,因此被称为加权余量有限元。

从有限单元法提出开始,如何建立更好的单元场变量(注意:因为这里已经不仅仅局限于位移元,因此没有称为位移场而是改称为场变量),从而在相同网格划分下提高计算数度和效率,始终是计算力学工作者的一项研究任务。基于样条函数的各种优良特点,人们开始将样条函数引入单元场变量的建立和数值分析,并进一步建立了样条有限元。

随着所分析问题的大型化、复杂化,除了需要进一步研究各种高精度单元外,考虑到多年来力学研究的成果已经取得部分“精确解”,人们开始利用这些成果,将有限元的离散思想和经典解法的解析结果结合起来,以便获得效率、精度更高的方法。研究的结果就产生了一类“半解析”的数值方法,如有限条法、组合条元、有限线法、边界单元法等。

多年来,有限单元法的应用范围已由弹性力学平面问题扩展到空间问题、板壳问题。由静力平衡问题扩展到稳定问题、动力问题、波动问题和接触问题。分析的对象从弹性材料扩展到弹塑性、粘弹性、粘塑性和复合材料等问题。由小变形的几何线性问题扩展到各种大变形的几何非线性和边界非线性等的多重非线性问题。从单一介质的分析,发展到多介质耦合分析的问题。从固体力学扩展到流体力学、传热学、电磁学等连续介质力学领域。从确定性分析的有限单元法,发展到了随机有限元分析。从已知系统和激励求解系统响应的“正分析”发展到了根据响应和系统识别激励,或者根据响应和激励识别系统的“反问题”。在工程分析中的作用,从分析和校核已经扩展到优化设计和智能计算机辅助设计技术

相结合的程度。有限单元法半个多世纪的发展,几乎渗透到了科学、工程的方方面面。可以预计,随着现代力学、计算数学和计算机技术等学科的发展,有限单元法作为一个具有巩固理论基础和广泛应用的数值分析工具,必将在国民经济建设和科学技术发展中发挥更大的作用,其自身也将得到进一步的完善和发展。

有限单元法的应用离不开计算机和有限单元法应用软件,随着有限单元法理论的发展与完善,已经开发出了许多大型的通用有限元程序,如ANSYS、NASTRAN、ABAQUS、SAP、ADINA等。它们一般都具有结构的静动力分析、大变形和稳定性分析、各种非线性分析,以及热传导、热应力、流体分析和多体耦合等功能,有比较成熟、齐全的单元库,提供了二次开发的接口。利用通用程序,一般的工程问题均可获得解决。

随着有限单元法的发展和应用,人们还在不断探索效率更高、更可靠的新型单元,以解决实际应用中遇到的新问题,并在这一过程中进一步拓展有限单元法的应用领域。

3、有限元法分析过程

土木工程、岩土工程等学科中的弹塑性、粘弹性、粘塑性力学,水利、码头工程等的流体力学和流体-固体耦合作用,交通和桥梁隧道工程中的层状介质路面力学、大型桥梁结构分析等都是力学学科的重要分支,其研究结果最终归结为求解数学物理方程边值或初值问题。但遗憾的是,这些学科传统的研究成果只对较为简单、规则的问题才能获得解析解答,大量实际科学、工程计算问题,由于数学上的困难无法得到解决。

有限单元法从正式提出至今已经历了半个多世纪的发展,从理论上讲,无论是简单的一维杆件体系结构,还是承受复杂荷载和不规则边界情况的二维平面问题、轴对称问题、三维空间块体问题等的静力、动力和稳定性分析,考虑材料具有非线性力学行为和有限变形的分析,如温度场、电磁场,流体、液-固、结构与相互作用等工程复杂问题的分析,利用有限单元法都可得到满意的解决,而且其基本思路和分析过程是基本相同的。

一、结构离散化

应用有限单元法来分析工程问题的第一步是将结构进行离散化。其过程就是将要分析的结构对象(或更数学化一点也可称为求解域)用一些假想的线或

面进行切割,使其成为具有选定切割开关的有限个单元体(element)(注意单元体和材料力学中的微元体是根本不同的,它的惊讶是有限值而不是微量)。这些单元体被认为仅仅在单元的一些指定点相互连接,这些单元上的点则称为单元的结点(node)。这一步的实质就是用单元的集合体来代替原来要分析的结构。

为便于理论推导和用计算程序进行分析,一般来说结构离散化的具体步骤是:建立单元和整体坐标系,对单元和结点进行合理编号,为后续有限元分析准备出所必需的数据化信息。目前市面上有各种类型的有限元分析软件,一般都具有友好的用户图形界面和直观输入、输出计算信息的强大功能,使用都应用这些软件越来越方便。即便如此,使用这些大型软件的第一步“建模”工作,实际上就是建立离散化模型和准备所需的数据。

二、确定单元位移模式

结构离散化后,接下来的工作就是对结构离散化所得的任一典型单元进行所谓单元特性分析。为此,必须对该单元中任意一点的位移分布做出假设,即在单元内用只具有有限自由度的简单位移代替真实位移。对位移元来说,就是将单元中任意一点的位移近似地表示成该单元结点位移的函数,该位移称为单元的位移模式(displacement mode)或位移函数(displacement function)。位移函数的假设合理与否,将直接影响有限元分析的计算精度、效率和可靠性。有限单元法发展初期常用的方法是以多项式作为位移模式,这主要是因为多项式的微积分去处比较简单。而且从泰勒级数展开的意义来说,任何光滑函数都可以用无限项的泰勒级数多项式来展开,当单元惊讶趋于微量时,多项式的位移模式趋于真实位移。位移模式的合理选择,是有限单元法最重要的内容之一,所谓创建一种新型的单元,确定位移模式是其核心内容。

不管哪类位移元,采用矩阵符号并建立相应的矩阵方程,单元中任意一点的位移矩阵d,均可用该单元结点位移排列成的矩阵[称为单元结点位移矩阵(element ondal displacement matrix)]()来表示。式中N 称为形函数矩阵(shape function matrix),其元素是坐标的函数。

三、单元特性分析

确定了单元位移模式后,就可以对单元做如下三个方面的工作:

(1)利用和位移之间的关系,即几何方程(geometrical equation),将单元中任意一点的应变用待定的单元结点位移来表示,即如下的矩阵方程

式中,B称为变形矩阵[也可称为应变矩阵(strain matrix)],其元素一般也是坐标的函数。、

(2)利用应力和应变之间的关系,即物理方程(physical equation),推导出用单元结点位移表示的单元中任意一点应力的矩阵方程式中,D是由单元材料弹性常数所确定的弹性矩阵(elastic matrix);S=DB 一般称为应力矩阵(stress martix),它的元素一般也是坐标的函数。

(3)利用虚位移原理或最小势能原理(对其他类型的一些有限元将应用其他对应的变分原理等)建立单元刚度方程式中,为单元结点力矩阵(element nodal force matrix); 由虚位移原理或最小势能原理推导所得,是将单元结点位移和单元结点力、单元等效结点荷载联系起来的联系矩阵,称为单元刚度矩阵(element stiffness matrix)。

