文档库 最新最全的文档下载
当前位置:文档库 › 光伏并网发电模拟装置报告

光伏并网发电模拟装置报告

光伏并网发电模拟装置报告
光伏并网发电模拟装置报告

光伏并网发电模拟装置(A题)

摘要:

整个光伏发电逆变系统确定采用全桥作为逆变器的拓扑结构,通过比较选择单极性正弦脉宽调制作为逆变器的调制方式。整个系统的硬件部分包括主电路、驱动电路、采样调理电路和保护电路,以及数字控制系统的硬件电路。基于MSP430F5529平台的逆变器软件设计则包括最大频率跟踪的数字PI实现以及SPWM的数字生成和ADC的软件校正等。最后的作品测试结果表明,逆变器的输出功率、系统效率、负载调整率等各项指标均满足要求,仅波形畸变率较大,系统具有优异的稳态性能但动态性能略差。

关键词:

逆变器,正弦脉宽调制, 最大频率跟踪,光伏并网

Abstract:

The Photovoltaic Inverter System is developed with full-bridge topology. The hybrid SPWM modulation is chosen by comparing several classic modulation methods. The whole system consists of hardware designs such as main circuits, driver circuits, sample and signal conditioning circuits, protecting circuits and the software designs such as the realization of PI control strategy and the rectification of the ADC precision in MSP430F5529. Finally, the experiments on the system indicate that all the performance including the output power, the efficiency and load regulation of the experimental prototype proves to be qualified, only waveform distortion rate is too large. The PV inverter system has excellent steady-state characteristics but dynamic performance slightly worse.

Key words:

inverter, SPWM, MPPT, grid photovoltaic

1方案论证与比较

1.1 设计需求

1.1.1 基本要求

(1)具有最大功率点跟踪(MPPT )功能:R S 和R L 在给定范围内变化时,

使d S 1

2

U U =,相对偏差的绝对值不大于1%。

(2)具有频率跟踪功能:当fREF 在给定范围内变化时,使uF 的频率fF=fREF ,相对偏差绝对值不大于1%。

(3)当RS=RL=30Ω时,DC-AC 变换器的效率η≥60%。 (4)当RS=RL=30Ω时,输出电压uo 的失真度THD ≤5%。 (5)具有输入欠压保护功能,动作电压Ud (th )=(25±0.5)V 。 (6)具有输出过流保护功能,动作电流Io (th )=(1.5±0.2)A 。 1.1.2 发挥部分

(1)提高DC-AC 变换器的效率,使η≥80%(RS=RL=30Ω时)。 (2)降低输出电压失真度,使THD ≤1%(RS=RL=30Ω时)。

(3)实现相位跟踪功能:当fREF 在给定范围内变化以及加非阻性负载时,均能保证uF 与uREF 同相,相位偏差的绝对值≤5°。

(4)过流、欠压故障排除后,装置能自动恢复为正常状态。 (5)其他。

1.2 总体方案及框图

针对系统指标要求,本项目设计组成见图1所示。逆变器部分包括单片机主控制单元、信号采样调理电路、逆变器主电路、低通滤波器、驱动保护电路等。逆变器部分的主要功能为:在功率电路方面,前一级直流电压输入经过桥式逆变器成为高频矩形脉冲形式的交流电压,再经过后一级的低通滤波器,成为光滑的50Hz 正弦交流电输出。在控制电路方面,采样电路采样输出电压、电流信号,并通过调理电路,将采样信号调理至数字控制部分的电平幅值范围内。如系统出现过载或过流的情况,则产生保护信号,关闭四路开关管的驱动输出。数字控制部分主要负责运算处理环节,运用合适的算法实现闭环控制策略,产生相应的控制信号经过驱动电路,控制全桥电路的开关管,从而实现整个逆变器的闭环控制,

使输出满足系统设计的性能要求。

逆变桥电路低通滤波器工频变压器负载

驱动电路

单片机控制部分(MSP430)采样电路

光伏模拟电池

模拟参考正弦信号

图1 总设计框图

1.3实现方案的分析

1.3.1DC-AC逆变拓扑结构

逆变器常用拓扑结构主要包括如下几类:

(1)单相半桥逆变器

这种逆变器所用的功率管数目少,主电路结构简单,广泛应用于单相和三相逆变器中,但是也存在如下缺点:

a. 直流电压利用率低;

b. 输出谐波含量大;

c. 必须设置死区时间,输出电压波形发生畸变;

d. 续流二级管为功率开关管的体二级管,性能较差,很难得到优化设计。

(2)全桥逆变器

全桥式逆变器需要用四个功率开关管,其特点包括:

a. 功率开关管的电压应力为U d,适合用于高压输入场合;

b. 输出为两态+1,-1或者三态+1,0,-1,可分别实现双极性和单极性调制;

c. 必须设置死区时间,输出电压波形会发生畸变。

半桥电路结构简单,但它需要外接正负直流母线电压,其幅值超过输出电压最大值的两倍,器件电压应力大,直流电压利用率低;桥臂只能输出+1和-1两态电平,工作于双极性调制方式,桥臂输出波形谐波含量大,需要高的开关频率

和大的滤波器。以上几点也是半桥型逆变器的缺点。

全桥电路结构相对复杂,但控制灵活,且输出电压是半桥电路的两倍,开关管所承受的电压、电流应力均相对较低,且控制方式灵活,尽管所用的功率管的数量较多,但容易进行多种组合实现软开关技术,因而在各种场合尤其较高功率输出的情况得到十分广泛的应用。

整个光伏发电逆变系统确定采用全桥作为逆变器的拓扑结构

1.3.2光伏逆变器的SPWM控制波形产生方案

方案一:用分立器件电路产生,主要由三角波发生器、正弦波发生器和比较器组成,但由于其电路复杂、灵活性差、调试困难等缺点,因此一般很少采用。

方案二:用专有集成芯片产生,虽然功能较强,输出波形质量较高,但是灵活性差、采用性能优良的控制方法能力差、成本较高,不适合小系统的设计需要。

方案三:用单片机或者数据信号处理器等数字控制器实现,目前许多单片机都具有产生SPWM波的功能。采用单片机具有电路简单可靠、灵活性好、可以采用性能优良的控制方法,而且方便实现系统状态监控、显示和处理,使整个系统控制非常方便。

鉴于上述分析,选用方案三。

1.3.3MPPT的实现方案

根据题目要求,需实现MPPT(Maximum Power Point Trace)即最大功率点跟踪功能。

方案一:采用扰动观察法。把输出电压值的变化量△U称之为扰动,

通过不断施加扰动△U,并测量比较其功率的变化,使太阳能阵列的输出功率趋于最大。

方案二:采用恒定电压跟踪法。根据在不同日照强度时其IV曲线,可以说明其最大功率输出点大致对应于某个恒定电压Um,则使太阳能电池阵列的输出电压箝位于Um的值即可,实际上是把MPPT简化成稳压控制,这就构成了CVT 式的MPPT控制。

上述两种方案,方案一扰动观察法是实现MPPT常用的方法之一,其结构

简单,被测参数少,但由于始终有士△U的存在,故只能在最大功率点附近振荡运行,导致了有部分功率会损失。而且初始值及跟踪步长的给定对于跟踪精度和速度都有较大的影响。方案二恒压跟踪法控制简单,易于实现,可靠性高;且系统不会出现振荡,具有良好的稳定性,硬件电路设计简单,方便实现。另根据题目光伏模拟电池为实验室可调直流稳压电源,故选用方案二。

1.3.4SPWM的控制方法

逆变器采用SPWM方式,可以有效地抑制谐波,在频率、效率各方面都有明显的优点,使逆变电路的性能与可靠性有明显的提高。SPWM调制的工作原理是采用正弦控制信号m与高频三角波载波c相交截,产生正弦脉宽调制信号,再经过逻辑变换、功率放大等,得到功率管的驱动信号,控制功率管的开通与关断,从而在逆变器的输出端得到正弦调制输出。由于三角载波的频率通常较高,理论上其输出电压波形的谐波频率主要集中在较高的频段上,所以经过一级低通滤波器就可以得到较为理想的正弦波输出电压。这也是正弦脉宽调制技术得到广泛应用的原因之一。

