文档库 最新最全的文档下载
当前位置:文档库 › matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数

matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数

matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数
matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数

现代通信原理作业一

姓名:张英伟学号:133320085208036 班级:13级理工部3班

利用matlab完成:

●产生正弦波信号、均匀白噪声以及高斯白噪声并分别将两种噪声叠加到正弦

波信号上,绘出波形。

●分别求取均匀白噪声序列和高斯白噪声序列的自相关及功率谱密度,绘出波

形。

一、白噪声区别及产生方法

1、定义:

均匀白噪声:噪声的幅度分布服从均匀分布,功率谱密度在整个频域内均匀分布的噪声。

高斯白噪声:噪声的幅度分布服从正态分布,功率谱密度在整个频域内均匀分布的噪声。

2、matlab仿真函数:

rand函数默认产生是区间在[0,1]的随机数,这里需要利用公式:

z2=a+(b-(a))*rand(m,n)............(公式1)

randn函数默认产生均值是0、方差是1的随机序列,所以可以用其来产生均值为0、方差为1的正态分布白噪声,即N(0,12)。利用公式:

z1=a+b*randn(1,n).................(公式2)

可以产生均值为a,方差为b2 高斯白噪声,即N(a,b2)。

二、自相关函数与功率谱密度之间的关系

1、功率谱密度:每单位频率波携带的功率,这被称为信号的功率谱密度。

2、自相关函数:描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。

3、维纳-辛钦定理:

由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。幸运的是维纳-辛钦定理提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。

4、平稳随机过程:是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。(就是指得仅一个随机过程,中途没有变成另外一个统计特性的随机过程)

二、源代码及仿真结果

1、正弦波

x=(0:0.01:2); %采样频率100Hz

y1=sin(10*pi*x); %产生频率5Hz的sin函数

plot(x,y1,'b');

2、高斯白噪声+正弦波

z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声(b=0.01/0.1/1)plot(x,z1,'b');

y2=y1+z1; %叠加高斯白噪声的正弦波

plot(x,y2,'b');

3、均匀白噪声+正弦波

z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声plot(x,z2,'b');

y3=y1+z2; %叠加均匀白噪声的正弦波

plot(x,y3,'b');

4、高斯白噪声序列自相关函数及功率谱密度

z1=0.1*randn(1,201); %产生方差N(0,0.12)高斯白噪声[r1,lags]=xcorr(z1); %自相关函数的估计

plot(lags,r1);

f1=fft(r1);

f2=fftshift(f1); %频谱校正

l1=(0:length(f2)-1)*200/length(f2)-100; %功率谱密度x轴

y4=abs(f2);

plot(l1,y4);

5、均匀白噪声序列自相关函数及功率谱密度

z2=-.3+.6*rand(1,201); %产生-0.3到0.3的均匀白噪声[r2,lags]=xcorr(z2); %自相关函数的估计

plot(lags,r2);

f3=fft(r2);

f4=fftshift(f3); %频谱校正

l2=(0:length(f4)-1)*200/length(f4)-100; %功率谱密度x轴y5=abs(f4);

plot(l2,y5);

功率谱密度

振动台在使用中经常运用的公式 1、 求推力(F )的公式 F=(m 0+m 1+m 2+ ……)A …………………………公式(1) 式中:F —推力(激振力)(N ) m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg ) m 2—试件(包括夹具、安装螺钉)质量(kg ) A — 试验加速度(m/s 2) 2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 2.1 A=ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2) V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz ) 2.2 V=ωD ×10-3 ………………………………………………公式(3) 式中:V 和ω与“2.1”中同义 D —位移(mm 0-p )单峰值 2.3 A=ω2 D ×10-3 ………………………………………………公式(4) 式中:A 、D 和ω与“2.1”,“2.2”中同义 公式(4)亦可简化为: A= D f ?250 2 式中:A 和D 与“2.3”中同义,但A 的单位为g 1g=9.8m/s 2 所以: A ≈D f ?25 2 ,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 3.1 加速度与速度平滑交越点频率的计算公式 f A-V = V A 28.6 ………………………………………公式(5) 式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。

3.2 速度与位移平滑交越点频率的计算公式 D V f D V 28.6103?=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。 3.3 加速度与位移平滑交越点频率的计算公式 f A-D =D A ??2 3 )2(10π ……………………………………公式(7) 式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。 根据“3.3”,公式(7)亦可简化为: f A-D ≈5× D A A 的单位是m/s 2 4、 扫描时间和扫描速率的计算公式 4.1 线性扫描比较简单: S 1= 1 1 V f f H - ……………………………………公式(8) 式中: S1—扫描时间(s 或min ) f H -f L —扫描宽带,其中f H 为上限频率,f L 为下限频率(Hz ) V 1—扫描速率(Hz/min 或Hz/s ) 4.2 对数扫频: 4.2.1 倍频程的计算公式 n=2Lg f f Lg L H ……………………………………公式(9) 式中:n —倍频程(oct ) f H —上限频率(Hz ) f L —下限频率(Hz ) 4.2.2 扫描速率计算公式 R= T Lg f f Lg L H 2/ ……………………………公式(10) 式中:R —扫描速率(oct/min 或)