积分式中视所讨论的问题而民,对平面问题是单元的面积,对空间问题则表示单元的体积等。

在上述位移型有限元三个方面的工作中,从编制计算程序用计算机求解的角度来说,核心工作是建立单元刚度矩阵和单元等效结点荷载矩阵。正因如此,许多文献资料在单元刚度方程中没有这一项(因为在由单元集合成整体时,不同单元所交汇结点的全部结点力是彼此抵消的,即结点是平衡的)。但是,从理论的完整性、科学性来要求的话,单元刚度方程应该是式(1-4)形式。

四、按离散情况集成所有单元的特性,建立表示整个结构结点平衡的方程组

有了单元特性分析的结果,像结构力学中解超静定结构的位移法一样,对各单元仅在结点相互连接的单元集合体用虚位移原理或最小势能原理进行推导,可以建立起表示整个结构(确切地说是单元集合体)结点平衡的方程组,即整体刚度方程(global stiffness equation)

式中,K为整体刚度矩阵(global stiffness matrix),P为整体综合结点荷载矩阵(global synthetic nodal force matrix)[它包含直接结点荷载矩阵(direct nodal force)与等效结点荷载矩阵(equivalent nodal force)两部分],为结构整体结点位移矩阵(global nodal displacement matrix)。通过

所谓直接刚度法(direct stiffness method),可以用“对号入座(add term according to its number)”方式由各单元的单元刚度矩阵和单元等效结点荷载矩阵集成整体刚度矩阵和整体等效结点荷载。

本步骤计算的细节取决于所求解的问题和所编制的计算程序的处理方法,对于一些问题将存在坐标(局部与整体)转换问题(coordinate transformation problem),对于一些问题还存在位移边界条件(displacement boundary condition)的引入等,作为绪论概述,这里不再赘述。

五、解方程组和输出计算结果

对本书所讨论的纯属弹性计算问题,整体刚度方程式(1-6)一般是一组高阶的线性代数方程组。由于整体刚度矩阵具有带状(banded)、稀疏(sparse)和对称(symmerrical)等特性,在有限元发展过程中,人们通过研究,建立了许多不同的存储方式和计算方法,目的是计算机的存储空间和提高计算效率。利用相应的计算方法,即可救出全部求和的结点位移。

救出结构全部结点位移后,利用分析过程中已建立的一些关系,即可以进一步计算单元中的应力或内力,并以数表或图形的方式输出计算结果。依据这些结果,就可以进行具体结构的进一步设计[当前许多计算机辅助设计软件已经将有限元分析为其核心计算分析模块(对使用者这是黑匣子),由这一计算结果直接进行结构设计,并达到输出最终施工图的结果]。

4、有限元的方法和理论手段

有限元分析过程可以分为以下三个阶段:

1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型——有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。

2.计算阶段: 计算阶段的任务是完成有限元方法有关的数值计算。由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成。

3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显

示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。

注意:在上述三个阶段中,建立有限元模型是整个有限分析过程的关键。首先,有限元模型为计算提供所以原始数据,这些输入数据的误差将直接决定计算结果的精度;其次,有限元模型的形式将对计算过程产生很大的影响,合理的模型既能保证计算结构的精度,又不致使计算量太大和对计算机存储容量的要求太高;再次,由于结构形状和工况条件的复杂性,要建立一个符合实际的有限元模型并非易事,它要考虑的综合因素很多,对分析人员提出了较高的要求;最后,建模所花费的时间在整个分析过程中占有相当大的比重,约占整个分析时间的70%,因此,把主要精力放在模型的建立上以及提高建模速度是缩短整个分析周期的关键。

(1)弹性力学空间问题基本公式:

平衡微分方程: ?????000=+??+??+??=+??+??+??=+??+??+??X X Z z

y x Y y x X x z yZ xZ z yz xy z xy y xy στττστττσ 几何方程: ????

???????+??=??=??+??=??=??+??=??=x w

z u z w z y w y y x v y u x u xy z xy xy x γεγγγεγε,,, 物理方程:????

?????=+-==+-==+-=xz xz y x z z yz yz z x y y xy xy z y x x G u E G u E G u E τγσσσετγσσσετγσσσε1)],([11)],([11)],([1 (2)有限元的基本公式:

运动方程: 2~

2~~~t d F A ??=+ρσ 平衡方程:~

~~~0=+F A σ

几何方程: ~~~d A T +=ε 本构关系:~~~εσD = 变形协调方程:~~εC =~0 在应力边界条件~~~~0=-ΦσL 在位移边界条件:-~d ~

~0=-d

机械原理基本概念

(2)运动副是两构件通过直接接触形成的可动联接。(3)两构件通过点或线接触形成的联接称为高副。一个平面高副所引入的约束数为1。(4)两构件通过面接触形成的联接称为高副,一个平面低副所引入的约束数为2。(5)机构能实现确定相对运动的条件是原动件数等于机构的自由度,且自由度大于零。(6)虚约束是对机构运动不起实际约束作用的约束,或是对机构运动起重复约束作用的约束。(7)局部自由度是对机构其它运动构件的运动不产生影响的局部运动。(8)平面机构组成原理:任何机构均可看作是由若干基本杆组依次联接于原动件和机架上而构成。(8)基本杆组的自由度为0。(1)瞬心是两构件上瞬时速度相等的重合点-------即等速重合点。(2)两构件在绝对瞬心处的速度为0。(3)相构件在其相对瞬心处的速度必然相等。(4)两构件中若有一个构件为机架,则它们在瞬心处的速度必须为0。(5)用瞬心法只能求解机构的速度,无法求解机构的加速度。(1)驱动机械运动的力称为驱动力,驱动力对机械做正功。(2)阻止机械运动的力称为阻抗力,阻抗力对机械做负功。(1)机械的输出功与输入功之比称为机械效率。(2)机构的损失功与输入功之比称为损失率。(3)机械效率等于理想驱动力与实际驱动力的比值。(4)平面移动副发生自锁条件:作用于滑块上的驱动力作用在其摩擦角之内。(5)转动副发生自锁的条件:作用于轴颈上的驱动力为单力,且作用于轴颈的摩擦圆之内。(1)机构平衡的目的:消除或减少构件不平衡惯性力所带来的不良影响。(2)刚性转子总可通过在转子上增加或除去质量的办法来实现其平衡。(3)转子静平衡条件:转子上各偏心质量产生的离心惯性力的矢量和为零(或质径积矢量和为零)。(4)对于静不平衡转子只需在同一个平面内增加或除去平衡质量即可获得平衡,故称为单面平衡。(5)对于宽径比b/D<0.2的不平衡转子,只做静平衡处理。(6)转子动平衡条件:转子上各偏心质量产生的离心惯性力的矢量和为零,以及这些惯性力所构成的力矩矢量的和也为零。(7)实现动平衡时需在两个平衡基面增加或去除平衡质量,故动平衡又称为双面平衡。(8)动平衡的转子一定是静平衡的,反之则不然。(9)转的许用不平衡量有两种表示方法:许用质径积+许用偏心距。(1)机械运转的三阶段:启动阶段、稳定运转阶段、停车阶段。(2)建立机械系统等动力学模型的等效条件:瞬时动能等效、外力做功等效。(3)机器的速度波动分为:周期性速度波动和非周期性速度波动。(4)周期性速度波动的调节方法:安装飞轮。(5)非周期性速度波动的调节方法:安装调速器。(6)表征机械速度波动程度的参量是:速度不均匀系数δ。(8)飞轮调速利用了飞轮的储能原理。(9)飞轮宜优先安装在高速轴上。(10)机械在安装飞轮后的机械仍有速度波动,只是波动程度有所减小。(1)铰链四杆机构是平面四杆机构的基本型式。(2)铰链四杆机构的三种表现形式:曲柄摇杆机构、双曲柄机构、双摇杆机构。(3)曲柄摇杆机构的功能:将曲柄的整周转动变换为摇杆的摆动或将摇杆的摆动变换为曲柄的回转。(4)曲柄滑动机构的功能:将回转运动变换为直线运动(或反之)。(5)铰链四杆机构存在曲柄的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为连架杆或机架。(6)铰链四杆机构成为曲柄摇杆机构的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为连架杆。(7)铰链四杆机构成为曲柄摇杆机构的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为机架。(8)铰链四杆机构成为又摇杆机构的条件:不满足杆长条件;或者是满足杆长条件但最短杆为连杆。(9)曲柄滑块机构存在曲柄的条件是:曲柄长度r+偏距r小于等于连杆长度l(12)曲柄摇杆机构以曲柄为原动件时,具有急回性质。(13)曲柄摇杆机构以曲柄为主动件,当曲柄与连杆共线时,机构处于极限位置。(14)曲柄滑块机构以曲柄为主动件,当曲柄与连杆共线时,机构处于极限位置。(15)偏置曲柄滑块机构以曲柄为原动件时,具有急回性质。(16)对心曲柄滑块机构不具有急回特性。(17)曲柄导杆机构以曲柄为原动件时,具有具有急回性质。(18)连杆机构的传动角越大,对传动越有利。(19)连杆机构的压力角越大,对传动越不利。(20)导杆机构的传动角恒为90o。21)曲柄摇杆机构以曲柄为主动杆时,最小传动角出现在曲柄与机架共线的两位置之一。(22)曲柄摇杆机构以摇杆为主动件,当从动曲柄与连杆共线时,机构处于死点位置。(23)当连杆机构处于死点时,机构的传动角为0。(1)凸轮机构的优点是:只要适当地设计出凸轮轮廓曲线,就可使打推杆得到各种运动规律。(2)凸轮机构的缺点:凸轮轮廓曲线与推杆间为点、线接触,易磨损。(3)常用的推杆运动规律:等速运动规律、等加速等减速运动规律、余弦加速度运动规律、正弦加速度运动规律、五次多项式运动规律。(4)采用等速运动规律会给机构带来刚性冲击,只能用于低速轻载。(5)采用等加速等减速运动规律会给机构带来柔性冲击,常用于中速轻载场合。(6)采用余弦加速度运动规律也会给机构带来柔性冲击,常用于中低速重载场合。(7)余弦加速度运动规律无冲击,适于中高速轻载。(8)五次多项式运动规律无冲击,适于高速中载。(9)增大基圆半径,则凸轮机构的压力角减少。(10)对凸轮机构进行正偏置,可降低机构的推程压力角。(11)设计滚子推杆盘形凸轮机构时,对于外凸的凸轮廓线段,若滚子半径大于理论廓线上的最小曲率半径,将使工作廓线出现交叉,从而使机构出现运动失真现象。(12)设计滚子推杆盘形凸轮机构时,对于外凸的凸轮廓线段,若滚子半径等于理论廓线上的最小曲率半径,将使凸轮廓线出现变尖现象。(1)圆锥齿轮机构可实现轴线相交的两轴之间的运动和动力传递。(2)蜗

有限元分析方法和材料断裂准则

一、有限元模拟方法 金属切削数值模拟常用到两种方法,欧拉方法和拉格朗日方法。欧拉方法适合在一个可以控制的体积内描述流体变形,这种方法的有限元网格描述的是空间域的,覆盖了可以控制的体积。在金属切削过程中,切屑形状的形成过程不是固定的,采用欧拉方法要不断的调整网格来修改边界条件,因此用欧拉方法进行动态的切削过程模拟比较困难。欧拉方法适用于切削过程的稳态分析(即“Euler方法的模拟是在切削达到稳定状态后进行的”[2]),仿真分析之前要通过实验的方法给定切屑的几何形状和剪切角[1]。 而拉格朗日方法是描述固体的方法,有限元网格由材料单元组成,这些网格依附在材料上并且准确的描述了分析物体的几何形状,它们随着加工过程的变化而变化。这种方法在描述材料的无约束流动时是很方便的,有限元网格精确的描述了材料的变形情况。实际金属切削加工仿真中广泛采用的拉格朗日方法,它可以模拟从初始切削一直到稳态的过程,能够预测切屑的形状和工件的残余应力等参数[2]。但是用这种方法预定义分离准则和切屑分离线来实现切屑和工件的分离,当物质发生大变形时常常使网格纠缠,轻则严重影响了单元近似精度,重则使计算中止或者引起严重的局部变形[1]。 