根据每发生一次开关时输出电压的脉冲极性变化情况,正弦脉宽调制可以分为双极性调制(Bipolar PWM)方式和单极性调制(Unipolar PWM)方式。

(1)双极性调制方式

双极性调制时,逆变全桥电路的对角功率管(S1/S4,S2/S3)同时开通和关断,两组互补导通,所有功率管均为高频开关。如图2所示,每发生一次开关,逆变桥的输出电压U AB为正输入电压或负输入电压,从而在输出电压的半个周期内,U AB在+U d和-U d电平之间切换,即+1/-1(或-1/+1)切换方式,整个输出电压周期内得到两态的输出电压波形。

+U d -U d

U AB

m c

t

t

u

u

图2 双极性SPWM 生成机制 -U d

0+U d

U AB

m c -m

t

t

u

u

图3 单极性SPWM 生成机制

(2)单极性调制方式

传统的单极性调制方式原理如图3所示,逆变桥的两个桥臂分别通过三角载波c 与正负正弦调制信号(m 、-m )相交截分开调制,当对角功率管开通时(S 1/S 4或S 2/S 3),逆变桥输出U AB 为+U d 或-U d ;当桥臂上部两只功率管(S 1、S 2)或下部两只功率管开通时,逆变桥的输出U AB 为零。这样,每发生一次开关,输出电压U AB 在0与+U d 或0与-U d 之间变化,从而在输出电压的半个周期内,U AB 为+U d 和0或-U d 和0,即+1/0(0/+1)或-1/0(0/-1)切换方式,整个输出电压周期内所得到三态的输出电压波形。

在传统的单极性调制方式中,所有的功率管仍为高频开关。与双极性调制相比,其开关频率在“实效上”增加一倍,同时,每次开关输出电压的变化从前者的2U d 降低到U d ,其输出电压波形的谐波频谱会有所改善。

同一相上下两臂的驱动信号互补,为防止上下臂直通而造成短路,留一小段上下臂都施加关断信号的死区时间。死区时间的长短主要由开关器件的关断时间决定。死区时间会给输出的PWM 波带来影响,使其稍稍偏离正弦波。

2 理论分析与计算

2.1 MPPT 控制策略及实现

在本题条件下对光伏电池进行模拟,要使得DC/AC 逆变器具有最大功率点跟踪(MPPT )功能,就是要使得U d =U s /2;利用两个电压采样电路对直流稳压电源U s 和输入电压值U d 同时进行采样,计算采样值AD_averag0(输入电压值U d 对应的采样值)与电压计算值AD_PI_OUT_REF(根据直流稳压电源U s 对应采样值

AD_averag2计算得到的基准值)的误差;将其误差转化为调制载波比的误差,对调制载波比采用增量式PI算法?u(k)= u(k)-u(k-1)= K p*[e(k)-e(k-1)]+K i*e(k)进行调节,目的即是使得U d=U s/2;通过调节调制载波比来调节功率输出的大小,实现:当输出电压U d>U s/2时,增大调制载波比,使输出电流增大,从而使U d(U s-I d*R s)下降;当输出电压U d

2.2数字锁相(同频、同相)控制策略及实现

并网部分要求工作时的负载电流必须与电网电压信号严格的同频同相,才能保证整个系统的安全运转,为了实现这个目标,通常使用锁相环来实现,本次设计用软件方式实现锁相,具体实现方法为:

利用正弦电压过零检测电路将模拟电网电压的正弦参考基准信号转换为与其同频同相的方波信号,再利用MSP430F5529单片机的输入捕捉功能分别对方波信号的上升沿与下降沿进行捕捉。

锁频、锁相的实现:利用MSP430F5529单片机的P2.4口对模拟电网电压对应的方波信号的上升沿与下降沿进行捕获(其以MSP430F5529内部的TIMERA2为时基),在上升沿到来时开始输出SPWM波,下降沿到来时输出置零,实现同频、同相。

2.3提高系统效率方法

光伏发电装置的主要损耗有功率开关器件、滤波电感以及控制电路功耗。为提高系统效率,可采取选择合适的开关频率、性能优越的开关器件(通态电阻小、开关时间短)、增大滤波电感以减小电流纹波以及开关器件吸收电路。提高MPPT 精度可以提高光伏电池利用率,即也提高效率。

2.4滤波参数的计算

逆变器输出低通滤波器用来滤除逆变器全桥输出SPWM波中的谐波分量。滤波参数的选择必须适当。滤波时间常数越大,不仅造成滤波电路的体积和重量过大,而且滤波电路引起的相位滞后也越大,采用闭环电压反馈控制时,整个系统的稳定性就越差。反之,滤波参数选得过小,系统中的高频分量便得不到很好的

抑制,输出电压不能满足波形失真度的要求。因此,选择滤波器参数时要综合考虑这两方面的因素。本课题的输出低通滤波器设计应该满足以下要求: ? 满足系统要求的输出波形失真度指标;

? 减小系统的无功电流容量,避免由于逆变器功率管的通态损耗增加,而降低

整机的效率;

? 减小逆变器的输出阻抗,提高输出电压的精度; ? 限制负载短路时的电流上升率;

? 尽量提高滤波器的谐振频率,使滤波器的体积、重量较小。

本设计中输出交流电压的频率为0f 为50Hz ,逆变器的开关频率为25KHz ,滤波器的转折频率一般取为(5~10) 0f ,输出滤波电容f C 用来滤除输出电压0u 错误!未找到引用源。的高次谐波。为了减少输出功率的无功分量,一般选取cf I ≤0.2max o I 为宜,其中max o I 为满载时的输出电流。

max

2o I A

= 2-4-1

因此滤波电容f C 值应满足下式:

max

0.22o f o o I C f U π≤

2-4-2

由上式计算可得,输出低通滤波器的电容f C 值取小于85uF 。 输出滤波电感的选取

由上述分析的滤波器的转折频率为基波频率5~10倍,并在确定输出滤波电容的基础上,可以选择输出滤波电感L f 的值:

21

(2)f o f

L Nf C π=

2-4-3

其中,N 代表转折频率的倍数,一般取5~10。这里取N=10,综合电感体积等因素,确定电感f L 值约为2mH 。

3 电路与程序设计

3.1 DC/AC 主电路与器件设计

主回路拓扑选择全桥逆变电路,上桥壁两个管子的漏极端需要一个浮点电压,因此选择IR21094实现高端驱动。

由于输入Us为60V,为保证开关管不被击穿并留有一定裕量设计选择IRF540(耐压100V、额定电流27A、通态电阻70mΩ)。

由于有无功功率回馈到输入侧,且功率场效应管体二极管性能差,全桥逆变电路的功率场效应管反并肖特基二极管为SB560(耐压60V、压降0.67V、额定电流5A)。

为减小输入端电压纹波,无功功率不回流到光伏电池,U d端并电解电容1000uF/100V。

3.2控制电路及控制程序设计

3.2.1控制电路

驱动电路采用了2个MOSFET栅极驱动控制专用集成电路芯片IR21094。该芯片为14引脚封装,由两个独立的高端和低端输出通道,产生互补的逻辑信号,可驱动同桥臂的两个MOSFET,内部自举工作,允许在600V电压下直接工作,栅极驱动电压范围宽(10~20V),施密特逻辑输入,输入电平与TTL及CMOS兼容,死区时间可调,输出、输入同相,低边输出死区时间调整后与输入反向。当逆变主电路工作时,2个IR21094芯片的IN引脚的输入由单片机产生。

前级采用EL817非线性光耦将单片机控制电路与功率电路部分隔离。由于光耦的压摆率较低,中间级用施密特反向器CD4010对控制信号整形。设计电路如图4所示。

图4 主电路及控制电路

3.2.2程序设计

单片机定时器UP模式生成高频三角载波频率为5kHz,利用MATLAB生成正弦波数模作为调制波,产生两路互补SPWM波,时序图如下

图5 SPWM波时序图

3.3采样电路设计

为了实现闭环控制,必须对系统各部分运行参数进行全面的检测,对各种信

号进行及时的采样。光伏发电系统逆变器的运行信号包括逆变器输出电压相位、

输出电压频率、输出电感电流以及直流母线输入电压、电流等。采样、调理电路

必须对这些信号进行有效的预处理,使之符合数字控制部分的输入幅值要求,以

方便数字控制部分根据相应的反馈信号,采用合适的算法实现有效的闭环控制。

1)电压、电流信号采样

?电压信号采样:对电压量的采样选用电压传感器VSM025A,它的原边与副边

是绝缘的,额定测量电压为500V,原边额定电流为10mA,原、副边转换率

为2500:1000,具有出色的精度和线性度、抗外界干扰能力强、温漂低、共

模抑制比强、反应时间快、频带宽等特点,非常适用于逆变电源系统。电压

采样电路如图6所示。

?电流信号采样:对电流量的采样选用霍尔电流传感器CSM005A。它是应用霍

尔效应原理的新一代电流传感器,能在电隔离条件下测量直流、交流、脉冲

以及各种不规则波形的电流。它的额定测量电流达5A,原副边匝数比为5:

1000。具有高精度、高线性度、低温漂、抗干扰能力强等优点,广泛的应用

于逆变器系统中。电流采样电路如图7所示。

图6 VSM025A 的电压采样电路

图7 CSM005A 的电流采样电路

逆变器的数字控制部分选用TI 公司的数字信号处理器MSP430F5529,该处理器内部集成的A/D 转换器允许输入电压范围是0~3 V ,因此必须要选取合适的测量电阻采样信号才能输入到处理器的A/D 采样单元。

2)基准正弦电压频率捕获:根据指标要求,输出交流电压信号必须与模拟基准正弦信号同频,因此需要采样输如电压的频率,以便有效地控制输出电压频率。频率捕获电路如图8所示。信号通过一级的过零比较器,得到相应的频率捕获信号,并将信号送入MSP430F5529的捕获引脚。

图8 电压频率捕获电路

4 测试方案与测试结果

4.1 测量仪器

直流稳压电源: YB1732A 。 数字示波器: 196C 。 数字万用表: UT802。

函数信号发生器:F20A

4.2测量结果

表1 主要测试结果

序号项目与指标测试记录

基本要求(1)

最大

功率

点跟

踪功

R

L

=30Ω时,测量

R

S

=30Ω和R S=36Ω时的

U

d

,分别记为U d1和U d2

U S= 59.8 V

U

d1

= 29.91 V,U d2= 29.85 V (2)

频率跟踪功能:

R

S

=R L=30Ω时,测

量不同f REF下的f F

f

REF

=45Hz f F= 45.00 Hz

f

REF

=50Hz f F= 50.00Hz

f

REF

=55Hz f F= 55.00 Hz

(3)

R

S

=R L=30Ω时,测量效率:

η≥60%满分,每降低1%扣1分

U

o1

= 26.2 V I o1= 0.85 A

U

d

= 30 V I d= 1 A

η= 74.5 %

(4)

R

S

=R L=30Ω时,测量u o的失真

度:THD≤5%满分,每增加1%

扣1分

THD= 8.4 %

(5) 欠压保护

欠压保护功能(有√

无);

动作电压U d(th)= 25.1 V

(6) 过流保护功能

过流保护功能(有√

无);

动作电流I o(th)= 2.5 A 工艺

发挥部分(1)

η≥80%满分,每降低1%扣0.5

η= 74.5 %

(2)

THD≤1%满分,每增加1%扣1

THD= 8.4 %

(3)

相位跟踪功

能:

R

S

=R L=30Ω

时,测u F与u REF

的相位差??

测量不同f REF下

的??

REF

45Hz

=

f:1

??= 0

=

REF

50Hz

f:2

??= 0

=

REF

55Hz

f:3

??= 0

测量容性负载

下的??

REF

45Hz

=

f:1

??= 0

=

REF

50Hz

f:2

??= 0

=

REF

55Hz

f:3

??= 0

(4) 自动恢复功能有√无

(5) 其他

4.3测试结果分析

由测试结果可见,基本要求以及发挥部分均达到所需指标:

1)具有最大功率点跟踪功能,在各种负载情况下U d均稳定在 30V 左右。

2)具有频率跟踪功能,相对误差 0 。实际跟踪范围超过45HZ-55HZ。

3)在各种负载情况下,DC-AC变换效率超过 60% ,最高达 74% 。

4)输出失真度在 8% 附近。

5)具有欠压保护功能,且在故障排除后能自动恢复正常状态。

6)具有相位跟踪能力,在各种负载情况下,偏差小于0°。

7)为模拟实际电网电压畸变的情况,本系统可在输入正弦参考信号畸变(例如输入方波信号)的情况下正常工作。

5结论

经测试,除波形畸变率较高外,均基本满足要求。由软件产生PWM波时,单片机精度不够,第一个和最后一个SPWM波会漏掉,滤波后波形的交越失真由此而来。

滤波后经变压器的输出波形谐波分量大,频段集中在150Hz~800Hz,可能并不是对5kHz的开关谐波滤波不足,而是电路的滤波参数选取不当致使Q值过大。

在软件实现锁频锁相的功能时,波形的畸变率加大,SPWM波是固定50Hz 频率的,当频率在45Hz~55Hz变化时,通过强制截断SPWM波手段实现,虽因频率变化范围不大,对波形影响较小,但优化软件设计也是减小波形失真度一个主要方向。

主电路的效率不够高。测试过程中滤波电感发热严重,可能大量功率损耗再电感铜耗上了。选用直径更大漆包线,或双股线绕制可改善。

6参考文献

【1】康华光.电子技术基础[M].第五版.武汉:高等教育出版社,2005.

【2】谭浩强.C程序设计.第三版.北京:清华大学出版社,2005.

【3】黄争.德州仪器高性能单片机和模拟器件在高校中应用和选型指南.上海:德州仪器半导体技术有限公司大学计划部,2012.

【4】李先允.电力电子技术.第一版.北京:中国电力出版社,2006.

7附录

7.1元器件清单

表2 元器件清单

序号名称规格与型号数量备注

1 胆电容7.5nF 2

2 运放TL072 2

3 MOSFET IRFP250

4 TO220封装

4 肖特基二极管SB560 6 TO220封装

2

5 铁粉芯磁环起始磁导率125

外径40mm

内径24mm

高15mm

6 功率电阻10Ω/25W 3

10Ω/50W 4

7 漆包线Ф0.8mm 1

8 电解电容2200uf/35V 1

100uf/50V 4

1000uf/100V 1

85uf/50V 1

10 稳压二极管1N4744 4

C3V0 2

11 电位器20k 1

12 三端稳压集成芯片L7805 1

13 MOS驱动芯片IR21094 2

14 散热器TO—247 2

15 工频变压器n1:n2:n3=10:20:1 1

16 电流传感器CSM005A 1

17 电压传感器VSM025A 1

18 光耦EL817 2

19 施密特触发器CD4010 1

7.2总原理图

图9 总电路原理图

7.3部分原程序

void SPWM_Init(void)

{

P2DIR |= BIT0 + BIT1;

P2SEL |= BIT0 + BIT1;

TA1CCR0 = 2500;

TA1CCTL0 = CCIE;

TA1CCTL1 = OUTMOD_0;

TA1CCTL2 = OUTMOD_0;

TA1CTL = TASSEL_2 + TACLR + MC_3 ;

}

void ADC_Init(void)

{

P6SEL |= BIT6; // Enable A/D channel A0 ADC12CTL0 = ADC12ON+ADC12SHT0_4;

ADC12CTL1 = ADC12SHP + ADC12SSEL_3; // Use sampling timer ADC12MCTL0 = ADC12INCH_6; // Vr+=Vref+ and Vr-=AVss

ADC12IE = ADC12IE0;

ADC12CTL0 |= ADC12ENC; // Enable conversions }

void PI_adjust(void)

{

ek1 = ek;

ek = Sample_volt - Vref;

mod_inc = Kp * (ek - ek1) + Ki * ek;

mod += mod_inc;

if(mod > mod_max)

mod = mod_max;

else if(mod < mod_min)

mod = mod_min;

}

void main(void)

{

Init_all();

ADC_Init();

Meas_Freq_Init();

SPWM_Init();

while(1)

{

LPM0;

PI_adjust();

LPM0;

Meas_Freq();

}

}

#pragma vector=TIMER1_A0_VECTOR

__interrupt void TIMER1_A0_ISR(void)

{

if(flag == 1)

{

if(index == 49)

{

index = 0;

TA1CCTL1 &= ~OUTMOD1;

}

else

{

TA1CCR1 = (uint16_t)(TA1CCR0 * spwm[index++]) * mod;

}

}

else

{

if(index == 49)

