文档库 最新最全的文档下载
当前位置:文档库 › 角点网格

角点网格

角点网格
角点网格

角点网格为结构网格。假如角点网格在X,Y,Z方向上划分的数量分别为NI,NJ,NK.那么XY平面上的网格数量为NI*NJ。三维网格数量为NI*NJ*NZ。

ECLIPSE定义角点网格的由两个关键字,即COORD和ZCORN.

(1)先用COORD定义线,一共有(NI+1)*(NJ+1)条线,其中N表示XY平面网格数目,一条线由两个点来定,一个点有X、Y、Z三个数据,所以紧跟在COORD后面的数据一共有(NI+1)*(NJ+1)*2*3 个!注意:定义线的顺序是一条线一条线的定义,方向是从左到右,再从左到右。

例如以3*3*3的网格系统,COORD就定义16条线。在eclipse中就有16行数据(见附录文件)

(2)然后用ZCORN定义每个网格的点,一个网络8个点嘛,所以紧跟在ZCORN后面的数据应该有N*8个!,这8个点全是Z值。注意:定义

网格角点的顺序都是从左到右,再从左到右从顶到底!

如图1中的3*3*3=27个网格,第一层网格有9个网格,则首先定义网格编号为(1,1,1),(2,1,1), (3,1,1)的上边的Z值,然后定义网格编号为(1,1,1),(2,1,1), (3,1,1)的下边的Z值;然后才是第二排网格和第三排网格。平面网格数量为3*3,每排(I)有六个数,共有6排。具体如下:1001,1001,1002,1002,1003,1003;//网格编号为(1,1,1)左上侧,(1,1,1)右上侧,(2,1,1)左上侧,(2,1,1)右上侧;(3,1,1)左上侧,(3,1,1)

右上侧,

1001,1001,1002,1002,1003,1003; //网格编号为(1,1,1)左下侧,(1,1,1)右下侧,(2,1,1)左下侧,(2,1,1)右下侧;(3,1,1)左下侧,(3,1,1)

右下侧,

1004 1004 1005 1005 1006 1006 //网格编号为(1,2,1)左上侧,(1,2,1)右上侧,(2,2,1)左上侧,(2,2,1)右上侧;(3,2,1)左上侧,(3,2,1)

右上侧,

1004 1004 1005 1005 1006 1006 //网格编号为(1,2,1)左下侧,(1,2,1)右下侧,(2,2,1)左下侧,(2,2,1)右下侧;(3,2,1)左下侧,(3,2,1)

右下侧,

1007 1007 1008 1008 1009 1009 //网格编号为(1,3,1)左上侧,(1,3,1)右上侧,(2,3,1)左上侧,(2,3,1)右上侧;(3,3,1)左上侧,(3,3,1)

右上侧,

1007 1007 1008 1008 1009 1009//网格编号为(1,3,1)左下侧,(1,3,1)右下侧,(2,3,1)左下侧,(2,3,1)右下侧;(3,3,1)左下侧,(3,3,1)

右下侧,

排完第一层网格的顶面,排完第一层网格的底面, 排完第2层网格的顶面,排完第2层网格的底面, 排完第3层网格的顶面,排完第3层网格的底面。

显然,数据点为36*6=216.

附录A:3*3*3网格系统,最初采用矩形网格来定义,具体的参数如下:

网格划分的几种基本处理方法

网格划分的几种基本处理方法 贴体坐标法: 贴体坐标是利用曲线坐标,并使其坐标线与燃烧室外形或复杂计算区域边界重合,这样所有边界点能够用网格点来表示,不需要任何插值。一旦贴体坐标生成通过变换,偏微分方程求解可以不在任意形状的物理平面上,而在矩形或矩形的组合(空间问题求解域为长方体或它们的组合)转换平面上进行。这样计算与燃烧室外形无关,也与在物理平面上网格间隔无关。 而是把边界条件复杂的问题转换成一个边界条件简单的问题;这样不仅可避免因燃烧室外形与坐标网格线不一致带来计算误差,而且还可节省计算时间和内存,使流场计算较准确,同时方便求解,较好地解决了复杂形状流动区域的计算,在工程上比较广泛应用。 区域法: 虽然贴体坐标系可以使坐标线与燃烧室外形相重合,从而解决复杂流动区域计算问题。但有时实际流场是一个复杂的多通道区域,很难用一种网格来模拟,生成单域贴体网格,即使生成了也不能保证网格质量,影响流场数值求解的效果。因此,目前常采用区域法或分区网格,其基本思想是,根据外形特点把复杂的物理域或复杂拓扑结构的网格,分成若干个区域,分别对每个子区域生成拓扑结构简单的网格。由这些子区域组合而成的网格,或结构块网格。对区域进行分区时,若相邻两个子域分离边界是协调对接,称为对接网格;若相邻两子域有相互重叠部分,则此分区网格称为重叠网格。根据实际数值模拟计算的需要,把整个区域(燃烧室)分成几个不同的子区域,并分别生成网格。这样不仅可提高计算精度,而且还可节省计算机内存,提高收敛精度。但是计算时,必须考虑各区域连接边界处耦合以及变量信息及时、准确地传递问题。处理各个区域连接有多种方法,其中一个办法是在求解各变量时各区域可以单独求解若干次而对压力校正方程.设压力校正值在最初迭代时为零,为了保证流量连续各个区域应同时求解,然后对各个速度和压力进行校正。或者采用在两个区域交界处有一个重叠区,两个区域都对重叠区进行计算,重叠区一边区域内的值,要供重叠区另一边区域求解时用。或通过在重叠内建立两个区域坐标对应关系,实现数据在重叠区内及时传递。如果两个区采用网格疏密分布不相同,要求重叠区二边流量相等。区域法能合理解决网格生成问题,已被大量用来计算复杂形状区域流动。 区域分解法: 对于复杂几何形状的实际燃烧装置,为了保证数值求解流场质量,目前常采用区域分解法。该法基本要点是:根据燃烧室形状特点和流场计算需要,把计算区域分成一个主区域和若干个子区域,对各个区域(块)分别建立网格,并对各个区域分别进行数值求解。区域分解原则是尽量使每个子区域边界简便以便于网格建立,各个子区域大小也尽可能相同,使计算负载平衡有利于平行计算。各区域的网格间距数学模型以及计算方法都可以不同,通常在变量变化梯度大的区域,可以布置较细网格,并采用高阶紊流模型和描述复杂反应的紊流燃烧模型,以便更合理模拟实际流场。对于变量变化不太大区域,可采用较疏的网格和较简单的数学模型,这样可节省计算时间。各子区域的解在相邻子区域边界处通过耦合条件来实现光滑,相邻子区域连接重叠网格或对接网格来实现,在各子区域交界处通过插值法提供各子域求解变量的信息传递,满足各子域流场计算要求通量和动量守恒条件以便实现在交界面处各子域流场解的匹配和耦合,从而取得全流场解。 非结构网格法: 上述各方法所生成的网格均属于结构化网格,其共同特点是网格中各节点排列有序,每个节点与邻点之间关系是固定的,在计算区域内网格线和平面保持连续。特别是其中分区结构网格生成方法已积累了较多经验,计算技术也较成熟,目前被广泛用来构造复杂外形区域