为了克服欧拉描述和拉格朗日描述各自的缺点,Noh和Hirt在研究有限差分法时提出了ALE(Arbitrary Lagrange-Euler)描述,后来又被Hughes,liu和Belytschko等人引入到有限元中来。其基本思想是:计算网格不再固定,也不依附于流体质点,而是可以相对于坐标系做任意运动。由于这种描述既包含Lagrange的观点,可应用于带自由液面的流动,也包括了Euler观点,克服了纯Lagrange 方法常见的网格畸变不如意之处。自20世纪80年代中期以来,ALE描述己被广泛用来研究带自由液面的流体晃动问题、固体材料的大变形问题、流固祸合问题等等。金属的高速切削过程是一个大变形、高应变率的热力祸合过程,正适合采用ALE方法。 采用ALE方法进行高速切削仿真克服了拉格朗日方法和欧拉方法需要预先定义分离线、切屑和工件分离准则,假定切屑形状等缺点,避免了网格畸变以及网格再划分等问题,使切屑和工件保持良好的接触,使计算易于收敛[1][4]。 二、材料断裂准则 在金属切削成形有限元模拟中提出了多种切屑分离准则,这些准则可以分为两种类型:物理准则和几何准则。 优点: 几何分离准则需要预定义加工路径,在加工路径上判断刀尖与刀尖前单元节点的距离变化来判断分离与否。当两点的距离小于某个临界值时,刀尖前单元的节点被分成两个,其中一个节点沿前刀面向上移动形成切屑,另一个保留在加工表面上形成己加工表面[1][2]。。 物理分离准则是基于刀尖前单元节点的应力、应变及应变能等物理量定义分离条件,当单元中的该物理量的值超过给定材料的对应值时,单元节点就会分离[2]。(物理标准主要是基于制定的一些物理量的值是否达到临界值而进行判断的,主要有基于等效塑性应变准则、基于应变能密度准则、断裂应力准则等[5])。 Carroll和Strenkowski使用了等效塑性应变作为物理分离准则的标准,在一些有限元软件中该标准的演化得到了应用,ABAQUS/Explicit中的剪切失效准则(shear failure)就是这样一种物理准则,它根据单元积分点处的等效塑性应变值是否到达预设值来判断材料是否失效[1]。 缺点:

框架结构设计经验总结

1.结构设计说明 主要是设计依据,抗震等级,人防等级,地基情况及承载力,防潮抗渗做法,活荷载值,材料等级,施工中的注意事项,选用详图,通用详图或节点,以及在施工图中未画出而通过说明来表达的信息。 2. 各层的结构布置图,包括: (1)现浇板的配筋(板上、下钢筋,板厚尺寸)。 板厚一般取120、140、160、180四种尺寸或120、150、180三种尺寸。尽量用二级钢包括直径φ10(目前供货较少)的二级钢,直径≥12的受力钢筋,除吊钩外,不得采用一级钢。钢筋宜大直径大间距,但间距不大于200,间距尽量用200。(一般跨度小于6.6米的板的裂缝均可满足要求)。跨度小于2米的板上部钢筋不必断开,钢筋也可不画,仅说明钢筋为双向双排φ8@200。板上下钢筋间距宜相等,直径可不同,但钢筋直径类型也不宜过多。顶层及考虑抗裂时板上筋可不断,或50%连通,较大处附加钢筋,拉通筋均应按受拉搭接钢筋。板配筋相同时,仅标出板号即可。一般可将板的下部筋相同和部分上部筋相同的板编为一个板号,将不相同的上部筋画在图上。当板的形状不同但配筋相同时也可编为一个板号。应全楼统一编号。当考虑穿电线管时,板厚≥120,不采用薄板加垫层的做法。电的管井电线引出处的板,因电线管过多有可能要加大板厚至180(考虑四层32的钢管叠加)。宜尽量用大跨度板,不在房间内(尤其是住宅)加次梁。说明分布筋为φ6@250,温度影响较大处可为φ8@200。板顶标高不同时,板的上筋应分开或倾斜通过。现浇挑板阳角加辐射状附加筋(包括内墙上的阳角)。现浇挑板阴角的板下宜加斜筋。顶层应建议甲方采用现浇楼板,以利防水,并加强结构的整体性及方便装饰性挑沿的稳定。外露的挑沿、雨罩、挑廊应每隔10~15米设一10mm的缝,钢筋不断。尽量采用现浇板,不采用予制板加整浇层方案。卫生间做法可为70厚+10高差(取消垫层)。8米以下的板均可以采用非预应力板。L、T或十字形建筑平面的阴角处附近的板应现浇并加厚,双向双排配筋,并附加45度的4根16的抗拉筋。现浇板的配筋建议采用PMCAD软件自动生成,一可加快速度,二来尽量减小笔误。自动生成楼板配筋时建议不对钢筋编号,因工程较大时可能编出上百个钢筋号,查找困难,如果要编号,编号不应出房间。配筋计算时,可考虑塑性内力重分布,将板上筋乘以0.8~0.9的折减系数,将板下筋乘以1.1~1.2的放大系数。值得注意的是,按弹性计算的双向板钢筋是板某几处的最大值,按此配筋是偏于保守的,不必再人为放大。支承在外圈框架梁上的板负筋不宜过大,否则将对梁产生过大的附加扭距。一般:板厚>1 50时采用φ10@200;否则用φ8@200。PMCAD生成的板配筋图应注意以下几点:1.单向板是按塑性计算的,而双向板按弹性计算,宜改成一种计算方法。2.当厚板与薄板相接时,薄板支座按固定端考虑是适当的,但厚板就不合适,宜减小厚板支座配筋,增大跨中配筋。3.非矩形板宜减小支座配筋,增大跨中配筋。4.房间边数过多或凹形板应采用有限元程序验算其配筋。PMCAD生成的板配筋图为PM?.T。板一般可按塑性计算,尤其是基础底板和人防结构。但结构自防水、不允许出现裂缝和对防水要求严格的建筑, 如坡、平屋顶、橱厕、配电间等应采用弹性计算。室内轻隔墙下一般不应加粗钢筋,一是轻隔墙有可能移位,二是板整体受力,应整体提高板的配筋。只有垂直单向板长边的不可能移位的隔墙,如厕所与其他房间的隔墙下才可以加粗钢筋。坡屋顶板为偏拉构件,应双向双排配筋

《有限元分析与应用课程标准》

《有限元分析及应用》课程标准 课程代码:汽车学分:3 建议课时数:64 英文名称: 适用专业:计算机辅助设计与分析 先修课程:《计算机辅助设计》 课程团队负责人及成员:陈良萍、刘宏强、王云、赵静、李蕾、黄艺、史俊玲、 毛新 1.课程定位和设计思路 1.1课程定位 本课程是为计算机辅助设计与分析专业本科生开设的一门专业核心课程,重点介绍有限元法的基本原理和方法、一些成熟的有限元软件功能和简单的分析步骤,同时结合工程实际,为他们进一步学习或实际应用及参加科研工作开辟道路。其任务是通过先修课程中所学知识的综合运用和新知识的获取,使学生初步掌握现代设计中的一种重要方法,开阔视野,提高能力,以适应科学技术发展的要求。 1.2设计思路 在教学中,首先通过力学中的矩阵位移法思想的对比教学,引出连续介质力学有限单元法的学习重点在于单元的插值函数如何构造。这因为,虽说矩阵位移法是对杆系结构而言的,但其结构的离散化和组建整体刚度方程的思想完全可以借鉴到连续介质力学,它们的不同点只是在单元刚度矩阵的建立;而不同单元类型的单元刚度矩阵的建立,又取决于对应单元插值函数的构造。这样处理,不但使学生抓住了本课程的教学重点,而且对有限单元法的整体思想有了宏观上掌握;起到主动学习而非被动接受的作用。在单元构造的教学中,理论学习的重点在于常规单元的介绍;通过常规单元介绍插值函数的完备性与收敛性等。接之,介绍高次单元、等参单元等教学内容。在理论教学中,强调数学论证的严谨性和工程应用的适应性。