matlab功率谱估计

功率谱估计及其MATLAB仿真 1经典功率谱估计 经典功率谱估计是将数据工作区外的未知数据假设为零,相当于数据加窗。经典功率谱估计方法分为:相关函数法(BT法)、周期图法以及两种改进的周期图估计法即平均周期图法和平滑平均周期图法,其中周期图法应用较多,具有代表性。 1.1相关函数法(BT法) 该方法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。当延迟与数据长度相比很小时,可以有良好的估计精度。 Matlab代码示例1(Btfangfa.M): Fs=500;%采样频率 n=0:1/Fs:1; xn=cos(2*pi*40*n)+3*cos(2*pi*90*n)+randn(size(n));%产生含有噪声的序列 nfft=512; cxn=xcorr(xn,'unbiased');%计算序列的自相关函数 CXk=fft(cxn,nfft); Pxx=abs(CXk); index=0:round(nfft/2-1); %Round towards nearest integer. k=index*Fs/nfft; plot_Pxx=10*log10(Pxx(index+1)); figure(1); plot(k,plot_Pxx); 结果如下: 1.2周期图法(periodogram) 周期图法是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。Matlab代码示例2(PEriod.M): Fs=600; n=0:1/Fs:1;

matlab实现功率谱密度分析psd

matlab实现功率谱密度分析psd及详细解说 功率谱密度幅值的具体含义?? 求信号功率谱时候用下面的不同方法,功率谱密度的幅值大小相差很大! 我的问题是,计算具体信号时,到底应该以什么准则决定该选用什么方法啊? 功率谱密度的幅植的具体意义是什么??下面是一些不同方法计算同一信号的matlab 程序!欢迎大家给点建议! 直接法: 直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); window=boxcar(length(xn)); %矩形窗 nfft=1024; [Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法 plot(f,10*log10(Pxx)); 间接法: 间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); nfft=1024; cxn=xcorr(xn,'unbiased'); %计算序列的自相关函数 CXk=fft(cxn,nfft); Pxx=abs(CXk);

功率及功率谱计算

功率谱定义 从确定性信号功率计算开始 ()()221 11lim lim 222T T T T T P x t dt X d T T ωωπ∞--∞→∞→∞==?? ()()21lim 2T T S X T ωω→∞= S(w)为功率谱密度,简称功率谱 则 ()12P S d ωωπ+∞-∞= ? 随机信号的功率谱密度 (1)样本功率谱与功率谱密度 ()()21,lim ,2X T T S X T ωξωξ→∞= 针对一个具体的样本而言,其是一个确定性的信号 (2) 随机信号的平均功率及平均功率谱密度 ()X X P E P ξ=???? 需要对具体的样本取概率均值才能计算出功率 ()()()21,lim ,2X X T T S E S E X T ωωξωξ→∞??==?????? 故功率谱密度是对所有概率取期望的反应。 (3)自相关函数与功率谱密度 ()()R S τω? (4)信号的自相关函数计算 分为确定信号和随机信号 确定信号 02002*0 1()lim ()()T T x T R x t x t dt T ττ-→∞=-? 周期信号 0202*0 1()()()T T x R x t x t dt T ττ-=-? 随机信号 *()[()()]x R E x t x t ττ=- 2 功率计算 (1)根据定义来计算

(2)周期信号如何计算 0cos()A t ω的计算 200()()1()[]2 A A s d T πσωωπσωωωω+∞-∞-++==?不好算因此放弃,但是应该可以类推得出结论 (3)自相关函数计算 0cos()A t ω的计算 /2 200/2 /222000/2201()cos()cos(())cos()cos(2)1[]2 cos()2 T T T T r A t t d T A A t d T A τωωτωωτωωτωωτ+-+-=-+-==?? 所以其功率谱为 200()2 A πσωωσωω(-)+(+) 0j t Ae ω的计算 0000/2()2/2 /22/2 21()1T j t j t T T j T j r A e e dt T A e dt T A e ωωτωτωτ τ+---+-===?? 总结:因此周期函数,首先转换成傅里叶级数,然后再通过自相关函数的定义计算自相关函数,得到其功率谱密度。

matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数

现代通信原理作业一 姓名:张英伟学号:8036 班级:13级理工部3班 利用matlab完成: ●产生正弦波信号、均匀白噪声以及高斯白噪声并分别将两种噪声叠加到正弦 波信号上,绘出波形。 ●分别求取均匀白噪声序列和高斯白噪声序列的自相关及功率谱密度,绘出波 形。 一、白噪声区别及产生方法 1、定义: 均匀白噪声:噪声的幅度分布服从均匀分布,功率谱密度在整个频域内均匀分布的噪声。 高斯白噪声:噪声的幅度分布服从正态分布,功率谱密度在整个频域内均匀分布的噪声。 2、matlab仿真函数: rand函数默认产生是区间在[0,1]的随机数,这里需要利用公式: z2=a+(b-(a))*rand(m,n)............(公式1) randn函数默认产生均值是0、方差是1的随机序列,所以可以用其来产生均值为0、方差为1的正态分布白噪声,即N(0,12)。利用公式: z1=a+b*randn(1,n).................(公式2) 可以产生均值为a,方差为b2 高斯白噪声,即N(a,b2)。 二、自相关函数与功率谱密度之间的关系 1、功率谱密度:每单位频率波携带的功率,这被称为信号的功率谱密度。 2、自相关函数:描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。 3、维纳-辛钦定理: 由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。幸运的是维纳-辛钦定理提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。 4、平稳随机过程:是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。(就是指得仅一个随机过程,中途没有变成另外一个统计特性的随机过程)

(完整版)功率谱估计性能分析及Matlab仿真

功率谱估计性能分析及Matlab 仿真 1 引言 随机信号在时域上是无限长的,在测量样本上也是无穷多的,因此随机信号的能量是无限的,应该用功率信号来描述。然而,功率信号不满足傅里叶变换的狄里克雷绝对可积的条件,因此严格意义上随机信号的傅里叶变换是不存在的。因此,要实现随机信号的频域分析,不能简单从频谱的概念出发进行研究,而是功率谱[1]。 信号的功率谱密度描述随机信号的功率在频域随频率的分布。利用给定的 N 个样本数据估计一个平稳随机信号的功率谱密度叫做谱估计。谱估计方法分为两大类:经典谱估计和现代谱估计。经典功率谱估计如周期图法、自相关法等,其主要缺陷是描述功率谱波动的数字特征方差性能较差,频率分辨率低。方差性能差的原因是无法获得按功率谱密度定义中求均值和求极限的运算[2]。分辨率低的原因是在周期图法中,假定延迟窗以外的自相关函数全为0。这是不符合实际情况的,因而产生了较差的频率分辨率。而现代谱估计的目标都是旨在改善谱估计的分辨率,如自相关法和Burg 法等。 2 经典功率谱估计 经典功率谱估计是截取较长的数据链中的一段作为工作区,而工作区之外的数据假设为0,这样就相当将数据加一窗函数,根据截取的N 个样本数据估计出其功率谱[1]。 周期图法( Periodogram ) Schuster 首先提出周期图法。周期图法是根据各态历经的随机过程功率谱的定义进行的谱估计。 取平稳随机信号()x n 的有限个观察值(0),(1),...,(1)x x x n -,求出其傅里叶变换 1 ()()N j j n N n X e x n e ω ω---==∑ 然后进行谱估计

功率谱估计介绍(介绍了matlab函数)

功率谱估计介绍 谱估计在现代信号处理中是一个很重要的课题,涉及的问题很多。在这里,结合matlab,我做一个粗略介绍。功率谱估计可以分为经典谱估计方法与现代谱估计方法。经典谱估计中最简单的就是周期图法,又分为直接法与间接法。直接法先取N点数据的傅里叶变换(即频谱),然后取频谱与其共轭的乘积,就得到功率谱的估计;间接法先计算N点样本数据的自相关函数,然后取自相关函数的傅里叶变换,即得到功率谱的估计.都可以编程实现,很简单。在matlab中,周期图法可以用函数periodogram实现。 周期图法估计出的功率谱不够精细,分辨率比较低。因此需要对周期图法进行修正,可以将信号序列x(n)分为n个不相重叠的小段,分别用周期图法进行谱估计,然后将这n段数据估计的结果的平均值作为整段数据功率谱估计的结果。还可以将信号序列x(n)重叠分段,分别计算功率谱,再计算平均值作为整段数据的功率谱估计。 种称为分段平均周期图法,一般后者比前者效果好。加窗平均周期图法是对分段平均周期图法的改进,即在数据分段后,对每段数据加一个非矩形窗进行预处理,然后在按分段平均周期图法估计功率谱。相对于分段平均周期图法,加窗平均周期图法可以减小频率泄漏,增加频峰的宽度。welch法就是利用改进的平均周期图法估计估计随机信号的功率谱,它采用信号分段重叠,加窗,FFT 等技术来计算功率谱。与周期图法比较,welch法可以改善估计谱曲线的光滑性,大大提高谱估计的分辨率。matlab中,welch法用函数psd实现。调用格式如下: [Pxx,F] = PSD(X,NFFT,Fs,WINDOW,NOVERLAP) X:输入样本数据 NFFT:FFT点数 Fs:采样率 WINDOW:窗类型 NOVERLAP,重叠长度 现代谱估计主要针对经典谱估计分辨率低和方差性不好提出的,可以极大的提高估计的分辨率和平滑性。可以分为参数模型谱估计和非参数模型谱估计。参数模型谱估计有AR模型,MA模型,ARMA模型等;非参数模型谱估计有最小方差法和MUSIC法等。由于涉及的问题太多,这里不再详述,可以参考有关资料。matlab中,现代谱估计的很多方法都可以实现。music方法用pmusic命令实现;pburg函数利用burg法实现功率谱估计;pyulear函数利用yule-walker算法实现功率谱估计等等。 另外,sptool工具箱也具有功率谱估计的功能。窗口化的操作界面很方便,而且有多种方法可以选择 在海杂波抑制的研究中,对海杂波谱分析一定要用到谱估计理论,一定得花时间学好!