ICEM万能网格方法介绍

ICEM万能网格方法 众所周知,ICEM CFD以其强大的网格划分能力闻名于世,同其他类似网格划分软件一样,ICEM提供了结构网格和非结构网格划分功能。结构网格质量一般较高,有利于提高数值分析精度,但是对于过于复杂的几何体,其缺点也是显而易见的:需要耗费大量人力思考块的划分方式,且经常造成局部网格质量偏低的局面。而非结构网格因其快速、智能化划分方式获得了人们的青睐,但其网格形式一般呈四面体或三角形,不易于流动方向垂直,进而经常造成数值扩散。 那么有没有更好的网格划分方式,能够将结构网格和非结构网格的优点结合在一起,既能又快又好的生成网格、又提高计算精度呢?答案是肯定的。CFD资料专营店老板在研究所搞数值计算多年,对于网格划分更是非常熟悉,在这里总结了ICEM CFD中两种核心技术----六面体核心网格和混合网格技术的使用方法,这两种办法可以说适用于所有复杂几何体,是万能的!希望能够为因几何结构过于复杂、苦于无法做出较高质量结构网格、却又不想使用非结构网格的同仁们提供新的思路,帮你们打通网格难关! 一、六面体核心网格技术 ICEM CFD中有一种新技术,即六面体核心网格技术,其原理是首先生成四面体网格,然后通过先进算法,将大部分区域内的四面体网格破碎、整合成六面体网格,只有在几何非常复杂或者边缘地带才会保留四面体网格。这样生成的网格集合了四面体网格和六面体网格的优势,既节省时间;因为大部分区域是结构网格、完全可以与流

动方向垂直,因而能够保证计算精度。除此之外,六面体核心网格还能在四面体网格的基础上减少约60%-80%的网格数量,非常有利于充分利用计算机资源,加快计算时间。 效果如图所示: (图1)未使用六面体核心网格技术的网格截面 (图2)使用六面体核心网格技术后的网格截面

网格划分

有限元网格划分 摘要:总结近十年有限元网格划分技术发展状况。首先,研究和分析有限元网格划分的基本原则;其次,对当前典型网格划分方法进行科学地分类,结合实例,系统地分析各种网格划分方法的机理、特点及其适用范围,如映射法、基于栅格法、节点连元法、拓扑分解法、几何分解法和扫描法等;再次,阐述当前网格划分的研究热点,综述六面体网格和曲面网格划分技术;最后,展望有限元网格划分的发展趋势。 关键词:有限元网格划分;映射法;节点连元法;拓扑分解法;几何分解法;扫描法;六面体网格 1 引言 有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。 2 有限元网格划分的基本原则 有限元方法的基本思想是将结构离散化,即对连续体进行离散化,利用简化几何单元来近似逼近连续体,然后根据变形协调条件综合求解。所以有限元网格的划分一方面要考虑对各物体几何形状的准确描述,另一方面也要考虑变形梯度的准确描述。为正确、合理地建立有限元模型,这里介绍划分网格时应考虑的一些基本原则。 2.1 网格数量

网格数量直接影响计算精度和计算时耗,网格数量增加会提高计算精度,但同时计算时耗也会增加。当网格数量较少时增加网格,计算精度可明显提高,但计算时耗不会有明显增加;当网格数量增加到一定程度后,再继续增加网格时精度提高就很小,而计算时耗却大幅度增加。所以在确定网格数量时应权衡这两个因素综合考虑。 2.2 网格密度 为了适应应力等计算数据的分布特点,在结构不同部位需要采用大小不同的网格。在孔的附近有集中应力,因此网格需要加密;周边应力梯度相对较小,网格划分较稀。由此反映了疏密不同的网格划分原则:在计算数据变化梯度较大的部位,为了较好地反映数据变化规律,需要采用比较密集的网格;而在计算数据变化梯度较小的部位,为减小模型规模,网格则应相对稀疏。 2.3 单元阶次 单元阶次与有限元的计算精度有着密切的关联,单元一般具有线性、二次和三次等形式,其中二次和三次形式的单元称为高阶单元。高阶单元的曲线或曲面边界能够更好地逼近结构的曲线和曲面边界,且高次插值函数可更高精度地逼近复杂场函数,所以增加单元阶次可提高计算精度。但增加单元阶次的同时网格的节点数也会随之增加,在网格数量相同的情况下由高阶单元组成的模型规模相对较大,因此在使用时应权衡考虑计算精度和时耗。 2.4 单元形状 网格单元形状的好坏对计算精度有着很大的影响,单元形状太差的网格甚至会中止计算。单元形状评价一般有以下几个指标: (1)单元的边长比、面积比或体积比以正三角形、正四面体、正六面体为参考基准。 (2)扭曲度:单元面内的扭转和面外的翘曲程度。 (3)节点编号:节点编号对于求解过程中总刚矩阵的带宽和波前因数有较大的影响,从而影响计算时耗和存储容量的大小