{

index = 0;

TA1CCTL2 &= ~OUTMOD1;

}

else

{

TA1CCR2 = (uint16_t)(TA1CCR0 * spwm[index++]) * mod;

}

}

}

#pragma vector = ADC12_VECTOR

__interrupt void ADC12_ISR(void)

{

Sample_volt = ADC12MEM0 / 4096.0 * ADC_Vref;

if(Sample_volt < 1.5) //2.5V欠压保护

{

TA1CCTL1 = OUTMOD_0;

TA1CCTL2 = OUTMOD_0;

while(1);

}

LPM0_EXIT;

}

#pragma vector=RTC_VECTOR,PORT2_VECTOR,TIMER2_A0_VECTOR, \

USCI_B1_VECTOR,USCI_A1_VECTOR,PORT1_VECTOR, \

DMA_VECTOR, USB_UBM_VECTOR,TIMER0_A1_VECTOR,TIMER0_A0_VECTOR, \

USCI_B0_VECTOR,USCI_A0_VECTOR,WDT_VECTOR,TIMER0_B1_VECTOR,TIME

R0_B0_VECTOR, \

COMP_B_VECTOR,UNMI_VECTOR,SYSNMI_VECTOR

__interrupt void ISR_trap(void)

{

// the following will cause an access violation which results in a PUC reset

while(1);

}

太阳能光伏发电系统课程设计家庭并网光伏发电系统的优化设计

太阳能光伏发电系统课程设计家庭并网光伏发电系统的优 化设计 《太阳能光伏发电系统》 课程设计 课题名称: 家庭并网光伏发电系统的优化设计专业班级: 学生姓名: 学生学号: 指导教师: 设计时间: 沈阳工程学院 报告正文 目录 第1章绪 论 ..................................................................... . (3) 1.1 设计背 景 ..................................................................... .. (3) 1.2 设计意 义 ..................................................................... ......................................... 3 第2章朝阳市气象资料及地理情况...................................................................... ............... 4 第3章家用并网型...................................................................... .. (6)

太阳能光伏发电系统的优化设 计 ..................................................................... .. (6) 3.1 设计方 案 ..................................................................... .. (6) 3.2负载的计算...................................................................... . (8) 3.3 太阳能电池板容量及串并联的设计及选 型 (9) 3.4 太阳能电池板的方位角与倾斜角的设 计 (10) 3.5 蓄电池容量及串并联的设计及选型..................................................................... 11 3.6 控制器、逆变器的选 型 ..................................................................... (12) 3.7 电气配置及其设 计 ..................................................................... (13) 3.8 系统配置清 单 .....................................................................

太阳能自动跟踪系统的设计

太阳能自动跟踪系统的设计 1引言 开发新能源和可再生资源是全世界面临的共同课题,在新能源中,太阳能发电已成为全球发展最快的技术。太阳能作为一种清洁无污染的能源,开发前景十分广阔。然而由于太阳存在着间隙性,光照强度随着时间不断变化等问题,这对太阳能的收集和利用装置提出了更高的要求(见图1)。目前很多太阳能电池板阵列基本都是固定的,不能充分利用太阳能资源,发电效率低下。据测试,在太阳能电池板阵列中,相同条件下采用自动跟踪系统发电设备要比固定发电设备的发电量提高35%左右。 所谓太阳能跟踪系统是能让太阳能电池板随时正对太阳,让太阳光的光线随时垂直照射太阳能电池板的动力装置,能显著提高太阳能光伏组件的发电效率。目前市场上所使用的跟踪系统按照驱动装置分为单轴太阳能自动跟踪系统和双轴太阳能自动跟踪系统。所谓单轴是指仅可以水平方向跟踪太阳,在高度上根据地理和季节的变化人为的进行调节固定,这样不仅增加了工作量,而且跟踪精度也不够高。双轴跟踪可以在水平方位和高度两个方向跟踪太阳轨迹,显然双轴跟踪优于单轴跟踪。 图1 太阳能的收集装置现场 从控制手段上系统可分为传感器跟踪和视日运动轨迹跟踪(程序跟踪)。传感器跟踪是利用光电传感器检测太阳光线是否偏离电池板法线,当太阳光线偏离电池板法线时,传感器发出偏差信号,经放大运算后控制执行机构,使跟踪装置从新对准太阳。这种跟踪装置,灵敏度高,但是遇到长时间乌云遮日则会影响运行。视日运动轨迹跟踪,是根据太阳的实际运行轨迹,按照预定的程序调整跟踪装置。这种跟踪方式能够全天候实时跟踪,其精度不是很高,但是符合运行情况,应用较广泛。 从主控单元类型上可以分为PLC控制和单片机控制。单片机控制程序在出厂时由专业人员编写开发,一般设备厂家不易再次进行开发和参数设定。而学习使用PLC比较容易,通过PLC厂家技术人员的培训,设备使用厂家的技术人员可以很方便的学会简单的调试和编写,并且PLC能够提供多种通讯接口,通讯组网也比较方便简单。

光伏发电技术试题十一

1、简述太阳能发电的优点? 答:a太阳能取之不尽,用之不竭,地球表面接受的太阳能辐射量,足够满足目前全球能源需求的一万倍; b太阳能随处可得,可就近供电,不必长距离输送,避免了长距离输电线路的损失; c太阳能不用燃料,运行成本很低; d太阳能发电不产生任何废弃物,没有污染,噪声等公害,对环境无不良影响;e太阳能发电系统建设周期短,方便灵活,而且可以根据负载的增减,任意添加或减少太阳能电池方阵的容量,避免了浪费。 f没有可运动部件,容易做到运转、维护的自动化及无人化,且寿命长; 2.画出太阳电池直流模型的等效电路图,分别指出各部分的含义。 其中Iph为光生电流,Id为二极管电流,Ir为并联电阻电流,Rs为串联电阻,Rsh为并联电阻,I为输出电流。 3.什么叫光学大气质量?大气质量为1.5时,其天顶角为48.2度? 答:晴天,决定总入射功率的最重要的参数是光线通过大气层的路程。太阳在头顶正上方时,路程最短。实际路程和此最短路程之比称为光学大气质量。大气质量为1.5时,其天顶角为48.2度。 4.太阳电池的光谱响应的意义是什么?请简答光谱响应的大小取决于哪两个因素? 答:太阳电池的光谱响应是指一定量的单色光照到太阳电池上,产生的光生载流子被收集后形成的光生电流的大小。因此,它不仅取决于光量子的产额,而且取决于收集效率。 5、请阐述太阳能光伏电池的工作原理。 答:太阳电池是利用半导体光生伏特效应(Photovoltaic Effect)的半导体器件。当太阳光照射到由p型和n型两种不同导电类型的同质半导体材料构成的p-n结上时,在一定条件下,光能被半导体吸收后,在导带和价带中产生非平衡载流子——电子和空穴。它们分别在p区和n区形成浓度梯度,并向p-n结作扩散运动,到达结区边界时受p-n结势垒区存在的强内建电场作用将空穴推向p 区电子推向n区,在势垒区的非平衡载流子亦在内建电场的作用下,各向相反方向运动,离开势垒区,结果使p区电势升高,n区电势降低,p-n结两端形成光生电动势。如果分别在P型层和N型层焊上金属导线,接通负载,则外电路便有

基于Matlab软件平台的光伏并网系统仿真实训

绪论 新能源是21世纪世界经济发展中最具决定力的五大技术领域之一。随着世界经济的快速发展,对能源需求逐年增长,而地球上以石油和煤为主的矿物资源日渐枯竭,能源已成为制约各国经济发展的瓶颈。同时,随着化石燃料的燃烧,所产生的二氧化碳在大气中的浓度急剧增加,生态环境逐渐恶化,使地球逐渐变暖。随着人类社会的发展,改善生态环境的呼声越来越高,开发利用无污染的新能源,对促进社会文明与进步,发展经济,改善人民生活具有重大的意义。太阳能作为一种清洁、高效和永不衰竭的新能源,在日常生活中受到了各国政府的重视,各国都将太阳能资源利用作为国家可持续发展战略的重要内容。 太阳能并网发电系统通过把太阳能转化为电能,不经过蓄电池储能,直接通过并网逆变器,把电能送上电网。太阳能并网发电代表了太阳能电源的发展方向,是21世纪最具吸引力的能源利用技术。光伏发电技术根据负载的不同分为离网型和并网型两种,早期的光伏发电技术受制于太阳能电池组件成本因素,主要以小功率离网型为主,满足边远地区无电网居民用电问题。随着光伏组件成本的下降,光伏发电的成本不断下降,预计到2013年安装成本可降至1.5美元/Wp,电价成本为6美分/(kWh),光伏并网已经成为可能。并网型光伏系统逐步成为主流。