结合工程实例教学,拓宽学生数值分析方面的应用能力在课内对不同的单元类 型进行介绍时,及时抓住不同单元在应用中的对比教学与其适用性,并结合工程实例介绍单元类型的合理选取和单元网格的合理划分等。为学生在实际问题的数值分析中如何选定单元和剖分单元奠定了一定的基础和经验。 2.工作任务和课程目标 2.1工作任务 由于采用有限单元法的分析计算软件大多已商业化,而熟悉应用这些中的常规软件也应是本门课程的主要教学内容。在课内学生学会使用软件建立分析模型的基本步骤,其中包括分析模型抽象、几何模型绘制、单元网格划分、材料定义、边界条件定义、方程求解方法等。因课内教学时数的不足,学生应利用课余时间学习,以提高对实际问题的数值分析能力。 2.2课程目标 从教学思想和方法上对原课程进行改革,使学生从较高层次上理解有限元方法的实质,掌握有限元分析的工具,并具备初步处理工程问题的能力;使该课程成为具有较宽口径和较大覆盖面的、面向计算机辅助设计方面的专业基础课;注意课程体 系的整体优化,强调课程的深度、广度与应用。 3.教学方针落实情况

《有限元基础教程》_【MATLAB算例】3.3.7(2)__三梁平面框架结构的有限元分析(Beam2D2Node)

【MA TLAB 算例】3.3.7(2) 三梁平面框架结构的有限元分析 (Beam2D2Node) 如图3-19所示的框架结构,其顶端受均布力作用,结构中各个 截面的参数都为:113.010Pa E =?,746.510I m -=?,426.810A m -=?。试基 于MA TLAB 平台求解该结构的节点位移以及支反力。 图3-19 框架结构受一均布力作用 解答:对该问题进行有限元分析的过程如下。 (1) 结构的离散化与编号 将该结构离散为3个单元,节点位移及单元编号如图3-20所示, 有关节点和单元的信息见表3-5。 (a ) 节点位移及单元编号

(b)等效在节点上的外力 图3-20 单元划分、节点位移及节点上的外载 (2)各个单元的描述 首先在MA TLAB环境下,输入弹性模量E、横截面积A、惯性矩I和长度L,然后针对单元1,单元2和单元3,分别二次调用函数Beam2D2Node_ElementStiffness,就可以得到单元的刚度矩阵k1(6×6)和k2(6×6),且单元2和单元3的刚度矩阵相同。 >> E=3E11; >> I=6.5E-7; >> A=6.8E-4; >> L1=1.44; >> L2=0.96; >> k1=Beam2D2Node_Stiffness(E,I,A,L1); >> k2=Beam2D2Node_Stiffness(E,I,A,L2); (3)建立整体刚度方程 将单元2和单元3的刚度矩阵转换成整体坐标下的形式。由于该结构共有4个节点,则总共的自由度数为12,因此,结构总的刚度矩阵为KK(12×12),对KK清零,然后两次调用函数Beam2D2Node_Assemble进行刚度矩阵的组装。 >> T=[0,1,0,0,0,0;-1,0,0,0,0,0;0,0,1,0,0,0;0,0,0,0,1,0;0,0,0,-1,0,0;0,0,0,0,0,1] ; >> k3=T'*k2*T; >> KK=zeros(12,12); >> KK=Beam2D2Node_Assemble(KK,k1,1,2);

元法概念意义与应用

元法概念意义与应用 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

有限元法概论、意义 与应用 班级: 2013信息姓名:张正 学号 指导老师:曾伟梁 摘要:有限元法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。关键词:有限元法;变分原理;加权余量法;函数。 Abstract:Finite element method is based on the variational principle and the weighted residual method, the basic idea is to solve the computational domain is divided into a finite number of non-overlapping units, each unit, select some appropriate function for solving the interpolation node points as , the differential variables rewritten or its derivative by the variable value of the selected node interpolation functions consisting of linear expressions, by means of variational principle or weighted residual method, the discrete differential equations to solve. Different forms of weight functions and interpolation functions, it constitutes a different finite element method. Keywords:Finite element method; variational principle; weighted residual method; function。 引言 随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式往往是不可能的。近年来在计算机技术

ANSYS结构有限元分析流程

有限元法的基本思想是将连续的结构离散成有限个单元,并在每一个单元中设定有限个节点,将连续体看做是只在节点处相连接的一组单元的集合体;同时选定场函数的节点值作为基本未知量,并在每一个单元中假设一个近似插值函数表示单元中场函数的分布规律;然后利用力学中的变分原理建立求解节点未知量的有限元方程,这样就将一个连续域中的无限自由度的问题转化为离散域的自由度问题。求解后可以利用已知的节点值和插值函数确定单元以及整个集合体上场函数。 ANSYS结构有限元分析流程 1.前处理 前处理的目的是建立一个符合实际情况的结构有限元模型。在Preprocessor 处理器中进行。包括:分析环境设置(指定分析工作名称、分析标题)、定义单元类型、定义实常数、定义材料属性(如线弹性材料的弹性模量、泊松比、密度)、建立几何模型(一般用自底向上建模:先定义关键点,由这些点连成线,由线组成面,再由线形成体)、对几何模型进行网格划分(分为三个步骤:赋予单元属性、指定网格划分密度、网格划分) 2.施加载荷、设置求解选项并求解 这些工作通过SOLUTION 处理器实现。 指定分析类型(静力分析、模态分析、谐响应分析、瞬态动力分析、谱分析等)、设置分析选项(不同分析类型设置不同选项,有非线性选项设置、线性设置和求解器设置)、设置载荷步选项(包括时间、