网格划分的方法

网格划分的方法 1.矩形网格差分网格的划分方法 划分网格的原则: 1)水域边界的补偿。舍去面积与扩增面积相互抵消。2)边界上的变步长处理。 3)水、岸边界的处理。 4)根据地形条件的自动划分。 5)根据轮廓自动划分。

2.有限元三角网格的划分方法 1)最近点和稳定结构原则。 2)均布结点的网格自动划分。 3)逐渐加密方法。 35 30 25 20 15 10 5 05101520253035

距离(m)距 离 (m) 3. 有限体积网格的划分方法 1) 突变原则。 2) 主要通道边界。 3) 区域逐步加密。

距离(100m) 离距(100m )距离(100m)离距(100m )

4. 边界拟合网格的划分方法 1) 变换函数:在区域内渐变,满足拉普拉斯方程的边值问题。 ),(ηξξξP yy xx =+ ),(ηξηηQ yy xx =+ 2) 导数变化原则。 ?????? ??????=?????? ??????-ηξ1J y x ,???? ??=ηηξξy x y x J 为雅可比矩阵,??? ? ??--=-ηηξξy x y x J J 11, ξηηξy x y x J -= )22(1 222233ηηξηξηηξηξξηηηηηξξηηξξξηξy y x y y y x y y x x y y x y y x y J xx +-+-+-= 同理可得yy ξ,xx η,yy η。 变换方程为 020222=+++-=+++-)()(ηξηηξηξξηξηηξηξξγβαγβαQy Py J y y y Qx Px J x x x 其中2222,,ξξηξξηηηγβαy x y y x x y x +=+=+=。

网格划分方法

网格划分的几种基本处理方法 学习2010-01-10 17:13:52 阅读48 评论0 字号:大中小 贴体坐标法: 贴体坐标是利用曲线坐标,并使其坐标线与燃烧室外形或复杂计算区域边界重合,这样所有边界点能够用网格点来表示,不需要任何插值。一旦贴体坐标生成通过变换,偏微分方程求解可以不在任意形状的物理平面上,而在矩形或矩形的组合(空间问题求解域为长方体或它们的组合)转换平面上进行。这样计算与燃烧室外形无关,也与在物理平面上网格间隔无关。 而是把边界条件复杂的问题转换成一个边界条件简单的问题;这样不仅可避免因燃烧室外形与坐标网格线不一致带来计算误差,而且还可节省计算时间和内存,使流场计算较准确,同时方便求解,较好地解决了复杂形状流动区域的计算,在工程上比较广泛应 用。 区域法: 虽然贴体坐标系可以使坐标线与燃烧室外形相重合,从而解决复杂流动区域计算问题。但有时实际流场是一个复杂的多通道区域,很难用一种网格来模拟,生成单域贴体网格,即使生成了也不能保证网格质量,影响流场数值求解的效果。因此,目前常采用区域法或分区网格,其基本思想是,根据外形特点把复杂的物理域或复杂拓扑结构的网格,分成若干个区域,分别对每个子区域生成拓扑结构简单的网格。由这些子区域组合而成的网格,或结构块网格。对区域进行分区时,若相邻两个子域分离边界是协调对接,称为对接网格;若相邻两子域有相互重叠部分,则此分区网格称为重叠网格。根据实际数值模拟计算的需要,把整个区域(燃烧室)分成几个不同的子区域,并分别生成网格。这样不仅可提高计算精度,而且还可节省计算机内存,提高收敛精度。但是计算时,必须考虑各区域连接边界处耦合以及变量信息及时、准确地传递问题。处理各个区域连接有多种方法,其中一个办法是在求解各变量时各区域可以单独求解若干次而对压力校正方程.设压力校正值在最初迭代时为零,为了保证流量连续各个区域应同时求解,然后对各个速度和压力进行校正。或者采用在两个区域交界处有一个重叠区,两个区域都对重叠区进行计算,重叠区一边区域内的值,要供重叠区另一边区域求解时用。或通过在重叠内建立两个区域坐标对应关系,实现数据在重叠区内及时传递。如果两个区采用网格疏密分布不相同,要求重叠区二边流量相等。区域法能合理解决网格生成问题,已被大量用来计算复杂形状区域流动。 区域分解法: 对于复杂几何形状的实际燃烧装置,为了保证数值求解流场质量,目前常采用区域分解法。该法基本要点是:根据燃烧室形状特点和流场计算需要,把计算区域分成一个主区域和若干个子区域,对各个区域(块)分别建立网格,并对各个区域分别进行数值求解。区域分解原则是尽量使每个子区域边界简便以便于网格建立,各个子区域大小也尽可能相同,使计算负载平衡有利于平行计算。各区域的网格间距数学模型以及计算方法都可以不同,通常在变量变化梯度大的区域,可以布置较细网格,并采用高阶紊流模型和描述复杂反应的紊流燃烧模型,以便更合理模拟实际流场。对于变量变化不太大区域,可采用较疏的网格和较简单的数学模型,这样可节省计算时间。各子区域的解在相邻子区域边界处通过耦合条件来实现光滑,相邻子区域连接重叠网格或对接网格来实现,在各子区域交界处通过插值法提供各子域求解变量的信息传递,满足各子域流场计算要求通量和动量守恒条件以便实现在交界面处各子域流场解的匹配和 耦合,从而取得全流场解。 非结构网格法: 上述各方法所生成的网格均属于结构化网格,其共同特点是网格中各节点排列有序,每个节点与邻点之间关系是固定的,在计算区域内网格线和平面保持连续。特别是其中分区结构网格生成方法已积累了较多经验,计算技术也较成熟,目前被广泛用来构造复杂外形区域内网格。但是,若复杂外形稍有改变,则将需要重新划分区域和构造网格,耗费较多人力和时间。为此,近年来又发展了另一类网格——非结构网格。此类网格的基本特点是:任何空间区域都被以四面体为单元的网格所划分,网格节点不受结构性质限制,能较好地处理边界,每个节点的邻点个数也可不固定,因此易于控制网格单元的大小、形状及网格的位置。与结构网格相比,此类网格具有更大灵活性和对复杂外形适应性。在20世纪80年代末和90年代初,非结构网格得到了迅速发展。生成非结构网格方法主要有三角化方法和推进阵面法两种。虽然非结构网格容易适合复杂外形,但与结构网格相比还存在一些缺点:(1)需要较大内存记忆单元节点之