目录 第一章基于Matlab软件平台的光伏并网系统仿真实训......................... 错误!未定义书签。 1.1 Matlab软件介绍...................................... 错误!未定义书签。 1.2 光伏并网系统 (8) 第二章光伏并网逆变器电路工作原理 (13) 2.1 逆变器定义 (13) 2.3 逆变器功能作用 (13) 2.3.2 孤岛检测技术 (14) 2.3.3 智能电量管理及系统状况监控系统 (14) 第三章SG3525芯片 (15) 3.1芯片特点 (15) 3.2 管脚功能管脚图 (16) 3.3 结构设计内部结构图 (17) 第四章制图 (18) 4.1 用protel绘制原理图 (18) 4.2 根据原理图生成PCB电路板图 (18) 第五章焊接与调试 (19) 5.1 电路前面板的设计 (19) 5.2 调试结果 (20) 第六章实训结论 (21)

光伏并网发电系统设计

光伏并网发电系统设计 摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。 关键词:STC12C5408AD DC-AC转换电路 MPPT 太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。 1 设计任务 为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。另外要求系统效率高、失真度低。 U R L

图1 并网发电模拟装置框图 2 系统总体方案 光伏并网系统主要由前级的DC-DC变换器和后级的DC-AC逆变器组成。在系统中,DC-DC 变换器采用BOOST结构,主要完成系统的MPPT控制;DC-AC部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz交流电。设计采用单片机SPWM调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。系统总体硬件框图如图2所示: 图2 系统总体硬件框图 3 MPPT原理及电路设计 MPPT原理 由于光伏阵列的最大功率点是一个时变量,可以采用搜索算法进行最大功率点跟踪。其搜索算法可分为自寻优和非自寻优两种类别。所谓自寻优算法即不直接检测外界环境因素的变化,而是通过直接测量得到的电信号,判断最大功率点的位置。典型的追踪方法有扰动观测法和增量导纳法等。增量导纳法算法的精确度最高,但是,由于增量导纳法算法复杂,对实现该算法的硬件质量要求较高、运算时间变长,会增加不必要的功率损耗,所以实际工程应用中,通常采用扰动观测法算法]1[。 扰动观测法原理:每隔一定的时间增加或者减少电压,并通过观测其后功率变化的方向,

关于编制太阳能光伏发电自动跟踪系统项目可行性研究报告编制说明

太阳能光伏发电自动跟踪系统项 目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司 编制时间:https://www.wendangku.net/doc/354563639.html, 高级工程师:高建

关于编制太阳能光伏发电自动跟踪系统项 目可行性研究报告编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (8) 2.1项目提出背景 (8) 2.2本次建设项目发起缘由 (8) 2.3项目建设必要性分析 (8) 2.3.1促进我国太阳能光伏发电自动跟踪系统产业快速发展的需要 (9) 2.3.2加快当地高新技术产业发展的重要举措 (9) 2.3.3满足我国的工业发展需求的需要 (9) 2.3.4符合现行产业政策及清洁生产要求 (9) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (10) 2.3.6增加就业带动相关产业链发展的需要 (10) 2.3.7促进项目建设地经济发展进程的的需要 (11) 2.4项目可行性分析 (11) 2.4.1政策可行性 (11) 2.4.2市场可行性 (11) 2.4.3技术可行性 (12) 2.4.4管理可行性 (12) 2.4.5财务可行性 (13) 2.5太阳能光伏发电自动跟踪系统项目发展概况 (13)

光伏考试题总汇

光伏试题总汇 一、选择题 1、现生产线,单、串焊接所用的电烙铁为(A ) A.90W 150W B.60W 80W C.50W 100W D.30W 90W 2、焊带的外层所涂的发亮的金属中主要成分是(B ) A、铁 B、焊锡 C、铝 D、银 3、太阳能电池是将(A )转化成电能的 A、太阳光 B、风 C、闪电 D、热量 4、我们的组件要保证使用(D ),功率衰减不超过20%。 A、1 年 B、2 年 C、5 年 D、25 年 5、单焊工序所使用的烙铁功率是(B ) A. 50W B. 90W C. 120W D. 150W 6、太阳能电池单片的功率跟面积成比例关系的,比如125 125 电池片功率在2.4W 左右,125 62.5 电池片功率在1.2W左右,请问62.5 62.5 的电池片功率在(B )W左右。 A. 4.8 B. 0.6 C. 1.5 D. 0.3 7、下列哪种行为是不正确的(C ) A. 焊接台不使用时关闭开关 B. 焊台的海面要保持湿润 C. 对于焊接过程中的不可用电池片,可以选用与碎片相比,功率稍低电池片换 D. 每道工序都需要自检 8、下列哪些项目不需要层压工序检查(D ) A. 组件内部垃圾 B. TPT 移位,未盖住玻璃,TPT 划伤 C. 组件内气泡,碎片 D. 组件电性能 9、当发现有焊接碎片时,处理方法为(A ) A.及时到班长处记录并换片 B.从另一72 块中随便拿 C. 直接并换片 D.都可以

10、太阳电池组件层压时,进口EVA 常用的封装温度为(D ) A.100 度B. 90 度C.140 度D. 120 度 11、层压组件时,一般情况下,需要多少时间(A ) A.8分钟B.15 分钟C.11 分钟D.20 分钟 12 、下面哪个可属于合格品(A ) A、有明显断线(小且少于三根)B.背电极印反C .有严重花片D.以上都是 13、在单片焊接时应从栅线的第几根焊起(C ) A. 第一根 B. 第二根 C. 第三根 D. 第四根 14 、单焊和串焊的恒温模板的工艺温度是(D ) A.65—85℃ B.40—70℃ C.55—75℃ D. 50—70℃2 15 、安全生产事故发生的原因,在事故总数中占有很大比重的原因是(A) A、人的不安全行为 B、管理上的缺陷 C、不可抗力 D、以上都是 16、公司每年进行三废检测指(B ) A、废水、固废、废水 B、废水、废气、噪声 C、废水、噪声、固废 D、废液、废气、固废 17、串拼接用来焊单片的涂锡带的规格是(D ) 18、5S 是TPM(全员生产维修系统)全员生产维修的特征之一,“5S”就是整理、整顿、清洁、清扫及(A )。 A.素养 B.双整 C.TPM D.素质 19、(A )是一种化学物品,在操作中,需佩戴手套,避免污染。 A. EVA B. LCD C. ABC D. TNT 20、通过自动化焊接加工能保证焊接质量,提高产品的稳定性、(A ),保证产品质量。 A.操作性B.实用性C.美观性D.可靠性 21、目前采用较多的自动焊接设备为波峰焊机,它适用于(D )、大批量印制电路板的焊接。 A.小面积B.大面积C.较复杂D.较简单 22、自动化焊接系统一般不用于(D )的焊接。 A.集成电路B.超小型元器件C.复合电路D.较简单电路 23、在波峰焊接过程中应及时添加聚苯醚或(A )等防氧化剂并及时充钎料。 A.汽油B.煤油C.全损耗系统用油D.蓖麻油 24、焊接前应对设备运转情况、待焊接印制电路板的质量及(B )情况进行检查。

太阳能并网光伏发电系统设计

】 南昌航空大学 自学考试毕业论文 【 题目太阳能并网光伏发电系统 专业光伏材料及应用 学生姓名 准考证号 指导教师 . 2012 年 04 月

光伏发电并网控制技术设计 摘要 随着全球经济社会的不断发展,能源消费也相应的持续增长。能源问题已经成为关系到人类生存和发展的首要问题。所以,迫切需要对新的能源进行开发和研究。而太阳能的利用近年来已经逐渐成为新能源领域中开发利用水平高,应用较广泛的能源,尤其在远离电网的偏远地区应用更为广泛。 本文主要对光伏并网发电系统作了分析和研究。论文首先介绍了太阳能发电的意义以及光伏并网发电在国内外的应用现状。其次,对太阳能发电系统的特性和基本原理分别做了具体分析,并对系统各组成部分的功能进行了详细的介绍。接着,对光伏并网中最重要部分——逆变器进行研究。再次,提出光伏并网发电系统的设计方案。最后,对光伏并网发电系统的硬件进行设计。并网光伏发电充分发挥了新能源的优势,可以缓解能源紧张问题,是太阳能规模化发展的必然方向。我国政府高度重视光伏并网发电,并逐步推广"屋顶计划"。太阳能并网发电正在由补充能源向替代能源方向迈进。 关键词:能源;太阳能;光伏并网;逆变器