子步数、载荷步、平衡迭代次数和输出控制)、加载(ANSYS结构分析的载荷包括位移约束、集中力、面载荷、体载荷、惯性力、耦合场载荷,将其施加于几何模型的关键点、线、面、体上)然后求解。3.后处理 当完成计算以后,通过后处理模块查看结果。ANSYS软件的后处理模块包括通用后处理模块(POST1)和时间历程后处理模块(POST26)。可以轻松获得求解计算结果,包括位移、温度、应变、热流等,还可以对结果进行数学运算,然后以图形或者数据列表的形式输出。结构的变形图、内力图(轴力图、弯矩图、剪力图),各节点的位移、应力、应变,还有位移应力应变云图都可以得出,为我们分析问题提供重要依据。 ANSYS软件提供了100种以上的单元类型,用来模拟工程中的各种材料和结构,各种不同单元组合在一起,成为具体物理问题的抽象模型。如在隧道工程中衬砌用beam3梁单元模拟,弹簧单元COMBIN14模拟围岩与结构的相互作用。边坡工程中边坡土体用平面单元来模拟。水利工程中对大坝进行三维模拟分析时用实体单元,二维分析时用平面单元;水库闸门用壳单元模拟。桥梁结构模拟分析中,用梁单元模拟不同截面的钢梁、混凝土梁,壳单元模拟桥面板箱梁等薄壁结构,杆单元可以模拟预应力钢筋和桁架。房屋建筑结构中,梁单元模拟框架柱,壳单元模拟屋面板,实体单元模拟大体积混凝土,杆单元模拟预应力钢筋等。 一般都要对结构进行静力分析,结果必须满足设计要求。当动荷

基本概念与原理:溶液

基本概念与原理:溶液 主要考点: 1.常识:温度、压强对物质溶解度的影响;混合物分离的常用方法 ① 一般固体物质.... 受压强影响不大,可以忽略不计。而绝大部分固体随着温度的升高,其溶解度也逐渐升高(如:硝酸钾等);少数固体随着温度的升高,其溶解度变化不大(如:氯化钠等);极少数固体随着温度的升高,其溶解度反而降低的(如:氢氧化钙等)。 气体物质.... 的溶解度随着温度的升高而降低,随着压强的升高而升高。 ② 混合物分离的常用方法主要包括:过滤、蒸发、结晶 过滤法用于分离可溶物与不溶物组成的混合物,可溶物形成滤液,不溶物形成滤渣而遗留在滤纸上; 结晶法用于分离其溶解度受温度影响有差异的可溶物混合物,主要包括降温结晶法及蒸发结晶法 降温结晶法用于提取受温度影响比较大的物质(即陡升型物质),如硝酸钾中含有少量的氯化钠; 蒸发结晶法用于提取受温度影响不大的物质(即缓升型物质),如氯化钠中含有少量的硝酸钾; 2.了解:溶液的概念;溶质,溶剂的判断;饱和溶液与不饱和溶液的概念、判断、转换的方法;溶解度的概念;固体 溶解度曲线的应用 ① 溶液的概念就是9个字:均一的、稳定的、混合物。溶液不一定是液体的,只要同时满足以上三个条件的物质, 都可以认为是溶液。 ② 一般简单的判断方法:当固体、气体溶于液体时,固体、气体是溶质,液体是溶剂。两种液体相互溶解时,通常把量多的一种叫做溶剂,量少的一种叫做溶质。当溶液中有水存在的时候,无论水的量有多少,习惯上把水看作溶剂。通常不指明溶剂的溶液,一般指的是水溶液。 在同一个溶液中,溶质可以有多种。特别容易判断错误的是,经过化学反应之后,溶液中溶质的判断。 ③ 概念:饱和溶液是指在一定温度下,在一定量的溶剂里,不能再溶解某种物质的溶液。还能继续溶解某种溶质的溶液,叫做这种溶质的不饱和溶液。 在一定温度下,某溶质的饱和溶液只是说明在该温度下,不能够继续溶解该物质,但还可以溶解其他物质,比如说,在20℃的饱和氯化钠溶液中,不能再继续溶解氯化钠晶体,但还可以溶解硝酸钾固体。 判断:判断是否是饱和溶液的唯一方法:在一定温度下,继续投入该物质,如果不能继续溶解,则说明原溶液是饱和溶液,如果物质的质量减少,则说明原溶液是不饱和溶液。 当溶液中出现有固体时,则该溶液一定是该温度下,该固体的饱和溶液。 转换:饱和溶液与不饱和溶液的相互转换: 改变溶解度,实际一般就是指改变温度,但具体是升高温度还是降低温度,与具体物质溶解度曲线有 ④ 溶解度曲线的意义: 饱和溶液 不饱和溶液 增加溶剂,增加溶解度 减少溶剂,增加溶质,减少溶解度

有限元边界条件和载荷

X边界条件和载荷 10.1边界条件 施加的力和/或者约束叫做边界条件。在HyperMesh中,边界条件存放在叫做load collectors的载荷集中。Load collectors可以通过在模型浏览器中点击右键来创建(Create > Load Collector)。 经常(尤其是刚开始)需要一个load collector来存放约束(也叫做spc-单点约束),另外一个用来存放力或者压力。记住,你可以把任何约束(比如节点约束自由度1和自由度123)放在一个load collector中。这个规则同样适用于力和压力,它们可以放在同一个load collector中而不管方向和大小。 下面是将力施加到结构的一些基本规则。 1.集中载荷(作用在一个点或节点上) 将力施加到单个节点上往往会出现不如人意的结果,特别是在查看此区域的应力时。通常集中载荷(比如施加到节点的点力)容易产生高的应力梯度。即使高应力是正确的(比如力施加在无限小的区域),你应该检查下这种载荷是不是合乎常理?换句话说,模型中的载荷代表了哪种真实加载的情形? 因此,力常常使用分布载荷施加,也就是说线载荷,面载荷更贴近于真实情况。 2.在线或边上的力 上图中,平板受到10N的力。力被平均分配到边的11个节点上。注意角上的力只作用在半个单元的边上。

上图是位移的云图。注意位于板的角上的红色“热点”。局部最大位移是由边界效应引起的(例如角上的力只作用在半个单元的边上),我们应该在板的边线上添加均匀载荷。 上述例子中,平板依然承受10N的力。但这次角上节点的受力减少为其他节点受力的一半大小。 上图显示了由plate_distributed.hm文件计算得到的平板位移的云图分布。位移分布更加均匀。 3.牵引力(或斜压力) 牵引力是作用在一块区域上任意方向而不仅仅是垂直于此区域的力。垂直于此区域的力称为压力。

基于ANSYS的框架结构分析1

基于ANSYS 的框架结构分析 摘要:本文简述了框架结构的优缺点,提及了结构分析的重要性,通过使用ANSYS 软件,建立了一个两跨十二层的框架结构模型,并对其进行了结构静态分析,模态分析,特征值屈曲分析以及地震反应时程分析。 关键词:框架结构;ANSYS;静态分析;模态分析;特征值屈曲分析; 地震时程分析 1.引言 框架结构作为一种常用的结构体系,对其结构进行合理分析至关重要。行业内对框架结构的分析方法众多,且电算逐渐趋于主流。ANSYS 软件是一种大型通用的有限元分析软件,界面直观,已广泛应用于结构力学(包括线性与非线性)、结构动力学、传热学、流体力学等。它可以对房屋建筑、桥梁、隧道以及地下建筑物等工程结构在各种外荷载条件下的受力、变形、稳定性及各种动力特性做出全面分析,因而在结构分析中应用广泛。 2.框架结构优缺点 框架结构是指由梁和柱以刚接或者铰接相连接而成,构成承重体系的结构,即由梁和柱组成框架共同抵抗使用过程中出现的水平荷载和竖向荷载。结构的房屋墙体不承重,仅起到围护和分隔作用,广泛用于住宅、学校、办公室,也有根据需要对混凝土梁或板施加预应力,以适用于较大的跨度;框架钢结构常用于大跨度的公共建筑、多层工业厂房和一些特殊用途的建筑物中,如剧场、商场、体育馆、火车站、展览厅、造船厂、飞机库、停车场、轻工业车间等。 框架建筑的主要优点:空间分隔灵活,自重轻,节省材料;具有可以较灵活地配合建筑平面布置的优点,利于安排需要较大空间的建筑结构;框架结构的梁、柱构件易于标准化、定型化,便于采用装配整体式结构,以缩短施工工期;采用现浇混凝土框架时,结构的整体性、刚度较好,设计处理好也能达到较好的抗震效果,而且可以把梁或柱浇注成各种需要的截面形状。 框架结构体系的缺点为:框架节点应力集中显著;框架结构的侧向刚度小,属柔性结构框架,在强烈地震作用下,结构所产生水平位移较大,易造成严重的非结构性破坏数量多,吊装次数多,接头工作量大,工序多,浪费人力,施工受季节、环境影响较大;不适宜建造高层建筑,框架是由梁柱构成的杆系结构,其承载力和刚度都较低,特别是水平方向的(即使可以考虑现浇楼面与梁共同工作以提高楼面水平刚度,但也是有限的),它的受力特点类似于竖向悬臂剪切梁,其总体水平位移上大下小,但相对于各楼层而言,层间变形上小下大,设计时如何提高框架的抗侧刚度及控制好结构侧移为重要因素,对于钢筋混凝土框架,当高