有限元网格剖分方法概述

有限元网格剖分方法概述 在采用有限元法进行结构分析时,首先必须对结构进行离散,形成有限元网格,并给出与此网格相应的各种信息,如单元信息、节点坐标、材料信息、约束信息和荷载信息等等,是一项十分复杂、艰巨的工作。如果采用人工方法离散对象和处理计算结果,势必费力、费时且极易出错,尤其当分析模型复杂时,采用人工方法甚至很难进行,这将严重影响高级有限元分析程序的推广和使用。因此,开展自动离散对象及结果的计算机可视化显示的研究是一项重要而紧迫的任务。 有限元网格生成技术发展到现在, 已经出现了大量的不同实现方法,列举如下: 映射法 映射法是一种半自动网格生成方法,根据映射函数的不同,主要可分为超限映射和等参映射。因前一种映射在几何逼近精度上比后一种高,故被广泛采用。映射法的基本思想是:在简单区域内采用某种映射函数构造简单区域的边界点和内点,并按某种规则连接结点构成网格单元。也就是根据形体边界的参数方程,利用映射函数,把参数空间内单元正方形或单元三角形(对于三维问题是单元立方体或单元四面体)的网格映射到欧氏空间,从而生成实际的网格。这种方法的主要步骤是,首先人为地把分析域分成一个个简单可映射的子域,每个子域为三角形或四边形,然后根据网格密度的需要,定义每个子域边界上的节点数,再根据这些信息,利用映射函数划分网格。 这种网格控制机理有以下几个缺点: (1)它不是完全面向几何特征的,很难完成自动化,尤其是对于3D区域。 (2)它是通过低维点来生成高维单元。例如,在2D问题中,先定义映射边界上的点数,然后形成平面单元。这对于单元的定位,尤其是对于远离映射边界的单元的定位,是十分困难的,使得对局部的控制能力下降。 (3)各映射块之间的网格密度相互影响程度很大。也就是说,改变某一映射块的网格密度,其它各映射块的网格都要做相应的调整。 其优点是:由于概念明确,方法简单,单元性能较好,对规则均一的区域,适用性很强,因此得到了较大的发展,并在一些商用软件如ANSYS等得到应用。 2 。拓扑分解法 拓扑分解法较其它方法发展较晚, 它首先是由Wordenwaber提出来的。该方法假设最后网格顶点全部由目标边界顶点组成, 那么可以用一种三角化算法将目标用尽量少的三角形完全分割覆盖。这些三角形主要是由目标的拓扑结构决定, 这样目标的复杂拓扑结构被分解成简单的三角形拓扑结构。该方法生成的网格一般相当粗糙, 必须与其它方法相结合, 通过网格加密等过程, 才能生成合适的网格。该方法后来被发展为普遍使用的目标初始三角化算法, 用来实现从实体表述到初始三角化表述的自动化转换。 单一的拓扑分解法因只依赖于几何体的拓扑结构使网格剖分不理想,有时甚至很差。 3.连接节点法 这类方法一般包括二步:区域内布点及其三角化。早期的方法通常是先在区域内布点, 然后再将它们联成三角形或四面体, 在三角化过程中, 对所生成的单元形状难于控制。随着Delaunay三角化(简称为DT ) 方法的出现, 该类方法已成为目前三大最流行的全自动网格生成方法之一。 DT法的基本原理:任意给定N个平面点Pi(i=1,2,…,N)构成的点集为S,称满足下列条件的点集Vi为Voronoi多边形。其中,Vi满足下列条件: Vi ={ X:|X- Pi|(|X- Pj|,X(R2,i(j,j=1,2,…,N }Vi为凸多边形,称{ Vi}mi=1为Dirichlet Tesselation

画网格的方法

离圆心近处较疏的O型网格画法的的截图教程第一步:画圆柱体,以直径为10毫米,长为50毫米的圆柱为例。依次左单击 ,再右击,出现图1,选择cylinder,即圆柱体。在下面的输入 框中输入长度50和半径5,再单击Apply即可。见图2。单击即可看到圆柱体的多个视图。见图3

第二步:画和刚才所画的圆柱体等高的长方体。单击,在下面的输入框中输入长6宽6高50,direction 选择+x+y+z,单击Apply即可。见图4 第三步:再画一个长方体,和刚才第二步所画的只有方向不同,direction 选择-x-y+z。见图5。

第四步:用画好的两个长方体去切圆柱体。两个底面均被分成了四个全等的扇形。先用其中一个长方体去切圆柱体,具体操作见图8。要注意的一点是,split volume面板上只选中connected 这一项。最后单击apply。结果见图9。然后再用另一个长方体去切剩下的3/4 圆柱体。操作方法基本同上。结果见图10。

第五步:选中圆柱体两个底面的圆心建立一条虚线。具体操作见图5。凹下且右上角有阴影的键是需要依次单击的。依照图5操作完毕后,开始选点,左手按住shift ,右手控制鼠标单击所需点。记住type 要选择virtual 。然后,单击apply 完成。

第六步:将上一步创造出来的那根虚线划为10等分(也可按照你的要求随意选择)。具体操作见下图(图6)。依次单击operation 的第二个按钮,mesh 的第二个按钮,edge 的第一个按钮,出现mesh edges 对话框。在黄色显示区域选中那根虚轴线,单击interval size 选择interval count ,在前面的输入框中输入你要的数目10。最后单击apply 完成。结果见图7。