目录 第一章太阳能光伏产业绪论 (1) 光伏发电的意义 (1) 光伏并网发电 (1) 第二章太阳能光伏发电系统 (5) 太阳能光伏发电简介 (5) 太阳能光伏发电系统的类别 (5) 太阳能光伏发电系统的发电方式 (6) 影响太阳能光伏发电的主要因素 (7) 第三章并网太阳能光伏发电系统组成 (10) 并网光伏系统的组成和原理 (10) 光伏电池的分类及主要参数 (12) 光伏控制器性能及技术参数 (14) 光伏逆变器性能及技术参数 (15) 第四章发展与展望 (18) 发展与展望 (18) 全文总结 (19) 参考文献 (20) 致谢 (21)

100kW光伏并网发电系统典型案例解

100kW光伏并网发电系统典型案例解 100kW光伏并网发电系统典型案例解析 1、项目地点分析 本项目采用光伏并网发电系统设计方案,应用类别为村级光伏电站项目。项目安装地为江西,江西位于位于中国的东南部,长江中下游南岸。地处北纬24°29′-30°04′,东经113°34′-118°28′之间。项目所在地坐标为北纬25°8′,东经114°9′。根据查询到的经纬度在NASA上查询当地的峰值日照时间如下: (以下数据来源于美国太空总署数据库) 从上表可以看出,项目建设地江西在国内属于二三类太阳能资源地区,年平均太阳能辐射量峰值平均每天为3.41kWh/m2,年平均太阳能总辐射量峰值为:3.41kWh/m2*365=1244.65 kWh/m2。 2、光伏组件 2.1光伏组件的选择 本项目选用晶硅太阳能电池板,单块功率为260Wp。下面是一组多晶硅的性能参数,组件尺寸为1650*990*35mm。 2.2光伏组件安装角度

根据项目所在地理位置坐标,项目所在地坐标为项目所在地坐标为北纬25°8′,东经114°9′,光伏组件安装最佳倾角为20°如下图所示: 2.3组件阵列间距及项目安装面积 采用260Wp的组件,组件尺寸为1650*990*35mm,共用400块太阳能电池板, 总功率104kWp。根据下表公式可以计算出组件的前后排阵列间距为2.4m,单 块组件及其间距所占用面积为2.39㎡。

104kWp光伏组件组成的光伏并网发电系统占地面积为2.39*400=956㎡,考虑到安装间隙、周围围墙等可能的占地面积,大约需要1000㎡。 3、光伏支架 本项目为水平地面安装,采用自重式支架安装方式。自重式解决方案适用于平屋顶及地面系统。利用水泥块压住支架底部的铝制托盘,起到固定系统的作用。

自动跟踪太阳能光伏发电系统方案

自动跟踪太阳能光伏发电系统方案 方案需求 ?光伏发电管理急需精细化,降本增效。 ?传统光伏支架未能最大化利用太阳能,无法跟踪光照。 ?光伏板依靠本地维护人员巡检管理,人工成本高,且存在漏检现象。 方案介绍 宇飞太阳能自主研发的自动跟踪太阳能光伏发电系统,是一种能随着太阳角度变化,按照一定的算法,控制太阳能板转动,增加有效受光面积,从而增加电厂发电量带来更高收益的自动化控制系统,可以理解为“向日葵”。 自动跟踪太阳能光伏发电系统其实是一套负反馈控制系统,工控机采集角度传感器信息后,根据当前角度与目标角度的差异,下发控制指令驱动电机带动推拉杆运动使太阳能板旋转,直至采集回来的当前角度与目标角度吻合。 系统组成 自动跟踪太阳能光伏发电系统由:太阳能跟踪支架,太阳能组件,带监控模块的MPPT控制器,蓄电池,逆变器及连接线缆组成。 太阳能跟踪支架规格参数

1、立柱直径:φ220mm 2、立柱高度:650mm 3、安装容量:最大6块450W 4、光伏板倾角:25度角度固定 5、抗风能力:14级,带细钢丝绳斜拉结构; 6、材料:不锈钢材料 7、旋转精度:1度 8、旋转速率:12分钟旋转半圈 9、旋转角度:220度, 10、提高发电量:天气晴好情况下,冬季提高发电量15%;春秋季提高30%;夏季提高45%;综合全年提高25-35%(不同地区发电量提高有区别) 11、控制器电源:12V由光伏板输出供电(或者提供集中12V 直流供电) 12、控制方式:将光伏板固定好,并将追日控制器接好电源线后,天气晴朗条件下旋转立柱自动带着光伏板跟踪太阳;在天阴时,自动转入时控控制状态,每隔5分钟自动旋转1度; 13、而且每个旋转立柱内部都有同步控制系统,确保每台旋转立柱每次旋转的角度完全一致,光伏板以最强光强功率发电。晚上天黑,自动回东。 14、由多个旋转立柱组成的各种规模的光伏电站,由于旋转立柱的东限位位置全部一致,旋转立柱内置机械同步装置,可以确

光伏并网发电模拟装置

光伏并网发电模拟装置 一、任务 设计并制作一个光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S 和电阻R S 模拟光伏电池,U S =60V ,R S =30Ω~36Ω;u REF 为模拟电网电压的正弦参考信号,其峰峰值为2V ,频率f REF 为45Hz~55Hz ;T 为工频隔离变压器,变比为n 2:n 1=2:1、n 3:n 1=1:10,将u F 作为输出电流的反馈信号;负载电阻R L =30Ω~36Ω。 R L U S 图1 并网发电模拟装置框图 二、要求 1.基本要求 (1)具有最大功率点跟踪(MPPT )功能:R S 和R L 在给定范围内变化时, 使d S 1 2 U U =,相对偏差的绝对值不大于1%。 (2)具有频率跟踪功能:当f REF 在给定范围内变化时,使u F 的频率f F =f REF , 相对偏差绝对值不大于1%。 (3)当R S =R L =30Ω时,DC-AC 变换器的效率η≥60%。 (4)当R S =R L =30Ω时,输出电压u o 的失真度THD ≤5%。 (5)具有输入欠压保护功能,动作电压U d (th )=(25±0.5)V 。 (6)具有输出过流保护功能,动作电流I o (th )=(1.5±0.2)A 。 2.发挥部分 (1)提高DC-AC 变换器的效率,使η≥80%(R S =R L =30Ω时)。 (2)降低输出电压失真度,使THD ≤1%(R S =R L =30Ω时)。 (3)实现相位跟踪功能:当f REF 在给定范围内变化以及加非阻性负载时,

均能保证u F 与u REF 同相,相位偏差的绝对值≤5°。 (4)过流、欠压故障排除后,装置能自动恢复为正常状态。 (5)其他。 3. 器件要求 (1) 必须使用C2000处理器,推荐选择TMS320F28035, TMS320F28027, TMS320F2808;可使用各实验室已有的C2000开发板 ( 视参赛队情况,TI 可提供F28027开发模块 ); (2) 必须选择TI 生产的运放设计,推荐TLC08x ,TLV246x ; (3) 必须使用C2000内建ADC 进行设计,不得使用外部ADC ; (4) 若需MOSFET 驱动器,尽量使用TI 产品,比如UCC27423,UCC27424 和UCC27425等; (5) TI 将免费提供上述推荐使用的芯片,每参赛队处理器两片,模拟芯 片按板上数量乘以3提供(均为DIP 封装)。对于非推荐使用的芯片,TI 不负责提供。样片提供依据为参赛队提交的不雷同的原理图和PCB 图。 三、说明 1.本题中所有交流量除特别说明外均为有效值。 2.U S 采用实验室可调直流稳压电源,不需自制。 3.控制电路允许另加辅助电源,但应尽量减少路数和损耗。 4.DC-AC 变换器效率o d P P η= ,其中o o1o1P U I =?,d d d P U I =?。 5.基本要求(1)、(2)和发挥部分(3)要求从给定或条件发生变化到电路 达到稳态的时间不大于1s 。 6.装置应能连续安全工作足够长时间,测试期间不能出现过热等故障。 7.制作时应合理设置测试点(参考图1),以方便测试。 8.设计报告正文中应包括系统总体框图、核心电路原理图、主要流程图、 主要的测试结果。完整的电路原理图、PCB 图和所有源程序以电子档附件形式提交,若不愿公开相关资料请提前说明。 9. 测试方法见附件。