有限元基本概念

弹性力学基本假设 这些基本假设包括:理想弹性体假设和微小位移假设。是弹性力学讨论问题的基础 其中理想弹性体假设包括:连续性、均匀性、各向同性和完全弹性假设。 微小位移假设是指形变量远小于物体的尺寸。 绝对坐标法总结 (1)这个例子中所有杆件在绝对坐标系中运算。但单元一多,就重复了 (2)整体刚度矩阵的求解是利用“含同一个节点的所有单元在该节点处的位移相同”和“节点处载荷是所有含该节点单元的相应节点的节点力的总和”来求得(3) 一般情况下,当用统一的整体坐标系计算繁杂时,常在单元计算时采用自己的局部坐标系,然后通过坐标变换,集成到整体刚度矩阵中去,使运算过程简捷 首先,要建立结构外部载荷与结构内部应力的关系(平衡方程) 外部载荷包括集中力、表面力和体积力。这就是静力学平衡问题,要建立静力学平衡方程 其次,从物理学的角度,建立材料应力与应变之间的关系(物理方程) 这是材料的本构关系,描述材料在不同环境下的力学性质 最后,从几何学方面入手,建立应变与位移(变形)之间的关系 这一关系不涉及产生变形的原因。相应的方程称为几何方程

()() ()110 11 210 2121x x y y z z xy xy yz yz xz zx E μμ εσμμεσμμεσμγτμγτμγτ--????????????--????????--????=?????? +?????? ??????+??????+?????? ? ?

这就是应力边界条件 看到第二章2!!!! 如果在质点系的任何虚位移上,质点系的所有约束反力的虚功之和等于零,则称这种约束为理想约束 可能功:当给出系统的一组可能位移时,作用在系统上的力将因作用点发生位移而做功,这种功就称为可能功,或虚功 虚位移原理:平衡状态中,弹性体上外力在可能位移上所作的功等于外力引起的应力在相应的虚应变上所作的功。 在发生虚位移时,若总势能改变为正(即总势能增加),则总势能为极小,反之为极大。由于稳定平衡系统要发生虚位移时,总需要外力做正功。所以在平衡位置时,势能取极小值。 力法: 力法是以应力分量为未知量进行求解 但在3个平衡方程中有6个应力分量,不能直接从中解出所有6个应力分量。需要在给定的应力边界条件下,由平衡方程和应力协调方程联合求解偏微分方程组 位移法: 以三个位移分量作为未知量求解,将物理方程和平衡方程由位移来表示,以满足位移边界条件和变形协调条件为前提 位移-力法(混合法): 用3个位移,6个应力分量将物理方程中的应变消去,再利用协调方程和边界条件求解 x yx zx xy y zy xz yz z l m n X l m n Y l m n Z στττστττσ?++=?? ++=??++=??

有限元分析基本理论问答 基础理论知识

1. 诉述有限元法的定义 答:有限元法是近似求解一般连续场问题的数值方法 2. 有限元法的基本思想是什么 答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。 3. 有限元法的分类和基本步骤有哪些 答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。 4. 有限元法有哪些优缺点 答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。 缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。对无限求解域问题没有较好的处理办法。尽管现有的有限元软件多数使用了网络自适应技术,但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验。 5. ?梁单元和平面钢架结构单元的自由度由什么确定 答:每个节点上有几个节点位移分量,就称每个节点有几个自由度 6. ?简述单元刚度矩阵的性质和矩阵元素的物理意义 答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵 单元刚度矩阵中元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量等于0时,对应的第m个节点力分量。 7. 有限元法基本方程中的每一项的意义是什么 答:整个结构的节点载荷列阵(外载荷、约束力),整个结构的节点位移列阵,结构的整体刚度矩阵,又称总刚度矩阵。 8. 位移边界条件和载荷边界条件的意义是什么 答:由于刚度矩阵的线性相关性不能得到解,从而引入边界条件。 9. ?简述整体刚度矩阵的性质和特点 答:对称性;奇异性;稀疏性;对角线上的元素恒为正。 11. 简述整体坐标的概念 答:单元刚度矩阵的坐标变换式把平面刚架的所有单元在局部坐标系X’Y’Z’下的单元刚度矩阵变换到一个统一的坐标系xOy下,这个统一的坐标系xOy称为整体坐标系。 13. 简述平面钢架问题有限元法的基本过程 答:力学模型的确定,结构的离散化,计算载荷的等效节点力,计算各单元的刚度矩阵,组集整体刚度矩阵,施加边界约束条件,求解降价的有限元基本方程,求解单元应力,计算结果的输出。 14. 弹性力学的基本假设是什么。 答:连续性假定,弹性假定,均匀性和各向同性假定,小变形假定,无初应力假定。 15.弹性力学和材料力学相比,其研究方法和对象有什么不同。 答:研究对象:材料力学主要研究杆件,如柱体、梁和轴,在拉压、剪切、弯曲和扭转等作用下的应力、形变和位移。弹性力学研究各种形状的弹性体,除杆件外,还研究平面体、空间体,板和壳等。因此,弹性力学的研究对象要广泛得多。研究方法:弹性力学和材料力学

板结构有限元分析实例详解

板结构有限元分析实例详解1:带孔平板结构静力分析本节介绍带孔平板结构静力分析问题,同时介绍布尔操作的基本用法。 8.3.1 问题描述与分析 有孔的矩形平板,左侧边缘固定,长400mm,宽200 mm,厚度为10 mm,圆孔在板的正中心,半径为40 mm,左侧全约束,右侧边缘均布应力1MPa,如图8.7所示。求板的变形、位移及应力变化情况。(材料的材料属性为:弹性模量为300000 MPa,剪切模量为0.31。) 图8.7 带孔的矩形平板 由于小孔处边缘不规则,本文采用PLANE82高阶平面单元进行分析。 8.3.2 求解过程 8.3.2.1 定义工作目录及文件名 启动ANSYS Mechanical APDL Product Launcher窗口,如图8.8所示。在License下 拉选框中选择ANSYS Multiphysics产品,在Working Directory输入栏中输入工作目 录:C:\ANSYS12.0 Structural Finite Elements Analysis and Practice\Chapter 8\8-1,在Job Name一栏中输入工作文件名:Chapter8-1。以上参数设置完毕后,单 击Run按钮运行ANSYS。