网格中的三角形

网格中的三角形 河北张家口市第十九中学 贺峰 随着新课程的实施,在近几年的中考试卷中出现了许多新颖的网格型试题,这类试题具有很强的直观性、可操作性、开放性及综合性等特点,不仅能够考查学生的数学知识,体现分类、数形结合等重要的数学思想,同时也考查和培养学生的识图、归纳、动手操作、自主探究等多种能力,有利于培养学生的探究意识和创新精神。现以近几年中考试题中出现的“网格中的三角形”为例,为同学们加以归类分析: 一、网格中的“等面积三角形” 例1 已知在正方形网格中,每个小方格都是边长为1的正方形,A 、B 两点在小方格的顶点上,位置如图1所示,点C 也在小方格的顶点上,且以A 、B 、C 为顶点的三角形面积为1,则点C 的个数为( ) (A )3个 (B )4个 (C )5个 (D )6个 析解:此题以网格为载体来考查同学们等面积三角形的构成,体现分类讨论思想,若使点C 在小方格的顶点上,且以A 、B 、C 为顶点的三角形面积为1, 即保证△ABC 的底为2,高为1,因此须分类讨论的思想方法,即按AC =2时、BC =2时进行分类求解。答案如图2所示: 说明:此题也可通过对图形对称变换进行求解,即确定第(1)、(3)、(5)三种情况,分别以AB 所在的直线为对称轴将△ABC 翻折,使点C 落在格点上即可求解。 即可求解。 二、网格中的“等腰三角形” 例2如图3所示,A 、B 是4×5网络中的格点,网格中的每个小正方形的边长为1,请在图中清晰标出使以A 、B 、C 为顶点的三角形是等腰三角形的 所有格点C 的位置. 析解:此题以网格为载体来考查同学们等腰三角形的构成,体现分类讨论思 想,若使点C 在小方格的顶点上,且以A 、B 、C 为顶点的三角形为等腰三角形,即保证△ABC 中AB =AC 或AB =BC 或AC =AB ,即分别以AC 、AB 、BC 为腰时进行分类求解。答案如图4所示: 说明:此题也可通过对图形旋转变换进行求解,即以AB 为腰,分别以点A 、点B 为旋转中心,将线段AB 进行旋转,使点B 、点A 落在格点上即可求解。 三、网格中的“直角三角形” 例3如图5,正方形网格中,小格的顶点叫做格点,小华按下列要求作图: ①在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一条实线 上;②连结三个格点,使之构成直角三角形, 小华在左边的正方形网格中作出了Rt △ABC ,请你按照同样的要求,在右边的两个 正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等。 析解:此题开放性很强, 给学生广阔的思维空 图1 A 图3 图 4 A B C 图5 图6 C C C C C C (1) (2) (3) (5) (6) 图2

有限元网格划分及发展趋势

有限元网格划分及发展趋势 摘要:总结近十年有限元网格划分技术发展状况。首先,研究和分析有限元网格划分的基本原则;其次,对当前典型网格划分方法进行科学地分类,结合实例,系统地分析各种网格划分方法的机理、特点及其适用范围,如映射法、基于栅格法、节点连元法、拓扑分解法、几何分解法和扫描法等;再次,阐述当前网格划分的研究热点,综述六面体网格和曲面网格划分技术;最后,展望有限元网格划分的发展趋势。关键词:有限元网格划分;映射法;基于栅格法;节点连元法;拓扑分解法;几何分解法;扫描法;六面体网格 1 引言 作为有限元走向工程应用枢纽的有限元网格划分,是有限元法的一个非常重要的研究领域,经历了40多年的发展历程。有限元网格划分算法研究中的某些难点问题始终未能得到真正意义上的解决,它们的解决对工程问题具有重要的现实价值和理论意义。有限元分析的基本过程可分为三个阶段:有限元模型的建立(即前处理)、有限元解算、结果处理和评定(即后处理)。根据经验,有限元分析各阶段所用的时间为】 【1:40%-45%用于模型的前处理,50%-55%用于后处理,而分析计算只占5%左右;更有文献】 【2指出有限元建模占有限元分析一半以上的工作量,甚至高达80%。因此,有限元分析的前后处理一直都是有限元分析的瓶颈问题,严重地阻碍着有限元分析技术的应用和发展。 许多学者对有限元网格生成方法近30年的研究进行了概括和总结】 【4。近年来,【3,对某些重要分支领域的研究进展方面也做出了贡献】 有限元网格生成方法研究有两个显著特点:(1)经历了一个进化过程,一些方法的研究与应用出现停滞,而另外一些方法在不断地深入、完善和发展,成为适应性强、应用范围广泛的通用方法;(2)领域和主题在不断扩展和深入,研究重点由二维平面问题转移到三维曲面和三维实体问题,从三角形、四面体网格自动生成转移到四边形、六面体网格自动生成。 2 有限元网格划分的基本原则 有限元方法的基本思想是将结构离散化,即对连续体进行离散化,