功率谱和功率谱密度的区别

谱让人联想到的Fourier变换,是一个时间平均(time average)概念,对能量就是能量谱,对功率就是功率谱。 功率谱的概念是针对功率有限信号的,所表现的是单位频带内信号功率随频率的变化情况。保留了频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。 有两点需要注意: 1. 功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机的频域序列) 2. 功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶矩是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。 频谱分析: 对动态信号在频率域内进行分析,分析的结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变量的频谱函数F(ω)。频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密度等等。频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。 功率谱密度: 功率谱密度(PSD),它定义了信号或者时间序列的功率如何随频率分布。这里功率可能是实际物理上的功率,或者更经常便于表示抽象的信号被定义为信号数值的平方,也就是当信号的负载为1欧姆(ohm)时的实际功率。

由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。维纳-辛钦定理(Wiener-Khinchin theorem)提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。 信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。 随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。一般用具有统计特性的功率谱来作为谱分析的依据。 功率谱与自相关函数是一个傅氏变换对。 功率谱具有单位频率的平均功率量纲。所以标准叫法是功率谱密度。从名字分解来看就是说,观察对象是功率,观察域是谱域。 通过功率谱密度函数,可以看出随机信号的能量随着频率的分布情况。像白噪声就是平行于一条直线。 一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。可以有三种办法来重新定义谱密度,来克服上述困难。 1. 用相关函数的傅立叶变换来定义谱密度; 2. 用随机过程的有限时间傅立叶变换来定义谱密度; 3. 用平稳随机过程的谱分解来定义谱密度。 三种定义方式对应于不同的用处,首先第一种方式前提是平稳随机过程不包含周

噪声系数的原理和测试方法

噪声系数测试方法 针对手机等接收机整机噪声系数测试问题,该文章提出两种简单实用的方法,并分别讨论其优缺点,一种方法是用单独频谱仪进行测试,精度较低;另一种方法是借助噪声测试仪的噪声源来测试,利用冷热负载测试噪声系数的原理,能够得到比较精确的测量结果。 图1是MAXIM公司TD-SCDMA手机射频单元参考设计的接收电路,该通道电压增益大于100dB,与基带单元接口为模拟I/Q信号,我们需要测量该通道的噪声系数。采用现有的噪声测试仪表是HP8970B,该仪表所能测量的最低频率为10MHz,而TD-SCDMA基带I/Q信号最高有用频率成份为640KHz,显然该仪表不能满足我们的测量需求。下面我们将介绍两种测试方案,并讨论其测试精度,最后给出实际测试数据以做对比。 图1:MAXIM公司TD-SCDMA手机射频接收电路。 利用频谱仪直接测试 利用频谱仪直接测量噪声系数的仪器连接如图2所示,其中点频信号源用于整个通道增益的校准,衰减器有两个作用,一是起到改善前端匹配的作用;二是做通道增益校准使用,因接收机增益往往很高,大于 100dB,而一些信号源不能输出非常弱的信号,配合该衰减器即能完成该功能。 测量步骤一:先利用信号源产生一个点频信号(一般我们感兴趣的是接收机小信号时的噪声系数,故此时点频信号电平应接近灵敏度电平),频点与本振信号错开一点,这样在基带I/Q端口可以得到一个点频信号,调节接收机通道增益使I/Q端点频信号幅度适中,测量接收机输入与输出端的点频信号大小可以求得这时的通道增益,记为G。

测量步骤二:接步骤一,关闭信号源,保持接收机所有设置不变,用频谱仪测量I/Q端口在刚才点频频点处的噪声功率谱密度,I端口记为Pncdensity(dBm/Hz), Q端口记为Pnsdensity(dBm/Hz),则接收通道噪声系数有下式给出: 上式中kb表示波尔兹曼常数,F是噪声系数真值,我们用NF表示噪声系数的对数值,NF=10lg(F), G表示整个通道增益,T1为当前热力学温度,T0等于290K。假定T1=T0,容易求得NF的显式表达式如下: 或者: 关于方程2与方程3的正确性,我们可以做如下简单推导。先考虑点频情况,设接收机输入端点频信号为: 接收机I/Q端口点频信号分别为:

功率谱密度估计方法的MATLAB实现

功率谱密度估计方法的MATLAB实现 在应用数学和物理学中,谱密度、功率谱密度和能量谱密度是一个用于信号的通用概念,它表示每赫兹的功率、每赫兹的能量这样的物理量纲。在物理学中,信号通常是波的形式,例如电磁波、随机振动或者声波。当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)或者谱功率分布(spectral power distribution, SPD)。功率谱密度的单位通常用每赫兹的瓦特数(W/Hz)表示,或者使用波长而不是频率,即每纳米的瓦特数(W/nm)来表示。信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。信号功率谱的概念和应用是电子工程的基础,尤其是在电子通信系统中,例如无线电和微波通信、雷达以及相关系统。因此学习如何进行功率谱密度估计十分重要,借助于Matlab工具可以实现各种谱估计方法的模拟仿真并输出结果。下面对周期图法、修正周期图法、最大熵法、Levinson递推法和Burg法的功率谱密度估计方法进行程序设计及仿真并给出仿真结果。 以下程序运行平台:Matlab R2015a(8.5.0.197613) 一、周期图法谱估计程序 1、源程序 Fs=100000; %采样频率100kHz N=1024; %数据长度N=1024 n=0:N-1; t=n/Fs; xn=sin(2000*2*pi*t); %正弦波,f=2000Hz Y=awgn(xn,10); %加入信噪比为10db的高斯白噪声 subplot(2,1,1); plot(n,Y) title('信号') xlabel('时间');ylabel('幅度');

AR功率谱估计MatlAB

AR模型的谱估计是现代谱估计的主要内容 AR模型的谱估计是现代谱估计的主要内容。 1.AR 模型的Yule—Walker方程和Levinson-Durbin递推算法:在MATLAB中,函数levinson和aryule都采用 Levinson-Durbin递推算法来求解AR模型的参数a1,a2,……,ap及白噪声序列的方差,只是两者的输入参数不同,它们的格式为: A=LEVINSON(R,ORDER) A=ARYULE(x,ORDER) 两函数均为定阶ORDER的求解,但是函数levinson的输入参数要求是序列的自相关函数,而函数aryule的输入参数为采样序列。 下面语句说明函数levinson和函数aryule的功能是相同的: 例子: randn('seed',0) a=[1 0.1 0.2 0.3 0.4 0.5]; x=impz(1,a,20)+randn(20,1)/20; r=xcorr(x,'biased'); r(1:length(x)-1)=[]; A=levinson(r,5) B=aryule(x,5) 2.Burg算法: 格式为:A=ARBURG(x,ORDER); 其中x为有限长序列,参数ORDER用于指定AR 模型的阶数。以上面的例子为例: randn('seed',0) a=[1 0.1 0.2 0.3 0.4 0.5]; x=impz(1,a,20)+randn(20,1)/20; A=arburg(x,5)

3.改进的协方差法: 格式为:A=ARMCOV(x,ORDER); 该函数用来计算有限长序列x(n)的ORDER阶AR 模型的参数。例如:输入下面语句: randn('seed',0) a=[1 0.1 0.2 0.3 0.4 0.5]; x=impz(1,a,20)+randn(20,1)/20; A=armcov(x,5) AR模型阶数P的选择: AR 模型阶数P一般事先是不知道的,需要事先选定一个较大的值,在递推的过程中确定。在使用Levinson—Durbin递推方法时,可以给出由低阶到高阶的每一组参数,且模型的最小预测误差功率Pmin(相当于白噪声序列的方差)是递减的。直观上讲,当预测误差功率P达到指定的希望值时,或是不再发生变化时,这时的阶数即是应选的正确阶数。 因为预测误差功率P是单调下降的,因此,该值降到多少才合适,往往不好选择。比较常见的准则是: 最终预测误差准则:FPE(r)=Pr{[N+(r+1)]/ [N-(r+1)]} 信息论准则:AIC(r)=N*log(Pr)+2*r 上面的N为有限长序列x(n)的长度,当阶数r由1增加时,FPE(r) 和AIC(r)都将在某一r处取得极小值。将此时的r定为最合适的阶数p。 MATLAB中AR模型的谱估计的函数说明: 1. Pyulear函数: 功能:利用Yule--Walker方法进行功率谱估计. 格式: Pxx=Pyulear(x,ORDER,NFFT) [Pxx,W]=Pyulear(x,ORDER,NFFT) [Pxx,W]=Pyulear(x,ORDER,NFFT,Fs) Pyulear(x,ORDER,NFFT,Fs,RANGE,MAGUNITS)