太阳能试题库

第六部分:太阳能发电等单元 一、填空题: 1.太阳能发电分为光伏发电和光热发电。通常讲的太阳能光发电指太阳能光伏发电,简称光电。 2.太阳能光伏发电技术是利用光生伏特效应(或光伏效应),使得太阳辐射能通过半导体物质直接转变为电能的一种技术。 3.太阳能热发电只能利用太阳能中的直射辐射资源,不能利用太阳能散射辐射资源。 4.BIPV 的含义是建筑光伏发电一体化(或建筑集成光伏发电)。 5.目前实行大规模产业化的晶体硅光伏电池包括单晶硅光伏电池、多晶硅光伏电池。 6.太阳能发电是利用方式有直接光发电和间接光发电两种。 7.光伏发电的关键元件是太阳能电池。 8.光伏发电系统可分为带蓄电池和不带蓄电池的并网发电系统。 9.目前,国产晶体硅的电池的效率在10-13% 左右,国外同类产品在12-14% 左右。 10.光伏发电的缺点主要有:照射能量分布密度小、随机性强、地域性强。 11.太阳电池在入射光中每一种波长的光能作用下所收集到的光电流,与相应于入射到电池表面的该波长的光子数之比,称作太阳电池的光谱响应,也称为光谱灵敏度。 12.太阳能电池的基本特性有:光谱特性、光照特性、温度特性。 13.太阳能电池分为晶硅片太阳能电池和薄膜太阳能电池两大类。

14.交流光伏供电系统和并网发电系统,方阵的电压等级往往是110V 或220V 。 15.太阳能方阵需要支架将许多太阳电池组件集合在一起。 16.太阳能电池的热斑往往在单个电池上发生。 17.避免热斑效应的主要措施是加设旁路二极管。 18.太阳能光伏发电系统可大体分为独立光伏发电系统和并网光伏发电系统。 19.带有蓄电池的光伏并网发电系统常常安装在居民建筑,不带蓄电池的并网发电系统一般安装在较大型的系统上。 20.光伏发电系统是由太阳能电池方阵,蓄电池组,充放电控制器,逆变器等设备组成。 21.在光生伏打效应的作用下,太阳能电池的两端产生电动势,将光能转换成电能,是能量转换的器件。 22.蓄电池组的其作用是贮存太阳能电池方阵受光照时发出的电能并可随时向负载供电。 23. 充放电控制器是能自动防止蓄电池过充电和过放电的设备。 24.住宅用并网光伏系统通常还可以考虑和建筑结合起来建设。 25.太阳电池组件方阵在标准测试条件下的额定最大输出功率称为峰瓦。 26.光伏电站根据是否允许通过公共连接点向公用电网送电,可分为可逆和不可逆的接入方式。 27.带有蓄电池的并网发电系统具有可调度性,可以根据需要并入或退出电网,还具有备用电源的功能。

光伏并网发电系统设计复习过程

光伏并网发电系统设 计

光伏并网发电系统设计 摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。 关键词:STC12C5408AD DC-AC转换电路 MPPT 太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。 1 设计任务 为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。另外要求系统效率高、失真度低。

R L U 图1 并网发电模拟装置框图 2 系统总体方案 光伏并网系统主要由前级的DC-DC 变换器和后级的DC-AC 逆变器组成。在系统中,DC-DC 变换器采用BOOST 结构,主要完成系统的MPPT 控制;DC-AC 部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz 交流电。设计采用单片机SPWM 调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。系统总体硬件框图如图2所示: 图2 系统总体硬件框图 3 MPPT 原理及电路设计 3.1 MPPT 原理

5kWp光伏太阳能并网发电系统

5kWp光伏太阳能并网发电系统 设 计 方 案 设计人:申小波(Mellon) 单位:个人 电话: 日期: 2013年10月27日

目录 一、光伏太阳能并网发电系统简介 (2) 二、项目地点及气候辐照状况 (2) 三、相关规范和标准 (5) 四、系统结构与组成 (5) 五、设计过程 (6) 1、方案简介 (6) 2、设计依据 (6) 3、组件设计选型 (7) 4、直流防雷汇流箱设计选型 (9) 5、交直流断路器 (11) 6、并网逆变器设计选型 (13) 7、电缆设计选型 (14) 8、方阵支架 (15) 9、配电室设计 (15) 10、接地及防雷 (15) 11、数据采集检测系统 (16) 六、仿真软件模拟设计 (17) 七、接入电网方案 (22)

八、设备配置清单及详细参数 (22) 九、系统建设及施工 (22) 十、系统安装及调试 (23) 十一、运行及维护注意事项 (26) 十二、设计图纸 (28) 十三、工程预算投资分析报告 (32)

5kWp光伏太阳能并网发电系统配置方案 一、光伏太阳能并网发电系统简介 并网系统(Utility Grid Connected)最大的特点:太阳电池组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网,并网系统中光伏方阵所产生电力除了供给交流负载外,多余的电力反馈给电网。在阴雨天或夜晚,太阳电池组件没有产生电能或者产生的电能不能满足负载需求时就由电网供电。 因为直接将电能输入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,可以充分利用光伏方阵所发的电力,从而减小了能量的损耗,并降低了系统的成本。但是系统中需要专用的并网逆变器,以保证输出的电力满足电网电力对电压、频率等电性能指标的要求。因为逆变器效率的问题,还是会有部分的能量损失。这种系统通常能够并行使用市电和太阳能太阳电池组件阵列作为本地交流负载的电源,降低了整个系统的负载缺电率,而且并网系统可以对公用电网起到调峰作用。但并网光伏供电系统作为一种分散式发电系统,对传统的集中供电系统的电网会产生一些不良的影响,如谐波污染,孤岛效应等。 二、项目地点及气候辐照状况 图片来自Google地球 1、项目地点为:江苏省泰州市XX区XX镇; 2、纬度:32°22’,经度:120°12’; 3、平均海拔高度:7m;

2009光伏并网发电模拟装置_王雨曦等12

光伏并网发电模拟装置 摘要:系统基于光伏发电原理,采用正弦波脉宽调制技术(SPWM),以单片机和大规模可编程阵列逻辑器件(FPGA)作为控制核心,实现了模拟的光伏并网发电功能。系统采用增量电导法实现最大功率点跟踪(MPPT)功能,采用频率跟踪法和沿触发补偿跟踪法分别实现了系统的频率跟踪功能和相位跟踪功能。系统对各路输入输出信号进行实时监测和反馈控制,实现了欠压和过流保护,且具有自动恢复功能。系统对强弱电进行了隔离,这样既避免两部分电路的相互影响,保证了弱电部分器件的安全,又达到了控制的效果。主回路DC-AC变换器效率达到80%以上,负载电路输出电压失真度很小,不大于1%。系统人机界面友好,稳定性高,安全可靠,并具有可实时监测并显示变换器效率、频率等功能。 关键字:SPWM MPPT 频率跟踪相位跟踪 一、方案论证 1、方案比较与选择 1)DC-AC主回路拓扑 鉴于此DC-AC逆变器为电压输出,故我们采用电压型逆变电路。 方案一:半桥式。半桥式电路中每只开关管只需承受逆变器输入电压幅值大小的电压应力,电路简单,但其需要正负对称供电才能输出无直流偏置的信号。 方案二:全桥式。两个半桥合并成即为全桥,全桥式电路的输出功率比半桥式大,且效率较半桥式电路高、谐波少,其输出对称性好,供电简单。 综上比较,全桥式电路输出谐波少,则输出端滤波较为容易,在工作频率不是很高的情况下,效率可以达到很高,所以我们选择方案二。 2)SPWM控制波实现方案 方案一:模拟调制法。用硬件电路产生正弦波和三角波,其中正弦波作为调制信号,三角波作为载波,两路信号经模拟比较器比较后输出SPWM波形。 方案二:数字采样法。把正弦波波表及三角波波表存入存储器里,通过DDS 生成相应波形,再通过数字比较器产生所需要的波形。 方案一电路简单,响应速度快,但参数漂移大,集成度低,波形易受外界噪声干扰,设计不灵活,且需要很复杂的硬件来控制逆变器功率器件的死区。但方案二可靠性高,可重复编程,响应快,精度高,控制简单,故选用方案二。 3)MPPT控制方案 方案一:扰动观测法(P&O)。其原理是每隔一定的时间增加或者减少电压,并观测其后的功率变化方向,来决定下一步的控制信号。 方案二:增量电导法(INC)。对光伏电池的电压和电流进行采样,通过比较光伏电池的电导增量和瞬间电导来改变控制信号。 方案二和方案一均是通过扰动逐步使光伏电池逼近最大功率点,但方案二较方案一更具优势,其避免了扰动观测法的盲目性,控制精确,响应速度快,且光伏电池的输出电压能平稳追随环境的变化,稳态振荡小,故选用方案二。 4)同频控制方案 方案一:瞬时比较方式。对反馈信号和参考信号测频并作比较,偏差通过滞环比较产生控制主电路中开关通断的SPWM信号,从而实现频率跟踪功能。