基于三维网格模型的网格排布优化技术综述

科学与财富 0引言 近年来,随着计算机图形软硬件技术的提高及人们对绘制效果的要求越来越高,计算机图形学研究和应用呈现出场景对象越加复杂,对绘制真实感的要求越来越高,显示分辨率不断递增,模型趋于复杂化,数据精度要求较高等问题。基于此提出了提高绘制性能的主要途径:GPU加速技术,并行绘制技术,可见性剔除技术,网格简化技术,多分辨率绘制技术,存储访问优化技术,基于图像的绘制技术,图像和网格压缩技术,基于预计算的绘制技术等。 对于计算机硬件性能的不断提高,存储访问带宽与计算能力的差距越来越大,因此缓存访问效率成为影响应用程序运行效率的关键因素。而要改善缓存的性能有以下几种方法:①降低缓存访问失配率;②降低失配损失;③通过并行技术降低失配率或是失配损失;④减少命中缓存的时间。降低缓存访问失配率,可以从提高缓存硬件性能与编译优化等方面来解决,其原理是:通过调整指令顺序和数据的使用顺序,增强代码和数据使用的时间局部性和空间局部性特征,从而提高缓存命中率。体系结构方面,通过缓存硬件性能来提高缓存访问效率。应用程序方面,采用编译优化不需要修改或者增加硬件,可分为计算重排和数据重排。 计算重排,根据重新排列指令顺序,提高访问相同数据单元指令的局部性,通常由编译器对应用程序编译后的指令序列进行重排来完成,对于指令,重新组织程序而不影响程序的正确性。数据重排,根据指令对数据单元的访问方式求解出缓存连贯的数据排布,由应用程序直接对数据进行重排来完成,通过优化改善了数据的空间局部性和时间局部性[1]。目前网格排布优化技术是计算机图形学与可视化领域的重点研究方向之一,该技术基于数据重排,通过对网格图元的存储顺序进行重新排序,能够减少平均缓存访问失配率,提高大型三维网格模型和大规模虚拟场景的处理和绘制性能。 2网格排布优化技术 顶点缓存的访问性能通常用平均缓存失配率(ACMR)来衡量,定义为绘制每个三角形的平均缓存失配次数,即缓存的总失配次数与总访问次数之比,ACMR的取值范围为[0.5,3.0],因为每个顶点至少失配一次,至多失配三次。需要注意的是,ACMR无法达到最小值,主要是因为顶点缓存区容量的限制。若顶点缓存区可以装下所有顶点,则以任何方式组织的三角形都可以使ACMR接近于0.5。但是缓存容量很小,很难装下所有的顶点,并且网格的形状也会导致ACMR额外的开销。 2.2.1网格排布优化方法的分类 网格排布优化技术是图排布理论的应用与引伸,根据不同的划分方式可以将网格排布优化技术分成不同的类。根据求解技术手段的不同,网格排布优化技术可分为基于优化策略、基于空间填充曲线和基于谱序列三类[1],现代的GPU使用一个小的缓冲区来存储最近需要访问的顶点,为了最大化的利用好顶点缓存用于快速渲染的优点,对三角形进行重排序是必要的,基于优化策略即使用了这一优点。基于空间填充曲线是对二维或者三维规则网格单元的一种具有较好空间局部性的特殊线性遍历方法,是在某种程度上保留局部相关性的多维网格单元遍历。基于谱序列方法是通过特定的线性算子推导出相关的特征性、特征向量以及特征空间投影,并利用这些特征量和组合求解出问题。因为谱序列是求解图排布问题的一个有效引导策略,所以也可以应用到网格排布技术中。 根据网格描述方式的不同,可分为基于三角形、基于三角形条带、基于三角形扇[3],或者简单分为基于条带和基于非条带两种方式,每种描述方式又可分为索引形式和三角形汤形式。三角形扇和三角形条带类似,但是不如三角形条带灵活,所以很少使用。索引形式只需少量数据,传输代价小,使之成为目前使用最为普遍的方式,但顶点随机读取也带来了ACMR的增加。因此许多研究者提出对网格图元的存储顺序进行重新排布,可以减小 ACMR,降低顶点处理的运算量,提高渲染速度。 2.2.2三角形排布优化算法的介绍 为提高网格模型的处理和绘制性能,现代图形卡使用顶点缓冲器来提高顶点缓存命中率,使模型在绘制过程中减少发送的顶点数据。有效利用顶点缓冲器,在已有的图形绘制流水线基础上,通过重新排列网格模型图元的线性序列,增加缓存中顶点的命中率。下面对国内外几种常见的相关算法做一个简要的介绍。 Hoppe(Hoppe.1999)提出了一种贪心条带算法生成三角形序列[4],该算法是基于优化策略和三角形条带的研究,核心思想是沿着逆时针方向生成条带,进行三角形条带合并,在合并的过程中不断检测预期的ACMR。此算法针对一个预先指定的缓存大小,比如16,对算法进行优化求解,使用FI-FO策略对三角形进行重排,采用了三角形条带索引模式。Hoppe算法可以得到很低的平均缓存失配率,其运算时间复杂度高于O(m),该算法也存在一些待解决的问题,在网格的顶点索引中很难确定三角形的拓扑方向,对可能合并入条带的三角形进行ACMR的预估会增加算法的复杂度。Bogomjakov等人(2002)提出的面向具有任意大小的FIFO缓存的通用序列构造算法(称为BoG算法)[5],是一种最具代表性的空间填充曲线。该算法把Hilbert空间填充曲线和MLA空间填充曲线的应用推广到不规则三角网格,使用图划分软件包Metis将网格分成多个三角形簇,保证每个簇内三角形序列的ACMR最优,从而形成整个网格的ACMR最优化。该算法在相同缓存参数前提下,AMCR指比Hoppe算法增大20%左右,分割的切割边上的失配率对整体失配率有影响。 Lin等人(Lin and Thomas.2006)算法则是基于贪心优化策略的3D渲染多边形网格序列生成算法[6],该算法适用于非条带三角形的排布优化,可以应用于渐进网格,应用启发式条件对网格顶点进行全局搜索,同样可以得到很低的平均缓存失配率,其运算时间复杂度也高于O(m)。核心思想是赋予每个顶点一个缓存访问代价度量,选择代价度量最小的顶点作为当前输出顶点,找到与该顶点邻接的所有未输出三角形,按顺时针方向访问并逐一将这些三角形的顶点压入缓存中,最后以三角形环为单位逐一输出三角形,并在整个网格中对下一个需要输出的三角形环进行全局最优性搜索。Nehab等人(Nehab et al.2006)提出了一种多功能三角形序列重排算法[7],该算法不仅能减少顶点缓存的平均缓存失配率,而且能减少图元的重绘率(通过深度测试的片元总数与最终可见的像素总数之比),作者首先提出通过局部优化减少顶点处理时间,同时通过三角形序列重排减少像素处理时间是自相矛盾的,原因是基于视点的深度排序会毁掉顶点缓存性能,且局部优化会导致当前视点下的高度透支。基于此提出了基于优化策略的多功能三角形序列重排算法,实现两者之间的融合。 Sander等人(Sander et al.2009)对Lin等人算法进行了改进,使三角形排布适用于动态模型[8]。其核心思想是以顶点在缓存中的位置作为代价度量,选出代价度量最小的顶点作为当前顶点,即以三角形环作为计算单位,然后输出与该顶点邻接的所有未输出三角形(随机访问),与Lin等人算法 基于三维网格模型的网格排布优化技术综述 娄自婷 (云南师范大学信息学院,云南昆明650500) 摘要:网格排布优化技术通过对网格图元的存储顺序进行重新排序,能够减少平均缓存访问失配率,提高大型三维网格模型和大规模虚拟场景的处理和绘制性能。文中综述了网格排布优化技术的研究进展,分析比较了基于优化策略、基于空间填充曲线和基于谱序列的网格排布优化方法。 关键词:三维网格模型,网格排布优化;ACMR A Survey of mesh layout optimization for3D mesh models LOU Ziting (College of computer science and information technology,Yunnan Normal University,Kunming City Yunnan Province650500,China) Abstract:The mesh layout technology through storage order of the mesh primitive reorder,can reduce the average cache miss rate and improve the process-ing and rendering performance of large3D mesh models and large-scale virtual scene.This paper gives an introduction to advances in technology mesh layout optimization.We analyze and compare the mesh layout optimization method based optimization strategy,space-filling curve and spectral sequences. Keywords:3D mesh models,Mesh layout optimization;ACMR 科学论坛 536