图8.8 ANSYS设置窗口菜单 可以先在目标文件位置建立工作目录,然后单击Browse按钮选择工作目录;也 可以通过单击Browse按钮选择工作文件名。 8.3.2.2 定义单元类型和材料属性 选择Main Menu>Preferences命令,出现Preferences for GUI Filtering对话框, 如图8.9所示,在Individual discipline(s) to show in the GUI中勾选Structural,过滤掉ANSYS GUI菜单中与结构分析无关的选项,单击OK按钮关闭该对话框。 图8.9 Preferences for GUI Filtering对话框

对有限元方法的认识

我对有限元方法的认识 1有限元法概念 有限元方法(The Finite Element Method, FEM)是计算机问世以后迅速发展起来的一种分析方法。每一种自然现象的背后都有相应的物理规律,对物理规律的描述可以借助相关的定理或定律表现为各种形式的方程(代数、微分、或积分)。这些方程通常称为控制方程(Governing equation)。 针对实际的工程问题推导这些方程并不十分困难,然而,要获得问题的解析的数学解却很困难。人们多采用数值方法给出近似的满足工程精度要求的解答。 有限元方法就是一种应用十分广泛的数值分析方法。 有限元方法是处理连续介质问题的一种普遍方法,离散化是有限元方法的基础。 这种思想自古有之:古代人们在计算圆的周长或面积时就采用了离散化的逼近方法:即采用内接多边形和外切多边形从两个不同的方向近似描述圆的周长或面积,当多边形的边数逐步增加时近似值将从这两个方向逼近真解。 近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃。 国际上早在 60 年代初就开始投入大量的人力和物力开发有限元分析程序。“有限单元”是由Clough R W于1960年首次提出的。但真正的有限元分析软件是诞生于 70 年代初期,随着计算机运算速度的提高,内、外存容量的扩大和图形设备的发展,以及软件技术的进步,发展成为有限元分析与设计软件,但初期其前后处理的能力还是比较弱的,特别是后处理能力更弱。

有限元原理与步骤

2.1.1 有限元法基本原理(Basic Theory of FEM) 有限元法的基本思想是离散的概念,它是指假设把弹性连续体分割成数目有限的单元,并认为相邻单元之间仅在节点处相连。根据物体的几何形状特征、载荷特征、边界约束特征等,选择合适的单元类型。这样组成有限的单元集合体并引进等效节点力及节点约束条件,由于节点数目有限,就成为具有有限自由度的有限元计算模型,它替代了原来具有无限多自由度的连续体[24][25]。 有限元法从选择基本未知量的角度来看,可分为三类:位移法、力法和混合法。以节点位移为基本未知量的求解方法称为位移法;以节点力为基本未知量的求解方法称为力法;一部分以节点位移,另一部分以节点力作为基本未知量的求解方法称为混合法。由于位移法通用性强,计算机程序处理简单、方便,成为应用最广泛的一种方法[26]。 有限元法的求解过程简单、方法成熟、计算工作量大,特别适合于计算机计算。再加上它有成熟的大型软件系统支持,避免了人工在连续体上求分析解的数学困难,使其成为一种非常受欢迎的、应用极广泛的数值计算方法[27]。 2.1.2 有限元法基本步骤(Basic Process of FEM) 有限元法求解各种问题一般遵循以下的分析过程和步骤[28][29]: 1. 结构的离散化 结构的离散化是进行有限元法分析的第一步,它是有限元法计算的基础。将结构近似为具有不同有限大小和形状且彼此相连的有限个单元组成的计算模型,习惯上称为有限元网格划分。离散后单元与单元之间利用单元的节点相互连接起来,而单元节点的设置、性质、数目等应视问题的性质、描述变形形态的需要和计算精度而定。所以有限元法分析的结构已不是原有的物体或结构物,而是同种材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果是近似的。显然,单元越小(网格越密)则离散域的近似程度越好,计算结果也越精确,但计算量将增大,因此结构的离散化是有限元法的核心技术之一。有限元离散过程中又一重要环节是单元类型的选择,这应根据被分析结构的几何形状特点、载荷、约束等因素全面考虑。 2. 位移模式的选择 位移模式是表示单元内任意点的位移随位置变化的函数,位移模式的选择是有限元特性分析的第一步。由于多项式的数学运算比较简单、易于处理,所以通常是选用多项式作为位移函数。选择合适的位移函数是有限元分析的关键,它将决定有限元解的性质与近似程度。位移函数的选择一般遵循以下原则(有限元解的收敛条件):

化工原理基本概念和原理

化工原理基本概念和原理 蒸馏––––基本概念和基本原理 利用各组分挥发度不同将液体混合物部分汽化而使混合物得到分离的单元操作称为蒸馏。这种分离操作是通过液相和气相之间的质量传递过程来实现的。 对于均相物系,必须造成一个两相物系才能将均相混合物分离。蒸馏操作采用改变状态参数的办法(如加热和冷却)使混合物系内部产生出第二个物相(气相);吸收操作中则采用从外界引入另一相物质(吸收剂)的办法形成两相系统。 一、两组分溶液的气液平衡 1.拉乌尔定律 理想溶液的气液平衡关系遵循拉乌尔定律: p A=p A0x A p B=p B0x B=p B0(1—x A) 根据道尔顿分压定律:p A=Py A而P=p A+p B 则两组分理想物系的气液相平衡关系: x A=(P—p B0)/(p A0—p B0)———泡点方程 y A=p A0x A/P———露点方程 对于任一理想溶液,利用一定温度下纯组分饱和蒸汽压数据可求得平衡的气液相组成; 反之,已知一相组成,可求得与之平衡的另一相组成和温度(试差法)。 2.用相对挥发度表示气液平衡关系 溶液中各组分的挥发度v可用它在蒸汽中的分压和与之平衡的液相中的摩尔分率来表示,即v A=p A/x A v B=p B/x B 溶液中易挥发组分的挥发度对难挥发组分的挥发度之比为相对挥发度。其表达式有:α=v A/v B=(p A/x A)/(p B/x B)=y A x B/y B x A 对于理想溶液:α=p A0/p B0 气液平衡方程:y=αx/[1+(α—1)x] Α值的大小可用来判断蒸馏分离的难易程度。α愈大,挥发度差异愈大,分离愈易;α=1时不能用普通精馏方法分离。 3.气液平衡相图 (1)温度—组成(t-x-y)图 该图由饱和蒸汽线(露点线)、饱和液体线(泡点线)组成,饱和液体线以下区域为液相区,饱和蒸汽线上方区域为过热蒸汽区,两曲线之间区域为气液共存区。 气液两相呈平衡状态时,气液两相温度相同,但气相组成大于液相组成;若气液两相组成相同,则气相露点温度大于液相泡点温度。 (2)x-y图 x-y图表示液相组成x与之平衡的气相组成y之间的关系曲线图,平衡线位于对角线的上方。平衡线偏离对角线愈远,表示该溶液愈易分离。总压对平衡曲线影响不大。 二、精馏原理 精馏过程是利用多次部分汽化和多次部分冷凝的原理进行的,精馏操作的依据是混合物中各组分挥发度的差异,实现精馏操作的必要条件包括塔顶液相回流和塔底产生上升蒸汽。精馏塔中各级易挥发组分浓度由上至下逐级降低;精馏塔的塔顶温度总是低于塔底温度,原因之一是:塔顶易挥发组分浓度高于塔底,相应沸点较低;原因之二是:存在压降使塔底压

相关文档