太阳能光伏发电试题及答案[精品文档]

一、选择题 1.太阳能光伏发电系统中,__A__指在电网失电情况下,发电设备仍作为孤立电源对负载供电这一现象。 A.孤岛效应 B. 光伏效应C.充电效应 D. 霍尔效应 2.某单片太阳电池测得其填充因子为77.3%,其开路电压为0.62V,短路电流为5.24A,其测试输入功率为 15.625W,则此太阳电池的光电转换效率为__A__。 A.16.07% B. 15.31% C. 16.92% D. 14.83% 3.太阳能光伏发电系统中,太阳电池组件表面被污物遮盖,会影响整个太阳电池方阵所发出的电力,从 而产生__D__。 A.霍尔效应 B. 孤岛效应C.充电效应 D. 热斑效应 4.下列表征太阳电池的参数中,哪个不属于太阳电池电学性能的主要参数__D__。 A.开路电压 B.短路电流 C. 填充因子 D. 掺杂浓度 5.蓄电池的容量就是蓄电池的蓄电能力,标志符号为C,通常用以下哪个单位来表征蓄电池容量__D__。 A.安培 B.伏特 C. 瓦特 D. 安时 6.蓄电池使用过程中,蓄电池放出的容量占其额定容量的百分比称为__D__。 A.自放电率 B. 使用寿命C.放电速率 D. 放电深度 7.太阳电池是利用半导体__C__的半导体器件。 A.光热效应 B.热电效应 C. 光生伏打效应 D. 热斑效应 8.在衡量太阳电池输出特性参数中,表征最大输出功率与太阳电池短路电流和开路电压乘积比值的是 __B__。 A.转换效率 B.填充因子 C. 光谱响应 D. 方块电阻 9.太阳电池单体是用于光电转换的最小单元,其工作电压约为__A__mV,工作电流为20~25mA/cm2。 A.400~500 B. 100~200 C.200~300 D.800~900 二、填空题 1.太阳能光伏发电系统中,没有与公用电网相连接的光伏系统称为离网(或独立)太阳能光伏发电系统;与公共电网相连接的光伏系统称为并网(或联网)太阳能光伏发电系统。 2.根据光伏发电系统使用的要求,可将蓄电池串并联成蓄电池组,蓄电池组主要有三种运行方式,分别为 循环充放电制、定期浮充制、连续浮充制。 3.太阳能光伏控制器主要由开关功率器件、控制电路和其他基本电子元件组成。 4.太阳电池的测量必须在标准条件(STC)下“欧洲委员会”定义的101号标准,其条件是光谱辐照度为___1000___W/m2、光谱为__AM_1.5__、电池温度为25℃。 5.硅基太阳电池有单晶硅太阳电池、多晶硅太阳电池以及非晶硅太阳电池等。通常情况其光电转换效率最 高的是__单晶硅__太阳电池,光电转换效率最低的是__非晶硅__太阳电池。 6.太阳能利用的基本方式可以分为四大类,分别为__光热效应/发电__、__光电效应/光伏发电__、光化学利 用以及光生物利用。 7.太阳能光伏发电系统绝缘电阻的测量包括__太阳电池方阵__的绝缘电阻测量、功率调节器绝缘电阻测量 以及__接地电阻__的测量。 8.蓄电池放电时输出的电量与充电时输入的电量之比成为_容量输出效率_。 9.在太阳电池外电路接上负载后,负载中便有电流流过,该电流称为太阳电池的__工作电流__。 10光热发电中用于跟踪聚集太阳光线的设备称为__定日镜__。 三、简答题 第一次作业 1.简述太阳能电池的工作原理。 答:太阳能电池工作原理的基础是半导体PN结的光生伏特效应。当太阳光或其他光照射半导体的PN结时,形成新的空穴-电子对,在PN结电场的作用下,空穴由n区流向p区,电子由P区流向N区,结果便

光伏系统试题

一.选择题(每题2分,共15题) 1.太阳能光伏发电系统的最核心的器件是__C____。 A.控制器B. 逆变器C.太阳电池D.蓄电池 2.太阳能光伏发电系统中,__A____指在电网失电情况下,发电设备仍作为孤立电源对负载供电这一现象。 A.孤岛效应B. 光伏效应C.充电效应D.霍尔效应 3.在太阳电池外电路接上负载后,负载中便有电流过,该电流称为太阳电池的__C____。 A.短路电流B. 开路电流C.工作电流D.最大电流 4,. 蓄电池放电时输出的电量与充电时输入的电量之比称为容量__D____。 A.输入效率B. 填充因子C.工作电压D.输出效率 5. 蓄电池使用过程中,蓄电池放出的容量占其额定容量的百分比称为__D____。 A.自放电率B. 使用寿命C.放电速率D.放电深度 6. 在太阳能光伏发电系统中,太阳电池方阵所发出的电力如果要供交流负载使用的话,实现此功能的主要器件是___B___。 A.稳压器B. 逆变器C.二极管D.蓄电池 7. 当日照条件达到一定程度时,由于日照的变化而引起较明显变化的是__C____。 A.开路电压B. 工作电压C.短路电流D.最佳倾角 8. 太阳能光伏发电系统中,太阳电池组件表面被污物遮盖,会影响整个太阳电池方阵所发出的电力,从而产生_D_____。 A.霍尔效应B. 孤岛效应C.充电效应D.热斑效应 9. 太阳电池最大输出功率与太阳光入射功率的比值称为__B____。 A.填充因子B.转换效率C.光谱响应D.串联电阻 10. 太阳电池方阵安装时要进行太阳电池方阵测试,其测试条件是太阳总辐照度不低于___D___mW/cm2。 A.400 B. 500 C.600 D.700 11. 在太阳能光伏发电系统中,最常使用的储能元件是下列哪种__C__。 A.锂离子电池 B. 镍铬电池 C.铅酸蓄电池 D. 碱性蓄电池 12. 一个独立光伏系统,已知系统电压48V,蓄电池的标称电压为12V,那么需串联的蓄电池数量为__D__。 A.1 13.标准设计的蓄电池工作电压为12V,则固定型铅酸蓄电池充满断开电压为14.8~15.0V,其恢复连接电压值一般为__C__。 A.12V B. 15V C. 13.7V D. 14.6V 14.某单片太阳电池测得其填充因子为77.3%,其开路电压为0.62V,短路电流为5.24A,其测试输入功率为15.625W,则此太阳电池的光电转换效率为__A__。 A.16.07% B. 15.31% C. 16.92% D. 14.83% 15.蓄电池的容量就是蓄电池的蓄电能力,标志符号为C,通常用以下哪个单位来表征蓄电池容量__D__。 A.安培 B.伏特 C. 瓦特 D. 安时 二.填空题(每题2分,共15题) 1.太阳能光伏发电系统中,没有与公用电网相连接的光伏系统称为_离网_____太阳能光伏发电系统;与公共电网相连接的光伏系统称为_并网_____太阳能光伏发电系统。

相关文档
相关文档 最新文档