Ansys ICEM 二维三角形结构化网格-Y Block

ICEM 二维三角形结构化网格(Y-Block) 1 三角形结构 ①构建如图1.1a所示的三角形结构(蓝)、建立如图1.1b所示的辅助线和点(红); Fig. 1.1a Generate the triangle Fig. 1.1b Create the auxiliary curves and points ②创建2D planar block,如图1.2; Fig. 1.2 Create the 2D Planar Block

③分割块(O-Grid):选择block,选择两条edge(11-13和13-21),如图1.3a,分割结果如图1.3b (a) (b) Fig. 1.3 Split the block ④映射关联点:模型树中选择Geometry →Points →Show Point Names;Blocking →Vertices →Numbers。如图1.4a;注意:vertex number和point name 随个人作图顺序不一样。 作映射: Vertex 34 →Point 08; Vertex 19 →Point 03; Vertex 21 →Point 00; Vertex 35 →Point 04; Vertex 13 →Point 02; Vertex 33 →Point 05; Vertex 11 →Point 01;

映射结果见图1.4b; (a) Show Point Names and Vertices Numbers (b) Fig. 1.4 Associate Vertex ⑤构建网格,及检查质量,如图1.5 Fig. 1.5 Meshing

六面体网格剖分算法的研究现状

六面体网格剖分算法的研究现状? 李丹金灿刘晓平 合肥工业大学计算机与信息学院可视化与协同计算(VCC)研究室,安徽合肥 230009 摘 要:总结了有限元六面体网格生成方法的研究进展。首先,指出了六面体网格不同于其他网格的优点。其次对当前的主要研究热点——全六面体网格生成进行了阐述。最后简要地探讨了该领域的发展趋势。 关键词:有限元面体网格格生成 Present Situation of Research on Finite Element All-hex Mesh Generation Methods Li Dan Jin Can Liu Xiao-ping VCC Division, School of Computer and Information, Hefei University of Technology, Hefei, 230009, China Abstract: This paper presents the advances of research in all-hex mesh generation for finite element computation. Firstly, the advantages of all-hex mesh different from other meshes are presented. Secondly, the main research fields-all-hex mesh generation are discussed in detail. Finally, the trends of this field are presented briefly. Keywords: Finite Element; all-hex mesh; mesh generation 1 前言 有限元分析是结合工业建模、计算机技术和数值计算而产生的新兴学科。有限元分析的基本过程可以分为三个阶段:有限元模型的建立(工业建模,即前处理)、有限元分析(数值计算)、结果处理和评价(即后处理)。根据专家统计,有限元分析各个阶段所占用的时间分别为:40%~45%的时间用于模型的建立,50%~55%的时间用于结果处理和评定,而 *基金资助:国家自然科学基金(60673028). 作者简介:李丹(1987-), 女, 安徽合肥, 汉族, 硕士研究生, 研究方向为计算机辅助设计; 金灿(1982-), 男, 安徽合肥, 汉族, 博士生, 研究方向为计算机辅助设计; 刘晓平(1964), 男, 山东济南, 汉族, 教授, 博导, 研究方向为建模、仿真与协同计算.