功率谱密度

功率谱密度 不同形式的数字基带信号具有不同的频谱结构,分析数字基带信号的频谱特性,以便合理地设计数字基带信号,使得消息代码变换为适合于给定信道传输特性的结构,是数字基带传输必须考虑的问题。 在通信中,除特殊情况(如测试信号)外,数字基带信号通常都是随机脉冲序列。因为,如果在数字通信系统中所传输的数字序列是确知的,则消息就不携带任何信息,通信也就失去了意义。故我们面临的是一个随机序列的谱分析问题。 考察一个二进制随机脉冲序列。设脉冲、分别表示二进制码“0”和“1”, 为 码元的间隔,在任一码元时间内,和出现的概率分别为p和1-p。 则随机脉冲序列x(t)可表示成: 其中 研究由上面二式所确定的随机脉冲序列的功率谱密度,要用到概率论与随机过程的有关知识。可以证明,随机脉冲序列x(t)的双边功率谱公式(1): 其中、分别为、的傅氏变换,。 可以得出如下结论: (1)随机脉冲序列功率谱包括两部分:连续谱(第一项)和离散谱(第二项)。对于连续谱而言,由于代表数字信息的及不能完全相同,故,因此,连 续谱总是存在;而对于离散谱而言,则在一些情况下不存在,如及是双极性的脉冲,且出现概率相同时。 (2)当、、p及给定后,随机脉冲序列功率谱就确定了。 上式的结果是非常有意义的,它一方面能使我们了解随机脉冲序列频谱的特点,以及如何去具体地计算它的功率谱密度;另一方面根据它的离散谱是否存在这一特点,将使我们明确能否从脉冲序列中直接提取离散分量,以及采取怎样的方法可以从基带脉冲序列中获得所需的离散分量。这一点,在研究位同步、载波同步等问题时,将是十分重要的;再一方面,根据它的连续谱可以确定序列的带宽(通常以谱的第一个零点作为序列的带宽)。 下面,以矩形脉冲构成的基带信号为例,通过几个有代表性的特例对功率谱密度公式的应用及意义做进一步的说明,其结果对后续问题的研究具有实用意义。

功率谱估计的MATLAB实现

实验功率谱估计 实验目的: 1、掌握最大熵谱估计的基本原理。 2、了解最终预测误差(FPE)准则。 3、掌握周期图谱估计的基本原理。 4、掌握传统谱估计中直接法与间接法之间的关系。 5、复习快速傅里叶变换与离散傅里叶变换之间关系。 实验内容: 1、设两正弦信号的归一化频率分别为0.175和0.20,用最大熵法编程计算信噪比S/N=30dB、N=32点时该信号的最大熵谱估计结果。 2、用周期图法编程计算上述信号的谱估计结果。 程序示例: 1、最大熵谱估计 clc; N=32; SNR=30; fs=1; t=1:N; t=t/fs; y=sin(2*pi*0.175*t)+sin(2*pi*0.20*t); x = awgn(y,SNR); M=1; P(M)=0; Rx(M)=0; for n=1:N P(M)=P(M)+(abs(x(n)))^2; ef(1,n)=x(n); eb(1,n)=x(n); end P(M)=P(M)/N; Rx(M)=P(M); M=2;

A=0; D=0; for n=M:N A=A+ef(M-1,n)*eb(M-1,n-1); D=D+(abs(ef(M-1,n)))^2+(abs(eb(M-1,n-1)))^2; end xishu=-2*A/D; a(M-1,M-1)=-2*A/D; P(M)=P(M-1)*(1-(abs(xishu))^2); FPE(M-1)=P(M)*(N+M)/(N-M); TH=FPE(M-1); for n=M:N ef(M,n)=ef(M-1,n)+xishu*eb(M-1,n-1); eb(M,n)=eb(M-1,n-1)+xishu*ef(M-1,n); end M=M+1; A=0; D=0; for n=M:N A=A+ef(M-1,n)*eb(M-1,n-1); D=D+(abs(ef(M-1,n)))^2+(abs(eb(M-1,n-1)))^2; end xishu=-2*A/D; a(M-1,M-1)=-2*A/D; P(M)=P(M-1)*(1-(abs(xishu))^2); FPE(M-1)=P(M)*(N+M)/(N-M); for m=1:M-2 a(M-1,m)=a(M-2,m)+xishu*a(M-2,M-1-m); end while FPE(M-1)