任意形状的三角形网格划分

第9卷 第5期 1997年9月计算机辅助设计与图形学学报J.CAD &CG V o l .9,N o.5Sep.,1997 任意曲面的三角形网格划分 陈永府 张 华 陈 兴 李德群 (华中理工大学塑性模拟及模具技术国家重点实验室 武汉 430074) 摘要 把曲面分为可展曲面和不可展曲面,对可展曲面用曲面展开算法展成平面,对不可展曲面用曲面分割算法转化成平面片,在平面上运用D elaunay 三角划分法进行网格划分,然后把网格节点反映射到曲面上,从而实现任意曲面的三角形网格划分。 关键词 D elaunay 三角划分,可展曲面,不可展曲面,曲面展开算法,曲面分割算法。 1996201203收稿,1996211222收到修改稿。本文得到“八五”重点攻关项目“注塑成形的计算机仿真与交互计算”资助。陈永府,1972年生,硕士研究生,研究方向为注塑模CA E 的前处理。张 华,博士研究生,研究方向为注塑模CA E 。陈 兴,副教授,研究方向为注塑模CAD 。李德群,博士生导师,研究方向为模具CAD 、CA E 、CAM 。 1 引 言 网格划分是计算机图形学研究的重要内容。目前,有很多种网格划分算法,如拓扑分解法、节点连接法、映射单元法、基于栅格法等。这些算法在二维网格划分上各有千秋,但对三维任意曲面的网格划分,成功的例子却很少。俄国数学家D elaunay 在1934年就证明了:对于任意给定的平面点集,有且仅有一种三解剖分方法能够满足“最大2最小角”优化准则,即所有三角形的最小内角之和最大。Sib son [1]证明了平面任意给定点集的D elauay 三角划分具有整体最优化的性质,这就是说,对于任意给定的平面点集,D elaunay 三角划分能够得到整体最优的三角形网格,能尽可能地避免病态三角形的出现。所以,D elaunay 三角划分在许多应用领域,尤其是在实体几何造型和有限元网格自动生成等研究领域,受到广泛的重视。但是传统的D elaunay 三角划分不能对三维任意曲面进行网格划分,为了解决这个问题,本文把曲面分为可展曲面和不可展曲面,分别对可展曲面采用曲面展开算法,对不可展曲面采用曲面分割算法;将曲面转化为平面,然后在平面上利用D elaunay 三角划分的优化性质进行网格划分,再将网格节点反映射到曲面上(限于篇幅,本文略去网格节点反映射到曲面上的算法),从而实现任意曲面的三角形网格划分。 2 平面任意多边形域的D elaunay 三角划分 L aw son [2]根据“最大2最小角”优化准则,通过“对角线交换”法则实现了二维给定点 集的D elaunay 三角划分。W atson [3]首次提出 “插入多边形”,并在此基础上,利用“外接__________________________________________________________https://www.wendangku.net/doc/364591777.html,

各种网格划分方法

各种网格划分方法 1.输入实体模型尝试用映射、自由网格划分,并综合利用多种网格划分控制方法 本题提供IGES 文件 1. 以轴承座为例,尝试对其进行映射,自由网格划分,并练习一般后处理的多种技术,包 括等值图、云图等图片的获取方法,动画等。 2. 一个瞬态分析的例子 练习目的:熟悉瞬态分析过程 瞬态(FULL)完全法分析板-梁结构实例 如图所示板-梁结构,板件上表面施加随时间变化的均布压力,计算在下列已知条件下结构的瞬态响应情况。 全部采用A3钢材料,特性: 杨氏模量=2e112/m N 泊松比=0.3 密度=7.8e33 /m Kg 板壳: 厚度=0.02m 四条腿(梁)的几何特性: 截面面积=2e-42m 惯性矩=2e-84m 宽度=0.01m 高度=0.02m 压力载荷与时间的 关系曲线见下图所示。 图 质量梁-板结构及载荷示意图 0 1 2 4 6 时间(s ) 图 板上压力-时间关系 分析过程 第1步:设置分析标题 1. 选取菜单途径Utility Menu>File>Change Title 。 2. 输入“ The Transient Analysis of the structure ”,然后单击OK 。 第2步:定义单元类型 单元类型1为SHELL63,单元类型2为BEAM4 第3步:定义单元实常数 实常数1为壳单元的实常数1,输入厚度为0.02(只需输入第一个值,即等厚度壳)

实常数2为梁单元的实常数,输入AREA 为2e-4惯性矩IZZ=2e-8,IYY =2e-8宽度TKZ=0.01,高度TKY=0.02。 第5步:杨氏模量EX=2e112/m N 泊松比NUXY=0.3 密度DENS=7.8e33 /m Kg 第6步:建立有限元分析模型 1. 创建矩形,x1=0,x2=2,y1=0,y2=1 2. 将所有关键点沿Z 方向拷贝,输入DZ =-1 3. 连线。将关键点1,5;2,6;3,7;4,8分别连成直线。 4. 设置线的分割尺寸为0.1,首先给面划分网格;然后设置单元类型为2,实常数为2, 对线5到8划分网格。 第7步:瞬态动力分析 1. 选取菜单途径Main Menu>Solution>-Analysis Type-New Analysis ,弹出New Analysis 对话框。 2. 选择Transient ,然后单击OK ,在接下来的界面仍然单击OK 。 3. 选取菜单途径Main Menu>Solution>-Load Step Opts-Time/Frequenc> Damping , 弹出Damping Specifications 窗口。 4. 在Mass matrix multiplier 处输入5。单击OK 。 5. 选取菜单途径Main Menu > Solution > -Loads-Apply > -Structural- Displacement>On Nodes 。弹出拾取(Pick )窗口,在有限元模型上点取节点232、242、252和262,单击OK ,弹出Apply U,ROT on Nodes 对话框。 6. 在DOFS to be constrained 滚动框中,选种“All DOF ”(单击一次使其高亮度显示, 确保其它选项未被高亮度显示)。单击OK 。 7. 选取菜单途径Utility Menu>Select>Everything 。 8. 选取菜单途径Main Menu>Solution>-Load Step Opts-Output Ctrls>DB/Results File ,弹出Controls for Database and Results File Writing 窗口。 9. 在Item to be controlled 滚动窗中选择All items ,下面的File write frequency 中选择Every substep 。单击OK 。 10. 选取菜单途径Main Menu>Solution>-Load Step Opts-Time/Frequenc> Time – Time Step ,弹出Time – Time Step Options 窗口。 11. 在Time at end of load step 处输入1;在Time step size 处输入0.2;在Stepped or ramped b.c 处单击ramped ;单击Automatic time stepping 为on ;在Minimum time step size 处输入0.05;在Maximum time step size 处输入0.5。单击OK 。 12. 选取菜单途径Main Menu>Solution>-Loads-Apply>-Structure-Pressure>On Areas 。弹出Apply PRES on Areas 拾取窗口。 13. 单击Pick All ,弹出Apply PRES on Areas 对话框。 14. 在pressure value 处输入10000。单击OK 15. 选取菜单途径Main menu>Solution>Write LS File ,弹出Write Load Step File 对 话框。 16. 在Load step file number n 处输入1,单击OK 。 17. 选取菜单途径Main Menu>Solution>-Load Step Opts-Time/Frequenc> Time – Time Step ,弹出Time – Time Step Options 窗口。

相关文档