功率谱密度

功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。一般用于随机振动分析,连续瞬态响应只能通过概率分布函数进行描述,即出现某水平响应所对应的概率。 功率谱密度是结构在随机动态载荷激励下响应的统计结果,是一条功率谱密度值—频率值的关系曲线,其中功率谱密度可以是位移功率谱密度、速度功率谱密度、加速度功率谱密度、力功率谱密度等形式。数学上,功率谱密度值—频率值的关系曲线下的面积就是方差,即响应标准偏差的平方值。 谱是个很不严格的东西,常常指信号的Fourier变换,是一个时间平均(time average)概念功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。有两个重要区别:1。功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机的频域序列)2。功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶局是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。热心网友回答提问者对于答案的评价:谢谢解答。 频谱分析(也称频率分析),是对动态信号在频率域内进行分析,分析的 结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变 量的频谱函数F(ω)。频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密 度等等。频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。 功率谱是个什么概念?它有单位吗? 随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。一般用具有统计特性的功率谱来作为谱分析的依据。功率谱与自相关函数是一个傅氏变换对。功率谱具有单位频率的平均功率量纲。所以标准叫法是功率谱密度。通过功率谱密度函数,可以看出随机信号的能量随着频率的分布情况。像白噪声就是平行于w轴,在w轴上方的一条直线。 功率谱密度,从名字分解来看就是说,观察对象是功率,观察域是谱域,通常指频域,密度,就是指观察对象在观察域上的分布情况。一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。可以有三种办法来重新定义谱密度,来克服上述困难。 一是用相关函数的傅立叶变换来定义谱密度;二是用随机过程的有限时间傅立叶变换来定义谱密度;三是用平稳随机过程的谱分解来定义谱密度。三种定义方式对应于不同的用处,首先第一种方式前提是平稳随机过程不包含周期分量并且均值为零,这样才能保证相关函数在时差趋向于无穷时衰减,所以lonelystar说的不全对,光靠相关函数解决不了许多问题,要求太严格了;对于第二种方式,虽然一个平稳随机过程在无限时间上不能进行傅立叶变换,但是对于有限区间,傅立叶变换总是存在的,可以先架构有限时间区间上的变换,在对时间区间取极限,这个定义方式就是当前快速傅立叶变换(FFT)估计谱密度的依据;第三种方式是根据维纳的广义谐和分析理论:Generalized harmonic analysis, Acta Math, 55(1930),117-258,利用傅立叶-斯蒂吉斯积分,对均方连续的零均值平稳随机过程进行重构,在依靠正交性来建立的。 另外,对于非平稳随机过程,也有三种谱密度建立方法,由于字数限制,功率谱密度的单位

matlab求功率谱

matlab实现经典功率谱估计 fft做出来是频谱,psd做出来是功率谱;功率谱丢失了频谱的相位信息;频谱不同的信号其功率谱是可能相同的;功率谱是幅度取模后平方,结果是个实数 matlab中自功率谱密度直接用psd函数就可以求,按照matlab的说法,psd能实现Welch法估计,即相当于用改进的平均周期图法来求取随机信号的功率谱密度估计。psd求出的结果应该更光滑吧。 1、直接法: 直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); window=boxcar(length(xn)); %矩形窗 nfft=1024; [Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法 plot(f,10*log10(Pxx)); 2、间接法: 间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); nfft=1024; cxn=xcorr(xn,'unbiased'); %计算序列的自相关函数 CXk=fft(cxn,nfft); Pxx=abs(CXk); index=0:round(nfft/2-1); k=index*Fs/nfft;

噪声功率谱密度与方差之间的关系

关于matlab 中噪声功率谱密度与方差之间的关系的理解 1. 连续时间系统 高斯白噪声的定义为:如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。 故对于连续时间系统,理想的高斯白噪声的功率谱密度是一个常数,设为n0,而带宽是无限宽的,其功率为: 0*n ∞=∞ (1) 在n0不是为无穷小的情况下,理想的噪声功率Pn 是无限大的。 而实际当中,噪声带宽是有限宽的,只需要在我们所关心的频带范围内,噪声功率谱密度是个常数,则我们可认为其是高斯白噪声。设噪声单边功率谱密度为0n ,低通带宽为W ,则其噪声功率为: 0*2 n n P W = (2) 如图1.1所示: W 频率/HZ 图1.1 我们知道,高斯白噪声的分布为2 ~(0,)X N σ,则其功率为: 222()()()()n P E x D x E x D x σ==+== (3) 故对于低通系统有: 20/2 n W σ= (4) 而对于带通系统,如图1.2所示,有: 200*2*2n n P W n W σ=== (5)

W -W 频率/HZ 2. 离散时间系统 对于离散时间系统而言,带宽受到抽样速率fs 的限制。设WGN 一秒内抽取的一组数据样本为: 12[],,....fs x n x x x = 22([])0;([])([])E x n D x n E x n σ=== 2.1理论分析 由于时间为单个的离散点,故理想功率为0;但有下列定义:对于序列[]x n 的能量E 定义为序列各抽样值的平方和,则数据样本的能量为: 2221()*[()]*s f s s E x n f E x n f σ===∑ (6) 将功率定义为序列能量除以序列的时间,即 2*t s b E P f T σ==(单位:J/S ) (7) 式中,Tb 为序列时间,此处等于1S 。 如果功率单位采用W/symbol ,则有: 2/s t s P P f σ==(单位:J/symbol ) 2.2另一种理解 而实际当中,抽样点是一个时间段,认为1/s s T f =时间内的幅值就等于此抽样时刻的幅值,则单位抽样时间内的噪声能量为: 22***t s s s E E T f T σσ=== (6) 则噪声功率(单位:J/symbol )为:

(完整word版)自己编写算法的功率谱密度的三种matlab实现方法

功率谱密度的三种matlab 实现方法 一:实验目的: (1)掌握三种算法的概念、应用及特点; (2)了解谱估计在信号分析中的作用; (3) 能够利用burg 法对信号作谱估计,对信号的特点加以分析。 二;实验内容: (1)简单说明三种方法的原理。 (2)用三种方法编写程序,在matlab 中实现。 (3)将计算结果表示成图形的形式,给出三种情况的功率谱图。 (4)比较三种方法的特性。 (5)写出自己的心得体会。 三:实验原理: 1.周期图法: 周期图法又称直接法。它是从随机信号x(n)中截取N 长的一段,把它视为能量有限x(n)真实功率谱)(jw x e S 的估计)(jw x e S 的抽样. 认为随机序列是广义平稳且各态遍历的,可以用其一个样本x(n)中的一段)(n x N 来估计该随机序列的功率谱。这当然必然带来误差。由于对)(n x N 采用DFT ,就默认)(n x N 在时域是周期的,以及)(k x N 在频域是周期的。这种方法把随机序列样本x(n)看成是截得一段)(n x N 的周期延拓,这也就是周期图法这个名字的来历。

2.相关法(间接法): 这种方法以相关函数为媒介来计算功率谱,所以又叫间接法。这种方法的具体步骤是: 第一步:从无限长随机序列x(n)中截取长度N 的有限长序列列 )(n x N 第二步:由N 长序列)(n x N 求(2M-1)点的自相关函数)(m R x ∧ 序列。 )()(1)(1 m n x n x N m R N n N N x += ∑-=∧ (2-1) 这里,m=-(M-1)…,-1,0,1…,M-1,M N ,)(m R x 是双边序列,但是由自相关函数的偶对称性式,只要求出m=0,。。。,M-1的傅里叶变换,另一半也就知道了。 第三步:由相关函数的傅式变换求功率谱。即 jwm M M m X jw x e m R e S ----=∧∧ ∑= )()(1) 1( 以上过程中经历了两次截断,一次是将x(n)截成N 长,称为加数据窗,一次是将x(n)截成(2M-1)长,称为加延迟窗。因此所得的功率谱仅是近似值,也叫谱估计,式中的)(jw x e S 代表估值。一般取M<

[matlab实现经典功率谱估计]matlab功率谱估计

[matlab实现经典功率谱估计]matlab功率 谱估计 1、直接法: 直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); window=boxcar(length(xn)); %矩形窗 nfft=1024; [Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法 plot(f,10*log10(Pxx)); 2、间接法: 间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1;

%产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); nfft=1024; cxn=xcorr(xn,”unbiased”); %计算序列的自相关函数CXk=fft(cxn,nfft); Pxx=abs(CXk); index=0:round(nfft/2-1); k=index*Fs/nfft; plot_Pxx=10*log10(Pxx(index+1)); plot(k,plot_Pxx); 3、改进的直接法: 对于直接法的功率谱估计,当数据长度N太大时,谱曲线起伏加剧,若N太小,谱的分辨率又不好,因此需要改进。3.1、Bartlett法 Bartlett平均周期图的方法是将N点的有限长序列x(n)分段求周期图再平均。 Matlab代码示例: clear; Fs=1000; n=0:1/Fs:1; xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); nfft=1024; window=boxcar(length(n)); %矩形窗 noverlap=0; %数据无重叠

matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数

现代通信原理作业一 姓名:张英伟学号:133320085208036 班级:13级理工部3班 利用matlab完成: ●产生正弦波信号、均匀白噪声以及高斯白噪声并分别将两种噪声叠加到正弦 波信号上,绘出波形。 ●分别求取均匀白噪声序列和高斯白噪声序列的自相关及功率谱密度,绘出波 形。 一、白噪声区别及产生方法 1、定义: 均匀白噪声:噪声的幅度分布服从均匀分布,功率谱密度在整个频域内均匀分布的噪声。 高斯白噪声:噪声的幅度分布服从正态分布,功率谱密度在整个频域内均匀分布的噪声。 2、matlab仿真函数: rand函数默认产生是区间在[0,1]的随机数,这里需要利用公式: z2=a+(b-(a))*rand(m,n)............(公式1) randn函数默认产生均值是0、方差是1的随机序列,所以可以用其来产生均值为0、方差为1的正态分布白噪声,即N(0,12)。利用公式: z1=a+b*randn(1,n).................(公式2)可以产生均值为a,方差为b2 高斯白噪声,即N(a,b2)。 二、自相关函数与功率谱密度之间的关系 1、功率谱密度:每单位频率波携带的功率,这被称为信号的功率谱密度。 2、自相关函数:描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。 3、维纳-辛钦定理: 由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。幸运的是维纳-辛钦定理提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。 4、平稳随机过程:是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。(就是指得仅一个随机过程,中途没有变成另外一个统计特性的随机过程)

相关文档